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ABSTRACT

Prescription (aka Rx) drugs can be easily overprescribed and lead to
drug abuse or opioid overdose. Accordingly, a state-run prescription
drug monitoring program (PDMP) in the United States has been
developed to reduce Overprescribing. However, PDMP has limited
capability in detecting patients’ potential overprescribing behaviors,
impairing its effectiveness in preventing drug abuse and overdose
in patients. Despite a few machine-learning-based methods that
have been proposed for detecting overprescribing, they usually
ignore the patient prescribing behavior and their performances are
not satisfying. In light of this, we propose a novel model RxNet for
overprescribing detection in PDMP. RxNet builds a dynamic hetero-
geneous graph to model Rx refills that are essentially prescribing
and dispensing (P&D) relationships among various Rx entries (e.g.,
patients) whose representations are encoded by graph neural net-
work. In addition, to explore the dynamic Rx-refill behavior and
medical condition variation of patients, an RxLSTM network is
designed to update representations of patients. Based on the output
of RXLSTM, a dosing-adaptive network is leveraged to extract and
recalibrate dosing patterns and obtain the refined patient repre-
sentations which are finally utilized for overprescribing detection.
The extensive experimental results on a 1-year Ohio PDMP data
demonstrate that RxNet consistently outperforms state-of-the-art
methods in predicting patients at high risk of opioid overdose and
drug abuse, with an average of 5.7% and 7.3% improvement on F1
score respectively.
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1 INTRODUCTION

The dispensation of prescription (aka Rx) drugs requires legal medi-
cal prescriptions since they can have powerful effects on the human
brain and body, some of which are dangerous. The prescription
drugs are easy to be abused. For example, opioid painkillers can
bring intense pleasure and well-being feelings in the treatment of
chronic diseases while make people increase the dose, which may
lead to overdose deaths. The United States is amid opioid over-
dose and drug abuse epidemic [38]. In particular, opioid-involved
overdose deaths rise from 21,088 in 2010 to 46,802 in 2018 [21].
Increasing rates of opioid overdose has become a prominent topic
in public health. Early identification of overprescribing drugs may
prevent the problem from turning into a drug addiction [31].

In the United States, the prescription drug monitoring program
(PDMP) is a jurisdictionally operated electronic database collected
from pharmacies on controlled substances and Rx drugs dispensed
to patients in a state. Although PDMP is developed to curb drug
overprescribing, its utilization among prescribers is low [17]. The
recent studies have reported significant barriers when using the
PDMP database, including difficulty in accessing the database and
lack of medical knowledge of its usage [13, 44]. For example, Grecu
et al. [16] and Meara et al. [32] found that PDMP has inconsistent
and limited effects on detecting drug abuse. Fundamentally, it is
due to a lack of effective PDMP data modeling to identify over-
prescribing behaviors which may cause drug abuse in patients. To
model PDMP data, there are several key challenges:

o C1: When physicians consult the PDMP, they have access to vari-
ous types of information about prescriptions. Every prescription
includes information of physicians, patients, medication, and
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dispensing instructions. Therefore, the first challenge is how to
model prescribing and dispensing (P&D) relationships (e.g., a
patient visits physicians, a physician prescribes drugs) among
different Rx entries (e.g., patients, physicians).

C2: The prescriptions are filled at different times, making the
P&D interactions (relationships) in C1 dynamic and evolutionary.
Also, the irregular prescription refill [44] and various medication
days’ supply [48] make the distribution of refills highly non-
uniform, and the elapsed time between Rx records vary from
days to months. Thus, the second challenge is how to model
dynamic interactions and medical condition variation.

C3: Rx drugs are usually prescribed repeatedly and therefore
patients would have multiple prescriptions which have an imme-
diate impact on medication safety [41]. The prescriptions refilled
at different times have various significance on the risk of over-
prescribing [11]. Hence, the third challenge is how to capture the
dosing patterns associated with the overprescribing and capture
informative patterns behind the prescriptions.

In light of the above challenges, we propose a novel model called
RxNet to model PDMP data and predict overprescribing that is
specifically referred to patients at high risk of drug abuse or opioid
overdose. We introduce a P&D heterogeneous graph (P&D graph)
to construct heterogeneous relationships (interactions) among dif-
ferent Rx entries. Based on P&D graph, we employ a graph neural
network to learn node embeddings by aggregating P&D informa-
tion in the graph. To capture dynamics and explore the medical
condition variation of patients, we design an Rx-refill LSTM (RxL-
STM) that can deal with irregular Rx refill intervals by differentiat-
ing recent and historical information in cell state. Furthermore, a
dosing-adaptive network (DAN) extracts and recalibrates dosing
patterns concealed in prescriptions through convolution operation.
To summarize, the major contributions of this paper include:

e We propose the problem of overprescribing detection for patients,
which is important and meaningful.

To handle dynamic heterogeneous relationships among Rx en-
tries, medical condition variation, and dosage patterns of patients,
we develop the RxNet model by integrating graph neural network,
recurrent neural network, and convolutional operation.

We collect a 1-year PDMP dataset and conduct extensive exper-
iments. Promising results demonstrate the effectiveness of our
model by a comparison with state-of-the-art methods for predict-
ing overprescribing, i.e., patients at high risk of opioid overdose
or drug abuse.

2 RELATED WORK

This paper is closely related to two research lines: overprescribing
detection and representation learning on heterogeneous graphs.

2.1 Overprescribing Detection

Rx drugs are a very common medication treatment and strong
evidence [37] indicates that they are prominently overprescribed.
Medical studies on overprescribing generally involve opioid over-
dose and drug abuse [14]. Besides PDMP, there are some machine
learning-based models for overprescribing detection. For example, a
regression approach [27] is proposed for predicting opioid overdose
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at the state-level. Hakansson et al. [18] studied the associations be-
tween drug use patterns and criminal behaviors to forecast opioid
overdose from crime data. Ertugrul et al. [8] develop a multi-head
attentional network to learn different representation subspaces of
features for opioid overdose forecast. Additionally, there have been
some studies on PDMP for analyzing overprescribing [4, 44]. The
work [1] provides an overview of the computational challenges and
advances in drug response prediction. The deep neural network
and gradient boosting models are used in [30] for predicting opioid
overdose. Hastings et al. [20] analyzes PDMP data and government
administrative data to predict the risk of drug abuse. Despite the
progress of current studies, few of them focus on modeling and
exploring PDMP data which contains dynamic heterogeneous rela-
tionships among Rx entries, medical condition variation and dosing
patterns of patients. The method developed in [12] for predicting
health risk reveals the effectiveness of utilizing an LSTM network
followed by a convolutional network, which can be a candidate
approach for addressing the issues in detecting overprescribing.

