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Abstract. This work provides a systematic investigation of the use of
approximate enumeration oracles in BKZ, building on recent technical
progress on speeding-up lattice enumeration: relaxing (the search radius
of) enumeration and extended preprocessing which preprocesses in a
larger rank than the enumeration rank. First, we heuristically justify
that relaxing enumeration with certain extreme pruning asymptotically
achieves an exponential speed-up for reaching the same root Hermite factor
(RHF). Second, we perform simulations/experiments to validate this and
the performance for relaxed enumeration with numerically optimised
pruning for both regular and extended preprocessing.
Upgrading BKZ with such approximate enumeration oracles gives rise
to our main result, namely a practical and faster (wrt. previous work)
polynomial-space lattice reduction algorithm for reaching the same RHF
in practical and cryptographic parameter ranges. We assess its concrete
time/quality performance with extensive simulations and experiments.

1 Introduction

Lattices are discrete subgroups of Rm. A lattice L in Rm is represented as a set
of all integer linear combinations of n linearly independent vectors b0, . . . , bn−1

in Rm: L =
{

∑n−1
i=0 xi · bi, xi ∈ Z

}

. The matrix B := (b0, . . . , bn−1) forms a

basis of L, and the integer n is the rank of L. Any lattice of rank ≥ 2 has infinitely
many bases.

A central lattice problem is the shortest vector problem (SVP): given a basis of
a lattice L (endowed with the Euclidean norm), SVP is to find a shortest nonzero
vector in L. SVP is known to be NP-hard under randomised reductions [Ajt98].
The hardness of solving SVP and in particular its applications in cryptography
have led to the study of approximate variants.
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For δ ≥ 1, the δ-approximate variant of SVP (δ-SVP) is to find a non-
zero vector v in L such that ‖v‖ ≤ δ · λ1(L), where λ1(L) := minx∈L 6=0

‖x‖
denotes the length of the shortest nonzero vector in L. Solving δ-SVP is also
NP-hard for any δ ≤ nc/ log logn with some constant c > 0 under reasonable
complexity assumptions [Mic01, Kho05, HR12, Mic12]. A closely related problem
is δ-Hermite SVP (δ-HSVP), which asks to find a non-zero vector v in L such that

‖v‖ ≤ δ · vol(L)1/n, where vol(L) denotes the volume of L. Many cryptographic
primitives base their security on the worst-case hardness of δ-SVP or related lattice
problems [Ajt96, Reg05, GPV08, Pei09]. Security estimates of these constructions
depend on solving δ-HSVP, typically for δ = poly(n) [ADPS16, AGVW17]. The
output quality of a δ-HSVP solver in rank n is typically assessed with the so-called
root Hermite factor (RHF) δ1/(n−1).3

To solve the approximate versions of SVP, the standard approach is lattice
reduction, which finds reduced bases consisting of reasonably short and relatively
orthogonal vectors. Its “modern” history began with the celebrated LLL algo-
rithm [LLL82] and continued with stronger blockwise algorithms [Sch87, SE94,
GN08a, MW16, ALNS20, ABF+20]. Lattice reduction has numerous applications
in mathematics, computer science and especially cryptanalysis.

Lovász [Lov86] showed that any δ-HSVP solver in rank n can be used to
efficiently solve δ2-SVP in rank n. For random lattices L of rank n, the classical

Gaussian heuristic claims λ1(L) ≈ GH(L) := GH(n) · vol(L)1/n. Here, GH(n)
denotes the radius of the unit-volume n-dimensional ball. Thus, any δ-HSVP
solver in rank n for δ ≥ √n can possibly be used to solve (δ/

√
n)-SVP in the

same rank in practice (see [GN08b, §3.2]).

In this work we consider the practical aspects of solving δ-HSVP using block-
wise lattice reduction algorithms. The Schnorr–Euchner BKZ algorithm [SE94]
and its modern incarnations [CN11, AWHT16, BSW18, ADH+19, ABF+20]
provide the best time/quality trade-off in practice. The BKZ algorithm takes a
parameter k controlling its time/quality trade-off: the larger k is, the more reduced
the output basis, but the running time grows at least exponentially with k. BKZ
is commonly available in software libraries (such as FP(y)LLL [FPL19, FPy20],
NTL [Sho20] and PBKZ [AWHT16]) and has been used in many lattice record
computations [SG10, ADH+19, DSvW21]. G6K [ADH+19, DSvW21] currently
provides the fastest public BKZ implementation by replacing the enumeration-
based SVP oracle in BKZ with a sieving-based oracle. As such, it achieves a
running time of 2Θ(k) at the cost of also requiring 2Θ(k) memory. However,
this memory requirement may prove prohibitively expensive in some settings.
Moreover, in a massively parallelised computation the communication overhead
required for sieving may limit its performance advantage.

In this work we reduce the performance gap between enumeration-based and
sieving-based BKZ. That is, we focus on enumeration-based lattice reduction for
solving δ-HSVP, i.e. the polynomial-memory regime, building on recent technical

3 The normalisation by the (n−1)-th root is justified by that the algorithms considered
here achieve RHFs that are bounded independently of the lattice rank n.
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progress on speeding-up lattice enumeration: relaxed pruned enumeration [LN20]
and extended preprocessing [ABF+20].

Recently, [LN20] heuristically justified that if relaxing the search radius by
a small constant α > 1, then enumeration with certain extreme cylinder prun-
ing [SH95, GNR10] asymptotically achieves an exponential speed-up. Intuitively,
this relaxation strategy allows to upgrade the enumeration subroutine for BKZ
(2.0) [SE94, CN11] with one more optional parameter α. Here and in what follows,
we omit pruning parameters due to the use of FP(y)LLL’s numerical pruning
module [FPL19, FPy20].

Concurrently, a variant of BKZ presented in [ABF+20] can achieve RHF

GH(k)
1/(k−1)

in time kk/8+o(k), which is super-exponentially faster than the cost
record kk/(2e)+o(k) of [Kan83, HS07] for reaching the same RHF. The idea behind
the BKZ variant [ABF+20] is to preprocess in a larger rank than the enumeration
rank. That is, [ABF+20] upgraded the HSVP-oracle of BKZ to exact (pruned)
enumeration in rank k with extended preprocessing in rank ⌈(1 + c) · k⌉ for
some small constant c ≥ 0. Intuitively, this preprocessing strategy upgrades the
enumeration subroutine for BKZ (2.0) [SE94, CN11] with an additional optional
parameter c.

Contributions. This work investigates the impact of improved enumeration
subroutines in BKZ by integrating the relaxation strategy [AWHT16, ALNS20,
LN20] with the extended preprocessing strategy [ABF+20], i.e. we propose the
use of relaxed pruned enumeration with extended preprocessing in BKZ.

First, in Section 3, we justify and empirically validate that relaxed enumeration
with certain extreme cylinder pruning [SH95, GNR10] asymptotically achieves
better time/quality trade-offs for certain approximation regimes based on standard
heuristics. More precisely, for large enough k, the resulting α ·GH(kα)-HSVP-
oracle in rank kα is exponentially faster than a GH(k)-HSVP-oracle in rank k
for any constant α ∈ (1, 2]. Here, kα is the smallest integer greater than k such
that the corresponding RHF would not become larger after relaxation:

GH (k)
1

k−1 ≥ (α ·GH(kα))
1

kα−1 .

Prior work [LN20] only treated the speed-up of α ·GH(k) compared with GH(k).
Second, in Section 4, we explore the concrete cost estimates of relaxed enu-

meration with FP(y)LLL’s pruning module [FPL19, FPy20] with or without
extended preprocessing, using simulations and experiments. We validate that with
the same preprocessing in rank ⌈(1+ c) ·k⌉ for c ∈ [0, 0.4], the resulting α ·GH(k)-
HSVP-oracle in rank k is exponentially faster than a GH(k)-HSVP-oracle in rank
k for constants α ∈ (1, 1.3].4

Third, our main result is a practical BKZ variant presented in Section 5,
which uses an (α · GH(kα))-HSVP enumeration oracle in rank kα with pre-
processing in rank ⌈(1 + c) · kα⌉. Intuitively, it upgrades the enumeration

4 We also observed a small speed-up of c = 0.15 over c = 0.25 (claimed to be the “opti-
mal” in [ABF+20]) and verified it using the original simulation code from [ABF+20]
in Figure C.1 in Appendix C.
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subroutine for BKZ (2.0) [SE94, CN11] with two more optional parameters
(α, c), and generalises the BKZ variant in [ABF+20] with one more optional
parameter α. This additional freedom results in the best current time/quality
trade-off for enumeration-based BKZ implementations: our algorithm achieves

RHF GH(k)
1

k−1 in time ≈ 2
k log k

8 −0.654 k+25.84. This improves on the cost record

2
k log k

8 −0.547 k+10.4 given in [ABF+20]. As a side result, by setting c = 0 (i.e with-

out extended preprocessing), our algorithm achieves RHF GH(k)
1

k−1 in time

≈ 2
k log k

2 e −1.077 k+29.12, which also improves on the cost for BKZ 2.0 [CN11] re-

ported in [ABF+20]: 2
k log k

2 e −0.995 k+16.25. A comparison between our results and
those reported in [ABF+20] is given in Figure 1.1: it illustrates that our BKZ
variant is exponentially faster than previous BKZ variants in the polynomial-
memory setting. Comparing our best fit with the results reported in [ABF+20],
we obtain a crossover rank of 145, or approximately 261 operations.5
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FPLLL [ABF+20]: k log k
2 e
− 0.995 k + 16.25

This work c = 0.00: k log k
2 e
− 1.077 k + 29.12

[ABF+20, §4]: k log k
8
− 0.547 k + 10.4

This work c = 0.15: k log k
8
− 0.654 k + 25.84

Costs are given in number of nodes visited during enumeration. It is typically assumed
that processing one node takes about 64 CPU cycles [ABF+20]. A BKZ-like algorithm
will make a polynomial number of calls to an oracle where the cost of each call is given
in this figure. Costs are extrapolated from simulations.

Fig. 1.1: Cost comparison.

Since our results critically depend on our simulation and implementation
results, we provide the complete source code (used to produce our simulation
data and experimental verification) as an attachment to this document.

