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ABSTRACT
Social media such as Instagram and Twitter have become important
platforms for marketing and selling illicit drugs. Detection of online
illicit drug trafficking has become critical to combat the online trade
of illicit drugs. However, the legal status often varies spatially and
temporally; even for the same drug, federal and state legislation
can have different regulations about its legality. Meanwhile, more
drug trafficking events are disguised as a novel form of advertising -
commenting leading to information heterogeneity. Accordingly, ac-
curate detection of illicit drug trafficking events (IDTEs) from social
media has become even more challenging. In this work, we con-
duct the first systematic study on fine-grained detection of IDTEs
on Instagram. We propose to take a deep multimodal multilabel
learning (DMML) approach to detect IDTEs and demonstrate its ef-
fectiveness on a newly constructed dataset called multimodal IDTE
(MM-IDTE). Specifically, our model takes text and image data as
the input and combines multimodal information to predict multiple
labels of illicit drugs. Inspired by the success of BERT, we have
developed a self-supervised multimodal bidirectional transformer
by jointly fine-tuning pretrained text and image encoders. We have
constructed a large-scale dataset MM-IDTE with manually anno-
tated multiple drug labels to support fine-grained detection of illicit
drugs. Extensive experimental results on the MM-IDTE dataset
show that the proposed DMML methodology can accurately detect
IDTEs even in the presence of special characters and style changes
attempting to evade detection.
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1 INTRODUCTION
The co-evolution of cyberspace and human society has transformed
the practice of illicit drug trade from the physical world to online
platforms. Recent studies [14, 20, 27, 34, 35, 42, 51] have shown that
major social media platforms, including Instagram, Twitter, and
Facebook, have become a direct-to-consumer marketing tool for
illegal drug dealers.

What makes the combat on online illicit drug trade even more
challenging lies in the varying legal status of drugs. For instance,
the use and possession of cannabis is illegal under federal law for
any purpose in the US, but at the state level, policies regarding
the medical and recreational use of cannabis vary greatly [5]. As
of today, the recreational use of cannabis has been legalized in 15
states and decriminalized in another 16 states. Similarly, the legal
status of club drugs varies according to the region and drug too. For
example, some club drugs (e.g. cocaine) are almost always illegal;
other club drugs (e.g. amphetamine or MDMA) are generally illegal
unless with a lawful prescription from a doctor; other drugs (e.g.
"poppers") are legal in some jurisdictions.

Detection of online illicit drug trafficking becomes a critical step
to combat the illicit online trade of illicit drugs. However, it is
challenging for the following reasons: (1) Inconsistency of drug
legislation. Legal status of drugs varies according to the region
and drug. Most recently, Oregon’s Measure 110 has decriminal-
ized personal possession of small amounts of illegal drugs, such as
cocaine, heroin, oxycodone, and meth; but the neighboring state
of Washington has not. Such variation of legal status from state
to state makes it difficult to draw a clear boundary between le-
gal and illicit drug trade. (2) Information heterogeneity. The
data sources related to drug trade involve both images and texts;
meanwhile, the ways of advertising illicit drugs range from direct
posting to indirect commenting (as a disguised form of advertising).
More importantly, there is additional uncertainty arising from illicit
drug dealer’s attempting to evade detection by different means (e.g.,
changing font styles, adding separators between letters, coining
new street names of popular drugs). How to systematically combine
these heterogeneous information has remained open. (3)Accuracy.
When compared with normal users posting images and texts related
to legal drug use, the portion of illicit drug trafficking is relatively
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(a) Direct drug advertising. (b) Indirect drug advertising.

Figure 1: Examples of suspect IDTEs. Left: illicit drug dealers directly posting some drug-related texts or images. Right: illicit
drug dealers indirectly advertise their products by adding a comment to an existing innocent post.

small. Searching for illicit drug trafficking activities is like finding
a needle in a haystack. How to achieve a low false alarm rate while
efficiently mining a large amount of social media data calls for
innovative technical solutions at the system level.

In this paper, we propose a deep multimodal multilabel learning
(DMML) approach to detect the existence of multiple illicit drugs
from suspect illicit drug trafficking events (IDTEs) on Instagram. As
shown in Figure 1, a suspect IDTE is a user activity such as a post
or a comment following a post on Instagram. Note that a suspect
IDTE can be an initial post meant for marketing of illegal drugs.
It can also be a comment following an initial post, in which drug
trafficking information is added even though the original post does
not contain any drug information. Unlike existing works on drug
dealer detection [27, 42, 51] or drug use detection [14, 20, 34, 35]
from aggregated information, we advocate to focus on detecting
activities related to suspect IDTEs. This is because as the arms race
between drug dealers and law enforcement evolves, more drug
trafficking events are disguised as a novel form of advertising -
commenting. Instead of directly posting some drug-related text or
images (easily caught by the regulation), illicit drug dealers often
indirectly advertise their products by adding a comment on the
existing harmless post (refer to Fig. 1b). Note that such a piggyback
strategy can be recursively applied, so the event of drug trafficking
(drug-related comments) can be embedded at several levels under
the original post. Our work is also different from existing works
[14, 27, 42, 51] in the sense that our approach detects not only illicit
drugs but also their specific types in each suspect IDTE. Such fine-
grained detection of illicit drug trafficking becomes particularly
important considering the inconsistency of drug legislation across
different states.