2.2 Representation Learning on Heterogeneous
Graphs

Since the PDMP data can be modeled as a dynamic heterogeneous
graph, our proposed model is based on representation learning on
heterogeneous graphs, which learns a low-dimensional represen-
tation for each node and effectively preserves the heterogeneous
graph structure. Early works [6, 9] mostly focus on preserving
the metapath-based proximity. Recently, graph neural networks
(GNNs) [19, 28, 47] are widely used and achieved state-of-the-
art performance. These heterogeneous GNNs learn node embed-
ding for each node by aggregating information from its original
neighbors [51] or metapath-based neighbors [43, 50]. In addition,
many dynamic graph embedding methods have been proposed to
model the dynamic interactions in real-world graphs, including
matrix factorization based [52], Skip-Gram based [7], auto-encoder
based [15, 49], and neural-network based [2, 34, 36, 45, 46] models.
While some of the above-mentioned methods focus on addressing
the heterogeneity or dynamics of graphs, they can not fully address
the inherent heterogeneity and dynamics inside the P&D graph
while simultaneously incorporating the medicine knowledge.

3 PRELIMINARIES

In this section, we first introduce the P&D graph, then formally
define the problem of overprescribing detection.

Definition 1 (Heterogeneous Graph). A heterogeneous graph [40]
G = (V,E,X,7,R) consists of a set of nodes V connected by a
set of edges &. 7 and R represent the sets of node types and edges
types. Each node v € V and edge e € & is associated with a node
type mapping function ), : V — 7 and an edge type mapping
function ¢, : & — R, respectively. In addition, each node v € V
could be associated with attribute information Xj.

Based on the above definition, we can construct a P&D graph
to model the interactions among four types of P&D entries (i.e.,
patient, physician, drug, and pharmacy) by using five types of
relationships (i.e., patients visit physicians, physicians prescribe
drugs, patients take drugs, patients pick up at pharmacies, and
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pharmacies dispense drugs). For example, as shown in Figure 1 (a),
a 50-year-old psychiatry patient visited the physician who wrote
a 7-day supply prescription with 500mg of drugs (e.g., Trazodone)
which is refilled on 15/02/2016. The patient picked up the drugs
from a pharmacy that is permitted to dispense such Rx drugs. The
P&D graph schema is shown in Figure 1 (b).

[
Pharmacy
Location:  OH, USA
P.\ Patient
Age: 50
[N ") Gender: Female
Location: OH, USA
Qf Drug
<7 Quantity: 500mg
Days' Supply: 7 days
Refill Date: 15/02/2016
Physician
2 Department: Psychiatry =S
-

(a) Prescriptions

(b) P&D Graph Schema

Figure 1: An example of a prescription (a) and its correspond-
ing P&D graph schema.

Since Rx drugs have the strictest regulation and prescription
requirements, patients have to periodically refill the prescriptions.
Thus, given a bunch of refilled prescriptions in different periods, we
can build a dynamic P&D graph that can reveal dynamic relation-
ships among P&D entries. P&D graph in each period represents all
P&D behaviors during that period. With the dynamic P&D graph,
we formally define the problem as follows.

Definition 2 (Overprescribing Prediction). Given the dynamic
P&D graph, our task is to learn embeddings Z! of P&D entries
at each time t. Then the learned patient embeddings Z;atient are
further utilized for overprescribing prediction. The prediction prob-
lem is formulated as learning a function f (Z}tj atient) y}’; atient that
maps the patient embedding to the binary label of overprescribing
incident at given time ¢, where the overprescribing is referred to

high risk of opioid overdose or drug abuse in this work.

4 PROPOSED MODEL

Our mode] RxNet for modeling a patient’s Rx refill records in PDMP
is shown in Figure 2. Specifically, at first, RxNet takes a sequence
of prescription records represented as a temporal P&D graph and
employs a graph neural network with self-attention to learn embed-
dings of Rx entries. Then, it introduces an Rx-refill LSTM to capture
medical condition variation (i.e., irregular refill behavior) and up-
date dynamic embeddings of patients. Finally, a dosing-adaptive
convolutional network is designed to capture the dosing patterns
and generate refined embeddings of patients which are finally used
for overprescribing detection. We elaborate these three components
in the following of this section.

4.1 P&D Graph Neural Network

P&D graph in each period t represents the interactions (relation-
ships) of different entries (nodes) during that period. We design a
P&D graph neural network to model heterogeneous relationships
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and learn embeddings of patients. Firstly, let h® be the initial node
representation at t = 0. Nevertheless, nodes of various types have
unequal feature dimensions. To address feature heterogeneity, we
project the feature vector of the node of type 4, i.e., x € R% onto
a new feature space via a transformation matrix: h® = W};x, where

W, € R9Xd Then, let hi denote the embedding of node v at time
t. Considering different nodes have different appearance time, we
further introduce a time decay factor to quantify time influence
and reformulate h!, as follows:

h} =i || (1), (1)

where || is the concatenation operator and @, (¢) is time decay factor.
Node appearing long before may have less impact on the current
relationships and the node representations. Therefore, we formulate
the decay factor as: @, (t) = exp(—n - |t — 7y|) (7p: the time when v
appears), where the decay coefficient 7 > 0 and 0 < ® < 1. Then,
we employ a self-attention [42] to perform neighbor information
aggregation and update node embeddings as follows:

H;, = [hy, || efy, - Yu € Nyl
h! = attention(h)W!, H! W, HLW?)) @
v oW oW HoWy )
where N! denotes the neighbor set of node v at ¢, el,, € R% is edge
feature, W/ € R(d+Dxdh wi Wi e R(N: X(dor1+d))xdy The
three projection matrices capture the interactions in P&D graph
using time information and neighboring node/edge features. The
attention weights indicate how a neighboring node contributes to
generating target node embedding. Therefore, by using the P&D
graph neural network, we can obtain embeddings of patients at
each time period. Figure 2 (b) shows an illustration of P&D GNN.

4.2 Rx-refill LSTM

Since P&D graph is dynamic, we can employ the recurrent neural
network (e.g., LSTM) to update patient embeddings obtained from
Section 4.1. However, the memory cell of a standard LSTM tackles
all historical prescription refills without distinction. It thus cannot
discern a hierarchy of therapeutic effect using refilled prescriptions
between the neurons: how the historical prescription is transferred
among the cell states. Differentiating recent and historical cell states
can tell us whether the change to cell state is due to historical refill
or recent refill. A change due to the recent refills indicates that the
underlying medical condition has just changed. For this purpose,
we develop an Rx-refill LSTM by which we can derive the medical
condition variation of patients through the cell state change, as
shown in Figure 2 (c).