5 To put this into perspective, [TKH18] reports solving 1.05-HSVP in rank 150 using a
distributed implementation of an enumeration algorithm. As a result, we expect the
speedups demonstrated in this work to be practical.
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Impact on security estimates. Security estimates for lattice-based crypto-
graphic primitives typically rely upon sieving algorithms [ACD+18]. In the clas-
sical (i.e. non-quantum) setting this is backed by both the asymptotic [BDGL16]
and concrete [ADH+19, DSvW21] performance of sieving algorithms. Our results
do not affect this state of the art.6 As can be gleaned from Figure 1.1, all known
enumeration-based algorithms, including those based on the strategies in this
work, perform similarly up to rank k ≈ 100. On the other hand, G6K [ADH+19]
outperforms FPLLL’s implementation of enumeration for ranks & 70.

In the quantum setting the situation is considerably more complicated. Quan-
tum enumeration algorithms asymptotically produce a quadratic speed-up over
classical enumeration algorithms [ANS18] in the “query model”, but each such
queries may have significant (polynomial) cost, implying that such an estimate is
likely a significant underestimate of the true cost. On the other hand, quantum
sieving improves the cost from 20.292 k+o(k) to 20.265 k+o(k) [Laa15], assuming no
depth restriction on quantum computation. In [AGPS20] some quantum resource
estimates are given for the dominant part of various lattice sieving algorithms.
These costs, however, are derived assuming unit cost for accessing quantum
accessible RAM, an optimistic assumption. Overall, given the lack of clarity on
the cost of the two families of algorithms under consideration in a quantum
setting, it is currently not possible to assess the crossover rank when quantum
lattice sieving outperforms quantum lattice-point enumeration. This suggests
an analogous investigation to [AGPS20] for quantum enumeration as a pressing
research question.

Faced with the difficulty of assessing the cost of quantum algorithms, the
literature routinely relies on rough low bounds to estimate the cost of lattice
reduction, see e.g. [PAA+19, GZB+19, BBC+20].7 In particular, the quantum
version of the Core-SVP methodology [ADPS16] assigns a cost of 20.265 k to

performing lattice reduction with RHF GH(k)
1/(k−1)

. Now, comparing this figure
with a naive square-root of our enumeration costs would give a crossover rank of
k = 547. Yet, even then, i.e. even presuming the square-root advantage applies
as is to our algorithm including preprocessing, accepting the assumptions of
suppressing (potentially significant) polynomial factors, no depth restriction on
quantum computation and unit-cost qRAM, this would not imply a downward
correction of Category 1 NIST PQC Round 3 submission parameters and similar
parameters for lattice-based schemes. That is, we stress that this work does
not invalidate the claimed NIST Security Level of such submissions. This is
because a given security level is defined by both a classical and a quantum cost:
roughly 2λ classically and 2λ/2 quantumly. For example, for Level 1 this is the
cost of classically and quantumly breaking AES-128. Submissions targeting a
classical security level 2λ relying on the cost of classical sieving 20.292 k+o(k) have
a quantum security level much higher than 2λ/2 under the 20.265 k cost model. In

6 We discuss the (apparent lack of) applicability of our approach to the sieving setting
in Appendix B.

7 This does not imply, though, that those works endorse this mode of comparison,
e.g. [BBC+20] explicates its objections to it.
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other words, this work does not lower the cost of quantum enumeration sufficiently
to invalidate NIST Security Level claims since known quantum algorithms provide
only a minor speed-up in the chosen cost model over classical algorithms when
compared to Grover’s algorithm for, say, AES.

2 Background

Notation. To be compatible with software implementations such as FP(y)LLL,
we let matrix indices start with 0 and use row-representation for both vectors
and matrices in this work. Bold lower-case and upper-case letters denote row
vectors and matrices respectively. The set of n×m matrices with coefficients in
the ring A is denoted by An×m, and we identify Am with A1×m. The notations
log(·) and ln(·) stand for the base 2 and natural logarithms respectively.

2.1 Lattices

Orthogonalisation. Let B = (b0, . . . , bn−1) ∈ Rn×m be a basis of a lattice
L. Lattice algorithms often involve the orthogonal projections πi : Rm 7→
span (b0, . . . , bi−1)

⊥
for i = 0, . . . , n− 1. The Gram–Schmidt orthogonalisation

(GSO) of B is B∗ = (b∗0, . . . , b
∗
n−1), where the Gram–Schmidt vector b∗i is πi(bi).

Then b
∗
0 = b0 and b

∗
i = bi−

∑i−1
j=0 µi,j ·b∗j for i = 1, . . . , n−1, where µi,j =

〈bi,b
∗
j 〉

〈b∗
j ,b

∗
j 〉
.

The projected block (πi(bi), πi(bi+1), . . . , πi(bj−1)) is denoted by B[i,j). Then

the volume of the parallelepiped generated by B[i,j) is vol(B[i,j)) =
∏j−1

k=i ‖b∗k‖.
In particular, B[0,j) = (b0, . . . , bj−1) and vol(L) = vol(B) =

∏n−1
k=0 ‖b∗k‖.

Hermite’s constant. Hermite’s constant of dimension n is the maximum γn =

max
(

λ1(L)/vol(L)1/n
)2

over all n-rank lattices L, where λ1(L) = minv∈L\{0} ‖v‖
is the first minimum of L. The best asymptotical bounds known are [CS87, MH73]:
n

2πe + log(πn)
2πe ≤ γn ≤ 1.744n

2πe + o(n).

Lattice reduction. Let B = (b0, . . . , bn−1) be a basis of a lattice L.
B is size-reduced if |µi,j | ≤ 1

2 for all 0 ≤ j < i < n. B is LLL-reduced [LLL82]
if it is size-reduced and every 2-rank projected block B[i,i+2) satisfies Lovász’s

condition: 3
4 · ‖b

∗
i ‖2 ≤ ‖µi+1,i · b∗i + b

∗
i+1‖2 for 0 ≤ i ≤ n − 2. In practice, the

parameter 3
4 can be replaced with any constant in the interval ( 14 , 1).

B is SVP-reduced if ‖b0‖ = λ1(L). There are two relaxations with δ ≥ 1: B is

δ-SVP-reduced if ‖b0‖ ≤ δ · λ1(L); B is δ-HSVP-reduced if ‖b0‖ ≤ δ · vol(L)1/n.
B is HKZ-reduced if it is size-reduced and B[i,n) is SVP-reduced for i =

0, . . . , n− 1; B is k-BKZ-reduced [Sch87] if it is size-reduced and B[i,min{i+k,n})
is SVP-reduced for i = 0, . . . , n− 1.

Primitive vector. Let L be a lattice with basis (b0, . . . , bn−1). A vector b =
∑n−1

i=0 xibi ∈ L with xi ∈ Z is primitive for L iff it can be extended to a basis of
L, or equivalently, gcd(x0, . . . , xn−1) = 1 [Sie89, Theorem 32].
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HSVP-oracle and RHF. A δ-HSVP-oracle with factor δ > 0 is any algorithm
which, given as input an n-rank lattice L specified by a basis, outputs a primitive

vector v in L such that ‖v‖ ≤ δ · vol(L)1/n. The resulting root-Hermite-factor

(RHF) is
(

‖v‖
vol(L)1/n

)1/(n−1)

, which is less than δ1/(n−1). In other words, the worst-

case RHF of this δ-HSVP-oracle on an n-rank lattice is δ1/(n−1). For instance,
any exact SVP-solver working on an n-rank lattice is a

√
γn-HSVP-oracle, whose

corresponding worse-case RHF is γ
1

2(n−1)
n .

Geometric Series Assumption. Let B = (b0, . . . , bn−1) be a basis. Schnorr’s Geo-
metric Series Assumption (GSA) [Sch03] says that B follows the GSA wrt. some
constant r ∈ [3/4, 1) (depending on the reduction algorithm) if its Gram–Schmidt
lengths decay geometrically wrt. r, namely ‖b∗i+1‖/‖b∗i ‖ = r for all i = 0, . . . , n−2.
In practice, it has been observed that a reduced basis produced by the LLL
algorithm [LLL82] satisfies the GSA in an approximate sense when the input
basis is sufficiently randomised.

Gaussian heuristic. Given a full-rank lattice L in Rn and a measurable set
S ⊆ Rn, the cardinality of S ∩ L is approximately vol(S)/vol(L). Under the
heuristic, there are about αn points in L of norm ≤ α ·GH(L), and one would

expect λ1(L) to be close to GH(L). Here, GH(L) := GH(n) · vol(L)1/n with

GH(n) :=
Γ (n/2 + 1)

1/n

√
π

≈
√

n

2πe
· (πn)

1
2n

by Stirling’s formula (4). In fact, for a random lattice L, λ1(L) is close to GH (L)
with high probability [Rog56]; for any lattice L of rank n > 24, it follows from

Blichfeldt’s inequality γn ≤ 2 ·GH(n)
2
[Bli14] that λ1(L) ≤

√
2 ·GH(L).

2.2 Enumeration: pruning plus relaxation

Enumeration [Poh81, Kan83, FP85, SE94, MW15, ABF+20] is the simplest
algorithm for solving SVP and requires only polynomial memory: given a full-
rank lattice L in Rn and a radius R > 0, enumeration outputs L

⋂

Balln(R) by
a depth-first tree search. If R ≥ λ1(L), then it is trivial to extract a nonzero
lattice vector of length ≤ R: moreover, by comparing all the norms of vectors in
L
⋂

Balln(R), one can find a shortest nonzero lattice vector.
Cylinder pruning [SH95, GNR10] speeds up enumeration by replacing the

search region Balln(R) with a (much smaller) subset Pf (B, R) defined by a
bounding function f : {1, . . . , n} → [0, 1], a basis B of L and R:

Pf (B, R) = {x ∈ Rn : ‖πn−k(x)‖ ≤ f(k) ·R for all 1 ≤ k ≤ n} ⊆ Balln(R).

Algorithm 1 recalls enumeration with extreme cylinder pruning, which repeats
enumeration with cylinder pruning many times over different subsets Pf (B, R)
by randomising B. Here, each Step 3 is a single cylinder pruning.
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Algorithm 1 Extreme cylinder pruning [GNR10, Algorithm 1]

Input: (L, R, f), where L is a full-rank lattice in Rn specified by a basis, R > 0 is a
radius and f is a bounding function.

Output: A nonzero vector in L⋂Balln(R).
1: WHILE no nonzero vector in L⋂Balln(R) has been found:
2: Compute a (randomised) reduced basis B by applying basis reduction to a

“random” basis of L.
3: Compute L

⋂

Pf (B, R) by enumeration with cylinder pruning

The use of enumeration with extreme cylinder pruning in blockwise lattice
reduction requires finding just one nonzero point in L

⋂

Pf (B, R) for some basis
B produced at Step 2: it allows to suitably relax radius R for speedup, which
was already exploited in solving SVP challenges [SG10].

