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Abstract
Parametric amplification of an elastic wave and a framework for using elastic waves that could enable a
new generation of high performance, lownoise acoustic amplifiers,mixers and circulators are
presented. Using a novel approachwith nonlinearmaterials produces highly desirable non-reciprocal
characteristics. Parametric amplification of aweak elastic signal wave is achieved by an elastic pump
wave of higher intensity. By careful selection ofmaterial orientation together with precise excitation of
signal and pumpwaves, ‘up frequency conversion’ is suppressed and selective amplification of the
elastic signal wave occurs at its original frequency. In addition, a generalmathematical framework is
developed and used for analytical studies of coupledwave equations in nonlinear anisotropic
materials. The results obtained from the analytical studies are verified using afinite element
implementation.

Introduction

Most electronic handheld consumer products today take advantage of surface and bulk acoustic wave (SAW,
BAW)filters and delay lines [1, 2]. These provide the advantage of small size due to slowerwave velocity at radio
frequency (RF) ranges relative to electromagnetic waves, and high efficiency due to reduction of resistive losses
comparedwith similar purely electronic devices. They are compatible with existing integrated circuit (IC)
fabrication techniques and can be integratedwith other circuit elements [3]. However, asfirst stated by
Helmholtz in 1859 and proved by Rayleigh in 1878, the propagation of acoustic waves in conventional linear
media is reciprocal [4]; which is ‘requiring the transmission of information or energy between any two points in
space to be symmetric for opposite propagating directions’ [5]. This reciprocal characteristic of acoustic waves
limits their applications where directional dependency is desirable.

Creation of non-reciprocity has beenmainly achievedwith three approaches [6]. Spatiotemporal
modulation of some elements of the system, applying an external symmetry breaking field such as an applied
magnetic field, or utilizing nonlinear behavior of the system.

Time and spacemodulation can be applied tomaterial properties or boundary conditions of the system to
break reciprocity. In 2015, Swinteck et al [7] applied a light sourcewith time and space variant intensity to a
material with a large photo-elastic coupling tomodulate its elastic properties. Spatiotemporalmodulation of the
elastic constants of thematerial produced a time dependent superlattice which demonstrated nonreciprocal
propagation of a bulk elastic wave.Non-reciprocal propagation of an elastic wave in a beamwith spatiotemporal
modulation of its Young’smodulus and density was investigated byTrainiti et al [8]. It was shownwith both time
and spacemodulation, the dispersion diagrams for this systemwere no longer symmetric with respect to the
frequency axis and directional band gapswere created. Croenne et al [9] used spatiotemporalmodulation of the
electrical boundary condition applied to a periodically repeated assembly of piezoelectricmaterial sandwiched
between thinmetallic electrode layers. They showed nonreciprocal transmission of an input longitudinal
acoustic wave. Their results showed scattering effects such as frequency conversion and generation of
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harmonics. Several recent works have also reported experimental realization of reciprocity breaking in a time
modulated system [5, 10].

Another approach to produce non-reciprocal behavior is to apply an external symmetry breaking bias field.
Externalmagnetic field bias is commonly used [11–14] although similar symmetry breaking has been
demonstrated in a linear acoustic devicewith a circulatingfluid that creates an angular-momentumbias [15] and
by usingmagneto-elastic coupling to create a gyrator [16].Wang et al [17] demonstrated breaking time reversal
symmetry using gyroscopic inertial effects that creates an apparent external force. Adding a spinning gyroscope
to each lattice site, they showed additional topological bands are created that enablesmultimode propagation of
an elastic wave on the edge of thematerial.While external field biasing has been theoretically and experimentally
shown to be effective in some applications, itmay not be desirable in terms of physical packaging, fabrication
and increased dimensionality of the system.

Another prolific area, seen frequently in phononics andmetamaterials research, usesmaterial nonlinearity
and asymmetry to break reciprocity [18–22]. Liang et al [18, 19] demonstrated acoustic rectification by
asymmetrically coupling a super lattice to a nonlinearmedium. The nonlinearmechanism, however, do not
break reciprocity at the fundamental frequency. Non-reciprocity is realized in the total acoustic flux at the
boundaries. Non-reciprocal acoustic propagation inwhich the frequency of the incident wavewas preserved has
been demonstrated experimentally in a system composed of a granular chain and a conical rod at low
frequencies [23]. Other works have investigated nonlinearmaterial with hierarchal asymmetry [24–26].Moore
et al [25] showed breaking reciprocity within a unit cell featuring a hierarchical internal nonlinearity imposing
one directional transfer of energy from larger to smaller scale. Fronk et al [26] extended this asymmetry in a
lattice of non-reciprocal unit cells and showed the non-reciprocity at global scale. The general concept of using
nonlinearity and asymmetry to break reciprocity is a common theme in the cited references; however, the source
of nonlinearity and the asymmetry elements vary.

Each of themethods used to produce non-reciprocity has various strengths andweakness and therefore tend
to be applied to specific application areas. For example,much of thework to date has focused on photonic
devices ormacroscale acoustic devices but has not addressed RF range applications. Other approaches rely on
coupled resonators or construction techniques that are not compatible with current IC fabrication techniques.
Whilemanyworks have reported on the study of wave propagation in isotropic [27] or anisotropic nonlinear
elasticmaterials [28–30], to the authors knowledge, none have shown potential for parametric amplification in a
nonreciprocal RF application. Due to the high-quality factor ofmechanical resonances, development of non-
reciprocal amplification devices operating at RF frequencies based on elasticmaterialsmay prove to be a
revolutionary concept and represents the area targeted by this paper.Here the framework to enable the
investigation of such devices is derived.

This paper shows non-reciprocal parametric amplification and non-reciprocal propagation of bulk elastic
waves in a homogenous anisotropicmaterial. This is due to second ordermaterial and geometric nonlinearity
combinedwith an elastic traveling pumpwave introduced in themedium as a symmetry breaking element. In
this system, non-reciprocal parametric amplification of a bulk elastic ‘signal’wave is demonstrated. Further, it is
shown that propagation of the ‘signal’wave traveling through the system is non-reciprocal. The non-reciprocal
propagation appears as a difference in the intensity of the ‘signal’wave travelingwith, versus traveling opposite,
to the direction of the pumpwave (i.e. energy exchange occurs preferentially). This difference in intensity is due
to parametric amplification of the signal traveling in the direction of the pumpwave but not in the opposite
direction. Providing the required phasematching condition for parametric amplification process and
eliminating the phasematching condition for the higher frequency component (sum frequency generation
(SFG)), is the key to achieving parametric amplification.

A general derivation of the coupled-wave formalism for elastic waves of different frequencies is presented
and used to identify the requirements for parametric amplification and the associated phasematching
conditions. No restrictions aremade onmaterial anisotropy or direction of wave propagation. The
methodologies used to derive the coupledwave equations are adopted from the field of nonlinear photonics
[31]. A condition of slow variation of the elastic field amplitude over the distance of an elastic wavelength is
assumed, aka slowly varying amplitude (SVA) assumption.

The coupledwave equations are simplified to provide an analytic solution for collinear propagation of pump
and signal planewaves to investigate the process of parametric difference (down) frequency conversion. The
theory predicts parametric amplification of an acoustic signal wave through difference frequency conversion.
The numerical results and conclusions arrived at in the analytical theory are further investigated using a finite
elementmethod (FEM)model to simulate the propagation and interaction of bulk elastic waves in a nonlinear
anisotropicmedium. Parametric amplification and difference frequency conversion are observed in the
computational implementation, in agreement with the analytic results.
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1. Linear propagation of plane elastic waves andmodal expansions

This section begins with a review of the linear theory of elastic planewaves propagating in a bulk anisotropic
material. Themodal expansion of planewave solutions derived in this section is used in the development of the
nonlinear theory.

The approach is to define the constitutive properties in the global, crystal, coordinate system, select a
propagation direction, then determine the type of wave propagation that is possible in this propagation
direction. In an isotropicmaterial, this will lead to a bulk longitudinal wave propagating at bulk velocity and a
shearwave propagating at shear wave velocity where the shear velocity is degenerate, i.e. independent of the
displacement direction in the plane orthogonal to the propagation direction.

As described in detail in appendix A, in the absence of body forces and under a small strain–displacement
assumption, a linear elastic wavewith displacement field in its complex form can bewritten as equation (1.1)

( )S�
s
s

C u
u

t
. 1.1ijkl k lj

i
,

2

2

Following themethodology described in [30], solutions of the above equation can be expressed as
equation (1.2).

( )( ¯ ) ( )¯ ¯
� X �u x t U, e , 1.2k k

I tp x
c
.

where, � �I 1 , Uk is the amplitude, ¯ ( )�p p p p, ,1 2 3 is a unit vector in the direction of propagation defined
relative to the global coordinate system and considered to befixed in space, and c is thewave speed (phase
velocity). Substituting equation (1.2) into (1.1) results in (1.3)

( ) ( )S E( � �c U 0, 1.3ik ki k
2

where

( )( � C p p 1.4ik ijkl j l

is the symmetric Christoffel acoustic tensor. Equation (1.3) is an eigenvalue problem in Ū and for non-trivial
solutions the determinant of themultiplyingmatrixmust equal to zero, i.e.

∣ ∣ ( )S E( � �cdet 0 1.5ik ki
2

which gives a cubic polynomial in terms of Sc .2 Each eigenvalue, Bc determined from the solutions of
equation (1.5) has a corresponding eigenvector ¯ BU that is found from equation (1.3). Unit vectors ¯Bl are defined
by normalizing ¯ BU in equation (1.6).