4.2.1 RxLSTM. The goal of RXLSTM is to infer a patient’s medical
condition variation €’ (i.e., the indicator of the an overdose) while
updating the current representation h’ by considering elapsed time
5" between consecutive refills:

[h', €] = RxLSTM(h'™L, 8"), 3)
where h! € R? is computed as the Hadamard product (o) of the
output gate O and the cell state C?, i.e., h! = Of o tanh(C?). The
cell state C? is computed using two intermediates: the standard

memory cell Cg tandarq 20d the master memory cell C! . ter- Both
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Figure 2: (a) The overall architecture of RxNet. It first takes the P&D data across different times to construct temporal P&D
graph. Then, RxNet aggregates the heterogeneous neighborhood information by P&D GNN and further encodes the dynamic
node embeddings by RxLSTM. Finally, DA network is employed to capture the dosing patterns and generate refined embeddings
of patients for overprescribing detection; (b) The P&D graph neural network with core operators summarized in the right part;
(c) The Rx-refill LSTM module; (d) The dosing-adaptive network.

of the two cells are updated by partially forgetting the previous
memory C?~! and adding a new (candidate) memory content C?:

t
c'=0'0oC standard T Cmaster
t ¢ t-1 t _~t
C standard — =FoC +ToC (4)
Cloer=F —QhoC 4+ (T -QY)ol!
Qi =F 0?,

where F£, 1E, OF, C! € R% are forget gate, input gate, output gate,
and candidate cell used to control the erasing and writing operation
on cell state C*. We modify the master forget gate F and master
input gateTby integrating time interval information into the current
input variables h! and the previous hidden state h’~! [39]:

F! o\ (wr |l wF br
r o ||wr |l er b1
Of|_| o ||wollwo [ ' lo* ] 4|0 5)
c! tanh || wc || wc [ |hf71| 8¢ ’
FIo| 77 || wellop bg
I P ) \wy |l o3 by
where wg, wi, wo, we € RM* wor w1, wo, wc € RM*M are weight

matrices, br, b1, bo, be € RM are bias terms of standard cell. Be-
sides, wg, wy € RMX(d+dt2) gy gy € RM*M are weight ma-
trices, bF bf € RM are bias terms of the master cell. The activa-
tion function ¢ is a cumulative sum of the softmax, i.e., ¢(:) =
cumsum(softmax(-)). The arrow indicates the direction of cumula-
tive sum. The values of F! monotonically increase from 0 to 1 and
the values of I/ monotonically decrease from 1 to 0. The master
gates control how prescription information is stored in different

neurons. F! decides which dimensions of C! to store long-term
Rx-refill information (i.e., C'™!), and T decides which dimensions
to store short-term Rx-refill information (i.e., 6'). The product of
the two master gates, i.e., Q! determines which dimensions to store
the overlap between C!~! and C?. The independent information of
Q! andT - Qf, re-
spectively. After formulating h?, we now describe how to compute

the medical condition variation €.

C!~! and C! stored in C! are computed as F! -

4.2.2 Medical Condition Variation. Essentially, the master forget
gate F! controls the erasing behavior of the network, from which
we know where to store the medical condition information. Hence,
we define the medical condition variation e’ as follows:

Et

= arg mlax(if - Ff_l). (6)
The value of €’ decides how much historical information is used
to calculate C?. A large e’ makes most historical information aban-
doned, indicating that the medical condition has largely changed,
that is, a patient may have an overdose. The above definition is
given by a non-differentiable function. Thus, we approximate it by
the following estimation which approaches the probability that the
ith entry of F takes value 1:

dmaster

Z ZPI’(Q = 1) = dmaster — ”F Il1,

i=1 j<i

el =E[ilFt = 1] (7)

where o is the split point that divides the cell state into two seg-
ments: the 0-segment and the 1-segment, indicating a medical con-
dition variation.
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4.3 Dosing-Adaptive Network

Medical studies [35, 41] have demonstrated that multiple prescrip-
tions have an immediate impact on drug use safety. The dosing
patterns are similar for a certain medical condition, yet varies across
different medical conditions [26]. Hence, we develop a dosing-
adaptive network to extract and recalibrate dosing patterns behind
the prescriptions by fusing dynamic embedding of patient through
a convolution operation, as shown in Figure 2 (d).

4.3.1 Learning Dosing Patterns. Given a sequence of historical
hidden states [h*™5, ..., ht-1 ht ], and medical condition variations
[€75,...,€"71, €'] (obtained from Section 4.2) in previous s steps

(checkup window) before time ¢, we employ the convolutional
network with filter kernels K! = [icﬁ, xg, e, x,tn] to generate the
dosing pattern:

zf = tc,t- (¢ (€' (s)) o H' (5))
H!(s) = [h'~,..., k'L, hf]

el(s) =€, ..., e e,

®

where xf is a 1D spatial kernel that acts on the corresponding
channel of H!(s) € RIX(s+D), Particularly, @ (e (s)) € [0,1]5*!
quantifies the probabilistic distances between the current refill
record and historical refill records, whose values are monotonically
increasing. A large value means the medical condition of h*=s*:
greatly differs from the current medical condition of h’. The input
embeddings H’ (s) are weighted by the medical condition distance
in each convolution. Therefore, the computed zf of each kernel
can extract dosing patterns for representing the whole medical
condition. The convolution output Z! = [z zz, ...,z%,] is then
produced by summarizing multiple patterns through all channels,
where the channel dependencies are implicitly embedded in tcf .

4.3.2  Recalibration of Patterns. The dosing patterns have various
significances associated with medical conditions [11, 25]. The net-
work is required to capture the importance of patterns and increase
the sensitivity of informative patterns. For this purpose, we squeeze
global spatial information into a channel descriptor y* and then
recalibrate y? to obtain:

G' = 0(Wy2 - ReLU(Wyq - ¥ +bg1) +bgz)

1 s : (9)
t_ - >t . Riost
R WO )
where Gf measures the importance of pattern zf, Wy € RdﬂXd,

Wy, € R™Xdg b e R9!, and b € R9%2. The descriptor ! € R at
current refill is computed as the average of hidden states within the
checkup window, and therefore can be regarded as the dosing regi-
men theme. As shown in Figure 2 (d), the recalibration is achieved
by two fully connected layers: i) the dimensionality-reduction layer
with the activation ReLU to compress the representation, and ii) the
dimensionality-increasing layer returning to the channel dimension
of patterns Z’. Finally, we rescale Z through a channel-wise gating
mechanism [24] and obtain:

7t =7t o Gt (10)

The channel-wise attention weights of patterns are calculated by
the dosing regimen theme at the current refill instead of using global

2541

CIKM 21, November 1-5, 2021, Virtual Event, Australia

average pooling to generate channel-wise statistics or calculating
alignment between historical representations.