Recently, Li and Nguyen [LN20] clarified the heuristic asymptotic speedup
achieved by enumeration with relaxed radius and with certain extreme cylinder
pruning. It uses the following two heuristic assumptions as in [GNR10]:

Heuristic 1 The cost of Algorithm 1 is dominated by enumeration with cylinder
pruning at Step 3, rather than the repeated reductions of Step 2.

Heuristic 2 All the reduced bases B of Algorithm 1 follow the GSA wrt. the
same positive constant.

Theorem 1 ([LN20, Theorem 6]). Let L be a full-rank lattice in Rn. Let
α ≥ 1 and ρ ∈ (0, 1

2 ) such that 4α4 · ρ · (1− ρ) < 1. Let R = α ·GH(L) and

f(i) =

{√
ρ if 1 ≤ i ≤ n/2,

1 otherwise.

Under Heuristics 1 and 2, the time complexity Tα,ρ(n) of Alg. 1 on (L, R, f)
equals, up to polynomial factors, T (n) of a full enumeration on L

⋂

Balln(GH(L))
reduced by a multiplicative factor (4α2(1− ρ))

n/4
:

Tα,ρ(n) ≈
T (n)

(4α2(1− ρ))
n/4

.

Here (and for the remainder of this work) the cost of enumeration is expressed
as the number of nodes visited during the enumeration process.

2.3 Schnorr–Euchner’s BKZ and its accelerated variant in [ABF+20]

BKZ. The (original) BKZ algorithm introduced by Schnorr and Euchner [SE94]
is the most widely used lattice reduction algorithm besides LLL [LLL82] and a
central tool in lattice-based cryptanalysis. Its performance drives the setting of
concrete parameters (such as keysizes) for concrete lattice-based cryptographic
primitives (see e.g. [ACD+18]).
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Originally, the SVP subroutine implemented in [SE94] was the simplest form of
lattice enumeration, but it is now replaced by better subroutines, such as pruned
enumeration [GNR10] in BKZ 2.0 [CN11] and FP(y)LLL [FPL19, FPy20] and
(asymptotically) faster sieving in the General Sieve Kernel [ADH+19, DSvW21].
In practice, BKZ is typically implemented with an approximate (rather than
exact) SVP-subroutine. Thus, Algorithm 2 slightly generalises BKZ by allowing
the use of a relaxed HSVP-oracle at Step 3, as well as full LLL (instead of partial
LLL) at Step 5: both are justified by Li–Nguyen’s analysis [LN20].

At a high level, Algorithm 2 reduces a basis in high rank, using HSVP-oracles
in low rank (≤ k) as subroutines and running the LLL algorithm [LLL82] to
remove the linear dependency right after inserting a lattice vector (found by the
oracle) in the current basis.

Algorithm 2 BKZ: Schnorr–Euchner’s BKZ algorithm [SE94]

Input: A block size k ∈ (2, n), the number of tours N ∈ Z+, a relaxation factor α ≥ 1,
and an LLL-reduced basis B = (b0, . . . , bn−1) of a lattice L ⊆ Zm.

Output: A new basis of L.
1: for ℓ = 0 to N − 1 do

2: for j = 0 to n− 2 do

3: Find a primitive vector b for the sublattice generated by the basis vectors
bj , . . . , bh−1 where h = min{j + k, n} s.t. ‖πj(b)‖ ≤ α

√
γh−j · vol(B[j,h))

1/(h−j)

4: if ‖b∗j‖ > ‖πj(b)‖ then
5: LLL-reduce (b0, . . . , bj−1, b, bj , . . . , bn−1) to remove linear dependencies
6: end if

7: end for //A BKZ tour refers to a single execution of Steps 2-7.
8: end for

9: return B.

Building on Hanrot–Pujol–Stehlé’s analysis of a certain BKZ variant (removing
internal LLL calls) [HPS11], Li and Nguyen [LN20] justified the popular “early
termination” strategy in practice of BKZ:

Theorem 2 ([LN20, Theorem 2]). Let n > k ≥ 2 be integers and let 0 < ε ≤
1 ≤ α ≤ 2(k−1)/4

√
γk

. Given as input a block size k, a relaxation factor α, and an

LLL-reduced basis of an n-rank lattice L ⊂ Rm, if N ≥ 4(ln 2)n
2

k2 log n1.5

(4
√
3)ε

, then

Alg. 2 outputs a basis (b0, . . . , bn−1) of L such that

‖b0‖ ≤ (1 + ε) · (α2γk)
n−1

2(k−1)
+

k·(k−2)
2n·(k−1) · vol(L)1/n.

It was also mentioned in [LN20] that for n > k > 8eπ, there is a k-BKZ

reduced basis B = (b0, . . . , bn−1) satisfying ‖b0‖ =
(

k−1
8eπ

)

n−1
2k · vol(B)

1/n
. Since

γk = Θ(k), this means that BKZ with early termination indeed provides bases
almost as reduced as the full BKZ algorithm. Th. 2 has a heuristic version
(i.e. [LN20, Th. 5]), which heuristically models the practical behaviour of BKZ.
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The accelerated BKZ variant in [ABF+20]. Recently, in [ABF+20] a prac-
tical and faster BKZ variant within the class of polynomial-space algorithms was
introduced, based on the idea that its HSVP-oracle performs an exact enumeration
with extended preprocessing.

Extended preprocessing is to preprocess in a larger rank than the enumeration
rank. Exact enumeration with extended preprocessing refers to the procedure
that the δ(k)-HSVP-oracle in “block size” ⌈(1 + c) · k⌉ (for some small constant
c ≥ 0 and an integer k ≥ 2) first preprocesses a given projected block of rank
⌈(1 + c) · k⌉ (using this BKZ variant recursively in lower levels) into a reduced
block (say,) C and then performs a (pruned) enumeration for solving SVP exactly
on the k-rank head block of C to find a short nonzero vector v ∈ L(C).

The performance parameter k dominates the time/quality trade-off:

– Quality aspect: v is a shortest nonzero vector in the lattice generated by

the k-rank head block C [0,k) of C, so that ‖v‖ ≤ √γk · vol(C [0,k))
1/k

. The

BKZ-preprocessing on C ensures that vol(C [0,k))/vol(C)
k/⌈(1+c)k⌉

can be

upper bounded well, so that ‖v‖ ≤ δ(k) · vol(C)
1/⌈(1+c)k⌉

.
– Cost aspect: Due to the extended preprocessing on C, the k-rank head block

C [0,k) has good quality for enumeration, i.e. C [0,k) almost satisfies the GSA.

As a result, enumeration on C [0,k) costs at most kk/8 · 2O(k) (matching the
Gaussian heuristic estimate under the GSA). Both the GSA shape and the
cost estimate were validated by [ABF+20]’s simulations and experiments.

We revisit [ABF+20, § 4]’s BKZ variant in Algorithms 3 and 4. We refer the
reader to [ABF+20] for definitions of the functions tail() and pre() called in
Algorithm 4.

When c = 0, Algorithm 3 is essentially Schnorr-Euchner’s BKZ algorithm [SE94]
(i.e. using enumeration but with recursive BKZ preprocessing as an SVP-oracle).

Without formal analysis but with concrete simulations and experiments, [ABF+20]
reported that the following instantiation of Algorithm 3 seems to provide the best
practical performance: (c,N) = (0.25, 4) and Algorithm 4 performing pruned
enumeration at both Step 4 and Step 8. The resulting procedure achieves RHF

≈ GH(k)
1/(k−1)

in time ≈ 2
k log k

8 −0.547 k+10.4, at least up to k ≈ 500.

2.4 Simulating BKZ

To understand the behaviour of lattice reduction algorithms, a useful approach is
to conduct simulations. The underlying idea is to model the practical behaviour
of the evolution of the Gram–Schmidt norms during the algorithm execution,
without running a costly lattice reduction algorithm. Note that this requires only
the Gram–Schmidt norms rather than the basis itself. Chen and Nguyen first
provided a BKZ simulator [CN11] based on the Gaussian heuristic and with an
experiment-driven modification for the tail blocks of the basis. It relies on the
assumption that each SVP solver on the projected blocks (except the tail ones
of the basis) finds a vector whose norm corresponds to the Gaussian heuristic
applied to that local block.
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Algorithm 3 BKZ variant in [ABF+20, Algorithm 4]

Input: (B, k, c), where B = (b0, . . . , bn−1) is an LLL-reduced basis of an n-rank lattice
L in Zm, k ∈ [2, n) is a performance parameter, c ≥ 0 is an overshooting parameter
and N ∈ Z+ is the number of tours.

Output: A reduced basis of L.
1: for ℓ = 0 to N − 1 do

2: for j = 0 to n− 2 do

3: Find a short nonzero vector v in the lattice L[j,h) (generated by the projected
block B[j,h) where h = min{j + ⌈(1 + c)k⌉, n}), by calling Alg. 4 on (B[j,h), k, c)

4: if ‖b∗j‖ > ‖v‖ then
5: Lift v into a primitive vector b for the sublattice generated by the basis

vectors bj , . . . , bh−1 such that ‖πj(b)‖ ≤ ‖v‖
6: LLL-reduce (b0, . . . , bj−1, b, bj , . . . , bn−1) to remove linear dependencies
7: end if

8: end for

9: end for

10: return B.