Specifically, our model takes in text and image data associated
with suspect IDTEs and composites the multimodal information
to predict multiple labels of an illicit drug. Motivated by the latest
advances in natural language processing - e.g., Bidirectional En-
coder Representations from Transformers (BERT) [8], Vision-and-
Language BERT (ViLBERT) [29], Learning Cross-Modality Encoder
Representations from Transformers (LXMERT) [39]), we propose
to develop a self-supervised multimodal bidirectional transformer
(MMBT) by jointly fine-tuning pretrained text and image encoders.

By projecting image embeddings to the text token space, we can em-
ploy self-attention over both modalities simultaneously, achieving
more fine-grained multimodal fusion [22]. The combined multi-
modal feature is then passed to a multi-label learning module for
predicting the type of multiple illicit drugs.

We have manually constructed a large-scale multimodal IDTE
(MM-IDTE) dataset for the purpose of fine-grained illicit drug
detection. Our MM-IDTE dataset, containing nearly 4,000 posts
and more than 6,000 comments, represents the largest multimodal
(text+image) illicit drug detection dataset so far. In particular, to
construct such a large-scale dataset, we have designed an automatic
data crawling system for Instagram that jointly uses hashtag and
image information to guide the data collection. We have spent hun-
dreds of hours on manually annotating each post (text and images)
by multiple labels. Such multilabel ground truth has been verified
by different people to ensure their consistency and accuracy. Ex-
tensive experimental results on the constructed dataset show that
the proposed MMBT-based DMML approach can accurately detect
IDTE. Both micro-/macro- precision and recall performance of our
approach exceeds 0.90 on the test MM-IDTE dataset.

The key contributions of this paper are summarized as follows.
• We conduct the first systematic study on fine-grained detection
of illicit drug trafficking events on Instagram. Unlike existing
works on drug dealer or abuse detection, this work focuses
on addressing the issue of commenting as a disguised form of
advertising on Instagram.

• We propose a deep multimodal multilabel learning (DMML)
framework for detecting illicit drug trafficking events. It is
shown that the proposed MMBT-based approach can dramati-
cally outperform unimodality and ad hoc multimodal fusion
strategies. We have also experimentally compared different
image encoders for MMBT-based fusion and found that MMBT
based on ResNet50 and BERT achieves the best performance.

• We construct a large-scale MM-IDTE dataset for fine-grained
illicit drug detection. Toward this objective, we have developed
an automatic hashtag-based data crawling system and a user-
friendly data annotation system to support large-scale and
multimodal data collection. The newly constructed MM-IDTE
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dataset will be made publicly available to support the research
related to illicit drug trafficking activities.

• Wedemonstrate the effectiveness of the proposedMMBTmethod
on the MM-IDTE dataset. It is found that our method can suc-
cessfully identify some challenging cases difficult for untrained
eyes (e.g., special symbols and style changes attempting to
evade detection). The developed system could facilitate the
disruption of illicit drug trade by law enforcement.

2 RELATED WORK
2.1 Drug Abuse and Dealing Analysis
As far as we know, there has been limited work on tracking drug
abuse and illicit drug trades from online data. Among these existing
works, [4] analyzed the time and location patterns of drug use
by mining Twitter data; network information of Instagram user
timelines was used in [7] to monitor suspicious drug interaction
activities; [52] and [42] analyzed Instagram data for tracking and
identifying drug dealer accounts. More recently, machine learning
and natural language processing techniques have been applied to
combat prescription drug abuse [14, 20, 34, 35] and detect illicit
drug dealers [27, 42, 51].

Our work is different from the previous works. First, our work
focuses on suspected illicit drug trafficking events, while previous
work focused on drug abuse or dealingwithmining from aggregated
information. Second, our method detects all potential illicit drugs
in each suspected illicit drug trafficking event, while previous work
either identified drug dealers or detected existing drug abuse. Third,
we target at a fine-grained detection of different drugs as well as
drug-related activities. Technically, we formulate our work as a
multilabel learning problem [50], which is much more challenging
than the binary classification in the previous works.

2.2 Multimodal Learning and Data Fusion
In many real-world problems, objects always involve multiple
modalities. A modality refers to the way in which an object is
represented. The goal of multimodal learning is to design a strategy
to leverage the information from multiple modalities so that differ-
ent sources of information can complement and enhance each other
for a specific goal [2]. It usually involves a joint representations of
different modalities and a way to fuse the representations to a com-
posite multi-modal feature for the sake of the task in investigation.
Multi-modal learning has enabled a wide range of applications such
as multimedia content indexing and retrieval [6], image captioning
[46], and visual question answering (VQA) [9].