( )
( ) ( )

�B
B

B B
l

U

U U
. 1.6j

j

m m

Here and throughout the paper, parentheses on repeated indices, e.g. (B), are used to indicate no Einstein
summation.

The orthonormal eigenvectors ¯Bl form a 3Dbasis set and can be used for the expansion of any vector.
Expressed in the eigenvector basis, the components of displacement are represented in equation (1.7)

¯ ¯ ( )� �B B Bu u l u l. . 1.7i i

The superscript on displacement indicate components referenced to themodal basis while the subscripted u
refers to the global ormaterial system.Unlike isotropicmaterials which have one distinct longitudinal and two
degenerate shear speeds, anisotropicmaterials generally have three distinct eigenvalues or phase velocities, ( )Bc .
Consequently, each shearmode can have a different wave velocity. This phenomenon is called ‘Birefringence’
[32]. Additionally, themodes ¯Bl are not necessarily purely longitudinal or purely transverse with respect to the
propagation direction.However, onemode is predominately in the direction of propagation and is called the
quasi-longitudinalmode and the two others are predominately normal to the direction of propagation and are
called the quasi-shearmodes.

Defining the scalar quantity Y as the inner product of the p̄ and x̄,

¯ ¯ ( )Y � p x. 1.8

we can assume themodes are exponential functions of the scalar quantity Y as equation (1.9)

U ( )( ) ( ) ( )( )�B B YB
u e , 1.9Ik

where ( )
( )�B X
Bk

c
is themagnitude of thewave vector for awave inmode ¯Bl .Ageneral wavewith particle

displacement not alignedwith any of the eigen-basis vectors, does not have a single value for its propagation
velocity but can be expanded in itsmodal form, equation (1.10), with each of its components having the velocity

3

New J. Phys. 22 (2020) 023009 MZakeri et al



of the correspondingmodal displacement

U U U( ¯ ) ( ) ( )( ) ( ) ( )� � �Y Y Y X�u x t l l l, e e e e . 1.10j
Ik

j
Ik

j
Ik

j
I t1 1 2 2 3 31 2 3

The presumption that the displacement field of awave is only in direction of onemodal basis is called the
mono-mode assumption. In this case only one phase velocity for thewave is excited.

Once a crystal orientation and a propagation direction relative to the crystal orientation has been specified,
orthonormal eigenvectors ¯Bl are found that form a three-dimensional basis set for that propagation direction
and can be used to expand any planewave displacement vector propagating in that direction in the crystal.
Consequently, themodal expansion of equation (1.7), while based on the eigen solution of the linearmaterial
constitutive properties, can be applied to both the linear and nonlinear systems. In the next section, wewill apply
this expansion to develop the nonlinear equations.

2. Second order nonlinear processes, parametric frequency conversion

In this section, the different second order frequency conversion processes are introduced and the coupledwave
equations are represented for these processes. Only quadratic nonlinearity is investigated, since the order of the
magnitude of the strain terms in typical BAWor SAWdevices are small and adding higher order termswill not
add a significant contribution to the behavior of the system. Thefinal formof the equation is given for an
arbitrary number of frequencies. Investigation of the parametric amplification process in an anisotropic
nonlinear elasticmaterial is based on the coupledwave equations discussed in this section.

A process is called parametric when there is no net exchange of energy between a travelingwave and the
medium inwhich thewave is propagating. Consequently, the sum total energy of all thewaves traveling in the
medium is conserved. In addition, linear wave processes do not exchange energy between different frequency
components. Hence, in a linear parametric process there is no exchange of energy between thewaves and the
mediumor thewave components themselves. In a nonlinearmedium,waves at different frequencies can
exchange energy among themselves due to frequencymixing, or frequency conversion processes. In a nonlinear
parametric process, even though there is no exchange of energy between thewaves and themedium, different
frequency components couple and energy transfers among them. For instance, in the presence of aweak signal
wave and anotherwave at a different frequency propagating in a nonlinearmedium, the energy transfer between
the twowaves can lead to parametric amplification of theweak signal wavewith a corresponding reduction in
the intensity of the otherwave. Second order nonlinearities in elasticmaterials are described by nonlinear terms
in the constitutive equations and by second order displacement gradients in the definition of the Lagrangian
strain. These are thematerial and the geometric nonlinearities. As shown in appendix B, these two effects can be
combined in the formof nonlinear elastic wave equations represented by equation (2.1)

⎜ ⎟⎛
⎝

⎞
⎠ ( )( ) S� �

s
s

" " " "
C C

t

1

2
. 2.1ijkl k l ijklmn

e
k l m n

j

i
, , ,

,
0

2

2

Complex displacement fields, useful for decomposing the frequencymixing equations, can be represented
through the relation to the realfields as equation (2.2)

( ¯ ) ( ( ¯ ) ( ¯ )) ( )� �" x t u x t u x t,
1

2
, , . 2.2*

Substituting equation (2.2) in (2.1), results in (2.3)

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )( ) S� � �

s
s

C u C u u u u
u

t

1

4
2.3ijkl k l ijklmn

e
k l m n k l m n

j

i
, , , , ,

,
0

2

2
*

and a corresponding conjugate equation.
Equation (2.3) contains product terms of ¯ ( ¯ )u x t, and ¯ ( ¯ )u x t,* in addition to those of ¯ ( ¯ )u x t, making the

expressionmore complicated than equation (1.1). The pure planewave solutions of equation (1.2) are no longer
possible solutions for the nonlinear problem; however, when the nonlinear terms are small, the nonlinear effects
can be approximated as shown in equation (2.4)

( ¯ ) ( ¯) ( )�� X�u x t u x e, , 2.4j
q

j
q I tq

where each ūq term is a perturbation of the solution of the linear problem at frequency X .q Substituting the
expansions of equation (2.4) in (2.3) and using the notational convention described in equations (2.5) and (2.6),

( ¯) ( ) ( )X�u x u 2.5i
q

i q
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( ¯) ( ) ( ) ( )X X� � �u x u u 2.6i
q

i q i q* *

leads to equation (2.7)

[ ( ) ( ( ) ( ) ( )

( ) )] ( ) ( )

( ) ( )

( )

� �

�

X X X X

X S X X

� �

q � � �

X X X

X X X

� � �

� � �

C u C u u u

u u

e
1

4
e

e e . 2.7

q
ijkl k l q

I t

r s
ijklmn
e

k l r m n s
I t

k l r

m n s
I t

j
q

q i q
I t

,
,

, , ,

, , 0
2

q r s

r s q

Since the relation in equation (2.7)must hold for all times, the exponential terms are collected so that the
same frequency exists in each summand. This requires X X X� �q r s where r, q, and s can take on negative
values. The negative values of r, q, and s are interpreted as appropriate to satisfy the conjugate frequency
notation of equation (2.6). This implies equation (2.8)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( ) ( ) ( )

( )

( )�X X X S X X� � �C u C u u u
1

4
. 2.8ijkl k l q

r s
ijklmn
e

k l r m n s

j

q i q,
,

, ,

,

0
2

The summation in equation (2.8) is over all frequency combinations that satisfy the constraint X X X� �q r s

for each Xq independently. The notation ( )r s, here is used to represents a pair that satisfies this constraint and r
is not independent of s.Equation (2.8) can be used to describe any plausible parametric frequencymixing
process.

Parametric frequencymixing or frequency conversion, in a second order nonlinear process involving three
frequencies can be classified into three categories. SFG or up conversion, second harmonic generation (SHG),
and difference frequency generation (DFG) or down conversion. In SFG, two inputwaves, say X1 and X ,2

generate a third higher frequencywave X X X� � .SFG 1 2 In SHG, the inputwaves are at the same frequency
X X�1 2 and generate an output at X X� 2 .SHG 1 WithDFG, the inputs interact to generate awave at
X X X� � ,DFG 3 2 the difference frequency.

Parametric amplification uses the process ofDFG to amplify the input signal and generates a byproduct wave
component at frequency X ,DFG i.e. XDFG is not the target of the amplification process. In the process of
parametric amplification, it is common to refer to the three interacting frequency components as the idler,
pump and signal such thatX X X� � ,i p sig where i represents the idler, the unintended parasitic wave at X ,DFG

p the pump and sig is the signal. The higher frequency component is the pumpwavewhich gets its name from
the fact it supplies energy, pumping up the amplitude of the lower frequency signal wave, Xsig and
inadvertently X .i

If waves at different frequencies, i.e. ( ¯)u xj
q have the same propagation direction, i.e. are collinear, then it is

convenient to use the same eigen basis to expand all of them. The expansion of the displacement field for a single
frequency component on the eigen basis is represented in equation (2.9a)

( ) ( ) ( )X X� B Bu u l a. 2.9i q q i

In this equation, the component ( )Bu is the amplitude of themode B, ¯( )Bl , and defines the direction of
‘particle’ displacement (for example quasi-longitudinal, shear, etc). If we assume the displacementfield at
frequency Xq is composed of only onemode, i.e. its particle displacements are alignedwith only one of the eigen
basis, we can simplify equations (2.9a)–(2.9b)

( ) ( ) ( )( ) ( )X X� B Bu u l b. 2.9i q q i

This is referred to as themono-mode assumption.
If the variation of the amplitude of awave over its wavelength is small, the SVA assumption applies. The SVA

assumes the spatial dependence of the amplitude function for awave can be decomposed into the product of a
slowly varying envelope term, or amplitude, and a harmonic function capturing its oscillations. Under the SVA
assumption thewave components at different frequencies, ( )XBu ,q propagating in direction p̄ , i.e. along Y, have
the formof equation (2.10),

U U( ) ( ¯) ( ) ( )( ) ( ) ( )( ) ( )
X X� �B B Y B YB B

u x e e , 2.10q q
Ik

q
Ikq q

whereU ( ¯)( )B xq is the SVA term and ( )Bkq is themagnitude of thewave vector for thewave component at
frequency Xq inmode B.