4.4 Objective Function

After obtaining Z!, we employ a binary classifier to predict medical
condition of patient. The objective function is to minimize the
cross-entropy loss over T checkup windows:

T
=t t =t t
=) ¥ logy +(1-y)log(1-y")
Z; (11)
y' = o(wyif +by),

where W, € R™, y! denotes the prediction score of overprescribing,
and y? indicates the ground truth, e.g., high risk of opioid overdose
or drug abuse.

5 EXPERIMENTS

We conduct extensive experiments on the PDMP data and evaluate
the performance of RxNet.

5.1 PDMP Data

The PDMP data contain 2,751,137 prescriptions written by 41,303
physicians for 297,361 unique patients from the Ohio state in 2016.
These prescriptions involve 90 different Rx drugs (including 16
opioids) and are (re)filled at total 2,862 pharmacies. Figure 3 lists
the 20 mostly prescribed drugs, of which 8 are opioids and 12 are
non-opioid. We can see that Oxycodone and Hydrocodone are
the two most popular opioids with over 500k and 300k refilled
prescriptions, respectively. Table 1 shows the statistics of Rx entries
and P&D relations in this PDMP data. (N.B.: Most patients have 1
or 2 Rx refills every month.)

500000
Bl opioid
400000 non-opioid
_ 300000
=]
|5
4
200000
100000 II
0 . HEmem-
Qa‘oa\do(\ QA A& a\e(\e\\(\‘!’b(\(’)(\
0¢o O\ & Wao“"};i?' ,glﬁ 202 Qeﬁ‘\é \'\ vt“‘)?% 5@ Q(\f\o «o'ee’

o
Rt ’i S8 WO
O**\; SN \Qde“\ RERVERNNE @ ‘\\!\Q\(\ % e
e
© 1° o @ L \“G\N\O‘Seée

Drug

Figure 3: The 20 mostly prescribed drugs (8 opioids in cyan).

In addition, Table 2 provides an overview of the demographic
characteristics (attributes) of patients. We crawl the adverse drug
reactions (e.g., constipation caused by opioids) from VigiAccess
(http://www.vigiaccess.org), and select the 26 most common reac-
tions as the attributes of a drug. The pharmacy feature is a one-hot
vector of 20 retail pharmacies such as Walgreens, CVS Health,
Walmart Stores, Rite Aid Corp, etc. The specialties, e.g., Internal,
Psychiatry, Oncology, are used as the attributes of physicians.


http://www.vigiaccess.org
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Table 1: Statistics of the PDMP data.

Rx entry Count ‘ P&D relation Count
Patient 297,361 Patient - Drug 713,471
Physician 41,303 | Patient — Physician 830,433
Drug (Opioid) 90 (16) | Patient — Pharmacy 553,893
Pharmacy 2,862 | Physician — Drug 221,653

Pharmacy - Drug 72,318

Table 2: Demographics of patients.
Observation Number of patients (%)

128,026 (43%) / 169,235 (57%)

18,703 (6%) / 14,319 (5%)
55,417 (19%) / 143,545 (48%)
51,789 (17%) / 13,587 (5%)

142,733 (48%) / 154,628 (52%)

Gender: female / male

Age Group: <18/ 18-29
30-44 / 45-64
65-79 / >80

Residence: urban / rural

5.2 Baseline Methods

We compare our model with ten baseline methods as follows.

LSTM [22] takes patients’ features as input and models the pre-
scription dynamics to generate the prediction results.
ON-LSTM [39] separates hidden state dimensions with long and
short-term information. It takes the patient features as input
and differentiates the long-term and short-term information in
hidden state dimensions.

T-LSTM [2] incorporates the time decay to weaken the impact
of historical P&D information when learning the embeddings on
the base of a standard LSTM architecture.

StageNet [12] uses patients’ time-specific information and time
interval information to learn the temporal representations and
stage variation, which are then used as the input of a stage-
adaptive convolutional network.

EvoNet [45] updates the node representations in P&D graph via
a GRU recurrent network. It employs a generative model which
predicts the topology of the graph at the next time step and
constructs a graph instance that corresponds to that topology.
GraphSAGE [19] aggregates information from sampled neigh-
bors and the temporal neighborhood is aggregated with equal
attention coefficients.

CTDNE [33] learns dynamic node embeddings directly from the
P&D graph by temporal random walk based proximity.

JODIE [29] couples recurrent model to jointly learn the dynamic
embeddings of patients from a sequence of P&D interactions.
The patient embedding is updated by two mutually recursive
recurrent neural networks.

TGAT [46] adopts temporal graph attention layer to aggregate
temporal neighborhood features with time-feature interactions.
It makes use of the edge/relation information (i.e., dosage) and
employs self-attention to learn node embeddings.
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e TGN [36] constructs temporal graph network and learns the
node embeddings using both node and edge information through
self-attention.

5.3 Experimental Settings

Data Settings. We study two overprescribing detection tasks,
i.e., predicting high risk opioid overdose and high risk drug abuse.
According to the medical settings in [23], we consider patients at
high risk when their daily dose decreases in 4 consecutive refill
prescriptions. Among the total 297,361 patients, 227,520 (77%) have
taken at least an opioid during the 1-year follow-up period, 3,495
were at high risk of opioid overdose and 4,438 were at high risk of
Rx drug abuse. The labels over time indicate whether a patient is
at high risk of opioid overdose or drug abuse at each ti me period.
Training and testing ratios are 70% and 30%, respectively.

MME Calculation. The patients are considered at high risk of
overdose if they have a maximum average daily dose greater than
the CDC-recommended cutoff of 90 Morphine Milligram Equiva-
lents (MME) [10]. The opioid overdose potential is often evaluated
by the MME per day, which is formally defined as follows:

MME/day =(Number of Units or Days’ Supply) X
Strength per Unit X MME Conversion Factor,

The opioid dose for each prescription can be computed according
to the total MME. Higher dosages of opioids are associated with
a higher risk of overdose and death. Calculating the total daily
dosage of opioids helps identify patients who may be at high risk
of overdose. Concretely, we provide an example to illustrate the
calculation of MME.

Example 1. A patient who is suffering from chronic lower back
pain takes ER oxycodone 30mg BID. The total daily amount of each
prescription (i.e., Oxycodone/day) is 30 mg/unit X 2 units = 60mg.
The patient is at high risk of an overdose because (s)he is prescribed
60 mg x 1.5 = 90 MME/day in total.

Parameter Settings. The representation dimension for all models
is set as 128. For RxNet, the checkup window length s determines
the timescale of the extracted dosing patterns is set to 1 month. The
time decay coefficient 7 in Eq. 1 is set to 1.0. The feature dimension
of edge e in Eq. 2 is set to 2, including the day’s supply and quantity.
We set the kernel size as the length of the checkup window, which
allows each kernel to extract different patterns that represent the
whole regimen. Furthermore, in order to reduce the number of
parameters in RxNet, we configure F! ,Tt € [o, l]dmasler, where their
dimension is reduced to dmaster = d/c by a downsize factor c. By
doing so, every neuron within each c-sized chunk shares the same
master gates. A smaller ¢ can make the model describe the severity
variation in more detail.