Algorithm 4 An approx-HSVP oracle on (B[j,h), k, c) using exact enumeration
in rank k∗ with extended preprocessing in rank (h− j) [ABF+20, Algorithm 3]

1: Find the enumeration rank k∗ ← tail(k, c, h− j)
2: Numerically find the preprocessing parameter k′ ← pre(k∗, ‖b∗j‖, . . . , ‖b∗h−1‖)
3: if k′ ≥ 3 then

4: Run Alg. 3 on (B[j,h), k
′, c) to obtain a reduced basis C ∈ Q(h−j)×m of L[j,h)

5: else

6: LLL-reduce B[j,h) into a basis C ∈ Q(h−j)×m of L[j,h)

7: end if //Steps 3-7 preprocess B[j,h) for the next local enumeration
8: Enumerate on the head block C[0,k∗) of C to find a shortest nonzero vector v in

the lattice generated by C[0,k∗)

We extend/adapt this simulator to also estimate the cost and not only the
evolution of the Gram–Schmidt norms. To find the enumeration cost with pruning,
we make use of FPyLLL’s pruning module which numerically optimises pruning
parameters for a time/success probability trade-off using a gradient descent. In
small block sizes, the enumeration cost is dominated by calls to LLL. In our code,
we simply assume that one LLL call in rank k costs the equivalent of visiting k3

enumeration nodes. While this is clearly not the cost of LLL [NS05], this choice
produces costs that match the observed running times (see e.g. Figure 4.2) closest
among the choices we experimented with. We hypothesise that this behaviour can
be explained by that the basis vectors b0, . . . , bj−1, bj , . . . , bn−1 appearing at, say,
Step 6 of Algorithm 3 are already (better than) LLL-reduced. This assumption
enables us to bootstrap our cost estimates. BKZ in block size up to (say,) 40 only
requires LLL preprocessing, allowing us to estimate the cost of preprocessing
with block size up to 40, which in turn enables us to estimate the cost (including
preprocessing) for larger block sizes etc. Our simulation source code is available
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as simu.py, as an attachment to the electronic version of the full version of this
document.

3 Asymptotic Time/Quality Trade-Offs

In this section, we show asymptotically that relaxed (rather than exact) enu-
meration with certain extreme cylinder pruning does achieve better time/quality
trade-offs for certain approximation regimes, especially for small enough RHFs.

3.1 An elementary lemma

We will use the following notation for the remainder of this work:

– δ-HSVP enumeration oracle: it denotes a δ-HSVP-solver using (relaxed)

enumeration with (extreme) pruning, i.e. setting the radius R = δ · vol(L)1/n
for enumeration on a given n-rank lattice L.

– kα: for real α ≥ 1 and integer k ≥ 36, let kα be the smallest integer greater
than k such that

GH (k)
1

k−1 ≥ (α ·GH(kα))
1

kα−1 . (1)

The integer kα is well-defined, due to the following fact:

Fact 3 With the definition GH(i) = Γ (i/2+1)1/i√
π

, GH(i)
1

i−1 strictly decreases for

integers i ≥ 36.

Our following analysis relies on a key observation that the ratio kα

k “almost”
decreases for k ≥ ⌈2πe2⌉ = 47 and tends to 1 as k tends to infinity. More precisely,
we will use the following key elementary lemma:

Lemma 1. Let α ≥ 1 be a real and k ≥ 36 be an integer.

1. Monotonicity: For any fixed k, kα increases with α ≥ 1.
2. Lower bound: kα ≥ k + k logα

log k .

3. Upper bound: If k ≥ (2πe2)
η

η−2 for some variable η > 2, then

kα ≤ k +

⌈

η k logα

log k

⌉

.

The proofs of Fact 3 and Lemma 1 can be found in Appendix A.
Lemma 1 indicates that asymptotically for a fixed constant α, the larger the

integer k, the smaller we can assign the variable η in Item 3, then the smaller
both the upper bound 1 + η logα

log k + 1
k and the lower bound 1 + logα

log k of the ratio
kα

k . Figure 3.1 verifies this numerically for several values of α and k.
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Fig. 3.1: Evolution of the ratio kα

k wrt. constant α ∈ {1.05, 1.1, 1.2, 1.3, 1.4} and
integer k = 80, . . . , 400.

3.2 Asymptotic time/quality trade-offs

Theorem 1 implies that with certain extreme cylinder pruning, relaxing enu-
meration would result in an exponential speedup, with a minor loss in the
approximation factor:

Corollary 1. Let L be a full-rank lattice in Rn. Let α ≥ 1 and ρ ∈ (0, 1
2 ) such

that 4α4ρ(1− ρ) < 1. Let R = GH(L), Rα = α ·GH(L) and

f(i) =

{√
ρ if 1 ≤ i ≤ n/2,

1 otherwise.

Under Heuristics 1 and 2, the heuristic time complexity of Alg. 1 with radius Rα

is less than that of Alg. 1 with radius R by a multiplicative factor αn/2 (up to
some polynomial factor).

Proof. Let T (n) denote the standard heuristic estimate for the cost of full
enumeration on L⋂Balln(GH(L)). It follows from Theorem 1 that the heuristic
cost estimates of Alg. 1 with radius Rα and with radius R are respectively

T (n)

(4α2(1− ρ))
n/4

and
T (n)

(4(1− ρ))
n/4

up to some polynomial factors. This implies the conclusion. ⊓⊔

The corollary indicates that, in the same extreme pruning regime (i.e. with
the same bounding function f), if one is interested in finding just one short
nonzero vector (rather than one shortest nonzero vector) for a given lattice, then
it is faster to run a relaxed (rather than exact) enumeration.

A more interesting question is whether such benefits can be carried over
without sacrificing the quality. Thus what remains to be established is how the
cost gain compares to the corresponding quality loss. For instance, we take k = 50

and α = 2. For reaching the same RHF GH(50)
1
49 ≈ 1.012, it is unlikely that the
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(2 ·GH(152))-HSVP enumeration oracle in rank 152 is faster than the GH(50)-
HSVP enumeration oracle in rank 50. Thus, we now clarify that asymptotically
relaxed (rather than exact) enumeration with certain extreme cylinder pruning
does achieve better time/quality trade-offs for certain approximation regimes,
especially for small enough RHFs. To do so, we compare costs of δ-HSVP
enumeration oracles with different factors δ aiming for the same output quality.

More precisely, Lemma 1 allows us to prove that for reaching the same RHF

GH(k)
1

k−1 , the (α·GH(kα))-HSVP enumeration oracle in rank kα is exponentially
faster than the GH(k)-HSVP enumeration oracle in rank k, provided that k is
sufficiently large and α > 1 is reasonably small.

Theorem 4. Let α > 1 and ρ ∈ (0, 1
2 ) be constants such that 4α4 ρ · (1− ρ) < 1.

Let

f(i) =

{√
ρ if 1 ≤ i ≤ n/2,

1 otherwise.

In addition to Heuristics 1 and 2, assume that up to some polynomial factor,
the heuristic runtime of full enumeration on any n-rank integer lattice with
radius equal to the Gaussian heuristic is T (n) := nc0n · 2c1n with constant
coefficients c0, c1 such that 0 < c0 < 1

4 . Let k be an arbitrary positive integer

satisfying k > max
{

(2πe2)
1

1−4c0 , 2−
c1
c0

}

. For any real η ∈ [ 2 ln k
ln k−ln(2πe2) ,

1
2c0

), if

1 < α ≤ (kc0 · 2c1)2, then the (α ·GH(kα))-HSVP enumeration oracle in rank kα
(using Alg. 1) is exponentially faster than the GH(k)-HSVP enumeration oracle
in rank k (using Alg. 1) by a multiplicative factor of at least

α(
1
2−c0η)k ·

(

4(1− ρ)

( √
α

(2e)
c0 2c1

)4η
)

k log α
4 log k

(up to some polynomial factor).

Proof. We omit some polynomial factors in the following complexity analysis.
By the assumption, it follows from Theorem 1 that the heuristic runtime of
the (α · GH(kα))-HSVP enumeration oracle in rank kα and the GH(k)-HSVP
enumeration oracle in rank k are respectively

Tα ≈
T (kα)

(4α2(1− ρ))kα/4
= kc0kα

α · 2c1kα · α−kα/2 · (4(1− ρ))−kα/4

= 2(c0 log kα+c1− log α
2 )kα · (4(1− ρ))−kα/4,

T1 ≈
T (k)

(4(1− ρ))k/4
= kc0k · 2c1k · (4(1− ρ))−k/4.

For simplicity, let uα := k + φα ∈ Z+ with φα :=
⌈

ηk logα
log k

⌉

. Since η ∈
[ 2 ln k
ln k−ln(2πe2) ,

1
2c0

) and k > (2πe2)
1

1−4c0 , we have η > 2 and k ≥ (2πe2)
η

η−2 >

(2πe2)
1

1−4c0 . Then Item 3 of Lemma 1 implies kα ≤ uα. Since 1 < α ≤ (kc0 · 2c1)2,
Item 2 of Lemma 1 implies kα > k ≥ α

1
c0 2

|c1|
c0 . Then c0 log kα + c1 − logα

2 > 0.
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Thus,

Tα / 2(c0 log uα+c1− log α
2 )uα ·(4(1−ρ))−kα/4 = uc0uα

α ·2c1uα ·α−uα/2·(4(1−ρ))−kα/4.

As a result, we have

T1

Tα
'

kc0k · 2c1k · αuα/2 · (4(1− ρ))kα/4

uc0uα
α · 2c1uα · (4(1− ρ))k/4

=
α(k+φα)/2

kc0φα · (1 + φα
k
)
c0·(k+φα) · 2c1φα

· (4(1− ρ))
(kα−k)

4

≥ α(k+φα)/2

kc0φα · ec0·φα · (1 + φα
k
)c0φα · 2c1φα

· (4(1− ρ))
(kα−k)

4 (using

(

1 +
φα

k

)k

≤ eφα)

≥ α(k+φα)/2

kc0φα · (2e)c0φα · 2c1φα
· (4(1− ρ))

(kα−k)
4 (using 1 +

φα

k
≤ 2)

≥ α(k+φα)/2

αc0ηk · kc0 · (2e)c0φα · 2c1φα
· (4(1− ρ))

(kα−k)
4 (using kc0φα ≤ αc0ηk · kc0)

≥ α(
1
2
−c0η)k ·

( √
α

(2e)c02c1

)φα

· k−c0 · (4(1− ρ))
k log α
4 log k . (by Item 2 of Lemma 1)

Substituting φα =
⌈

ηk logα
log k

⌉

, we conclude that

T1

Tα
' α(

1
2−c0η)k ·

( √
α

(2e)
c02c1

)

ηk log α
log k

· (4(1− ρ))
k log α
4 log k

up to some polynomial factor. This completes the proof. ⊓⊔

By Theorem 4, the smaller the time coefficient c0 and the larger the relaxation
constant α (satisfying both 4α4 ρ · (1 − ρ) < 1 and 1 < α ≤ (kc0 · 2c1)2), the
larger the exponential speedup factor α(

1
2−c0η)k. This suggests that if some full

enumeration algorithm of time nc0n · 2O(n) with smaller coefficient c0 is found,
then relaxing such an algorithm in the certain extreme cylinder pruning regime
would result in better time/quality trade-offs for certain (including larger) RHFs.
In brief, an enumeration oracle with smaller coefficient c0 would benefit more
from (larger) relaxation.