Rapid advances of machine learning in recent years have also
expedited the research in multimodal data fusion [47]. A straight
way is to concatenate features from different modalities [23]. Bilin-
ear pooling [9] based method was proposed to better capture the
interactions between features in different modalities. A gated mul-
timodal fusion module was proposed in [1] to find an intermediate
representation based on a combination of data from different modal-
ities. Its follow-up work has shown that fusion with discretized
features outperforms text-only classification [23]. More recently,
inspired by the success of Bidirectional Encoder Representations
from Transformers (BERT) [8]), transformer-based multimodal data
fusion has attracted increasingly more attention - e.g., multimodal
bitransformer (MMBT) [22], Vision-and-Language BERT (ViLBERT)

[29], Learning Cross-Modality Encoder Representations from Trans-
formers (LXMERT) [39].

2.3 Multi-label Learning
Multi-label learning [50] targets at representing an object by a sin-
gle instance but each object can be associated with a set of labels.
In contrast to traditional supervised learning, the task of multilabel
learning is to learn a function that can predict the proper label sets
for unseen instances. Typically, the multilabel learning problem is
transferred into other well-established learning settings such as
binary classification, one-vs-all classification, or multiclass classifi-
cation through the introduction of label powerset [40]. There are
some efforts to adopt learning techniques such as low-dimensional
label embedding methods [3], joint global and local approach [54],
and joint learning of label-specific features and label correlations
[48], to exploiting label correlations for multi-label learning.

Deep multi-label learning has also been recently studied for
image classification [38] and in the special situation of extreme
multi-label learning (XML) [28, 45].

3 ILLICIT DRUG TRAFFICKING EVENT
DETECTION

In this section, we first formulate the problem of illicit drug traffick-
ing event detection (IDTE), and then introduce the proposed deep
multimodal multilabel learning (DMML) approach.

3.1 Problem Formulation
Definition 3.1 (Illicit drug trafficking event). An illicit drug traf-

ficking event (IDTE) is an event on Instagram that contains the
marketing and selling of one or more defined illicit drugs.

In this paper, we consider the following nine common illicit
drugs traded on Instagram: Marijuana, Codeine, Mdma, Xanax,
Painkillers, Mushrooms, LSD, Cocaine, and other drugs.

Definition 3.2 (Suspect IDTE). A suspect IDTE is a user activity
such as a post or a comment to a post on Instagram. It usually
contains image and text information.

Figure 1 shows some examples of suspect IDTEs on Instagram.
Note that a suspect IDTE can be an initial post (e.g., the post ini-
tialized by User A in Fig. 1a). It can also be comments following a
post, in which drug trafficking information is added (e.g., comments
by Users B and C in Fig. 1a). As shown in Fig. 1b, even the initial
post does not include any drug-related information, illicit drug
dealers can still advertise their products by adding a comment to
an existing innocent post.

Given the above definitions, we can formally define the prob-
lem of illicit drug trafficking event detection as follows: The goal
is to build an effective approach to detect the existence of illicit
drugs such as cocaine and cannabis within each suspect IDTE 𝑖 .
Assume there are a total of 𝐶 predefined illicit drugs under con-
sideration. Let 𝑦𝑖𝑐 = 1, 𝑐 ∈ {1, . . . ,𝐶} denotes suspect IDTE 𝑖 con-
tains drug 𝑐 and 𝑦𝑖𝑐 = 0 otherwise. Note that, it is also possible
that the suspect IDTE 𝑖 does include any of the 𝐶 illicit drugs. We
add one more label 𝑦𝑖0 = 1 to indicate the case when the sus-
pect IDTE is drug-free. Then each suspect IDTE 𝑖 can be repre-
sented as a vector y𝑖 = [𝑦𝑖0, 𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝐶 ] ∈ {0, 1}𝐶+1. Each
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Figure 2: Overview of our proposed deepmulti-modalmulti-
label learning approach to illicit drug trafficking activity de-
tection. Our model takes in text and image data associated
with suspect IDTEs, and combines multimodal information
to predict multiple labels of illicit drugs.

suspect IDTE 𝑖 is associated with an image 𝑥𝑖 , and a text com-
ment 𝑡𝑖 , which has 𝑇 tokens. Given a set of 𝑁 training instances
D = {([𝑥1, 𝑡1], y1), ( [𝑥2, 𝑡2], y2), . . . , ( [𝑥𝑁 , 𝑡𝑁 ], y𝑁 )}, we aim to
build a predictive model 𝑓 : [𝑥, 𝑡] → y to detect the existence and
types of illicit drugs from new suspect IDTEs.

3.2 System Overview
Figure 2 shows the overview of our deep multimodal multilabel
learning (DMML) approach to illicit drug trafficking event detection.
The model takes in text and images associated with each suspect
IDTE, and composites the text and image inputs via a multimodal
bidirectional transformer unit. The composited text-image feature is
then passed to a multi-label learning module to predict the existence
and types of illicit drugs.