ON-LSTM is implemented with chunk size 10. We use LSTM
aggregator for GraphSAGE. For StageNet, the patient’s visit infor-
mation in the original work is replaced by the P&D representation.
For other baseline methods, we use the default setting adopted in
the original papers. All the models are implemented by Tensorflow
with the Adam optimizer. Code will be available upon publication.
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Evaluation Metrics. To evaluate the overprescribing detection
(binary classification) performance, we utilize two popular metrics:
precision-recall AUC (PRAUC) and F1 score.

5.4 Performance Comparison

To evaluate model performances on various observational data with
different periods, we construct four datasets spanning 3 months, 6
months, 9 months, and the entire period (12 months), respectively.
All results are reported in Table 3. Overall, all models perform better
in the context of a long period of follow-up because they are highly
dependent on data distribution. RxNet significantly outperforms
all baseline methods in all settings. The average improvement over
the best baseline method are 4.85% and 6.35% for PRAUC and F1
score, demonstrating its strong capability in learning patient em-
beddings for overprescribing detection. From the longitudinal study
perspective, the superiority of RxNet compared to others lies in its
ability of exploring structured and unstructured information, as
well as medical condition variation at different time. RxNet has bet-
ter performance than dynamic graph neural network models (i.e.,
TGAT, TGN), showing the benefit of incorporating medical condi-
tion variation into dynamic models. It achieves a higher PRAUC
and F1 than StageNet mainly because the patients’ P&D represen-
tations fed into LSTM part in RxNet are more informative than the
original patients’ prescription information provided to ON-LSTM
in StageNet. Additionally, we can find ON-LSTM obtains higher
prediction scores than LSTM since the exploration of neuron de-
pendencies in LSTM can determine the short-term and long-term
P&D information between neurons. Moreover, TGN and TGAT
have better performances than static graph neural network model
(i.e., GraphSAGE), indicating the strength of considering temporal
information in P&D graph.

5.5 Ablation Study

Since RxNet integrates several essential modules (e.g., P&D GNN,
RxLSTM, and DAN), we conduct extensive ablation studies to an-
alyze the contributions of different modules by considering the
following five model variants:

o RxNet-Edge: The edge features in P&D GNN is discarded when
performing neighborhood information aggregation in Eq. 2.
RxNet-Time: The time-aware decay is not considered for com-
puting the node representations in Eq. 1.

RxLSTM: The outputs of RxLSTM [k, ..., hT] are directly used
for prediction. That is, removing the DAN in RxNet.
RxNet-Con: The condition-weighted convolution z’ in Eq. 8 is
estimated by the average of H' within the checkup window.
RxNet-Rec: The convolution output Z? is used as the final rep-
resentations without recalibration of patterns in Eq. 9.

The results of all variant models are reported in Table 4. From
this table, we can find RxNet consistently outperforms all model
variants. Specifically, the superior performance of RxNet relative
to RxNet-Edge and RxNet-Time reveals that using P&D relation
information and time decay can strengthen P&D GNN. In addition,
the improvement of RxNet over RxLSTM demonstrates the benefit
of DAN. Moreover, the comparison between RxNet and RxNet-
Con reveals the importance of considering the medical condition
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variation. The superior performance of RxNet relative to RxNet-Rec
demonstrates the effectiveness of recalibrating dosing patterns.

5.6 Performance over Different Drugs

To further show the performance of our model over different drugs,
we report the predicted results in terms of F1 on every drug in Fig-
ure 4. As can be seen from the figure, for the most commonly used
opioids such as Tramadol, Oxycodone, and Morphine Sulfate, RxNet
can yield a 0.75 or higher F1 score. This demonstrates that our pro-
posed model can effectively predict overprescribing for popular
opioids. Similarly, RxNet achieves as high as a 0.8 F1 score when it
predicts drug abuse of Tramadol, Fentanyl, and Zolpidem Tartrate
which are the commonly prescribed drugs in PDMP. Both the opioid
overdose and drug abuse for opioids Tramadol, Morphine Sulfate,
and Hydrocodone can be easily predicted by our model. Further-
more, the overdose on Fentanyl is hard to predict in comparison
with abuse in patients. The effective predictions on the commonly
used opioids and non-opioid Rx drugs indicate that RxNet can fore-
cast the drug crisis, i.e., the potential risk for a population when
the drugs are dispensed.
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Figure 4: The performance (F1 score) of RxNet over different
drugs for opioid overdose (top) and drug abuse (bottom).

5.7 Case Study

It is vital for physicians to evaluate the risk of overprescribing for
each patient timely. To demonstrate the effectiveness of RxNet in
capturing the time-sensitive patterns, we show a real example of
RxNet application. Figure 5 illustrates the predicted risk of Tra-
madol overdose for a 48-year-old female patient who has an over-
dose (marked as red point) in June 2016. The predicted risk remains
relatively low by June 2016 and the medical condition variation
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Table 3: Comparison of all models’ prediction performances, in terms of PRAUC and F1, in various observation periods (3, 6, 9,
12 months) of follow-up study. The numbers in parentheses are the corresponding standard deviations. The best results are

highlighted in bold and the runner-up is underlined.