3.3 Numerical validation

To validate Corollary 1 for concrete parameters, we simulated enumeration up
to rank k = 500 when fixing ρ = 0.01 for varying α. For this, we first simulated
both the output and the corresponding cost of pre-processing with k′-BKZ for
some index k′ < k. We note that for our pre-processing, we always assume a
k′-rank SVP oracle inside BKZ. By combining the (recursive) preprocessing cost
with the expected (repeated) enumeration cost, we arrive at an expected overall
enumeration cost (denoted by tα(k) in Table 1). For the top-most enumeration,
we pick pruning parameters as suggested by Corollary 1 for ρ = 0.01 and for all
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values of α. Our simulation runs a simple linear search for k′ such that the total
expected cost is minimised. We then used SciPy’s scipy.optimize.curve fit

function [VGO+20] to fit simulation data into cost functions of form k
k
2e · 2c1 k+c2

with constant coefficients c1 and c2. For fitting we use always the indices k =
⌈α ·100⌉, ⌈α ·100⌉+1, . . . , ⌈α ·250⌉, which depend on α due to numerical stability
issues. The results are given in Table 1.

Furthermore, several heuristics (such as the Geometric Series Assumption)
are required to hold to instantiate Corollary 1 and Theorem 4. We check these
experimentally in Appendix D. In those experiments, the preprocessing cost is not
taken into account and thus these algorithms are hypothetical. As a consequence,
they give lower-bound estimates rather than predict costs.

Table 1: Speedups of relaxed enumeration with certain extreme cylinder pruning
derived from our simulation for ρ = 0.01 and claimed by Corollary 1.

α log tα(k) log t1(k)
tα(k)

log t1(k)
tα(k)

≈ logα
2

k

Simulation Simulation Corollary 1

1.00 k log k
2 e
− 0.581 k + 9.07 0.00 0.00

1.05 k log k
2 e
− 0.638 k + 10.91 0.057 k − 1.84 0.035k

1.10 k log k
2 e
− 0.691 k + 12.34 0.110 k − 3.27 0.069k

1.15 k log k
2 e
− 0.731 k + 11.97 0.150 k − 2.90 0.101k

1.20 k log k
2 e
− 0.767 k + 11.21 0.186 k − 2.14 0.132k

1.25 k log k
2 e
− 0.800 k + 10.37 0.219 k − 1.30 0.161k

1.30 k log k
2 e
− 0.836 k + 10.75 0.255 k − 1.69 0.189k

Here, tα(k) denotes the “expected cost” of the (α ·GH(k))-HSVP enumeration oracle
in rank k ∈ [⌈α · 100⌉, ⌈α · 250⌉], including preprocessing.

4 Practical Approximate Enumeration Oracles

Table 1 highlights the relative speedups obtainable by relaxed enumeration with
certain extreme cylinder pruning. It does not, however, present speedups over the
state-of-the-art for enumeration, which can be observed by comparing the second

column of Table 1 with the known cost 2
k log k

2 e −0.995 k+16.25 of enumeration with
optimised BKZ 2.0 [CN11] preprocessing (see [ABF+20, Fig. 2]).

In this section, we provide simulation data – fitted curves and experimental
validation – to show that with FP(y)LLL’s pruning module [FPL19, FPy20]
and with or without extended preprocessing, relaxed enumeration does achieve
exponential speedups, but with a loss in the approximation factor: it can be
viewed as a practical version of Corollary 1. We will consider the performance gain
when targeting the same RHF as an exact oracle in Section 5. In Appendix E, we
also provide additional experiments to check the accuracy of the underlying cost
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estimation module in FP(y)LLL, with respect to relaxed pruned enumeration.
Furthermore, a curious artefact of our parameters is that they do not suggest
extreme pruning. Rather, they imply a small number of repetitions only. We
elaborate on this in Appendix F.

4.1 Simulations and cost estimates

As in Section 3.3, we run the top-most enumeration as an (α·GH(k))-HSVP-oracle
in rank k and perform a linear search over parameter k′ (< k) for preprocessing
such that the overall enumeration cost is minimised. We first simulate calling
Algorithm 2 with block size k′ (i.e. k′-BKZ) to preprocess a given basis of rank
⌈(1 + c) · k⌉ and then simulate running relaxed enumeration on it. That is, we
simulate the “expected cost” of the (α · GH(k))-HSVP enumeration oracle in
rank k with preprocessing in rank ⌈(1 + c) · k⌉, i.e. enumeration on a k-rank
head block B with FPyLLL’s optimised cylinder pruning and with relaxed radius
R = α ·GH(L(B)). Here, the “expected cost” of each oracle call includes both
the expected (repeated) enumeration cost and all recursive preprocessing costs.

We illustrate the fitted cost estimates in Table 2 (columns “α′ = 1”), which
confirm that relaxed enumeration does achieve exponential speedups. We also
give some example data and curve fits in Figure 4.1.

Remark 1. In Table 2 we are seeing a slight advantage when picking c = 0.15
over picking c = 0.25. It slightly deviates from a claim in [ABF+20] that for
α = 1, c = 0.25 seems to provide the best performance among c ≥ 0. We hence
reproduce this advantage using the original simulation code from [ABF+20] in
Figure C.1 in Appendix C. This simulation confirms that the choice of c = 0.15
also provides a minor performance improvement for α = 1.

4.2 Consistency with experiments

In Figure 4.2 (and Figures C.2, C.3 in Appendix C), we give experimental
data comparing our implementation with our simulations of the (α · GH(k))-
HSVP enumeration oracle in rank k with preprocessing in rank ⌈(1 + c) · k⌉ for
c ∈ {0.00, 0.15, 0.25}.8 It shows that our simulation for cost estimates is reasonably
accurate for larger instances with a minor bias towards underestimating the cost.
The data should be understood as follows:

– “Simulation” is the output of our simulation code simu.py.
– “Runtime” is the walltime for running FPLLL, converted to “nodes visited”

units, assuming 64 CPU cycles per node.
“Runtime” in Figure C.2 is scaled by 2.6 ·109/64 because it runs on a “Intel(R)
Xeon(R) CPU E5-2690 v4 @ 2.60GHz” (atomkohle), while “Runtime” in
Figures 4.2 and C.3 is scaled by 3.3 · 109/64 because it runs on a “Intel(R)
Xeon(R) CPU E5-2667 v2 @ 3.30GHz” (strombenzin).

– “Nodes” is the number of enumeration nodes visited reported by FPLLL.
“Runtime” also includes the cost of recursive LLL calls, but “Nodes” does not.

8 The reader may consult [ABF+20, Fig. 4] for the case c = 0.00, α = 1.00.
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Fig. 4.1: Selected “expected costs” from simulations for (α ·GH(k))-HSVP enu-
meration oracles in rank k for c ∈ {0.00, 0.15, 0.25} (in turn).
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Fig. 4.2: Experimental verification of simulation results for the (α ·GH(k))-HSVP
enumeration oracle in rank k with example α ∈ {1.10, 1.20, 1.30} (in turn) and
c = 0.15. We ran 16 experiments.

5 A Practical BKZ Variant

While Section 4 establishes a practical exponential speed-up of relaxed enu-
meration in the same rank k, it does not yet account for the loss in quality.
In this section, we consider relaxed enumeration in rank kα to obtain a RHF
of ≈ GH(k)1/(k−1). This enables us to define a practical variant of the BKZ
algorithm utilising relaxed enumeration. This, in turn, enables us to use relaxed
enumeration recursively to preprocess bases for relaxed enumeration.

To this end, we present a generalisation of the BKZ variant in [ABF+20]
with one more optional parameter. This generalisation integrates the idea of
extended preprocessing (introduced by [ABF+20]) with the relaxation strategy
(formalised in [ALNS20, LN20]) on enumeration-based HSVP-oracles. That is,
given a performance parameter k (akin to the ‘block size’ of Alg. 2), we equip
Schnorr–Euchner’s BKZ with approximate enumeration oracles as illustrated
in Section 4, namely an (α · GH(kα))-HSVP enumeration oracle in rank kα
with preprocessing in rank ⌈(1 + c) · kα⌉ for some small constant c ≥ 0 and an
optional relaxation constant α ≥ 1. This BKZ variant uses three parameters
(k, c, α), while [ABF+20]’s variant relies on two parameters (k, c) and BKZ
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(2.0) [SE94, CN11] uses one parameter k. In particular, our BKZ variant can be
viewed as a practical version of Theorem 4.

With extensive experiments and simulations, we investigate the performances
of this BKZ variant for both practical and cryptographic parameter ranges: it
does achieve better time/quality trade-offs for certain approximation regimes
than both [ABF+20]’s variant and BKZ 2.0 [CN11].

Main result. Given as input a performance parameter k — our simulations
cover k ∈ [100, 400] — an overshooting parameter c ∈ [0, 0.4], and a basis of
an integer lattice of rank n ≥ (1 + c) · k1.3, our BKZ variant first picks the
“optimal” relaxation constant α ∈ {1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3} to minimise the

expected cost of one oracle call and achieves RHF GH(k)
1

k−1 with simulated cost
estimates:

– Case c = 0: the expected cost of one oracle call is about 2
k log k

2 e −1.077 k+29.12,

which is lower than BKZ 2.0’s record 2
k log k

2 e −0.995 k+16.25 reported in [ABF+20,
Fig. 2];

– Case c = 0.25: the expected cost of one oracle call is about 2
k log k

8 −0.632 k+21.94,

which is lower than the record in [ABF+20]: 2
k log k

8 −0.547 k+10.4;

– Case c = 0.15: the expected cost of one oracle call is about 2
k log k

8 −0.654 k+25.84.

Our results are illustrated in Figure 1.1. Our simulations were performed on q-ary
lattices of dimensions n = ⌈(1 + c) · kα⌉ with volume qn/2 for q = 230.

5.1 Algorithm

Alg. 5 is our BKZ variant which, given as input a performance parameter k ≥ 2,
an overshooting parameter c ≥ 0, a relaxation parameter α ≥ 1, and a basis of
an integer lattice L of rank n ≥ (1 + c) · kα, outputs a reduced basis of L.

It calls the (α ·GH(kα))-HSVP enumeration oracle in rank kα with preprocess-
ing in rank ⌈(1 + c) · kα⌉ as an HSVP subroutine. This oracle includes recursive
preprocessing: when α = 1 then Alg. 6 is essentially Alg. 4, and hence calls a
function pre(·, ·) for returning the preprocessing parameter. When (c, α) = (0, 1),
Alg. 5 is essentially BKZ 2.0 [CN11] and Schnorr-Euchner’s BKZ algorithm [SE94].