As it is described in detail in appendix B, with above assumptions, equation (2.8), leads to a systemof coupled
equations inwhich the amplitude of the displacementfield at frequency X ,q couples to the amplitude of the fields
at frequency Xr and X ,s as long as they satisfy the condition X X X� � .q r s Consequently, substituting
equation (2.10) into (2.8)wehave
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U U U( ) ( ) ( ) ( ) ( )( )

( )

( ) ( )

( )
( ) ( ) ( ) ( )�X X X� �Y

B
BCH

BB

C H

B
C H C H Y%H

G

k k

k
k k

1

8
e , 2.11q

r s

r S

q
q q r s

I k
,

,

rsq

where

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

�

�

% � � �

BB B B

BCH B C H

C H B

G C l l p p

H C l l l p p p

k k k k

,

and

.

ijkl i k j l

ijklmn
e

i k m j l n

rsq r s q

Here, Cijkl and Cjiklmn are the components of the rank four and six stiffness tensors, respectively, and
( ) E E� � �C C C C2ijklmn
e

jiklmn jnkl im jinl km is the effective nonlinear rank six tensor (see appendix B).
Equation (2.11) is themost general formof the coupledwave equations for a frequencymixing process in a
nonlinear elasticmaterial under themono-mode and SVA assumptions, regardless of the number of frequencies
involved. In general, analytic solutions of equation (2.11) do not exist and numericalmethodsmust be applied
for a specific frequencymixing process. In section 5 analytic solutions of equation (2.11) for the process ofDFG
involving three frequency components is given and its application to parametric amplification process is
discussed. Before completing the analytic solutions, in the next section phasematching conditions are discussed
tomotivate the rationale for theDFG analytic solutions.

3. Phasematching condition

In general, when signal Xsig and pump Xp waves are supplied to themedium, conservation of elastic energy, with
X X X� � ,pSFG sig implies that with SFG, one phonon at signal frequency and another at pump frequencymust
annihilate simultaneously (combine) to generate a phonon at SFG. InDFG, X X X� � ,psig i a phonon at signal
and idler frequencies are generatedwhen a phonon at pump frequency annihilates. Both these processes can
happen simultaneously when the pump and signal waves are input at the boundary.When parametric
amplification of the signal wave is of interest, generation of a sum frequencywave reduces the intensity of both
pump and signal waves, which results in an overall reduction in the intensity of the signal wave instead of
amplifying it. Therefore, it is significant to knowwhat are the conditions that allow a frequencymixing process
to happen. This section provides an investigation of these effects.

In a process involving only threewave components such that X X X� � ,q r s the change in intensity of awave
at frequencies Xq with respect to Y, has the formof equation (3.1) (see appendix C),

A ( ) ( )( )
Y

Z�
Id

d
Cos , 3.1

q
r s rsq,

whereA( )r s, is a positive quantity that depends on thematerial properties and thewave intensities and

( )Z Y G G G G� % � � � �k . 3.2rsq rsq c r s q

In this equation, Gc is a function of the effectivematerial properties and is either 0 or Q. %krsq is the phase
mismatch in equation (2.11), and G ,r Gs and Gq are the phases of thewave envelopes at frequenciesX ,r Xs and X ,q

respectively. The phasor of thewave envelope is represented byU U( ) ∣ ( )∣X X� Ge .I

Equation (3.1) shows that the derivative of the intensity with respect to the propagation distance Y changes
sign periodically, with periodicity Q

Z
.While ( )Z �Cos 0, the frequencymixing process transfers energy from

thewave components at frequencies Xr and Xs to the Xq wave and reverses energy the flowwhen ( )ZCos changes
sign.Hence, elastic energy flows back and forth among different frequency components over a distance Q

Z
.The

interaction distance before the frequency conversion process is reversed is called the coherence length.

( )Q
Z

�l . 3.3coh

In general, tomaximize the coherence length, Z should beminimized. Z is composed of two parts, the sum
of thewave envelope phases and the phasemismatch factor%k .rsq For thefirst part, G G G G� � �c r s q is
determined by thematerial properties and the relative phases of the two inputwaves at frequency Xr and X .s In
practice, these can be adjusted at the boundary,Y � 0, such that G G G G� � � � 0.c r s q Consequently, the
more significant factor to consider is%k .rsq

From equations (3.2) and (3.3), it is seen that with a smaller phasemismatch, larger coherence length is
achieved. The ideal situation happenswhen the%krsq term goes to zero; this is called the phasematching
condition.

In a second order, nonlinear frequency conversion process involving three frequencies such that
X X X� � ,q r s the phasematching condition is written as equation (3.4)
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¯ ¯ ¯ ( )� �k k k . 3.4q r s

Under the collinear propagation assumption, the phasematching condition, equation (3.4), turns into a
scalar relation among themagnitude of thewave vectors as equation (3.5a),

∣ ¯ ∣ ∣ ¯ ∣ ∣ ¯ ∣ ( )� �k k k a3.5q r s

or in terms of phase velocities, � Xc ,
k
withmono-mode assumption, as equation (3.5b).

( )X X X
� �

c c c
b. 3.5

q

q

r

r

s

s

Once the pump and signal waves are launched in a nonlinearmedia both SFG andDFGoccur
simultaneously. Considering Xq to be the signal wave at frequency X ,sig such that X X X� �p isig and
X X X� � ,psig SFG Equation (C.21a) gives the general form in equation (3.6)

A A( ) ( ) ( )
Y

Z Z� �
Id

d
Cos Cos , 3.6

sig
DFG DFG SFG SFG

whereADFG andASFG are two positive numbers that can be obtained from equation (C.22) in appendix C.
Initially, at Y � 0, the energy transfer from the signal to the sum frequencywave, reduces the intensity of the
signal wave until ( )ZCos SFG changes sign and the process is reversed. However, if the phasemismatch term is
large for the process of SFG, the coherence length of this process will be small and its effect can be negligible on
the propagation of the signal wave.

If we assume the effect of SFG is negligible, equation (3.6) reduces to (3.7)

A ( ) ( )
Y

Z�
Id

d
Cos . 3.7

sig
DFG DFG

For Z l 0DFG at input Y � 0, the signal wave can be supplied such that G G G G� � � .p c isig A smaller

value for%kDFG is desired so that the
Y

Id

d
sig term changes sign at a larger distance from the origin, i.e. the

amplification process has larger coherence length.
From the above discussion, it is concluded that parametric amplification is feasible when the associated

phasematching condition is satisfied and the inputwaves have the appropriate initial phases.

4. Parametric amplification

Unlike electromagnetic waves, SAWandBAWare relatively non-dispersive over the typical frequency ranges of
interest and, for purposes here, thewave velocity c is not a function of the frequency of the propagating wave. In
an anisotropicmaterial where the threewaves have the samemode, i.e. all displacements are along the same ¯Bl
vector, or in an isotropicmaterial when thewaves are all shear or all longitudinalmode, the velocities of the three
travelingwaves are equal, � �c c c ,s r q and equation (3.4) is always satisfied.When this happens, both theDFG
and SFGwave components are phasematchedwhich leads to poor amplification or decay of the signal wave.

Oneway to overcome this obstacle is to utilize the birefringent property of anisotropicmaterials. In this case
twowaves propagating in the same direction but having different displacementmodes can have different phase
velocities. This way by choosing the proper direction of propagation and exciting the pump and signal waves in
the desiredmodes, the phasemismatch term can bemaximized for SFG andminimized forDFG. Consequently,
the SFGwave has small coherence length and does not interfere significantly with the desiredDFGprocess.

Tofind the best propagation direction andmodal orientation for the pump and signal waves, we start with
DFG. Substituting X X X� �i p sig in equation (3.5b) for the process of DFG, equation (4.1) is obtained.

⎛
⎝⎜

⎞
⎠⎟ ( )X X�

�

�

c c

c c

c

c
. 4.1p

i

i p

psig

sig
sig

Examining equation (4.1), for Xp to be greater than X ,sig the phase speeds either have to satisfy inequality
(4.2a) or (4.2b)

( )� �c c c a4.2p isig

or

( )� �c c c b. 4.2i p sig
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Going through the same procedure for SFG, inequalities (4.3a) and (4.3b) are achieved.

⎛
⎝⎜

⎞
⎠⎟X X�

�

�

c c

c c

c

c
p

p
SFG

sig

SFG

SFG

sig
sig

( )� �c c c a4.3psig SFG

or

( )� �c c c b. 4.3p SFG sig

Considering both inequalities (4.2) and (4.3), implies

( )� � � �c c c c c c aand 4.4p i psig sig SFG

or

( )� � � �c c c c c c band . 4.4i p psig SFG sig

The set of inequalities in equation (4.4a) always have smaller phasemismatch for the process ofDFG.
Therefore, solutions satisfying this set of inequalities are the ones sought here.