Opioid Overdose Drug Abuse Opioid Overdose Drug Abuse
PRAUC F1 PRAUC F1 PRAUC F1 PRAUC F1
3 months 6 months
LSTM 6144 (42)  60.82(24) | 57.96(27)  58.14 (53) 6549 (21)  66.24 (27) | 68.23(20)  64.37 (:38)
ON-LSTM 70.56 (30)  71.04 (25) | 72.67(39)  71.85(.18) 67.52 (16)  64.57(23) | 65.84(31)  67.99 (.23)
T-LSTM 65.93(16)  61.63(37) | 64.76 (48)  66.57 (.46) 67.65(29)  69.41(38) | 66.49(37)  65.82 (.40)
StageNet 7144 (33)  71.92(28) | 73.27(21)  70.39(.16) 7413 (35)  7239(22) | 74.95(20)  75.63(.32)
GraphSAGE || 65.29(34)  63.72(15) | 67.41(29)  69.04 (35) 68.90 (23)  66.42(38) | 71.17(39)  72.05 (.26)
EvoNet 62.35(30)  59.57(33) | 64.60(21)  66.07 (.19) 63.94(27)  65.12(44) | 60.53(19)  60.75 (.46)
CTDNE 7034 (37)  68.29(22) | 66.81(.18)  69.86(:30) 73.48(36)  71.55(13) | 72.67(25)  71.59 (.26)
JODIE 73.25(41) 7318 (11) | 67.03(17)  69.62 (.14) 73.91(36)  70.07(35) | 68.41(15)  66.43 (.34)
TGAT 68.48 (32) 7076 (23) | 73.34(18)  72.88 (42) 75.81(22)  72.59(43) | 74.55(28)  73.66 (.26)
TGN 73.90 (33)  74.06 (46) | 74.43(24)  74.14(28) || 77.59(36)  76.28(26) | 75.84(23)  74.13(39)
RxNet 78.46 (28)  77.37(31) | 77.14(27)  77.63(36) || 80.03(34) 78.29(55) | 77.98(25)  79.07 (.40)
9 months 12 months
LSTM 64.65 (32) 6556 (42) | 68.58(27)  67.86(.19) 68.18 (22)  68.93(20) | 62.48(27)  65.32(32)
ON-LSTM 69.28 (47)  73.85(23) | 72.34(29)  70.44(37) 7454 (26)  72.71(24) | 71.42(23)  70.29 (.19)
T-LSTM 6348 (21)  67.11(33) | 65.71(32) 6559 (.25) 7157 (34)  7335(16) | 69.75(18)  71.88 (.22)
StageNet 74.89 (23)  74.91(29) | 73.22(28)  77.93(27) 74.41(25)  71.93(20) | 70.80(24)  73.92(.21)
GraphSAGE || 73.11(20)  72.18(15) | 73.26(17)  70.42 (.26) 70.25(38)  69.82(44) | 72.51(27)  72.40 (.22)
EvoNet 66.82 (26)  67.68(28) | 67.84(47)  64.36 (.24) 69.74 (35)  69.43(23) | 62.05(12)  65.72 (.17)
CTDNE 65.25(34)  66.91(26) | 69.48(23)  71.30(.28) 7372 (15)  6857(33) | 75.28(43)  74.89(.29)
JODIE 7518 (37)  77.41(38) | 72.19(42)  73.87(.33) 75.07 (39)  7357(25) | 71.28(17)  74.18(:30)
TGAT 75.71(19) 7336 (34) | 76.20(22)  78.97 (.28) 7341 (27)  75.24(20) | 73.12(24)  71.52(33)
TGN 7730 (14)  76.28 (42) | 7443(33)  73.44(20) || 77.56(32)  78.41(21) | 75.19(45)  75.47 (23)
RxNet 81.69 (34)  82.45(33) | 78.46(24) 82.92(20) || 83.65(32) 82.29(22) | 78.47(18)  79.22 (.14)

Table 4: Comparison of model variants’ performances, in terms of PRAUC and F1, for various observation periods (3, 6, 9, 12

months). The numbers in parentheses are the corresponding standard deviations. The best results are highlighted in bold.

Opioid Overdose Drug Abuse Opioid Overdose Drug Abuse
PRAUC F1 PRAUC F1 PRAUC F1 PRAUC F1

3 months 6 months
RxNet-Edge |[ 7438(26) 7673 (17) | 74.23(35) 7436 (28) || 72.91(33) 7433 (27) | 72.68(18)  74.18 (4l)
RxNet-Time || 73.58(42)  75.39(33) | 71.61(17)  73.15(31) 77.69 (43)  77.52(27) | 76.85(21)  77.93(.24)
RxLSTM 69.46 (47)  65.82(29) | 66.14(42)  63.08 (37) || 72.68(19)  69.41(39) | 6853 (35  67.66(39)
RxNet-Con 75.74 (34) 7429 (22) | 73.11(39)  71.39(.28) || 78.39(17)  77.54(34) | 74.14(26)  74.55(.30)
RxNet-Rec 74.65 (17)  73.29(29) | 72.42(29)  73.34(.25) 74.69 (28)  75.87(36) | 72.30(41)  71.57 (.24)
RxNet 78.46 (28)  77.37(31) | 77.14(27) 77.63(36) || 80.03(34) 78.29(55) | 77.98(25)  79.07 (.40)

9 months 12 months
RxNet-Edge |[ 70.24 (44)  68.94(43) | 71.35(32) 72.18(23) || 75.05(31)  74.81(15) | 73.98(21)  75.28 (.15)
RxNet-Time || 75.82(39)  74.01(28) | 72.12(42)  73.55(.35) 78.29 (26)  77.29(.18) | 74.33(26)  73.15(.27)
RxLSTM 67.87 (.38) 68.26 (.19) 70.25 (.21) 69.34 (.20) 70.46 (.19) 68.53 (.25) 67.68 (.21) 69.34 (.20)
RxNet-Con 7817 (23)  77.62(34) | 75.70(34)  71.09(.36) || 80.52(27)  78.18(24) | 73.85(24)  75.69 (.16)
RxNet-Rec 76.73 (15)  75.31(23) | 75.57(36)  75.07 (.13) 74.65(17) 7329 (29) | 72.42(29)  73.34(.25)
RxNet 81.69 (34) 82.45(33) | 78.46(24) 82.92(20) || 83.65(32) 82.29(22) | 78.47(18)  79.22(.14)

(given by Eq. 6) has a small value. At the end of June, the variation
reaches a maximum value and the predicted risk rises rapidly, indi-
cating that the patient’s medical condition becomes highly risky. It

clearly shows that the medical condition of the patient is at quite a
high risk. In this case, physicians can take intervention in advance.
To conclude, with the help of RxNet in providing time-sensitive
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risk prediction, physicians are able to forecast the overprescribing
and prevent it in advance.
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Figure 5: The medical condition variation and predicted risk
of overprescribing Tramadol for a patient.

5.8 Medical Condition Variation Analysis

To understand the impact of different medical conditions on drug
use, we analyze the medical condition stability of patients on every
single Rx drug. RxNet outputs € (in Eq. 6) that indicates a change of
medical condition at a certain time. A large € indicates the patient’s
current condition has changed a lot, compared to historical status.
A patient with a stable condition will have a low €. We compute the
average of € over all patients for each drug. Figure 6 presents these
average values for some commonly prescribed drugs, from which
we can see that Tramadol, Tapentadol, and Butorphanol Tartrate
are more likely to be overprescribed than other drugs.
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Figure 6: The average medical condition variation values over
all patients for different drugs.

5.9 Overdose Hazard Analysis

To assess the model’s ability for predicting overdose risk of patients,
we apply the survival function [3] to transform the outcomes of
RxNet to a series of monotonically increasing probabilities, which
indicate the cumulative overdose hazard [5]. Figure 7 shows the
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comparison of the cumulative overdose hazard between a high-risk
patient and a low-risk patient.

e The high-risk patient is a 62-year-old male patient, who fills his
prescriptions for Morphine & Comb (an opioid) monthly. He has
overdosed on Morphine & Comb in the 4th month.

e The low-risk patient is a 48-year-old female patient, who fills
her prescription for Fentanyl (an opioid) monthly. She remained
overdose-free throughout the year.