It is worth mentioning several salient features of our DMML
approach before elaborating on its details. First, the complementary
role played by text and image information has been recognized by
previous work (e.g., [42]). However, it is unclear which modality
contributes more to the detection especially when the problem of
detection reaches fine-grained. Contrary to the findings reported
in [42], we have found texts are more reliable than images for
fine-grained drug classification. Second, we target at extracting
multilabel information from IDTE to more accurately track the
spatio-temporal dynamical patterns of different drugs. Such feature
is important to address the issue of inconsistency of drug legislation
across different states.

3.3 Multimodel Fusion via Bidirectional
Transformer

Each suspect IDTE is associated with an image 𝑥 , and a text com-
ment 𝑡 , which has 𝑇 tokens. Let 𝑡 = (𝑤1, . . . ,𝑤𝑇 ). The presence
of multiple information sources holds the promise to learn better
feature representations for final detection of illicit drugs. Typically,
text data 𝑡 is processed by a sequence model such as LSTM to form
a text feature 𝜙𝑡 , and image 𝑥 is processed using a pre-trained

CNN model to form a image feature 𝜙𝑥 . Then a fusion model is ap-
plied to combine the text and image features 𝜙𝑥𝑡 = 𝑓fusion (𝜙𝑥 , 𝜙𝑡 ).
There are a wide range of fusion methods proposed [47] such as
concatenation [23] and bilinear pooling [11, 18].

In this paper, we propose to adapt a bidirectional transformers
approach to multimodel fusion. First, we found textual are more
reliable than images for fine-grained drug classification. Second,
as discussed in [41], multimodal models that composite features at
late stages are prone to overfitting. The bidirectional transformers
approach projects image embedding to the text token space to form
better feature representations for final detection of illicit drugs.

3.3.1 Transformers in Text and Vision. The idea of self-supervised
embedding or transfer learning from pre-trained representations
has been extensively explored in the literature of natural language
processing (e.g., [25, 31]) and computer vision (e.g., [32, 36]). Most
recently, the idea of fine-tuning self-supervised or semisupervised
learning has revolutionalized the field of natural language process-
ing leading to breakthroughs such as BERT [8] and its variations
(e.g., xlnet [43] and albert [26]). By applying the bidirectional train-
ing of transformer, a popular attention model, to language mod-
elling, BERT learns contextual relations between words in a text
more effectively.

The success of transformer architectures has rapidly leveraged to
the field of computer vision [13]. By integrating self-attention with
self-supervision, transformers can exploit long-range dependencies
in the input domain, which make transformer-based representation
more expressive. Since there is a minimal assumption about prior
knowledge, pretrained transformers are particularly suitable for
large-scale and unlabelled datasets. Thanks to the generalization
of encoded features, learned representations can be fine-tuned by
labelled data leading to excellent performance on various vision
tasks [21].

3.3.2 Multimodal Transformer. Inspired by the latest advances in
multimodal transformers (e.g., ViLBERT [29], LXMERT [39]), we
propose to develop a self-supervised multimodal bi-transformer
(mimicking bidirectional transformers) jointly fine-tuning pretrained
text and image encoders [22]. The basic idea is to use self-attention
over both texts and images simultaneously, providing early and
fine-grained multimodal fusion. It has been shown in previous work
[22] that such conceptually simple strategy can work as effectively
as more sophisticated multimodally pretrained ViLBERT models.

More specifically, we have constructed a multimodal bitrans-
former (MMBT) model (refer to Fig. 2) combining text-based self-
supervised representations with image-based CNN architectures
(e.g., ResNet [15]). By projecting image embedding to the text token
space, we can employ self-attention over both modalities simul-
taneously, achieving more fine-grained multimodal fusion [22]. It
should be noted that a salient feature of MMBT is the flexibility of
plugging in different images and text encoders. For example, the
ResNet-152 image encoder adopted in [22] can be readily replaced
by a smaller ResNet-50 counterpart.

3.4 Multilabel Learning
The output of our model is the predicted probability vector ŷ𝑖 =
[𝑦𝑖0, 𝑦𝑖1, . . . , 𝑦𝑖𝐶 ] ∈ {0, 1}𝐶+1 for suspect IDTE 𝑖 . This is a typical
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example of multilabel learning, where each example represented by
a single instance is simultaneously associated with multiple class
labels [49]. Under the context of IDTE detection, multilabel learning
achieves fine-grained classification of multimodal data. To the best
of our knowledge, such fine-granularity classification has not been
considered in previous works of post-based drug dealer detection
[42]. Though there are different training strategies in multilabel
learning [54], we have adopted the binary cross-entropy (BCE) loss,
which has been widely applied in deep learning based multilabel
learning problems [28, 45]. The BCE loss is defined as

ℓ (Θ) = − 1
𝑁

𝑁∑
𝑖=1

𝐶∑
𝑐=0

[𝑦𝑖𝑐 log𝑦𝑖𝑐 + (1 − 𝑦𝑖𝑐 ) log(1 − 𝑦𝑖𝑐 )] .

4 MULTIMODAL IDTE (MM-IDTE) DATASET
CONSTRUCTION

In this section, we present a new multimodel dataset constructed
from Instagram; toward this objective, we will discuss our effort on
data crawling and data annotation, respectively.