Assuming the eigenmodes are ranked in order of decreasing phase velocity, thefirst pair of inequalities
require the signal and pumpwaves to be inmodes l̄ 1 and l̄ 2 respectively.

While the idler wave generates in allmodes, for simplicity, under themono-mode assumption, only the
modewith largest coherence length is tracked and the other two are neglected. The largest coherence for this
process occurs when the idler wave is in the l̄ 3 mode. For the process of SFG, the smallest%k ,SFG occurs for its l̄ 2

mode, therefore, thismode has the largest coherence length and greatest effect on the system. The othermodes
are assumed to be negligible.With this, the phasemismatch term for the two processes are represented in
equations (4.5) and (4.6)

( )X X X
% � � �k

c c c
4.5

p i
DFG

2

sig

1 3

( )X X X
% � � �k

c c c
. 4.6

p
SFG

2

sig

1

SFG

2

For situationswhen%kSFG is large and%kDFG is small, the SFGhas negligible effect on theDFG and
parametric amplification is significant. The accuracy of this assumption is further studied in the finite element
simulation section. In these cases, equation (2.11) can be simplified to account only for signal ( )X ,sig pump( )Xp

and idler ( )Xi frequencies resulting in equations (4.7)–(4.9),

U U U( ) ( ) [ ( ) ( )] ( )X X X�
� �

Y
H H

G
k k

1

8
4.7p i p i,

1
sig

123 132

11
2 3 2 3*

U U U( ) ( ) [ ( ) ( )] ( )X X X�
�

Y
H H

G
k k

1

8
4.8p s i i,

2
213 231

22
1 3 1

sig
3

U U U( ) ( ) [ ( ) ( )] ( )X X X�
� �

Y
H H

G
k k

1

8
, 4.9i p s p s,

3
321 312

33
2 1 2 1*

where all the terms in equations (4.7)–(4.9) are as defined in equation (2.11).
The above systemof coupled equations represents three nonlinear equationswith three unknowns. The

amplitude of the pumpwave is generallymuch greater than the amplitude of the signal wave in envisioned
applications; consequently, we assume themagnitude of the pumpwave to be almost constant throughout the
interaction. This will allowus to treatU ( )Xp

2 as a know function that factors out of the equations forU ( )XY,
1

sig

andU ( )XY .i,
3 The accuracy of this assumption is also discussed further in the finite element simulation results

section.Under this assumption, equations (4.7) and (4.9) can bewritten as equations (4.10) and (4.11),
respectively.

U U( ) ( ) ( )X L X�Y 4.10si i,
1

sig
3*

U U( ) ( ) ( )X L X�Y 4.11i is,
3 1

sig*

with

U
( ) ( ) ( )L X�

� �H H

G
k k

1

8
4.12si p i p

123 132

11
2 3 2

U
⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )L X�
� �H H

G
k k

1

8
. 4.13is p s p

321 312

33
2 1 2

*
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By introducing

( )L L L� . 4.14si is

Equations (4.10) and (4.11) have the solutions of the form equations (4.15) and (4.16), respectively

U U U( ) ( ) ( ) ( )X Y�
�

�B
Y Y�

k
e e

2
Cosh 4.15

k k
1

s 0 0
1

U U U( ) ( ) ( ) ( )X
L
L

L
L

Y�
�

�
Y Y�

k
e e

2
Sinh , 4.16is

si

k k
is

si

3
2 0

1
0
1*

whereU0
1 is the amplitude of the signal wave at Y � 0.

The intensity of the acoustic wave at frequency Xq in the direction of Y is calculated as equation (4.17), (see
appendix C).

U∣ ( ) ∣ ( )S
X

X�I
k

. 4.17q
q

q
q

3
2

Equation (4.17) for intensity, combinedwith equations (4.15) and (4.16), result in the gain for signal
intensity of

( )
( )

( ) ( )L� �
I l

I
lGain

0
Cosh . 4.18s

s

2

These equationswill be used in the results section for different orientations of LiNbO3 tofind directions of
propagation such that%kDFG ismuch smaller than%kSFG as needed for parametric amplification. After
determining themost promising directions, quantitative values for the gain in LiNbO3 are provided from
equation (4.18).

5. Breaking reciprocity

In this section, it is shown in a parametric amplification process when the required phasematching condition is
satisfied for pump and signal waves traveling in the same direction, the signal wave is amplified andwhen the
signal wave travels in a direction opposite the pumpwave, the required phasematching condition cannot be
satisfied. Therefore, themagnitude of the signal wave at the destination is different depending on its direction of
propagation. This results in directional dependency of the propagation of the signal wave. It is concluded that in
a nonlinearmedia with a traveling pumpwave in one direction, non-reciprocal propagation of an elastic wave
can be achieved.

The phasematching condition for the process ofDFG for pump, signal and idler waveswhen,
X X X� � ,p i sig is written as equation (5.1).

¯ ¯ ¯ ( )� �k k k . 5.1p i sig

When the pump and signal waves travel in the same direction,figure 1(a), equation (5.1) is satisfied.However,
when the pump and signal waves travel in opposite direction, figure 1(b), the relationship among their wave
vectors cannot satisfy the required phasematching condition and the frequency conversion process cannot take
place in this situation. Therefore, without energy transfer between the pump and signal waves, the amplitude of
the signal wave remains constant. This directional bias in amplitude of the signal wave is interpreted as non-
reciprocity in its propagation. In addition, when theDFGdoes not happen, the idler frequency does not
generate. Thatmeans comparing the Fourier spectrumof the elastic wave in the forward direction, figure 1(a),
versus the backward direction, figure 1(b), the idler frequency is only observed for the forward direction and is
absent in the backward direction.

6. Results

In this section, linear and nonlinearmaterial properties of LiNbO3 (appendixD), are used as an example of the
concepts and equations derived. Although the piezoelectric properties of LiNbO3 are not considered in this
paper, we envision the piezo couplingwill be used to produce electromechanical devices similar to the SAWand
BAWdevices currently in commercial applications. This simplified system is the first step for designing practical
devices. LiNbO3 has a low loss and a high coupling factor thatmakes it easy toworkwith for applications at RF
frequencies and LiNbO3 has published data for the higher order coupling termswhich are of sufficient
magnitude to use for proof of concept.
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In thefirst section, propagation directions with small phasemismatch forDFG and largemismatch for SFG
are determined. Directionswith a ratio of �%

%
0.2,k

k
DFG

SFG
are assumed as plausible candidates for parametric

amplificationwhere the effect of SFG is negligible. The gains in directions of propagationwith �%
%

0.2k

k
DFG

SFG
are

calculated considering only the process ofDFG. The directions of propagationwith largest gain are indicated. In
the second part of this section, the nonlinear elastic wave equations are solved numerically with FEM
simulations. In these simulations, the equations are solved considering bothDFG and SFGprocesses (i.e. four
frequency interaction). Further, in the numerical simulations, the SVA andmono-mode assumptions are not
used. These results are comparedwith the analytical solutions, validating previous simplifications and
assumptions.

6.1. Analytical results
Figure 2 refers the direction of thewave propagation vector p̄ to the crystal axes in LiNbO3, with each
propagation direction determined by two angles R andKwith respect to the positiveZ andX axes, respectively.
In section 2, it is discussed that in a general anisotropicmaterial, thewave speed for each of the threemodes can
be distinct. The phase velocity as a function of direction of propagation for eachmode in LiNbO3 is shown in
figure 3. Figures 3(a)–(c) shows thewave speed for the quasi-longitudinal and the two quasi-shearmodes,
associatedwith the propagation direction in 3D space. In these plots, every point on the surface corresponds to a
(R, K)pair that defines the propagation direction and the distance from the origin is themagnitude of themodes’
wave speed. In addition, the speed values are color coded as indicated in the bar-legend attached. Figure 3(d)
shows thewave speed of all threemodes overlaid. In LiNbO3, for R � n0 , that is propagation in theZ direction,
the two shear velocities are equal. This indicates the isotropic behavior of shearmodes oriented in theX–Y plane.
We also see fromfigure 3(d) the two quasi-shearmodes have approximately half the longitudinal wave speed.

An optimumdirection of propagation is the onewith (1)minimumphasemismatch for the process ofDFG,
(2)maximumphasemismatch for the process of SFG and (3)maximumgain of amplification. Based on the
discussion in section 5, the phasemismatch term for the process ofDFG and SFG are,% � � �

X X Xk
c c cDFG

p s i

2 1 3

and% � � �
X X Xk ,
c c cSFG

p s

2 1

SFG

2
respectively. As seen in the plots offigure 3, in an anisotropicmaterial such as

Figure 1.Propagation of two elastic waves (a) in the same direction, (b) in the opposite direction.Non-reciprocal propagation of the
elastic wave can be realized through the phasematching condition.

Figure 2.Definition of the propagation vector with respect to the crystal axes in LiNbO3.
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LiNbO3, thewave speeds are a function of direction of propagation. Infigure 4, the optimumdirection of
propagation for parametric amplification is investigated. Tofind the direction of propagationwithminimum
%kDFG andmaximum%k ,SFG the ratio, ( )

( )� �%
%

r k

k

l

l

SFG

DFG
DFG

SFG

coh

coh
is defined and calculated as a function of direction

in spacewith the results shown infigure 4(a) forX–Y plane, i.e. propagationwith R � n90 and K� �0 360, as
an example. Themagnitude of r for each direction is proportional to the distance of the point to the origin. The
color of each point indicates the value of r based on the bar-legend.