It can be seen from Figure 7 that RxNet clearly distinguishes be-
tween the two patients as early as at the beginning of the third
month, after which the high-risk patient gets worse and worse
while the low-risk patient has a low probability of overdose for a
long time. The high-risk patient could thus be issued a warning,
indicating that overdose would soon occur, and offered advice on
early treatment or lifestyle change. Therefore, RxNet is a good aid
to PDMP to help the early prognosis of overprescribing.
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Figure 7: The 1-year cumulative overdose hazard predicted
by RxNet for a high-risk (blue line) versus a low-risk (orange
line) patient. The red dashed line is drawn at month 5, indi-
cating the opioid overdose time of the high-risk patient. The
black dash indicates the time when an alert can be issued.

6 CONCLUSIONS

In this paper, we proposed to detect the Rx-refill caused overpre-
scribing, i.e., predicting patients at high risk of opioid overdose or
drug abuse. To solve the problem, we developed a novel model called
RxNet. We constructed a P&D graph and employed an self-attention
based GNN to learn patient embeddings. To capture medical con-
dition variations, we incorporated a newly designed RxLSTM to
update dynamic patient embeddings. Moreover, we introduced a
dosing-adaptive network to explore and recalibrate the dosing pat-
terns of patients. The empirical results on a 1-year PDMP data
demonstrated the effectiveness of RxNet by comparing with state-
of-the-art methods, and revealed the promise of RxNet in PDMP.

7 ACKNOWLEDGMENTS

This work is partially supported by the National Science Foun-
dation (NSF) under grants IIS-2107172, IIS-2140785, 1IS-2027127,
11S-2040144, 11S-1951504, CNS-1940859, CNS-1814825, and OAC-
1940855, the National Institute of Justice (NIJ) 2018-75-CX-0032.



Full Paper Track CIKM 21, November 1-5, 2021, Virtual Event, Australia

REFERENCES [27

[1] George Adam, Ladislav Rampasek, Zhaleh Safikhani, Petr Smirnov, Benjamin
Haibe-Kains, and Anna Goldenberg. 2020. Machine learning approaches to drug
response prediction: challenges and recent progress. NPJ precision oncology 4, 1

Alene Kennedy-Hendricks, Matthew Richey, Emma E McGinty, Elizabeth A
Stuart, Colleen L Barry, and Daniel W Webster. 2016. Opioid overdose deaths
and Florida’s crackdown on pill mills. American journal of public health 106, 2
(2016), 291-297.

(2020), 1-10. [28] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
[2] Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K Jain, and Jiayu Zhou. 2017. GYf‘Ph Convolut%onal Networks. In ICLR. o )

Patient subtyping via time-aware LSTM networks. In KDD. 65-74. [29] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
[3] Alexis Bellot and Mihaela van der Schaar. 2018. Multitask Boosting for Survival be‘idmg tra}ector‘y mn temporal interaction networks. In KDD. 1269—‘1278. )

Analysis with Competing Risks. In NIPS. 1397-1406. [30] Wei-Hsuan Lo-Ciganic, James L Huang, Hao H Zhang, Jeremy C Weiss, Yonghui

[4] Cary ] Blum, Lewis S Nelson, and Robert S Hoffman. 2016. A survey of physicians’ Wau, C Kent Kwoh, Julie M Donohue, Ge.rald Coch1.ran, Adanﬂ Gordon, Dapigl ¢
perspectives on the New York state mandatory prescription monitoring program Ma}qne, etal 2019: Evaluation of MaChme—Lea'rm'ng Algor1thm§ for PreFllcFlng
(ISTOP). Journal of Substance Abuse Treatment 70 (2016), 35-43. Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions.

[5] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie JAMA Network Of?e” 23 (03 2019), €190968-e190968.

Elhadad. 2015. Intelligible Models for HealthCare: Predicting Pneumonia Risk (31] JohnLu, Sumatl Srldharz Rmk? Pandey, MOhéanad Al Hasan, and Geforge Mohlgr.
and Hospital 30-day Readmission. In KDD. 1721-1730. 2019. Investigate Transitions into Drug Addiction through Text Mining of Reddit

Data. In KDD. 2367-2375.

Ellen Meara, Jill R Horwitz, Wilson Powell, Lynn McClelland, Weiping Zhou,
A James O’malley, and Nancy E Morden. 2016. State legal restrictions and
prescription-opioid use among disabled adults. New England Journal of Medicine

[6] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD. 135-144.

[7] LunDu, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. 2018. Dynamic
Network Embedding : An Extended Approach for Skip-gram based Network

[32

Embedding. In IJCAL 2086-2092. 375, 1(2016), 44-53. _

[8] Ali Mert Ertugrul, Yu-Ru Lin, and Tugba Taskaya-Temizel. 2019. CASTNet: [33] Giang Hoang Nguyen', John Boaz Le'e, Ryan A Rossi, Nesreen K Ahmed, Euvyee
community-attentive spatio-temporal networks for opioid overdose forecasting. Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.
In ECML-PKDD. Springer, 432-448. In WWW. 969-976. S A

[9] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Explore meta-paths [34] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,

in heterogeneous information networks for representation learning. In CIKM. Hiroki Kanezashi,lTim Kaler, Tao B Schardl, and Charles E Lei'serson. 2020.
1797-1806. EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs.. In

[10] Jeffrey Fudin, Mena Raouf, Erica L Wegrzyn, and Michael E Schatman. 2018. AAAL 5363_5370'. i . . . .
Safety concerns with the Centers for Disease Control opioid calculator. Journal [35] Leonard J Paulozzi, Gail K SFr1.ckler, Peter W Krelngr, fmd Caltln} M KOrl?. 2015.
of pain research 11 (2018), 1. Controlled substance prescribing patterns — prescription behavior surveillance
[11] Neha S Gangal, Ana L Hincapie, Roman Jandarov, Stacey M Frede, Jill M Boone, system, gight states, 2013. Morbidity and Mortality Weekly Report: Surveillance
Neil J MacKinnon, Kathleen Koechlin, Jolene DeFiore-Hyrmer, Amy Holthusen, Summaries 64, 9 (2015), 1-14. . L. . .
and Pamela C Heaton. 2020. Association Between a State Law Allowing Phar- Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
macists to Dispense Naloxone Without a Prescription and Naloxone Dispensing Monti, and Michael M. Bronstein. 2020. Temporal Graph Networks for Deep

[36

Rates. JAMA Network Open 3, 1 (2020), e1920310-e1920310. Learning on Dynamic Graphs. In [CML. )
[12] Junyi Gao, Cao Xiao, Yasha Wang, Wen Tang, Lucas M. Glass, and Jimeng Sun. [37] Daniel J Safer. 2019. C_)V_erprescr'lb_ed medications for US adults: four major

2020. StageNet: Stage-Aware Neural Networks for Health Risk Prediction. In examples. journal of Clinical Medicine Research 11, 9 (2019), 617. L.