Table 1: Comparison of our MM-IDTE dataset with several
existing datasets for drug dealer and abuse detection.
Study Source Granularity(#) classification Application

[53] Instagram Post-level 2,362 Binary Drug use
pattern analysis

[42] Instagram Post-level: 4,819 Binary Drug dealer
detection

[30] Twitter Tweets-level: 213,041 Binary Drug dealer
detection

[16] Twitter Tweets-level: 1,794 Binary Drug abuse
risk detection

[14] Instagram Post-level: 369,000 Binary Drug abuse
risk detection

[27] Instagram Post-level:1,228 Binary Drug dealer
detection

Ours Instagram IDTE-level: 4,648 Multi-label IDTE detection

To achieve this objective, we have made a great effort on data col-
lection and construction of multimodel IDTE dataset in this project.
An integrated data collection and calibration platform has been
designed for automatic data collection/crawling and synchronized
multilabel data calibration, as shown in Figure 3. Three main mod-
ules in the platform have been implemented to realize suspect IDTE
data collection, data storage, and data calibration, respectively.

4.1 Data collection
The rationale underlying our data crawling scheme is still based on
hashtag-based search [12]. Hashtags on Instagram can help users
extend their reach, engage their audience, which can be attached to
posts, and become clickable phrases and topics with the # placed in
front of them. However, unlike [42] working with a fixed collection
of hashtags, we propose a data crawling algorithm that iteratively
expands the pool of hashtags for scaling up our search. Such ex-
pansion of hashtags is guided by an intelligent pretrained AI model
(VGG-16 [37]) designed for drug image classification. By treating
drug-related hashtags and images as a pair of peer hidden variables,
our iterative crawling system aims at refining and updating the
collected multi-modal data in an Expectation-Maximization (EM)-
like manner. The detailed description of our data collection system
consists of the following four components.

1. Drug-related hashtags collection: A total of 200 drug-related
hashtags have been manually collected by domain experts
using the hashtag search API [10]. These hashtags contain
10 types of drugs (i.e., non-drug, marijuana, codine, xanax,
3, 4−methylenedioxy-methamphetamine (MDMA), painkiller,
psilocybin mushroom (hereinafter called mushroom), Lyser-
gic acid diethylamide (LSD), cocaine, other drugs), which are
widely trafficked on Instagram1. We have used this set of
hashtags as the initial starting point of our data collection.

2. Drug-related post detection. We search each post (which
includes an image and comments) with each drug-related
hashtag as input. A VGG-16 based binary classificationmodel
[37] is pretrained to detect drug-related posts from the ac-
companying image information. The image-based dataset for
model pretraining contains various types of drug-related im-
ages which are sources from Bing image search API (similar
to Google image search API adopted in [42]). If an image of a
post is detected by the model as being drug-related (positive),
we save its link for further processing.

3. Drug-related data collection. The detected posts were con-
verted and formalized into a universal json object to facilitate
the storage and retrieval. As post comments are sources from
several user accounts, we saved each post-related informa-
tion (including posted images and comments). Totally, 10,000
potential posts and 23,034 user homepage information were
collected as the initial dataset.

4. Drug-related hashtag update. New hashtags from each de-
tected post can be added into the list of drug-related hashtags.
We have also recorded the frequency of each hashtag in order
to track the most frequent ones. The system uses the new
hashtag (which have the highest frequent counts) in the next
iteration until the amount of collected data reaches a pre-
specified threshold (in this study, we have set the threshold
to be 1000 drug-dealer accounts).

4.2 Data annotation
Suspect IDTEs often contain various types of drugs, so we have de-
signed a multi-label annotation module, which contains Instagram
post data visualization and three information (i.e., Hashtag label,
image label and comment label) annotation. The three information
of any suspect IDTEs can be labeled by domain expert users through
10 optional categories. The labeled hashtags will update the drug-
related hashtag list weight to improve data collection efficiency.
Totally, 4,648 suspect IDTEs were labeled during the construction
of the experimental dataset, which contains 1,022 drug trafficking
posts and 1,406 unique drug dealer user accounts. The proportion
of each category label in the dataset is shown in Figure 4. Several
existing datasets have been designed for illicit drug dealing track-
ing, as shown in Table 1. Compared with these existing datasets,
our dataset contains more user accounts and more diverse labels.

To ensure the consistency and accuracy of multiple labels, we
have asked different people to cross-validate the annotation results.
Several particular challenges we have identified through the manual
data annotation process include: 1) certain drugs (e.g., power-type)
have similar visual appearance and can be easily confused with

1https://drugabuse.com/featured/instagram-drug-dealers/
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Figure 3: Data collection, storage, and calibration: note that our annotation involves multiple labels and multiple modalities,
which requires hundreds of hours of manual labor for cross-checking and validation.