Restricted to the state-of-the-art power in practice, we choose c ∈ [0, 0.4] and
α ∈ {1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30} for simplicity in our simulations.

Remark 2. In our experiments, the choice of α in Alg. 5 is determined from an
optimised strategy profile built upon our simulated data for each k ∈ [2, 400]. We
remark that it is also possible to determine such α on-the-fly based on simulations
on the current basis.

Handling the tail. Just like all known BKZ variants (such as the variant
in [ABF+20] and BKZ 2.0 [CN11]), it is tricky to handle tail projected blocks
of the current basis during execution, because of the decreasing ranks over
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d = ⌈(1 + c) · kα⌉, ⌈(1 + c) · kα⌉ − 1, . . . , 2. We hence generalise [ABF+20]’s tail
function tail(·, ·, ·) with one more parameter α for computing the enumeration
rank.

For given integer k ≥ 2, constant c ≥ 0 and relaxation constant α ≥ 1, our
approximate enumeration oracle first finds the enumeration rank k∗ using the
function tail(k, c, α, d) for d = 2, . . . , ⌈(1 + c) · kα⌉:

k∗ ← tail(k, c, α, d) = max

{

min

{

d,

⌈

kα −
⌈(1 + c) · kα⌉ − d

2

⌉}

, 2

}

.

Then k∗ = kα when d = ⌈(1 + c) · kα⌉. It can be checked that k∗ is strictly less
than d if d is large enough and is exactly equal to d otherwise:

tail(k, c, α, d) =

{

kα +
⌈

d−⌈(1+c)·kα⌉
2

⌉

if (1− c) · kα < d ≤ ⌈(1 + c) · kα⌉
d if 2 ≤ d ≤ (1− c) · kα

∈ [2, kα].

(2)

Alg. 5 calls the (α ·GH(k∗))-HSVP enumeration oracle in rank k∗ with prepro-
cessing in rank d to reduce each tail projected block, namely Alg. 6.

Preprocessing parameter. Given a projected block (say,) (b0, . . . , bd−1) of
rank d ∈ [2, ⌈(1 + c) · kα⌉], the preprocessing function pre(k∗, ‖b∗0‖, . . . , ‖b∗d−1‖)
returns the “optimal” preprocessing parameter k′ ∈ [2, k∗], possibly based on
simulations, such that the cost of enumeration on the k∗-rank head block is
minimised (e.g., at most kk/8 · 2O(k) when c = 0.15), after preprocessing on
(b0, . . . , bd−1) using Alg. 5 recursively in lower levels, i.e. equipped with a similar
HSVP-oracle with parameters (k′, c, α′) (instead of the current level (k, c, α)).

Since kα ≥ k∗ ≥ k′ ≥ 2, each enumeration throughout all recursive levels
of Alg. 5 would not be more expensive than the top-most enumeration-based
HSVP-oracle (i.e., the (α ·GH(kα))-HSVP enumeration oracle in rank kα with
preprocessing in rank ⌈(1 + c) · kα⌉).

5.2 Performance of our BKZ variant

Using simulations and data from our implementation, we now validate the
performance of our algorithm. We first show that preprocessing with relaxed
enumeration has a performance benefit (for c > 0) and then validate the output
quality of our algorithm. Combining the two, we obtain our main result in
Figure 1.1, as claimed above.

α · GH(k)-HSVP oracle performance. In the columns labelled “α′ ≥ 1” in
Table 2, we present the speed-ups over α = 1 attained by our BKZ variant. That
is, the performance of solving α ·GH(k)-HSVP when using recursive preprocessing
with α′ ≥ 1. We can observe the following from Table 2:

– Without extended preprocessing (i.e. setting the overshooting parameter
c = 0), Table 2 indicates that it is better for preprocessing in rank k to
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Algorithm 5 A new BKZ variant with three parameters (k, c, α)

Input: (B, k, c, α), where B = (b0, . . . , bn−1) is an LLL-reduced basis of an n-rank
lattice L in Zm, k ∈ [2, n) is a performance parameter, c ≥ 0 is an overshooting
parameter, α ≥ 1 is a relaxation parameter satisfying n ≥ (1 + c) · kα, and N ∈ Z+

denotes the number of tours.
Output: A reduced basis of L.
1: for ℓ = 0 to N − 1 do

2: for j = 0 to n− 2 do

3: Find a short nonzero vector v in the lattice L[j,h) (generated by the projected
block B[j,h) where h = min{j+⌈(1+c)·kα⌉, n}), by calling Alg. 6 on (B[j,h), k, c, α)

4: if ‖b∗j‖ > ‖v‖ then
5: Lift v into a primitive vector b for the sublattice generated by the basis

vectors bj , . . . , bh−1 such that ‖πj(b)‖ ≤ ‖v‖
6: LLL-reduce (b0, . . . , bj−1, b, bj , . . . , bn−1) to remove linear dependencies
7: end if

8: end for

9: end for

10: return B.

Algorithm 6 An approx-HSVP oracle on (B[j,h), k, c, α) using relaxed enumer-
ation in rank k∗ with extended preprocessing in rank (h− j)

1: Find the enumeration rank k∗ ← tail(k, c, α, h− j) by Eq. (2)
2: Numerically find the preprocessing parameter k′ ← pre(k∗, ‖b∗j‖, . . . , ‖b∗h−1‖)
3: if k′ ≥ 3 then

4: Run Alg. 5 on (B[j,h), k
′, c, α′) with some α′ ≥ 1 to obtain a reduced basis

C ∈ Q(h−j)×m of L[j,h)

5: else

6: LLL-reduce B[j,h) into a basis C ∈ Q(h−j)×m of L[j,h)

7: end if //Steps 3-7 preprocess B[j,h) for the relaxed enumeration.
8: Call the (α ·GH(k∗))-HSVP enumeration oracle in rank k∗ on the head block C[0,k∗)

of C to find a short nonzero vector v in the lattice L[j,h)

call the (α′ ·GH(k′))-HSVP enumeration oracle in rank k′ with α′ = 1 than
α′ > 1.

– In contrast, Table 2 indicates that in the case c > 0, it is better for prepro-
cessing in rank ⌈(1+ c) ·k⌉ to call the (α′ ·GH(k′))-HSVP enumeration oracle
in rank k′ with some α′ ≥ 1 than α′ = 1, i.e. to proceed as outlined above.

Table 2 does not normalise time/quality trade-offs. Thus, in Figure 5.1 (and
Figures C.4 and C.5 in Appendix C) we illustrate the performance gain of relaxed
enumeration for reaching the same RHF.

Quality. To validate the output quality of our BKZ variant, we compared the
RHF predicted by the simulations for BKZ, Alg. 5 and a self-dual variant of Alg. 5
in Figure 5.2a, following the strategy of [ABF+20]. As Figure 5.2a illustrates,
our variant achieves the same RHF as BKZ, when run in “self-dual” mode.
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Table 2: Speedups of relaxed enumeration with extreme cylinder pruning derived
from our simulation with FPyLLL’s optimised cylinder pruning and recursive
relaxed enumeration compared with that claimed by Corollary 1.
α log t1(k)

tα(k)
log tα(k) log t1(k)

tα(k)
log tα(k) log t1(k)

tα(k)

Cor. 1 Sim. (α′ = 1) Sim. (α′ = 1) Sim. (α′ ≥ 1) Sim. (α′ ≥ 1)

c = 0.00

1.00 0.00 k log k
2 e
− 0.994 k + 17.94 0.00 k log k

2 e
− 0.946 k + 11.31 0.00

1.05 0.035k k log k
2 e
− 1.040 k + 17.69 0.046 k + 0.24 k log k

2 e
− 0.984 k + 9.82 0.038 k + 1.49

1.10 0.069k k log k
2 e
− 1.088 k + 18.56 0.093 k − 0.63 k log k

2 e
− 1.027 k + 9.99 0.081 k + 1.32

1.15 0.101k k log k
2 e
− 1.132 k + 20.55 0.137 k − 2.61 k log k

2 e
− 1.078 k + 12.75 0.132 k − 1.45

1.20 0.132k k log k
2 e
− 1.166 k + 22.28 0.171 k − 4.34 k log k

2 e
− 1.123 k + 15.73 0.176 k − 4.43

1.25 0.161k k log k
2 e
− 1.193 k + 23.84 0.199 k − 5.90 k log k

2 e
− 1.157 k + 17.93 0.211 k − 6.62

1.30 0.189k k log k
2 e
− 1.217 k + 25.42 0.223 k − 7.48 k log k

2 e
− 1.187 k + 20.31 0.241 k − 9.00

c = 0.15

1.00 0.00 k log k
8
− 0.552 k + 12.53 0.00 k log k

8
− 0.566 k + 14.28 0.00

1.05 0.035k k log k
8
− 0.601 k + 12.51 0.049 k + 0.02 k log k

8
− 0.617 k + 14.69 0.052 k − 0.41

1.10 0.069k k log k
8
− 0.641 k + 13.13 0.089 k − 0.60 k log k

8
− 0.660 k + 15.68 0.094 k − 1.40

1.15 0.101k k log k
8
− 0.670 k + 13.79 0.118 k − 1.26 k log k

8
− 0.691 k + 16.71 0.126 k − 2.43

1.20 0.132k k log k
8
− 0.693 k + 14.43 0.142 k − 1.90 k log k

8
− 0.716 k + 17.73 0.151 k − 3.45

1.25 0.161k k log k
8
− 0.713 k + 15.19 0.161 k − 2.66 k log k

8
− 0.738 k + 18.91 0.172 k − 4.63

1.30 0.189k k log k
8
− 0.730 k + 15.95 0.178 k − 3.42 k log k

8
− 0.757 k + 20.01 0.191 k − 5.73

c = 0.25

1.00 0.00 k log k
8
− 0.549 k + 12.33 0.00 k log k

8
− 0.571 k + 15.39 0.00

1.05 0.035k k log k
8
− 0.596 k + 12.09 0.047 k + 0.24 k log k

8
− 0.616 k + 14.80 0.044 k + 0.60

1.10 0.069k k log k
8
− 0.639 k + 13.15 0.090 k − 0.82 k log k

8
− 0.651 k + 14.84 0.080 k + 0.55

1.15 0.101k k log k
8
− 0.669 k + 14.08 0.121 k − 1.75 k log k

8
− 0.683 k + 15.93 0.112 k − 0.53

1.20 0.132k k log k
8
− 0.694 k + 15.17 0.145 k − 2.84 k log k

8
− 0.712 k + 17.59 0.140 k − 2.20

1.25 0.161k k log k
8
− 0.713 k + 15.92 0.164 k − 3.59 k log k

8
− 0.735 k + 19.09 0.164 k − 3.70

1.30 0.189k k log k
8
− 0.728 k + 16.62 0.180 k − 4.29 k log k

8
− 0.755 k + 20.50 0.183 k − 5.11

Here, tα(k) denotes the “expected cost” of the (α ·GH(k))-HSVP enumeration oracle
in rank k ∈ [⌈α · 100⌉, ⌈α · 250⌉], with preprocessing in rank ⌈(1 + c) k⌉, using relaxed
enumeration recursively.