WWW. 530—540. [38] Anne Schuchat, Debra Houry, and Gery P Guy. 2017. New data on opioid use

[13] Ashley A Garcia, Kristen D Rosen, Erin Finley, and Jennifer Sharpe Potter. 2017. ar}d prescribing in the United States. JAMA 31{3’ 5(2017), 425-426. X
A systematic review of barriers and facilitators to implementing a prescription [39] Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron C. Courville. 2019.

drug monitoring program. Drug and Alcohol Dependence 100, 171 (2017), e69. Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks.
[14] Haifan Gong, Chaogin Qian, Yue Wang, Jianfeng Yang, Sheng Yi, and Zichen Xu. In ICLR.

2019. Opioid Abuse Prediction Based on Multi-Output Support Vector Regression. [40] Yizhou Sun, Jiawei Han,AXi‘fen‘g Yan, Phi}ip S Yu, and Tia“Yi Wu. 291 L. Pathsim:

In ICMLT. 36-41. Meta path-based top-k similarity search in heterogeneous information networks.
[15] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep VLDB_ Endowment 4, 11 (2011), 9927100?‘

Embedding Method for Dynamic Graphs. arXiv preprint arXiv:1805.11273 (2018). [41] Muthiah Vaduganathan, Jeroen van Meijgaard, Mandeep R Mehra, Jacob Joseph,
[16] Anca M Grecu, Dhaval M Dave, and Henry Saffer. 2019. Mandatory access Christopher ] O’Donnell, and Haider ] Warraich. 2020. Prescription Fill Patterns

prescription drug monitoring programs and prescription drug abuse. 3. Policy for Commonly Used Drugs During the COVID-19 Pandemic in the United States.

Anal. Manag. 38, 1 (2019), 181-209. JAMA (2020).

[42

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. 5998-6008.

[43] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S.
Yu. 2019. Heterogeneous Graph Attention Network. In WWW. 2022-2032.
Matthew ] Witry, Barbara J St Marie, Brahmendra Reddy Viyyuri, and Paul D
Windschitl. 2020. Factors Influencing Judgments to Consult Prescription Moni-

[17] Rebecca L Haffajee, Anupam B Jena, and Scott G Weiner. 2015. Mandatory use
of prescription drug monitoring programs. JAMA 313, 9 (2015), 891-892.

[18] Anders Hakansson and Virginia Jesionowska. 2018. Associations between sub-
stance use and type of crime in prisoners with substance use problems—a focus
on violence and fatal violence. Substance abuse and rehabilitation 9 (2018), 1.

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1024-1034.

[44

[20] Justine S Hastings, Mark Howison, and Sarah E Inman. 2020. Predicting high-risk toring Programs: A Factorial Survey Experiment. Pain Management Nursing 21,
opioid prescriptions before they are given. Proceedings of the National Academy 1 (2020)’,48_56' L L .
of Sciences 117, 4 (2020), 1917-1923, [45] Changmin Wu, Giannis Nikolentzos, and Michalis Vazirgiannis. 2020. EvoNet: A
[21] Holly Hedegaard, Arialdi M. Minifio, and Margaret Warner. 2020. Drug Overdose Neural Network f'or Predicting th? Evolution of Dynamic Graphs. arXiv (2020).
Deaths in the United States, 1999-2018. National Center for Health Statistics [46] DaXu, Chuénwel Ruan, Ev'ren Korp'eoglu, Sushant Kumar, and Kannan Achan.
(2020). 2020. Inductive representation learning on temporal graphs. In ICLR.

[47

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

[22] Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-Term Memory.
are Graph Neural Networks?. In ICLR.

Neural Comp. 9, 8 (1997), 1735-1780.

[23] Han Hu, NhatHai Phan, James Geller, Huy T. Vo, Manasi Bhole, Xueqi Huang, (48] Z}"uf) Ya“gj Barth Wilsey, Michele Bohm, Megh{m Weyrich, Kakol'i RO}"’ Do-
Sophie Di Lorio, Thang Dinh, and Soon Ae Chun. 2018. Deep Self-Taught Learning minique ‘thley,. Chrlstopher Jones, and Joy Melmkow. 2015. peﬁnmg '“Sk of
for Detecting Drug Abuse Risk Behavior in Tweets. In CSoNet, Vol. 11280. 330 prescription opioid overdose: pharmacy shopping and overlapping prescriptions
342. among long-term opioid users in medicaid. The Journal of Pain 16, 5 (2015),

[24] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. In CVPR. 445-453. . ) .

7132-7141. [49] Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Kai Zhang, Haifeng Chen, and

Wei Wang. 2018. NetWalk: A Flexible Deep Embedding Approach for Anomaly
Detection in Dynamic Networks. In KDD. 2672-2681.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim.
2019. Graph Transformer Networks. In NIPS. 11960-11970.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In KDD. 793-803.

Ziwei Zhang, Peng Culi, Jian Pei, Xiao Wang, and Wenwu Zhu. 2018. TIMERS:
Error-Bounded SVD Restart on Dynamic Networks. In AAAL 224-231.

[25] M Mofizul Islam. 2019. Pattern and probability of dispensing of prescription
opioids and benzodiazepines among the new users in Australia: a retrospective
cohort study. BMJ open 9, 12 (2019).

[26] Shipra Jain, Prerna Upadhyaya, Jaswant Goyal, Abhijit Kumar, Pushpawati Jain,
Vikas Seth, and Vijay V Moghe. 2015. A systematic review of prescription pattern
monitoring studies and their effectiveness in promoting rational use of medicines.
Perspectives in Clinical Research 6, 2 (2015), 86. (52

[50

[51

2546



	Abstract
	1 Introduction
	2 Related Work
	2.1 Overprescribing Detection
	2.2 Representation Learning on Heterogeneous Graphs

	3 Preliminaries
	4 Proposed Model
	4.1 P&D Graph Neural Network
	4.2 Rx-refill LSTM
	4.3 Dosing-Adaptive Network
	4.4 Objective Function

	5 Experiments
	5.1 PDMP Data
	5.2 Baseline Methods
	5.3 Experimental Settings
	5.4 Performance Comparison
	5.5 Ablation Study
	5.6 Performance over Different Drugs
	5.7 Case Study
	5.8 Medical Condition Variation Analysis
	5.9 Overdose Hazard Analysis

	6 Conclusions
	7 Acknowledgments
	References