Figure 4: Distribution of labels in the IDTE dataset.

each other (e.g., DMT vs. MDMA); 2) the same type of type (e.g.,
MDMA) can have different visual appearances (e.g., power vs. pills);
3) an image or a post can contain a large number of different drugs
(easy to miss some). To help human annotators with the labeling
process, we have designed a user-friendly interface consisting of
data calibration at three different levels (hashtag label, comment
label, and image label). It is estimated that a total of over 200 hours
have been spent on manually annotating the collected dataset.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
Data. The MM-IDTE dataset used in our experiment contains 4,648
manually labeled IDTE records. There are 10 labels including 9 drug
labels (i.e., , Marijuana, Codeine,Mdma, Xanax, Painkillers,Mushrooms,
LSD, Cocaine, and other drugs) and a non-drug label when the IDTE
is drug-free. Figure 4 shows the distributions of the 10 labels across
the whole IDTE records.
Training and testing. We randomly split the dataset into a train-
ing set (75%) and a testing set (25%). We have trained the models
using the popular Adam optimization algorithm [33].

The following parameters are adopted in our setting: learning
rate 𝛼 = 2𝑒−5, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8. We opt to terminate
the training after 50 epochs. All experiments are conducted using
PyTorch on a workstation with one RTX 2080 GPU.

5.2 Evaluation metrics
We evaluate all methods in terms of example-based and label-based
multilabel classification measures.

Example-based metrics are defined by comparing the ground-
truth label set y = [𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝐶 ] to the predicted label set
ŷ = [𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝐶 ] on each test example, and then calculating
the mean value across all test datasets. Subset accuracy is a strict
metric that measures the fraction of correctly classified examples
and requires an exact match of the predicted label set and the
ground-truth label set. Subset accuracy is defined as subset accu. =
1
𝑁

∑𝑁
𝑖=1 I[y𝑖 = ŷ𝑖 ], where I[y = ŷ] is an indicator function with

value of 1 when y = ŷ, and value of 0 otherwise. Hamming loss
evaluates how many labels are incorrectly predicted on average,
and is defined as hamming loss = 1

𝑁

∑𝑁
𝑖=1

1
𝐶+1

∑𝐶
𝑐=0 I[𝑦𝑐 ≠ 𝑦𝑐 ] .

Label-based metrics are defined by evaluating the prediction
performance of each label separately, and then returning macro-
or micro-averaged metric value across all labels. Precision, re-
call, and F1-measure are commonly used metrics. F1-measure com-
bines precision and recall, and is the harmonic mean of preci-
sion and recall. Specifically, for each 𝑐-th label in {0, 1, 2, . . . ,𝐶},
we denote by 𝑇𝑃𝑐 , 𝐹𝑃𝑐 , 𝑇𝑁𝑐 , 𝐹𝑁𝑐 the number of true positives,
false positives, true negatives, and false negatives, respectively.
Micro-averaged precision, recall, and F1-measure are defined as

follows: 𝑃𝑚𝑖𝑐𝑜𝑟 =

∑𝐶
𝑐=0𝑇𝑃𝑐∑𝐶

𝑐=0𝑇𝑃𝑐+𝐹𝑃𝑐
, 𝑅𝑚𝑖𝑐𝑜𝑟 =

∑𝐶
𝑐=0𝑇𝑃𝑐∑𝐶

𝑐=0𝑇𝑃𝑐+𝐹𝑁𝑐

, 𝐹1𝑚𝑖𝑐𝑜𝑟 =∑𝐶
𝑐=0 2𝑇𝑃𝑐∑𝐶

𝑐=0 2𝑇𝑃𝑐+𝐹𝑃𝑐+𝐹𝑁𝑐

.Macro-averaged precision, recall, and F1-measure

are defined as follows: 𝑃𝑚𝑎𝑐𝑟𝑜 = 1
𝐶+1

∑𝐶
𝑐=0

𝑇𝑃𝑐
𝑇𝑃𝑐+𝐹𝑃𝑐 , 𝑅𝑚𝑎𝑐𝑟𝑜 =

1
𝐶+1

∑𝐶
𝑐=0

𝑇𝑃𝑐
𝑇𝑃𝑐+𝐹𝑁𝑐

, 𝐹1𝑚𝑎𝑐𝑟𝑜 = 1
𝐶+1

∑𝐶
𝑐=0

2𝑇𝑃𝑐
2𝑇𝑃𝑐+𝐹𝑃𝑐+𝐹𝑁𝑐

. Macro av-
eraging treats all labels equally while micro-averaging favors more
frequent labels. High macro-averaged scores usually indicate high
performance on less frequent labels, while high micor-averaged
scores usually indicate high performance on more frequent labels.