We also verified the behaviour of the practical implementation of Alg. 5 against
our simulation and give an example in Figure 5.2b. As this figure illustrates, our
implementation agrees with our simulation except in the tail.
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(a) Expected cost tα(kα) of the (α ·GH(kα))-HSVP enumeration oracle in rank kα for

reaching RHF GH(k)
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Fig. 5.1: Expected performance of (α ·GH(kα))-HSVP enumeration oracle in rank
kα; case c = 0.15; preprocessing with α′ ≥ 1.00.
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vol(Λ) = qn/2, k = 60 and c = 0.25. Implementation data is averaged over eight runs.

Fig. 5.2: Basis quality.
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A Proofs of Section 3.1

A.1 Proof of Fact 3

It can be numerically checked that GH (i)
1

i−1 strictly decreases over integer
i = 36, 37, . . . , 200.

Now, assume i ≥ 200. It remains to show GH(i)
1

i−1 > GH(i+ 1)
1
i , or

equivalently,

Γ

(

i

2
+ 1

)i+1

> π
i+1
2 · Γ

(

i+ 1

2
+ 1

)i−1

. (3)

Indeed, applying Stirling’s formula

√
2πx

(x

e

)x

< Γ (x+ 1) <
√
2πx
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e

)x

e
1

12x for x > 0, (4)

we set respectively x = i
2 and x = i+1

2 to obtain:
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2
+ 1

)i+1

>

(

√
πi
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2e

)
i
2
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,

π
i+1
2

(
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2e
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i+1
2

e
1

6(i+1)

)i−1

> π
i+1
2 · Γ

(

i+ 1

2
+ 1

)i−1

.

Since i ≥ 200, we have i
(

i
2πe2

)
i
3 > e >

(

1 + 1
i

)i
. Then it can be checked by

manual calculation that
(

√
πi

(

i

2e

)
i
2

)i+1

> π
i+1
2

(

√

π(i+ 1)

(

i+ 1

2e
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i+1
2

e
1

6(i+1)

)i−1

.

The above three inequalities imply Eq. (3). This completes the proof. �

A.2 Proof of Lemma 1

It is obvious by the definition that kα = k if α = 1 and kα ≥ k + 1 if α > 1.
Thus, Items 1-3 hold trivially when α = 1. Without loss of generality, assume
that α > 1 throughout the proof below.

We show Item 1. Let ξ be another constant such that 1 < α < ξ. Then
kα ≥ k + 1 and kξ ≥ k + 1. Our goal is to prove kα ≤ kξ.

By the definition of kα and kξ, we have

(α ·GH(kα − 1))
1

kα−2 >GH(k)
1

k−1 ≥ (α ·GH(kα))
1

kα−1 ,

(ξ ·GH(kξ − 1))
1

kξ−2 >GH(k)
1

k−1 ≥ (ξ ·GH(kξ))
1

kξ−1 .

Then (α ·GH(kα − 1))
1

kα−2 > (ξ ·GH(kξ))
1

kξ−1 . Since GH (i)
1

i−1 strictly de-
creases over integer i ≥ 36 (by Fact 3) and α < ξ, this implies kα − 1 < kξ. This
proved kα ≤ kξ and hence Item 1.
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We show Item 2 for any fixed k. For simplicity, let ℓα := k + ρα ∈ Z+ with

ρα :=
⌈

(logα)k
log k

⌉

− 1. Then ℓα ≥ k. If ℓα = k, then Item 2 holds trivially since

kα ≥ k + 1 ≥ k + (logα)k
log k .

Now, assume ℓα ≥ k+ 1. Then (logα)k
log k > 1. The issue is to prove kα ≥ ℓα + 1.

By Fact 3, (α ·GH(i))
1

i−1 strictly decreases over integer i = k, k + 1, . . . , ℓα.

By the definition of kα, it suffices to prove GH (k)
1

k−1 < (α ·GH(ℓα))
1

ℓα−1 , or
equivalently,
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Indeed, it follows from Stirling’s formula (4) for x = k
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Using two facts k ≥ 2e2 and
(
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+1 ≥ e, our manual calculation implies:
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Combining the above three inequalities, this implies Eq. (5). Then Item 2 follows.

We show Item 3 for any fixed k. For simplicity, let uα := k + φα ∈ Z+

with φα :=
⌈

η(logα)k
log k

⌉

. By the definition of kα, it suffices to prove GH (k)
1

k−1 ≥
(α ·GH(uα))

1
uα−1 , or equivalently,

Γ

(

k

2
+ 1

)

uα−1
k

≥ αk−1π
φα
2 · Γ

(uα

2
+ 1
)

k−1
uα

. (6)

Indeed, it follows from Stirling’s formula (4) for x = k
2 and x = uα

2 that
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Thanks to the condition k ≥ (2πe2)
η

η−2 , we have kφα ≥ α2k(2πe2)
φα . Using the

fact 1 + φα

k ≤ e
φα
k , it can be checked by manual calculation that
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Combining the above three inequalities, this implies Eq. (6). Then Item 3 follows.
This completes the proof. �

B Relaxed sieving

The Ajtai-Kumar-Sivakumar (AKS) sieve algorithm [AKS01] equipped with a
relaxation strategy could result in better time/quality trade-offs in an asymptotic
sense. The AKS sieve can solve SVP in rank k exactly in time 23.4k+o(k) and space
21.97k+o(k) [MV10], but it can be modified to solve δ-SVP in rank k (for some large
constant δ > 1) in time 20.802k+o(k) and space 20.401k+o(k) [ADRS15, WLW15].
The exponential gain in both time and space for the relaxed AKS implies better
time/quality trade-offs if the lattice rank is sufficiently large.

However, provable sieving algorithms are rarely used in practice. Instead,
recent record computations [ADH+19, DSvW21] were achieved by using heuristic
sieving algorithms [BGJ15, BDGL16, HKL18] equipped with the “dimensions for
free” method [Duc18]. Briefly, the “dimensions for free” method solves SVP in
rank k by instead sieving over sublattices of rank k − Θ(k/ log k), and ‘lifting’
short vectors from these sublattices to the full lattice. However, this method
seems not to benefit from relaxation. Intuitively, this is because to reach the same
RHF, the same sieving algorithm needs to find a short vector of norm equal to
α ·GH(L) on a (random) lattice L of rank k +Θ((k logα)/ log k), so that more
ranks Θ(k/ log k) for free do not asymptotically offset the lattice rank increment
Θ((k logα)/ log k). To confirm this intuition and to check for constant-factor
improvements, we ran experiments using G6K [ADH+19] which are shown in
Figure B.1. Due to the non-determinism of heuristic sieving algorithms, we plot
the average maximum sieving rank for both solving SVP in rank k and solving
(α ·GH(kα))-HSVP in rank kα. Note that, for easier comparison, we normalise
the sieving rank of our relaxed results. Our results seem to indicate that, at
least for practical ranks, the ‘dimensions for free’ method does not benefit from
relaxation.
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Fig. B.1: Average maximum sieving rank for both (α ·GH(kα))-HSVP-oracle in
rank kα and GH(k)-HSVP-oracle in rank k whilst achieving the same RHF. Here,
both oracles use sieving with Ducas’ “dimension for free” method.
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Fig. C.1: Cost of one call to [ABF+20, Algorithm 3] in enumeration rank k with
c = 0.15 vs. c = 0.25, d = ⌈(1 + c) · k⌉ and four preprocessing sweeps.
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(a) Case (α, c) = (1.10, 0.00).
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(b) Case (α, c) = (1.20, 0.00).
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(c) Case (α, c) = (1.30, 0.00).
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Fig. C.2: Experimental verification of simulation results for the (α ·GH(k))-HSVP
enumeration oracle in rank k with example α ∈ {1.10, 1.20, 1.30} and c = 0.00.
We ran 16 experiments.
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(a) Case (α, c) = (1.10, 0.25).
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(b) Case (α, c) = (1.20, 0.25).
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(c) Case (α, c) = (1.30, 0.25).
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Fig. C.3: Experimental verification of simulation results for the (α ·GH(k))-HSVP
enumeration oracle in rank k with example α ∈ {1.10, 1.20, 1.30} and c = 0.25.
We ran 16 experiments.
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(a) Expected cost tα(kα) of the (α ·GH(kα))-HSVP enumeration oracle in rank kα for
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Fig.C.4: Expected performance of (α · GH(kα))-HSVP enumeration oracle in
rank kα; case c = 0.00; preprocessing with α′ = 1.00.
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(a) Expected cost tα(kα) of the (α ·GH(kα))-HSVP enumeration oracle in rank kα for

reaching RHF GH(k)
1

k−1 .

100 150 200 250 300 350 400

50

100

150

200

k

lo
g
(#

n
o
d
es
)

α = 1.00 α = 1.10
α = 1.20

(b) Cost advantage log t1(k)
tα(kα)

of the (α ·GH(kα))-HSVP enumeration oracle in rank kα

for reaching RHF GH(k)
1

k−1 .

100 150 200 250 300 350 400
0

5

10

15

20

k

C
o
st

a
d
va
n
ta
g
e

α = 1.00 α = 1.10
α = 1.20

Fig.C.5: Expected performance of (α · GH(kα))-HSVP enumeration oracle in
rank kα; case c = 0.25; preprocessing with α′ ≥ 1.00.
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D Dropping Heuristic Assumptions

Several heuristics are required to hold to instantiate Corollary 1 and Theorem 4
in practice. First, Corollary 1 assumes all reduced bases of the input follow the
GSA, while in practice, any reduced basis does not fully satisfy the GSA shape.
Second, it assumes preprocessing is free, while in practice the preprocessing cost
should be amortised into the overall cost. In the experiments in this section, we
drop the heuristic assumption of starting with a perfect GSA shape. Instead, we
assume a BKZ reduced basis as input. We only count minor preprocessing cost to
simulate LLL. This aims to derive a lower-bound estimate, i.e. a plausible limit
of our strategy, for the relaxed enumeration, conditioned on the effectiveness of
the optimization procedure in pruner. We note that, in contrast to this appendix,
in Sections 3.3 and 4 we do take the preprocessing cost and the input shape into
account.

