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Abstract. Graph mining tasks often suffer from the lack of supervi-
sion from labeled information due to the intrinsic sparseness of graphs
and the high cost of manual annotation. To alleviate this issue, inspired
by recent advances of self-supervised learning (SSL) on computer vision
and natural language processing, graph self-supervised learning methods
have been proposed and achieved remarkable performance by utilizing
unlabeled information. However, most existing graph SSL methods focus
on homogeneous graphs, ignoring the ubiquitous heterogeneity of real-
world graphs where nodes and edges are of multiple types. Therefore,
directly applying existing graph SSL methods to heterogeneous graphs
can not fully capture the rich semantics and their correlations in hetero-
geneous graphs. In light of this, we investigate self-supervised learning
on heterogeneous graphs and propose a novel model named Multi-View
Self-supervised heterogeneous graph Embedding (MVSE). By encoding
information from different views defined by meta-paths and optimizing
both intra-view and inter-view contrastive learning tasks, MVSE com-
prehensively utilizes unlabeled information and learns node embeddings.
Extensive experiments are conducted on various tasks to show the effec-
tiveness of the proposed framework.
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1 Introduction

With the proliferation of real-world interaction systems, graph mining has been
a popular topic with many real-world applications such as node classification,
graph classification, and recommendation. Due to the ubiquitous sparseness of
graphs and the deficiency of label supervision, it is vital to fully utilize the un-
labeled information on graphs. However, the current state-of-the-art algorithms,
which are mostly based on Graph Neural Networks (GNNs) [24, 36, 41], mainly
utilize unlabeled information by simply aggregating their features and cannot
thoroughly take advantage of the abundant unlabeled data [20]. Recently, aim-
ing to fully exploit the unlabeled information for GNNs, self-supervised learning
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(SSL) is naturally harnessed for providing additional supervision and achieves
impressive improvements on various graph learning tasks [27].

The existing graph SSL methods fall into two categories, generative and
contrastive [27]. However, they mainly focus on designing self-supervised tasks
on homogeneous graphs, overlooking the ubiquitous heterogeneity and rich se-
mantics in graphs. Unlike homogeneous graphs, a heterogeneous graph [34] is
composed of multiple types of nodes and edges. To illustrate, consider a bibliog-
raphy graph with its network schema shown in Figure 1 (a), where four types of
nodes: Author (A), Paper (P), Venue (V), and Term (T) along with three types
of edges: an author writes a paper, a paper is published in a venue, and a paper
contains a term.

To fully capture the rich heterogeneity and complex semantics inside hetero-
geneous graph data, we are motivated to study the problem of self-supervised
learning on heterogeneous graphs. However, this is a non-trivial task as there
are several challenges to be addressed. Above all, how to deal with the intrin-
sic heterogeneity of heterogeneous graphs? Different from homogeneous graphs,
heterogeneous graph contains rich semantics for each node. For example, in the
example bibliography graph mentioned above, we can introduce two meta-paths
APA and APVPA to capture the co-author and co-venue semantics respectively.
Therefore, how to design self-supervised tasks to fully capture the rich semantic
information is a critical yet challenging problem. What’s more, how to effec-
tively model the complex correlations between these different semantics? Previ-
ous works mainly focus on discriminating the heterogeneous context instances [3,
5, 2, 12], e.g. whether two authors have a co-author relationship, preserving the
intra-context proximity [43]. However, the complex correlations between these
contexts (inter-context), e.g. whether two authors with co-venue relationships
have co-author relationships, remain less explored. Modeling these interactions
not only encourages the embedding to preserve these interactions between se-
mantics, pushing the model to extract useful information and encode them in
node embeddings, but also alleviates the negative impact of the intrinsic sparse-
ness of heterogeneous graphs [49].