5.3 Baselines
To the best of our knowledge, our work is the first study on fine-
grained detection of illicit drug trafficking on Instagram. We have
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Table 2: Performance comparison between the proposed method and the baseline approaches.
Example-based Label-based

Method Subset Accu. Hamming loss micro Pre micro Recall micro F1 macro Pre macro Recall macro F1
ResNet50 0.4187 0.3054 0.3348 0.7197 0.4570 0.2949 0.6635 0.3750
ResNet152 0.4155 0.2844 0.2901 0.6612 0.4537 0.3453 0.5717 0.3500
VGG16 0.4144 0.4066 0.2901 0.8499 0.4275 0.2855 0.8986 0.3862

DenseNet121 0.4263 0.3551 0.2916 0.7559 0.4252 0.2790 0.7378 0.3576
TextRNN 0.6775 0.0831 0.7524 0.6848 0.7170 0.6829 0.4896 0.5462
TextCNN 0.6502 0.0956 0.6918 0.6826 0.6872 0.5853 0.5144 0.5374
FastText 0.6604 0.0875 0.7272 0.6892 0.7077 0.6892 0.4870 0.5369
BERT 0.8902 0.0208 0.9174 0.9711 0.9435 0.8786 0.9671 0.9185

Concatenation 0.5727 0.1255 0.5986 0.9024 0.7197 0.5333 0.8806 0.6395
FBC 0.4553 0.2315 0.4261 0.8547 0.5687 0.3582 0.8547 0.4655

Proposed 0.9322 0.0135 0.9496 0.9765 0.9629 0.9217 0.9728 0.9455

Table 3: Impact of different image encoders on our method.
Example-based Label-based

Method Subset Accu. Hamming loss micro Pre micro Recall micro F1 macro Pre macro Recall macro F1
ResNeXt50 + BERT 0.9107 0.0160 0.9359 0.9771 0.956 0.9079 0.9731 0.9386
ResNeXt101 + BERT 0.9257 0.0139 0.9458 0.9783 0.9618 0.914 0.9711 0.9400

Vgg16+BERT 0.9322 0.0135 0.9496 0.9765 0.9629 0.9217 0.9728 0.9455
Vgg19+BERT 0.9225 0.0158 0.9406 0.9729 0.9564 0.9095 0.9649 0.9343

DenseNet121+BERT 0.9182 0.0160 0.9379 0.9747 0.956 0.9066 0.9698 0.9358
ResNet50+BERT 0.9311 0.0130 0.9487 0.9801 0.9641 0.9237 0.9760 0.9478
ResNet152+BERT 0.9300 0.0142 0.9457 0.9765 0.9609 0.9152 0.9675 0.9391

compared our proposed method with the following baseline meth-
ods, which are modified for multilabel learning:
• Image-only baselines. We fine-tune pretrained CNNs (includ-
ing VGG16 [37], ResNet50 and ResNet152 [15], andDenseNet121
[17]) on the images associated with IDTEs to extract the fea-
tures for the multilabel classification task.

• Text-based baselines. We train a multilabel classification model
on the textual information of IDTEs using the followingmodels:
TextRNN [44], TextCNN [24], FastText [19], and BERT [8].

• Multimodal learning baselines.We first use ResNet50 and BERT
to extract image and text features respectively, and then ap-
ply multimodal fusion method to combine the image and text
features for multilabel classification. We compare following
multimodal fusion methods: concatenation [23] and factorized
bilinear coding (FBC) [11, 18].

5.4 Experimental Results
Table 2 shows the detection performances of our proposed method
and the baseline approaches with different multilabel classification
metrics. Our approach consistently and significantly outperforms
the baseline methods on all example-based metrics and label-based
metrics. We describe several key observations we have made from
these results as follows:
Text vs image in IDTE detection. We first observe that the per-
formance of text-only methods is better than all image-based meth-
ods. For example, even the weakest TextCNN outperforms the best
image-based VGG16 by 15.12% in terms of macro F1. It indicates
that textual information is more important and reliable than images
for IDTE detection (contrary to the findings in [42]). We further
observe that BERT model can achieve highly accurate classification
performance. For example, BERT outperforms the best text-based

Figure 5: Confusion matrix for each label classified by our
method.

TextRNN by 37.23% in terms of macro F1. It demonstrates the supe-
riority of pretrained BERT model in text classification tasks. Finally,
it does make a difference when we train image-only models by
fine-tuning with different CNNs architectures.
Multimodal learning in IDTE detection. Themotivation of mul-
timodal learning is that the presence ofmultiple information sources
can be complementary to learn better feature representations for
final detection of illicit drugs. However, we observe that multimodal
learning does not necessarily outperform models trained with a
single modality. As shown in Table 2, two popular multimodal fu-
sion methods (i.e., concatenation and factorized bilinear coding
(FBC)) are applied to composite image and text features extracted
from ResNet50 and BERT respectively; but their performances are
worse then single-modality based BERT model. One possible rea-
son, as discussed in [41], is that such multimodal models are prone
to overfitting when features are combined at a late stage. By con-
trast, building upon a powerful BERT model and projecting image
embedding to the text token space, our method achieves better
fine-grained multimodal fusion, thus improving the detection per-
formances. For example, our method improves BERT by 2.7% in
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Table 4: IDTE Detection Case Studies. We compare our method with the best baseline model BERT. Detection errors are high-
lighted with red color. We can see that our method delivers more accurate and reliable predictions than BERT.