D.1 For Corollary 1

In the first experiment, we drop the GSA heuristic used in Corollary 1. We
start with a HKZ reduced basis in rank k and compare the extreme pruning
enumeration cost (with ρ = 0.01) of relaxed enumeration for various α. In this
experiment, we set up a small preprocessing cost (equal to k3) to simulate the
LLL cost and confirm that it is minor compared to the overall cost. For the
values of α given in Table 3, we noticed that the success probability is similar
to Corollary 1. From Table 3, we conclude that the heuristic assumption of a
perfect GSA shape can be replaced by assuming an HKZ shape as input.

Table 3: Speedups of relaxed enumeration with certain extreme cylinder pruning
(ρ = 0.01) derived from our simulation (assuming HKZ reduced input) and
claimed by Corollary 1.

α log tα(k) log t1(k)
tα(k)

log t1(k)
tα(k)

≈ logα
2

k

Simulation Simulation Corollary 1

1.00 k log k
2 e
− 0.692 k + 8.99 0.00 0.00

1.05 k log k
2 e
− 0.727 k + 9.03 0.035k − 0.04 0.035k

1.10 k log k
2 e
− 0.760 k + 9.12 0.068k − 0.13 0.069k

1.15 k log k
2 e
− 0.793 k + 9.21 0.101k − 0.22 0.101k

1.20 k log k
2 e
− 0.823 k + 9.30 0.131k − 0.31 0.132k

1.25 k log k
2 e
− 0.853 k + 9.38 0.161k − 0.39 0.161k

Here, tα(k) denotes the “expected cost” (ignoring preprocessing) of an (α·GH(k))-HSVP
enumeration oracle on a HKZ reduced basis in rank k ∈ [100, 500]. See Table 1 for a
simulation also considering preprocessing cost.
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Table 3 only provides an estimate for the relaxed enumeration in rank-k
with certain extreme cylinder pruning. In Table 4 we present experiments using
FPyLLL’s cylindrical pruning optimiser to derive the pruning coefficients. Again,
the experiments here only provide a lower-bound estimate.

Table 4: Speedups of relaxed enumeration with extreme cylinder pruning derived
from FPyLLL’s optimised cylinder pruning (assuming HKZ reduced input) and
claimed by Corollary 1.

α log tα(k) log t1(k)
tα(k)

log t1(k)
tα(k)

≈ logα
2

k

Simulation Simulation Corollary 1

1.00 k log k
2 e
− 1.020 k + 11.20 0.00 0.00

1.05 k log k
2 e
− 1.064 k + 11.46 0.044k − 0.26 0.035k

1.10 k log k
2 e
− 1.105 k + 11.94 0.085k − 0.74 0.069k

1.15 k log k
2 e
− 1.146 k + 12.76 0.126k − 1.56 0.101k

1.20 k log k
2 e
− 1.188 k + 14.65 0.168k − 3.45 0.132k

1.25 k log k
2 e
− 1.233 k + 17.96 0.213k − 6.76 0.161k

Here, tα(k) denotes the “expected cost” (ignoring preprocessing) of an (α·GH(k))-HSVP
enumeration oracle on a HKZ reduced basis in rank k ∈ [100, 300]. See Table 2 for a
simulation also considering preprocessing cost.

D.2 For Theorem 4

In this experiment, we consider the enumeration in rank kα (instead of rank
k), as implied by Theorem 4. Rather than the certain pruning function f(·)
used in Theorem 4, we present experiments using FPyLLL’s cylindrical pruning
optimiser to derive the pruning coefficients. For each rank k and a given α, we
compute the smallest integer ka satisfying Eq. (1). We also simulate the extended
preprocessing idea from [ABF+20]. More precisely, we assume the input lattice of
rank ⌈(1+ c) ·kα⌉ for c ∈ {0, 0.15, 0.25} to be already k-BKZ reduced. Under this
assumption, we compute the (α ·GH(kα))-HSVP enumeration cost in a rank kα
sublattice (i.e. the sublattice formed by the first kα basis vectors) using FPyLLL’s
pruner. The interpolated enumeration costs are tabulated in Table 5. We observe
that a positive speed-up is visible for c = 0.15, but not for c = 0.25 for certain α.
This seems to be somewhat consistent with the estimates of Figure 1.1, which
shows c = 0.15 leads to a better performance. On the other hand, Figure 1.1
does show a speed-up also for c = 0.25, in contrast to the data presented here.
However, we stress, once more, that the interpolated model used in this section
does not include preprocessing cost and thus is less expressive about practice
than Figure 1.1.
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Table 5: Speedups of relaxed enumeration with extreme cylinder pruning derived
from FPyLLL’s optimised cylinder pruning, assuming k-BKZ reduced input.

α log tα(kα) log t1(k)
tα(kα)

Simulation Simulation

c = 0.00

1.00 k log k
2 e
− 1.020 k + 11.20 0.00

1.05 k log k
2 e
− 1.021 k + 11.45 0.001k − 0.25

1.10 k log k
2 e
− 1.026 k + 12.09 0.006k − 0.89

1.15 k log k
2 e
− 1.042 k + 14.46 0.022k − 3.26

1.20 k log k
2 e
− 1.060 k + 17.04 0.040k − 5.84

1.25 k log k
2 e
− 1.081 k + 20.17 0.061k − 8.97

1.30 k log k
2 e
− 1.100 k + 22.99 0.080k − 11.79

c = 0.15

1.00 k log k
8
− 0.681 k + 16.04 0.00

1.05 k log k
8
− 0.689 k + 16.69 0.008k − 0.65

1.10 k log k
8
− 0.698 k + 17.59 0.017k − 1.55

1.15 k log k
8
− 0.704 k + 18.24 0.023k − 2.20

1.20 k log k
8
− 0.705 k + 18.62 0.024k − 2.58

1.25 k log k
8
− 0.705 k + 18.75 0.024k − 2.71

1.30 k log k
8
− 0.702 k + 18.63 0.021k − 2.59

c = 0.25

1.00 k log k
8
− 0.724 k + 19.88 0.00

1.05 k log k
8
− 0.725 k + 19.86 0.001k + 0.02

1.10 k log k
8
− 0.725 k + 20.04 0.001k − 0.16

1.15 k log k
8
− 0.722 k + 19.87 −0.002k + 0.01

1.20 k log k
8
− 0.716 k + 19.35 −0.008k − 0.53

1.25 k log k
8
− 0.711 k + 18.86 −0.013k + 1.02

1.30 k log k
8
− 0.706 k + 18.46 −0.018k + 1.42

Here, tα(kα) denotes the “expected cost” of the (α ·GH(kα))-HSVP enumeration oracle
in a sublattice of rank kα. We take k ∈ [100, 300].
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E Alternative Verification of Enumeration Cost
Estimates

Our simulation results critically depend the estimated cost of pruned enumeration
using FPyLLL’s pruning module. Thus in this section, we verify the enumeration
cost estimates via FPyLLL’s pruner with respect to relaxed pruned enumeration.
In the experiments, we consider k ∈ {50, 52, 54, . . . , 100}. For each k, we iterate
over α ∈ {1.00, 1.05, 1.10, 1.15, 1.20, 1.25} and sample random q-ary lattices
(using the IntegerMatrix.random function in FPyLLL) of rank ⌈(1 + c)kα⌉ for
c ∈ {0, 0.15, 0.25}. For each such lattice, we preprocess it with k′-BKZ until
the success probability of the enumeration on the first sublattice of rank kα is
not too small. Initially we set k′ = k − 30 and progressively increase k′ until
the success probability of the relaxed enumeration (on the first sublattice of
rank kα) becomes greater than 0.1 on the k′-BKZ reduced basis. For each set of
parameters (k, c, α), we sample 5 random q-ary lattices. In the end, we record the
estimated number of nodes of the relaxed enumeration on the first sublattice of
rank kα versus the actual number of nodes visited. Their ratios are computed and
averaged over 5 samples. In Figure E.1, the ratio (of the estimated enumeration
cost via FPyLLL’s pruner and the actual enumeration cost) is plotted as the
y-axis. We observe that, on average, the actual enumeration cost is always smaller
than the estimated enumeration cost for the k’s in this region. This is true for
both standard and relaxed enumeration. These experiments justify the use of
the FPyLLL’s pruning module for the cost estimate, which have been used and
further verified in the experiments of Section 4 and 5.

F Repetitions

A standard strategy for speeding up enumeration-based algorithms is extreme
pruning [GNR10], i.e. to enumerate with parameters such that the algorithm
succeeds with exponentially small probability. This is repeated exponentially often
and after each trial the basis rerandomised. It was already reported in [ABF+20]
that the numerically optimised pruning parameters used there do not imply
an exponential drop in success probability. We observe the same behaviour.
Indeed, our data suggests a small number of repetitions. In our setting (α > 1.0),
repetitions are not roughly the inverse of some success probability. Instead, the
target quantity is the number of solutions τ expected to be found per enumeration
within the given target radius and we expect to repeat enumeration roughly 1/τ
times. As can be seen in Figure F.1, the parameters output by the numerical
optimiser, i.e. the FPLLL pruning module, imply that τ is close to one for many
relevant parameter ranges, which means a constant number of enumerations
suffices. We speculate that this is an artefact of the significantly more expensive
preprocessing compared to previous works where α = 1.00 and c = 0.00.
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(a) Case c = 0
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(b) Case c = 0.15
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(c) Case c = 0.25
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Fig. E.1: Verification of enumeration cost estimate on the sublattice of rank kα
on q-ary lattices of rank ⌈(1 + c) · kα⌉. For each α and each k, five q-ary random
lattices are sampled and preprocessed. Then the (averaged) ratio of the estimated
enumeration cost versus the actual enumeration cost is plotted as the y-axis.
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Fig. F.1: Expected number of solutions τ per enumeration for reaching RHF

GH(k)
1

k−1 , for c = 0.15 and α′ ≥ 1.00.
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