An ‘optimum’ value for r is not shown here since the r value does not determine gain. Our analytic gain
results, being based on three frequency interaction, do not consider the effects of SFG. Consequently, higher
values of gain can be found in certain directions, but the assumptions needed for validity of the three frequency
results are violated. By choosing low r values, we are considering the gain only in regionswhere the 3 frequency
assumptions reasonably apply.Herewe have considered the points with �r 0.2 as a validmetric for when SFG
is negligible. This value is verified by the FEMresults which show close agreementwithin this region. For the
directions with �r 0.2, the signal gain for aDFGprocess, neglecting SFG, is plotted infigure 4(b) for theX–Y
plane, andfigure 4(c) for the entire space. The signal and pumpwaves have the frequencies, X � 200 MHzs and
X � 800 MHz,p respectively and the initial amplitude ofU � 10 nm,0

1 U � 50 nm.0
2 The sparse spaces in the

gain graph represent the directions that do not satisfy the condition for r and have been eliminated.
Themaximum signal gain over onewavelength is seen to be 16%. This response is observed in twelve

directions of propagation, see table 1, reflecting the crystal symmetry of LiNbO3. The eigenvectors for the
direction of propagationwith ( )R K� n � n82 , 70 , are plotted infigure 4(c) as l̄ ,1 l̄ 2 and l̄ .3

6.2. Numerical results
COMSOLMultiphysics finite element software was used to simulate the frequency conversion processes.
Equation (2.8) is implemented to solve for the four-wave, (pump, signal, idler and sum frequency) interactions.
The simulations are done in frequency domain inputting the nonlinear terms as an external stress to the linear
elastic node of the structuralmechanics interface inCOMSOL. Enabling the geometric nonlinearity in the
solution node, nonlinear strains are taken into account. The equations for external stresses are given in table 2.

In the analytical results section the coordinate systemwhich alignswith the crystal axes are assumed to be
fixed in space and the direction of propagation direction p̂ is definedwith respect to this coordinate system,
figure 2. For convenience in the numerical evaluation, a coordinate transformation is applied to align the p̂
propagation directionwith theZ′ axis, and the vectors p̂×Z and p̂×Z× p̂ are chosen to form theY′ andX′
axes of the FEMcoordinate system, respectively’, see the figure 5(a).

Figure 3.Phase velocity of thefirst (a), second (b) and third (c)mode as function of propagation direction. (d)Plot of the three phase
velocities, the faster quasi-longitudinalmode and the two quasi-shearmodes
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Assuming a givenpropagationdirection and collinearity of the differentwave components reduces to a 1D
problem.But even though thedisplacementfield varies only in thedirectionof propagation, it has components in all
three directions. To excite the desiredpumpand signalwave requires 3 components of displacement tobe applied at
the boundary. Since any1Dsolution canbe viewed as a trivial 3D solutionof arbitraryperiodicity (bydefinition the
solution is constant in the orthogonal dimensionswith ( ) ( ) ( )a � a � a � a a a � au X d Y d Z u X Y Z u Z, , , ,i i i ),
we apply theseBC inCOMSOLusing a3Dmodel. The 3Dgeometry of themodel consists of a bar that is several
wavelengths long in thepropagationdirection z, andmeshedwith a single element across thewidthd in the transverse
x and ydirections.We imposeperiodic boundary conditions of continuity type to each side of the bar in the transverse

Figure 4. (a)Value of ( )
( )� �%

%
r k

k

l

l

SFG

DFG
DFG

SFG

coh

coh
for different directions of propagation in theX–Y plane. (b)The gain values where

�r 0.2, overlayedwith r, as a function of propagation direction. (c)Gain for directions that satisfy the condition �r 0.2 in three-
dimension space

Table 1.Direction of
propagationwith
maximumgain.

Rn Kn

82 70, 190, 310
110, 230, 350

98 10, 130, 250
50, 170, 290

Table 2.The external stresses terms for the FEM simulations are
given by the followingwhere, ( ) E� �C C Cijklmn

e
ijklmn ijnl km

1

2

1

2
+

E E E� �C C Cnjkl im inkl jm ijkl mn and C ,ijkl Cijklmn are the second- and
third-order elastic constants.

( )XT s
ext ( ( ) ( ) ( ) ( ))( ) X X X X� � �C u u u uijklmn

e
k l p m n i k l sum m n p, , , ,

( )XT p
ext ( ( ) ( ) ( ) ( ))( ) X X X X� �C u u u uijklmn

e
k l s m n i k l sum m n s, , , ,

( )XT i
ext ( ) ( )( ) X X�C u uijklmn

e
k l p m n s, ,

( )XT ext
sum ( ) ( )( ) X XC u uijklmn

e
k l p m n s, ,
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x and ydirections.This constrains thedisplacement components tobe constant in x and ydimensions giving a 1D
problem in3Dspace.

Tomake sure the results are not influenced by reflection from aZ boundaries, perfectlymatched layers are
used on both ends to simulate continuous propagation. The signal and pumpwaves are excited as prescribed
displacements at the boundarywith initial amplitudesU � 10 nm,0

1 U � 50 nm,0
2 and frequencies of,

X � 200 MHz,s X � 800 MHz,p respectively.
Three simulations are presented to show the effect of different parameters on the system. In the first

simulations, the importance of exciting the pump and signal waves in the directions suggested by equation (4.4a)
are emphasized. In this simulation, pump and signal waves are sent in l̄ 1 and l̄ 3 directions, respectively, in
contrast towhat equation (4.4a)would suggest. It is shownwith this excitation, the phasematching condition is
not favorable forDFG andparametric amplification of the signal wave does not occur. In the second simulation,
pump and signal waves are applied in the l̄ 1 and l̄ 2 directions, in agreementwith equation (4.4a), and parametric
amplification of the signal wave is demonstrated. The third simulation shows non-reciprocal propagation of the
signal. In the third simulation, this is accomplished by taking themodel from the second simulation and
reversing the propagation direction of the signal wave. The resultantmagnitude of the signal wave is then seen to
be quite different from the second simulation.

In thefirst simulation, thewaves propagate in the direction R � n82 andK � n70 and signal and pump
waves are exited in l̄ 1 and l̄ 3 directions, respectively, which are not optimumdirections to eliminate the
generation of a sum frequencywave. Figure 5(b) shows in this case the signal wave does not amplify and its
displacementmagnitude reduces as it propagates over the first wavelength. This agrees with the results predicted
in the analytical discussion.

The analytical coherence lengths, calculated from equation (3.3), for the two processes are ( ) �l DFGcoh

M0.3 s* and ( ) M�l SFG 1.47 scoh * with �
%
%

�r
k
k

4.64.DFG

SFG
The coherence length estimated from the graph of

figure 5(b)matches calculated values towithin the resolution of the plot. As expected, the plot shows that
coherence length of the SFG is larger than theDFG since%kDFG>%k .SFG

In the second simulation, the same geometry andmaterial properties are used, however, amore favorable
phasematching condition forDFG is applied. Graphical representation of the pump and signal waves in
figure 6(a) shows the signal and pumpwaves are launched in themediumwithmodal displacements in l̄ 1 and l̄ 2

directions, respectively. This choicewasmade based on the inequalities derived in section 5, equation (4.4a). The

Figure 5. (a)The schematic display of the FEmodel. In this simulation, signal and pumpwaves are shown in l̄ 1and l̄ 3 modes,
respectively. (b)The amplitude of the signal, idler and SFGwaves in the direction of propagation. In this case, with pumpwave having
the 3rdmode, the ratio � %

%
r k

k
DFG

SFG
is large. As expected, since the proper phasematching condition is not satisfied for the process of

DFG, the amplitude of the signal wave is dropped instead of being amplified.
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waves propagate in the directionwith R � n82 andK � n70 ,which is the direction of propagationwith
maximumgain, obtained from the analytical results, figure 4(c). Based on the analytical results, equation (3.3),
the coherence length calculated for SFG is ( ) M�l SFG 0.81 .scoh * This is in reasonable agreementwith the
estimate of M0.8 s* shownon the graph of the figure 6(b). The larger phasemismatch for the SFG,
� �%

%
r 0.16,k

k
DFG

SFG
eliminates its adverse effect on signal amplification and the red plot infigure 6(b) shows the

increasing signal amplitude as thewave travels. This demonstrates the parametric amplification of thewave as
the result of energy transfer from the pumpwave. It is also seen that the amplitude of the pumpwave is fairly
constant, indicating the approximate, but reasonable, assumption of constant amplitude for the pump.
Figure 6(c) plots the total intensity of the combinedwaves alongwith the intensity of eachwave component as a
function of position in the direction of propagation. It is seen that the total intensity of thewaves is conserved
and the intensity of the pumpwave decreases while the intensity of the signal and idler waves increases. The
conservation of the total intensity of the involvedwaves is due to nature of the problembeing parametric.
Figures 6(d) and (e) compare the plot of the signal and idler waves obtained analytically and numerically over a

Figure 6. (a)The schematic display of the FEmodel. In this simulation, signal and pumpwaves are shown in l̄ 1 and l̄ 2 modes,
respectively. (b)Demonstration of the parametric amplification of the signal wave. The amplitude of the signal waves increases as it
travels in themedia, receiving the energy from the pumpwave in theDFGprocess. (c)The total intensity of the combinedwaves is
conserved in the parametric processes. (d) and (e)Comparison between the plot of the signal and idler waves obtained analytically and
numerically.
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distance of four signal wavelengths in thematerial. This figure shows close agreement between analytic and
numerical results for about three signal wavelengths, demonstrating the approximate range of validity for the
SVA assumption.