To address the challenges mentioned above, we study self-supervised learning
on heterogeneous graphs and focus on comprehensively encode the semantics and
their correlations into node embeddings. In particular, we propose a novel model
named Multi-View Self-supervised heterogeneous graph Embedding (MVSE).
MVSE firstly samples semantic subgraphs of different views defined by meta-
paths. Then, each semantic subgraph is encoded to its own semantic latent space
and further decoded to other semantic spaces to capture the semantic correla-
tions. Finally, the embeddings are optimized by a contrastive loss preserving
both intra-view, and inter-view interactions of semantic contexts. Our major
contributions are highlighted as follows:

– We propose a novel self-supervised heterogeneous graph embedding model,
in which some delicate designs, e.g., heterogeneous context encoding and
multi-view contrastive learning are proposed to comprehensively learn good
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heterogeneous graph embeddings. Our work is among the earliest works that
study self-supervised learning on heterogeneous graphs.

– While intra-semantic relationships are widely utilized, few works have at-
tempted to model the correlations between the semantics in heterogeneous
graphs. We design self-supervised learning tasks that preserve both intra-
and inter-semantic information in node embeddings.

– We conduct extensive experiments on three real-world datasets to validate
the effectiveness of MVSE compared with state-of-the-art methods. Through
parameter analysis and ablation study, we further demonstrate that though
often overlooked, preserving inter-view interactions is beneficial for hetero-
geneous graph embedding.

2 Related Work

2.1 Self-Supervised Learning on Graphs

To fully exploit the ample unlabeled information, self-supervised learning (SSL)
on graphs has become a promising research topic and achieved impressive im-
provements on various graph learning tasks [20]. Existing graph SSL methods
design generative or contrastive tasks [27] to better harness the unlabeled graph
data. On the one hand, generative graph SSL models learn graph embedding
by recovering graph structure and attributes. For example, VGAE [23] applies
GCN-based variational auto-encoder [22] to recover the adjacency matrix of the
graph by measuring node proximity. GraphRNN [44] uses a graph-level RNN
and reconstructs adjacency matrix iteratively. GPT-GNN adopts GCNs [24] to
reconstruct both graph structure and attribute information. On the other hand,
contrastive graph SSL models learn graph embedding by discriminating posi-
tive and negative samples generated from graphs. To illustrate, Context Pre-
diction and Attribute Mask [15] are proposed to preserve the structural and
attribute information. DGI [37] contrasts local (node) and global (graph) embed-
ding via mutual information maximization. MVGRL [8] contrasts embeddings
from first-order and high-order neighbors by maximizing mutual information.
GCC [32] performs subgraph instance discrimination across different graphs.
Though graph SSL works have achieved significant performance improvements,
most of the existing Graph SSL works focus on homogeneous graphs and can
not address the complex semantics of heterogeneous graphs.

2.2 Heterogeneous Graph Embedding

Our work is also related to heterogeneous graph embedding (HGE), which en-
codes nodes in a graph to low-dimensional representations while effectively pre-
serving the heterogeneous graph structure. HGE methods can be roughly di-
vided into three categories [43]: proximity-preserving methods, relation learning
methods, and message passing methods. The proximity-preserving HGE meth-
ods [3, 47, 18, 47, 10] are mostly random walk [31] based and optimized by (het-
erogeneous) skip-gram. The relation-learning HGE methods [1, 26, 40, 35, 42, 28]



4 J. Zhao et al.

construct head, tail, and relation triplets and optimize embedding by a relation-
specific scoring function that evaluates an arbitrary triplet and outputs a scalar
to measure the acceptability of this triplet. Recently, with the proliferation of
graph neural networks [24, 36, 7], message-passing HGE methods are brought for-
ward and have achieved remarkable improvements on series of applications [38,
14, 25, 13, 4, 38]. These message-passing HGEs learn graph embedding by aggre-
gating and transforming the embeddings of the original neighbors [46, 14, 17, 48,
11] or metapath-based neighbors [39, 45, 6].

Nevertheless, most of the existing HGE methods follow a unified frame-
work [43] which learns embedding by minimizing the distance between the node
embeddings of target node and its context nodes, preserving the heterogeneous
semantics. However, the underlying rich correlations [49] between these rich se-
mantics are seldom discussed and explored.

3 The Proposed Model

3.1 Model Framework

Consider a heterogeneous graph G = (V, E ,X) composed of a node set V, an edge
set E , and a feature matrix X ∈ R|V|×dF (dF : feature dimension) along with the
node type mapping function φ : V → A, and the edge type mapping function
ψ : E → R, where A and R denotes the node and edge types, and |A|+ |R| > 2.
The task of heterogeneous graph embedding is to learn the representation of
nodes Z ∈ R|V|×d, where d is the dimension of representation.