1

#anxiety#pain#depression#weightloss#xanax#oxy#ritalin#crystal#fastdeals#bitcoinpayment#trackingnumber #be-
strates. Contact:Wickr:Ste**** Email:ste****@protonmail.com

Groundtruth Xanax, Painkiller, Other drug

Our Prediction Xanax, Painkiller, Other drug BERT result Xanax, Painkiller, Other drug

2

So #AaronPaul has been smoking sugar candy from the beginning ?. . . . #breakingbad #methamphetamines #crys-
talmeth #brba #goat #walterwhite #bryancranston #jessepinkman #got #drugs #sugar #sugarcandy #thecandylady
#alburquerque #heisenberg #danger

Groundtruth Other drugs

Our Prediction Other drugs BERT result LSD, Other drugs

3

A.c.i.D, s.H.r.ø.o.M.s..Wickr me:Wins**** .Email:joney****@gmail.com.Whatsapp: (213) ***-3678

Groundtruth Mushroom, LSD

Our Prediction LSD BERT result Painkiller, LSD

4

Shr□□m ∼ □C□K□ ∼ Ac□d□ ∼Md□ma□ ∼Esct□cy□ ∼D♠mt□ ∼w□□d□ ∼Pi□□s□□&mor□□□.□kik.........speed****7
□wickr...james****7|

Groundtruth Marijuana, Mdma, Painkiller, Mushroom, LSD, Cocaine, Other drugs

Our Prediction Marijuana, LSD, Cocaine, Other drugs BERT result Cocaine

5

WHAT ⊠ SAPP : +1(440) ∗ ∗ ∗ −3147. ⊠ EX⊠ : +1(202) ∗ ∗ ∗
−1339.WICKR/KIK :REA****99 .SECURED/DISCREE⊠ DELIVERY .BUY ......LSD,MDMA,DM⊠, SHRΘΘMS,
PILLS,CΘKE,ADDY, XANS, KE⊠, 2CB,AND,BUD

Groundtruth Marijuana, Mdma, Xanax, Painkiller, Mushroom, LSD, Cocaine, Other drugs

Our Prediction Codine, Mdma, Xanax, Painkiller,
Mushroom, LSD, Other drugs

BERT result Codine, Mdma, Xanax, Painkiller,
Mushroom, LSD, Other drugs

terms of macro F1. Figure 5 shows the confusion matrix for each
label classified by our model.
Impact of image encoders on our method. Thanks to the con-
ceptual simplicity ofMMBT, we can easily substitute different image
and text encoders into the bitransformer module. Unlike text infor-
mation, BERT has shown dominating performance; image encoders
have shown comparable performance based on Table 2. Therefore,
we have conducted an ablation study to compare different image en-
coders while keeping the BERT encoder the same. Table 3 includes
the performance comparison among seven competing image en-
coders. It can be observed that on the average ResNet50 achieves the
best performance, which is in contrast to the adoption of ResNet152
for MMBT in [22].

5.5 IDTE Detection Case Studies
The experimental results have shown the effectiveness of the pro-
posed DMML approach in detecting IDTEs. We present some case
studies as shown in Table 4 to demonstrate the superiority as well
as limitations of the proposed method. Case 1 and Case 2 illustrate
two examples of the proposed method with completely correct de-
tection, while Cases 3-5 show the examples with missing or false
detection. When compared with the results of the text-only BERT
model, we can observe that by fusing text with image modality, the
proposed DMML can not only effectively reduce false alarms (see
Case 2 for example - LSD was incorrectly predicted by BERT but
supplementary image information shows it is not LSD;in Case 3,
painkiller is false alarm of BERT prediction, which gets corrected

by DMML), but also detect more accurate labels (see Case 4 - BERT
misses a few labels). However, for input text with special symbols
that drug dealers used to disguise illicit deals, the proposed method
will fail to accurately detect all labels, such as the mushroom with
‘s.H.r.ø.o.M.s’ in Case 3, MDMA with ‘Md□ma□’ in Case 4, and Co-
caine with ‘CΘKE’ in Case 5. One potential solution is to design a
new data preprocessing algorithm to recover these special symbols
in words.
6 CONCLUSION
In this study, we have collected and constructed a large-scale mul-
timodal IDTE dataset (MM-IDTE) from Instagram data to support
the research related to illicit drug trafficking activity detection. Our
dataset includes both textual and visual information contained in
posted comments and has been manually annotated for multiple
drug types. An automatic hashtag-based data crawling system and
a user-friendly interactive web-based data annotation system were
developed. Our data crawling and annotation systems allow us to
build a dataset with thousands of fine-grained samples with mul-
tiple labels. Based on the constructed MM-IDTE dataset, we have
developed a deep multimodal multilabel learning approach to detect
suspect IDTEs and demonstrate its effectiveness on the new MM-
IDTE dataset. It is shown that the proposed MMBT-based approach
can dramatically outperform unimodality and ad hoc multimodal
fusion strategies. We have also experimentally compared different
image encoders for MMBT-based fusion and found that MMBT
based on ResNet50 and BERT achieves the best performance. Exten-
sive experimental results on the MM-IDTE dataset show that the
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proposed DMML methodology can accurately detect IDTEs even
in the presence of special symbols and style changes attempting to
evade detection.
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