The objective of this last simulationwas to investigate non-reciprocity in propagation of the signal wave. The
samemodel setup as the second simulationwas used, except, the signal wavewas sent in the opposite direction of
the pumpwave. The results plotted infigures 7(b) and (c) show that by reversing the direction of propagation of
the signal wave, the pump and signal waves do not couple; consequently, the idler wave is not generated. Also
seen, there is no energy transfer fromor to the pump and signal waves.

Comparing the second and third simulations shows that the amplitude of the signal wave is quite different
over equivalent distances of travel. For the nonlinear elasticmedia, the pumpwave creates a symmetry breaking
field and the signal wave propagation becomes non-reciprocal.

7. Conclusions

Thiswork has shown the derivation and verification of a systemof equations that can be used for determining
amplification effects due toDFG associatedwith bulk elastic waves. A simplified version of these equationswas
solved quasi-analytically for the ‘three wave’ problem. These idealized equations indicate promisingmodes of
operation for the non-degenerate eigenvalue case where amplification of the signal wave is achieved. This was

Figure 7. (a)The schematic of the third simulations, in this setup the signal wave travels in the opposite direction of the pumpwave.
Amplitude (b) and intensity (c) of the signal, pump and idler waves. This shows the amplitude of pump and signal waves are constant
and idler wave is not generated. Plot of the intensity of thewaves at each frequency shows no energy transfer to the signal wave.
Compering this result with the one plotted infigure 4(e) shows the non-reciprocal behavior of the system for the signal wave.
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verified numerically using a FEMmodel.Without the analytic equations to guide selection of the required
system characteristics, i.e. whichmode to operate the pump, signal and idler aswell as frequency determination,
it would be very difficult to create an amplifier due the large number of choices available in the parameter space
and the relatively limited number of combinations that can produce parametric amplification. In this paper only
themechanical properties of the LithiumNiobate were considered and its piezoelectric effects were neglected.
This simplified system is the first step for designing practical surface acoustic devices and the piezoelectric effects
should be addressed in future studies.
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AppendixA. Linear propagation of plane elastic waves andmodal expansions

In the absence of body forces, the equations ofmotion and small strain–displacement relations for amechanical
system are represented in equations (A.1) and (A.2)

( )S�
s
s

! "
t

A.1ij j
i

,

2

2

( ) ( )� � " "1

2
. A.2ij i j j i, ,

Themechanical fields defined in the above relations are real quantities.
�
! is the symmetric Cauchy stress

tensor, ρ is thematerial density, "̄ is the displacement vector and
�
 is the small strain tensor. Each field quantity

can be represented by a function plus its complex conjugate, equation (A.3)

( ¯ ) ( ( ¯ ) ( ¯ )) ( )� �' x t Z x t Z x t,
1

2
, , . A.3*

Here ( ¯ )' x t, represents any of the stress, strain or displacement fields. Substituting equation (A.3) into (A.1) and
(A.2) leads to equations (A.4), (A.5) and a similar pair of conjugate equations, respectively

( )S�
s
s

T
u

t
A.4ij j

i
,

2

2

( ) ( )� �S u u
1

2
. A.5ij i j j i, ,

Assumingmaterial properties are instantaneous in time and local in space, the stiffness tensor Cijkl can be
written as equation (A6)

(¯ ¯ ) (¯ ¯ ) ( ) ( )E E� a � a � � a � aC r r t t C r r t t, , A.6ijkl ijkl

where E is theDirac delta function. This allows the linear stress-strain constitutive relations to be expressed in
time domain as equation (A.7)

( ¯ ) ( ¯ ) ( )�!  x t C x t, , . A.7ij ijkl kl

Substituting the complex representation of stress and strain tensors, equation (A.3), in (A.7) gives (A.8)

( ¯ ) ( ¯ ) ( )�T x t C S x t, , . A.8ij ijkl kl

Using the definition of small strain, equation (A.5), in (A.8) together with use of the symmetry of the stiffness
tensor, where �C C ,ijkl ijlk equation (A.9) is obtained

( ¯ ) ( )�T x t C u, . A.9ij ijkl k l,

Substituting for ( ¯ )T x, tij from equation (A.9) into (A.4) results in (A.10)

( )S�
s
s

C u
u

t
. A.10ijkl k lj

i
,

2

2

Following themethodology described in [30], solutions of the above equation are expressed as
equation (A.11)
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( )( ¯ ) ( )¯ ¯
� X �u x t U, e , A.11k k

I tp x
c
.

where, � �I 1 , Uk is thewave amplitude, ¯ ( )�p p p p, ,1 2 3 is a unit vector in the direction of propagation
defined relative to the fourth order constitutive tensor that is considered to befixed in space, and c is thewave
speed (phase velocity).

Substituting equation (A.11) into (A.10) results in (A.12)

( ) ( )S E( � �c U 0, A.12ik ki k
2

where

( )( � C p p A.13ik ijkl j l

is the symmetric tensor called theChristoffel acoustic tensor and the components of p are defined in the crystal
coordinate system. Equation (A.12) is an eigenvalue problem in Ū and for non-trivial solutions the determinant
of themultiplyingmatrixmust be zero

∣ ∣ ( )S E( � �cdet 0. A.14ik ki
2

This gives the eigenvalues as roots of a cubic polynomial in Sc .2 Each eigenvalue Bc , determined from the
solution of equation (A.14) has a corresponding eigenvector ¯ BU that is found from equation (A.12). Unit vectors
¯Bl are defined by normalizing ¯ BU in equation (A.15) to obtain the eigenmodes

( )
( ) ( )

�B
B

B B
l

U

U U
. A.15j

j

m m

Parentheses on repeated indices, e.g. (α), are used to indicate no Einstein summation.
This appendix ends with derivation of an identity that is used in appendix B to simplify the nonlinear

equations developed. Once a crystal orientation and a propagation direction relative to the crystal orientation
has been specified, orthonormal eigenvectors ¯Bl are found that form a 3Dbasis set for that propagation direction
and can be used to expand any planewave displacement vector propagating in that direction in the crystal.
Expressed in the eigenvector basis, the components of displacement vector are represented in equation (A.16)

¯ ¯ ( )� �B B Bu u l u l. . A.16i i

The superscript on displacement indicates components referenced to themodal (eigen) basis associatedwith
the selected propagation direction, while the subscripted ui refers the global ormaterial system. Assuming the
displacementfield to be time harmonic, it can be represented inmodal basis as equation (A.17)

( ¯ ) ( ¯) ( )� B B X�u x t u x l, e . A.17j j
I t

Substituting equation (A.17) in (A.10) results in (A.18)

( )SX� �B B B BC u l u l 0. A.18ijkl lj k i,
2

The scalar quantity Y is defined to be the inner product of the p̄ and x̄ vectors as shown in equation (A.19)

¯ ¯ ( )Y � p x. , A.19

where p̄ in this equation is the unit vector representing the direction of propagation. The derivative of Y with
respect to x̄ is represented in equation (A.20)

( )Ys
s

�
x

p . A.20
i

i

Taking the derivative of the projection, defined in equation (A.19), with respect to x togetherwith the chain
rule, equation (A.21) is obtained from equation (A.20)

( )�B
YY
Bu u p p . A.21lj l j, ,

It is noted that under plane wave propagation assumption, ( ¯) ( )Y�B Bu x u since the field properties only vary
along the direction of propagation, i.e. propagation is 1D.

Combining the above equations into (A.18) gives (A.22)

( )S X( � �YY
B B B Bu l u l 0. A.22ik k i,

2

17

New J. Phys. 22 (2020) 023009 MZakeri et al



For a planewave propagating in the p̄ direction, it is assumed that Bu has the formof equation (A.23)

U ( )( ) ( ) ( )( )�B B YB
u e . A.23Ik

Substituting equation (A.23) in (A.22), results in (A.24)

U( ( ) ) ( )� S X( � �
B

B B B B YBk l l e 0. A.24mn n m
Ik2 2

This relationwill be used in appendix B to simplify the derived nonlinear equations.

Appendix B.Nonlinear propagation of plane elastic waves and coupledwave equations

When stress is applied to an element of themedium, the element undergoes a displacement given by
¯ ( ¯ ) ¯ ¯ ( ¯ )� �" x t x X x t, , ,where the vectors x̄ and X̄ describe the element position in the deformed and
undeformed states, respectively.