The key idea of MVSE is to capture the rich heterogeneous semantics and
their correlations by self-supervised contrastive learning. As shown in Figure 1
(c), given a node in heterogeneous graph, MVSE firstly samples several metapath-
based semantic subgraphs and encodes them to its semantic space by semantic-
specific encoders. Then, the semantic embeddings are further decoded to other
semantic spaces to model the correlations between different semantics. Finally,
the semantic embeddings and the decoded embeddings are optimized by intra-
view, and inter-view contrastive learning losses.

3.2 Heterogeneous Context Encoding

A node in heterogeneous graph is associated with rich semantic information de-
fined by meta-paths, providing different views of node property. Therefore, it is
vital to encode the metapath-based neighbor information into node embeddings.
Inspired by the recent advances of contrastive learning [8, 32], we propose het-
erogeneous subgraph instance discrimination as our self-supervised contrastive
learning task. In this section, we elaborate how MVSE constructs multi-view
heterogeneous subgraphs and encodes them as heterogeneous context embed-
dings.
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Fig. 1. (a) The network schema of an example bibliography heterogeneous graph with
four types of nodes: Author (A), Paper (P), Venue (V), and Term/keyword (T) along
with three types of edges: an author writes a paper, a paper is published in a venue, and
a paper contains a term. (b) The template meta-paths (views of semantics) APVPA,
APA, APTPA. (c) The model framework of the proposed model MVSE.

Semantic Subgraph Sampling. Given a node vi in heterogeneous graph G
and a meta-path set P, MVSE samples a subgraph instance set SPi = {SP

i , P ∈
P} and further encodes them to semantic embeddings. In the homogeneous
graph, an effective way of generating subgraph instances for contrastive learning
is to apply RWR (random walk with restart), by iteratively generating subgraph
structure via random walk with a restart probability γ [32]. Therefore, a straight-
forward idea to construct heterogeneous subgraph instances would be applying
meta-path constrained RWR.

However, this straightforward extension can not well preserve the metapath-
based context for heterogeneous graphs due to the intrinsic lack of high-order
neighbors preservation of RWR. Specifically, each random walk trace is a Bernoulli
trial with probability (1− γ)k sampling k-hop neighbors. Therefore, the number
of time ns that k-hop neighbors is sampled after nRW number of restart time,
is a binomial distribution:

P (ns|k, nRW ) ∼ B(nRW , (1− γ)k), (1)

Hence, we can obtain that the expectation of number of times that k-hop neigh-
bors are sampled a subgraph sampled by RWR :

E(ns|k, nRW ) = nRW (1− γ)k, (2)

which decreases exponentially when k increases, harming the high-order preser-
vation. Specifically, with the recommended setting [32, 33], i.e. γ = 0.8, the
probability of at least one 4-hop neighbor (which is the maximum depth of com-
monly used meta-paths e.g. APVPA, APTPA) is sampled in subgraphs within
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20 trials is approximately 0.0315. In other words, the RWR sampled subgraph
instances are composed of mostly low-order neighbors, harming the high-order
semantics of meta-paths.

To address this issue, we instead propose to sample meta-path constrained
subgraphs by a fixed-depth random walk subgraph sampling approach. Specifi-
cally, given a center node vi and a meta-path P , MVSE samples a subgraph with
the probability proportional to the edge weight of meta-path constrained rela-
tion for each walk. The walk stops when it reaches the maximum depth kP . The
overall subgraph SP

i is constructed from all the nodes sampled in nRW walks.
Since the walks are of fixed length, it is guaranteed to preserve at least one
kP -hop neighbor in each semantic subgraph. Moreover, by adjusting the depth
of subgraph via specifying kP , users are able to control the receptive field of
semantic relationships. To illustrate, the semantic subgraphs of meta-path APA
with kAPA = 4 will preserve the “co-authors’ co-author” semantic for an author.

Subgraph Context Encoding Here we introduce how to encode the semantic
subgraphs to obtain a semantic embedding for each node. Specifically, given a
node vi and the sampled semantic subgraph set SPi = {SP

i , P ∈ P}, the task is
to encode subgraphs into multi-view embeddings Hi = {hP

i ∈ R1×ds , P ∈ P},
where ds stands for the hidden dimension of subgraph embeddings.