Starting with the nonlinear constitutive equations, the second Piola–Kirchoff stress tensor is approximated
as a series expansion of the strain energywith respect to the Lagrangian strain,  ,ij in equation (B.1)

( )�
s'
s

� � �y!     C C
1

2
, B.1ij

ij
ijkl kl ijklmn kl mn

where ' is the elastic energy function,Cijkl is the rank four stiffness tensor, that is associatedwith linear behavior,
Cijklmn is the rank six stiffness tensor that represents quadratic nonlinearity and the Lagrangian strain,  ,ij which
is given in equation (B.2),

( ) ( )� � � " " " "1

2
B.2ij i j j i k i k j, , , ,

here, � s
s

" " ,i j X,
i

j
the displacement gradient, is the derivative of the displacement with respect to the undeformed

coordinate. Lagrangian strain can be divided into linear and geometrically nonlinear terms as in equation (B.3)

( )� �   . B.3ij ij
L

ij
NL

Substituting equation (B.3) in (B.1), results in (B.4)

( ) ( ) ( )� � � � � �!           C C
1

2
. B.4ij ijkl kl

L
kl
NL

ijklmn kl
L

mn
L

kl
L

mn
NL

kl
NL

mn
L

kl
NL

mn
NL

Keeping the terms up to the second order in displacement gradients, the nonlinear constitutive equations
can bewritten as equation (B.5)

( ) ( ) ( )� � �!     C C
1

2
. B.5ij ijkl kl

L
kl
NL

ijklmn kl
L

mn
L

Substituting for  ij
Land  ij

NL from equation (B.2) in (B.5), results in (B.6)

( ) ( )� � � �! " " " " " "C C C
1

2

1

2

1

2
. B.6ij ijkl k l l k ijkl p k p l ijklmn k l m n, , , , , ,

The equation ofmotion is written in terms offirst Piola–Kirchoff stress as in equation (B.7)

¯ ( )T
S

s

s
�

s
s
"

X t
. B.7

ji

j

i
0

2

2

Here S0 is the density of thematrial represented in the undeformed coordinate system.
Thefirst Piola–Kirchoff stress is related to the second Piola Kirchoff stress by equation (B.8)

⎛
⎝⎜

⎞
⎠⎟¯ ( )T E�

s
s

� �
s
s

� �
s
s

! ! " ! ! "x

X X X
. B.8ji jl

i

l
jl il

i

l
ji jl

i

l

Substituting for !ij from equation (B.6) and keeping the terms up to the second order in displacement

gradients, the term s
s

! "
jl X

i

l
in equation (B.8) is found in (B.9)

( )E
s
s

� �! " " " " "
X

C C . B.9jl
i

l
jnkl k l i n jnkl im k l m n, , , ,

Considering symmetry properties of the rank four and six tensors and by substituting from equations (B.6)
and (B.9) into (B.8), thefirst Piola–Kirchoff stress can be found in terms of displacement gradients in
equation (B.10)
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¯ ( )( )T � �" " "C C
1

2
, B.10ji ijkl k l ijklmn

e
k l m n, , ,

where

( )( ) E E� � �C C C C2 B.11ijklmn
e

jiklmn jnkl im jinl km

is the effective rank six tensor. Substituting for T̄ji from equation (B.10) into the equation ofmotion
equation (B.7), (B.12) is derived

⎜ ⎟⎛
⎝

⎞
⎠ ( )( ) S� �

s
s

" " " "
C C

t

1

2
. B.12ijkl k l ijklmn

e
k l m n

j

i
, , ,

,
0

2

2

As in appendix A, the definition of equation (A.3) is used to introduce the complex displacement field ¯ ( ¯ )u x, t
which transforms equation (B.12) into (B.13) and its complex conjugate

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )( ) S� � �

s
s

C u C u u u u
u

t

1

4
. B.13ijkl k l ijklmn

e
k l m n k l m n

j

i
, , , , ,

,
0

2

2
*

The previous expression contains product terms of ¯ ( ¯ )u x t, and ¯ ( ¯ )u x t,* in addition to those of ¯ ( ¯ )u x t,
making the expressionmore complicated than the linear equation, equation (A.10). Pure planewave solutions of
equation (A.11) are no longer possible for the nonlinear problem.However, the nonlinear effects can be
approximated as a perturbation of the linear systemwhen the nonlinear terms are small. This is shown in
equation (B.14), where each ūq term is a solution of the linear problem at frequency X ,q

( ¯ ) ( ¯) ( )�� X�u x t u x, e , B.14j
q

j
q I tq

where the amplitude, or envelope term u ,j
q is allowed to varywith x̄. Substituting the complex displacement

expansions of equation (B.14) in (B.13) and using the notational convention described in equations (B.15a) and
(B.15b),

( ¯) ( ) ( )X�u x u aB.15i
q

i q

( ¯) ( ) ( ) ( )X X� � �u x u u bB.15i
q

i q i q* *

leads to equation (B.16)

⎡⎣ ( ) ( ( ) ( ) ( )
( ) )] ( ) ( )

( ) ( )

( )

X X X X

X S X X

� � � �

q � � � �

X X X

X X X

� � �

� � �

C u C u u u u

u

e e

e e . B.16

q ijkl k l q
I t

r s ijklmn
e

k l r m n s
I t

k l r m n

s
I t

j q q i q
I t

,
1

2 , , , , ,

, 0
2

q r s

r s q

Since the relation in equation (B.16)must hold at all times, the exponential terms are collected together so
that the same frequency exists in each summand. This requires X X X� �q r s where r, q, and s can take on
negative values as appropriate to satisfy the conjugate frequency notation of equation (B.15b). This implies:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( ) ( ) ( )

( )

( )�X X X S X X� � �C u C u u u
1

4
B.17ijkl k l q

r s
ijklmn
e

k l r m n s

j

q i q,
,

, ,

,

0
2

The summation in equationequation (B.17) is over all frequency combinations that satisfy the constraint
X X X� �q r s for each Xq independently. The notation ( )r s, here is used to represent a pair that satisfies the
constraint on Xr and X ;s consequently, r and s are not independent of each other. Distributing the derivatives in
equation (B.17) leads to equation (B.18)

( ) ( ( ) ( ) ( ) ( )) ( ) ( )
( )

( )�X X X X X S X X� � � �C u C u u u u u
1

4
. B.18ijkl k lj q

r s
ijklmn
e

k lj r m n s k l r m nj s q i q,
,

, , , , 0
2

If waves at different frequencies are collinear, i.e. ( ¯)u xj
q have the same propagation direction, the eigen basis

of equation (A.15) is equivalent for all components. Projecting these displacement fields on the eigen basis
results in equation (B.19a)

( ) ( ) ( )( ) ( )X X� B Bu u l a. B.19i q q i

In the above equation, the component ( )Bu is referred as Bmode of thewave and ¯Bl defines the direction of
‘particle’ velocity. Here it assumed each displacement field at frequency Xq is only composed of onemode, i.e. its
particle displacements are alignedwith only one of the eign basis. This is referred as themono-mode
assumption.

Defining the scalar quantity Y being the inner product of the p̄ and x̄, ¯ ¯Y � p x. , taking the derivatives with
respect to xk and using the chain rule, results in equations (B.19b) and (B.19b)
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( ) ( ) ( )( ) ( )X X� Y
B Bu u p l b, B.19k l q q l k, ,

( ) ( ) ( )( )X X� YY
Bu u p c. B.19k lj q q l, ,

Substituting equations (B.19a)–(B.19c) into (B.18) gives (B.20)

( ) ( ( ) ( ) ( ) ( ))

( ) ( )

( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

�X X X X X

S X X

� �

� �

B
YY
B C H

YY
C

Y
H

Y
C

YY
H

B B

C p p l u C p p p l l u u u u

l u

1

4

. B.20

ijkl l j k q
r s

ijklmn
e

j l n k m r s r s

q i q

,
,

, , , ,

0
2

Using the definition of ( � C p pik ijkl j l in equation (A.14), also defining -ikm in equation (B.21),

( )( )- � C p p p . B.21ikm ijklmn
e

j l n

Equation (B.20) is rewritten as equation (B.22)

( ) ( ( ) ( ) ( ) ( ))

( ) ( )

( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

�X X X X X

S X X

( � - �

� �

B
YY
B C H

YY
C

Y
H

Y
C

YY
H

B B

l u l l u u u u

l u

1

4

. B.22

ik k q
r s

ikm k m r s r s

q i q

,
,

, , , ,

0
2

The SVA assumption presumes if the variation of the amplitude of a wave over its wavelength is negligibly
small, itsmathematical representation can be composed of two terms. The envelope or the amplitude of the
wave and a sinusoidal function capturing its oscillations. Under the SVA assumption thewave components at
different frequencies, ( )( ) XBu ,q propagating in p̄ direction, i.e. along Y, can have the form

U U( ) ( ¯) ( ) ( )( ) ( ) ( )( ) ( )
X X� �B B Y B YB B

u x e e , B.23q q
Ik

q
Ikq q

whereU ( ¯)( )B xq is the SVA term, ( )Bkq is themagnitude of thewave vector for thewave component at frequency Xq

and associatedwith polarization direction B.With equation (B.23), equations (B.19b) and (B.19c) can bewritten
as equations (B.24) and (B.25), respectively

U U( ) [ ( ) ( )] ( )( ) ( ) ( ) ( ) ( )
X X X� �Y

B
Y
B B B YB

u Ik e B.24q q q q
Ik

, ,
q

U U U( ) [ ( ) ( ) ( ) ( )] ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
X X X X� � �YY

B
YY
B B

Y
B B B YB

u Ik k2 e . B.25q q q q q q
Ik

, , ,
2 q

With the SVA assumption, the inequalities in (B.26) hold,

U U U( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )� �X X XYY
B B

Y
B B Bk k B.26q q q q q, ,

2

and equation (B.25) simplifies to equation (B.27)

U U( ) [ ( ) ( ) ( )] ( )( ) ( ) ( ) ( ) ( ) ( )
X X X� �YY

B B
Y
B B B YB

u Ik k2 e . B.27q q q q q
Ik

, ,
2 q

Substituting equations (B.24) and (B.27) into (B.22) and discarding the low order terms in inequalities
(B.26), equation (B.28) is obtained

U U

U U

[ ( ) ( ( ) ) ( )]

[ ( ) ( ) ( )] ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )

X S X X

X X

( � ( �

� � - � �

B B
Y
B B B B B Y

C H C H C H C H Y�

B

C H

Ik l k l l

Ik k k k l l

2 e

1

4
e 0. B.28

ik q k q ik q k q i q
Ik

r s ikm r S r S k m r s
I k k

,
2

0
2

,

q

r S

In appendix A, equation (A.24), it is shown, U( ( ) ) ( )� S X X( � �
B

B B B Bk l l 0,ik q k q i q
2

0
2 and equation (B.28)

simplifies to equation (B.29)

U U

U

[ ( )] [ ( )

( ) ( )] ( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( )

� �X

X X

( � - �

�

B B
Y
B Y

C H

C H C H C H C

H Y�

B

C H

k l k k k k l le
1

8

e 0. B.29

ik q k q
Ik

r s
ikm r S r S k m

r s
I k k

,
, ,

q

r S

Multiplying both sides of equation (B.29) by ( )Bl ,i equation (B.30) is achieved

U

U U

[ ( )] [ ( )

( ) ( )] ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( )

X

X X

( � � - �

q

B B B
Y
B Y B C H C H C H

C H Y�

B

C H

k l l l l l k k k ke
1

8

e . B.30

ik q i k q
Ik

r s ikm i k m r S r S

r s
I k k

, ,
q

r S

By defining, ( ) ( )� (BB B BG l lik i k and ( ) ( ) ( )� -BCH B C HH l l l ,ikm i k m and ( )( ) ( ) ( ) ( )� �CH C H C HK k k k k .rs r S r S
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Equation (2.30) can be rewritten as equation (B.31)

U U U[ ( )] [ ( ) ( )] ( )( ) ( )

( )

( ) ( ) ( )( ) ( ) ( )�X X X�BB B
Y
B BCH CH C H Y� �C H B

G k H K
1

8
e . B.31q q

r s
rs r s

I k k k
,

,

r S q

In a second order process involving two distinct frequencies Xr and X ,s frequencies that satisfy X X X� �q r s

inherently satisfy X X X� � .q s r Rewriting equation (B.31) for the symmetric pairs of Xr and Xs becomes
equation (B.32)

U U U
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( ) ( ) ( )( )

( )
( ) ( ) ( )X X X�

�
Y
B

BCH BHC

BB

CH

B
C H Y%H H

G

K

k

1

8
e , B.32q

rs

q
r s

I k
,

rsq

where ( ) ( ) ( )% � � �C H Bk k k k .rsq r s q This form is further developed in the body of the article to yield the final
equations.

AppendixC. Calculation of the intensity of an acoustic wave

The power density or intensity of an acoustic wave, in the direction of propagation p̄ , can be calculated from
equation (C.1)

∣ ¯ ( ¯ ¯ )∣ ( )� �p P PIntensity
1

2
. , C.1*

where P̄ is the complex acoustic Poynting vector, represented in equation (C.2) [32] and P̄* denotes its complex
conjugate.

¯ ¯ ( )�
�

�

P
v T.

2
. C.2

*

In equation (C.2) v̄* is the complex conjugate of the particle velocity and
�
T is the symmetric Cauchy Stress.

For a time-harmonic displacement field defined as ( ¯ ) ( ¯)� X�u x t u x, e ,k k
I t where, � �I 1 , it is readily

seen,

( ¯ ) ( ¯ ) ( )X� �v x t I u x t a, , C.3k k

and,

( ¯ ) ( ¯ ) ( )X�v x t I u x t b, , . C.3k k* *

Substituting from equation (C.3b) for v̄* and the constitutive equations ( ¯ ) ( ¯ )�T x t C u x t, , ,ij ijkl k l, for
�
T ,

into equation (C.2), results in equation (C.4)

( )X
�

�
P

I
u C u

2
. C.4j i ijkl k l,*

Expressed in the eigenvector basis and assumingmono-mode expansion of the displacement field, its
components are represented in equation (C.5)

( )( ) ( )� B Bu u l . C.5i i

Assuming propagation in the p̄ direction, and, ¯ ¯Y � p x.

U ( )( ) ( ) ( )( )�B B YB
u e , C.6Ik

whereU( )B and ( )Bk are the amplitude of the displacement andwavenumber ofmode B, respectively.
Substituting equations (C.6) and (C.5) in (C.4), results in equation (C.7)

U U ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )X
� B B Y X B B B Y X� � �B B

P l C k l p
2

e e . C.7j i
I k t

ijkl k l
I k t*

Equation (C.8) is obtained bymultiplying both sides of equation (C.7) by pj

U U ( )( ) ( ) ( ) ( ) ( )X
� B B B B Bp P C k l l p p

2
. C.8j j ijkl i k j l*

Here, withU U U∣ ∣( ) ( ) ( )�B B B ,2* and ( � C p pik ijkl j l equation (C.8) reduces to equation (C.9)

U∣ ∣ ( )( ) ( ) ( ) ( )X
� (B B B Bp P l l k

2
. C.9j j ik i k

2
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With ( ) ( )
( )( )S( �B B X

Bl lmn n m k

2

2 (equation (A.24) in appendix A), equation (C.9) reduces to equation (C.10)

U∣ ∣ ( )( )
( )SX

�
B

Bp P
k2

. C.10j j

3
2

Substituting equation (C.10) in (C.1), the intensity of an acoustic wave can be obtained from
equation (C.11),

U∣ ∣ ( )( )
( )S X

�
B

B

k
Intensity

2
C.11

3
2

or,

U∣ ∣ ( )( ) ( )SX� B BcIntensity
1

2
, C.122 2

where Bc , is thewave speed of themode B.
From the above equation, the intensity of thewave at frequency Xq can bewritten as equation (C.13)

U∣ ( ) ∣ ( )( ) ( )SX X� B BI c
1

2
. C.13q q q q

2 2

When the displacement is represented in its phasor notation,U U( ) ∣ ( )∣X X�B B Ge ,q q
I q themagnitude of its

Bmode can bewritten in terms of intensity as equation (C.14),

U
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ( )∣ ( )X

S X
�B

B

I

c

2
C.14q

q

q q
2

1 2

and, its derivative with respect to Y is calculated as equation (C.15)

U U U

U

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

( ) ∣ ( ) ∣ ∣ ( ) ∣

∣ ( ) ∣ ( )

( ) ( ) ( )

( )
( )

Y
X

Y
X X

G

Y

S X Y
X

G

Y

� �

� �

B B B G

B
B G�

I

c
I

I
I

d

d

d

d

d

d
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Solving equation (C.15) for the derivative of the intensity with respect to Y, equation (C.16) is derived
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From equation (2.11),U( )
Y
B

, can bewritten as
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where, it is assumed,
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Substituting for U ( )( ) X
Y

B ,q
d

d
from equation (C.17) in (C.16), results in (C.18)

U U

U

( ) ∣ ∣ ( ) ∣ ( ) ∣∣ ( ) ∣

∣ ( ) ∣ ( )

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )

( )

Y
S X X X

X
G

Y

� � �

�

B BCH
C H

B
C H C H Z

B

I
c I C

k k

k
k k

I

d

d
2 e

d

d
, C.18

q
q q q r s

r S

q
r S r s

I

q
q

1 2 1 2
, eff

rsq

where,
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Substituting for U∣ ( )∣( ) XC
r and U∣ ( )∣( ) XH

s from equation (C.13) and using the definition of thewave speed to
substitute for ( )

( )�B X
Bk ,q c

q
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r
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( )�H X
Hk ,s c
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equation (C.18), equation (C.20) is derived
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Dividing equation (C.20) into real and imaginary parts results in equations (C.21a) and (C.21b), respectively.
Since intensity of an elastic wave is a real value equation (C.20a) represents the equation for intensity gradient.
equation (C.21b) also provides the equation to solve for the change in phase of thewave at frequency X .q
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Defining
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Equation (C.21a) is written as
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r s
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,
,

AppendixD. Linear and nonlinearmaterial properties of LiNbO3 [30]

TableD1.Nonlinearmaterial properties for LithiumNiobate (LiNbO3), (×109 Pa) andC155=C166=C125=C135=
C145=C146=C225=C226=C235=C236=C136=C245=C246=C334=C335=C336=C345=C346=
C445=C446=C555=C556=C566=C666=C126= 0.

C111 C112 C113 C114 C123 C124
−512 454 728 −410 719 55

C144 C155 C222 C333 C344 C444
−37 −599 −478 −363 −540 −41

C156 C166 C224 C233 C234 C244
−122.5 −216 300 −340 1 −599

C455 C356 C355 C266 C366 C456
41 −1 −540 −250 4.5 −281

C133 C134 C122 C256 C255 C466
−34 −1 420 −232.5 −370 55

C223
728

TableD2. Linearmaterial properties for LithiumNiobate
(LiNbO3) (×10^9Pa), density= 4700 kg m−3 andC15=
C16=C25=C26=C34=C35=C36=C45=C46= 0.

C11 C12 C22 C14 C24 C13
203 57.3 203 8.5 −8.5 75.2

C23 C33 C44 C55 C56 C66
75.2 242.4 59.5 59.5 8.5 72.85
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