To fully capture the heterogeneity of different semantics [2, 28], we propose
to use a semantic-specific encoder for each meta-path. Therefore, the semantic
embedding of node vi in the view of meta-path P denoted as hP

i is obtained by:

hP
i = fP (SP

i ), (3)

where fP (·) stands for the semantic-specific encoder for meta-path P . The choice
of encoder can be any graph neural networks [24]. We adopt the Graph Isomor-
phism Network (GIN) [41] as the graph encoder. Hence, the semantic embedding
is calculated by:

hP
i = CONCAT

(
SUM(

{
hP,(l)
v | v ∈ SP

i

}
) | l = 0, 1, . . . , L

)
,

hP,(l)
v = MLPP,(l)

(1 + ε) · hP,(l−1)
v +

∑
u∈NP

i (v)

hP,(l−1)
u

 ,
(4)

where MLPP,(l) stands for the semantic-specific encoder for meta-path P at l-th

layer, NP
i (v) stands for the neighbors of node v in SP

i , h
P,(l)
v is the l-th layer

node representation of node v in semantic subgraph SP
i , and the input is set as

the node feature, i.e. h
P,(0)
v = xv, ε is a fixed scalar.

3.3 Multi-view Contrastive Learning

At this point, we have obtained multi-view embeddings Hi of each node vi.
Here, we elaborate how to perform self-supervised contrastive learning on these
embeddings to comprehensively learn the heterogeneous semantics and their cor-
relations.
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Preservation of Semantic Contexts We utilize MoCo [9] as the contrastive
learning framework where a query node and a set of key nodes are contrasted in
each epoch. MoCo maintains a dynamic dictionary of keys (nodes) and encodes
the new keys on-the-fly by a momentum-updated encoder. In each epoch of
MVSE, a query node is contrasted with K nodes, where K is the size of the
dynamic dictionary. Here, as each node is encoded as multi-view embeddings
Hi = {hP

i ∈ R1×ds , P ∈ P}, we perform multi-view contrastive learning on
each view separately by the InfoNCE [30] loss, preserving the intra-semantic
information:

Lintra =
1

|P|
∑
P∈P
− log

exp
(
hP
q · hP

k+/τ
)

∑K
j=0 exp

(
hP
q · hP

kj
/τ
) , (5)

where hP
q is the query node’s semantic embedding of metapath P calculated

by Equation 3, hP
k stands for the key node’s semantic embedding encoded by

momentum encoders [9], k+ stands for the positive key in the dictionary, τ is
the temperature hyper-parameter. Thus, by minimizing Lintra, MVSE is able to
distinguish subgraph instances of different nodes using each meta-path in P.

Preservation of Semantic Correlations As discussed in the Introduction,
most existing HGE methods focus on discriminating the heterogeneous context
instances, e.g. whether two authors have a co-author relationship, preserving
the intra-context relationships. However, few works have explored the complex
interactions (inter-context) [49] between these contexts, e.g. whether two authors
with co-venue relationships have co-author relationships.

In light of this, we propose to explicitly capture these correlations by inter-
view contrastive learning. Specifically, for each semantic embedding hP

i of node
vi of meta-path P , we model the correlations between semantics by decoding
them to other semantic embeddings:

ĥs,t
i = gs,t(hPs

i ) (6)

where gs,t(·) stands for the decoder that decodes the semantic embedding from
source view Ps to target view Pt. ĥs,t

i stands for the semantic embedding of
target view Ps decoded from source view Pt. In this way, the correlation between
source view and target view is preserved. For example, if we set source view as
APVPA and target view as APA, the decoder attempts to predict the co-author
relationships using the co-venue relationships, modeling the interactions between
these two semantics. Hence, the complex correlations between semantics can be
well preserved by the inter-view contrastive loss defined as follows:

Linter =
1

|P| ∗ (|P| − 1)

∑
Ps,Pt∈P,s 6=t

− log
exp

(
ĥs,t
i · hPt

k+/τ
)

∑K
j=0 exp

(
ĥs,t
i · hPt

kj
/τ
) , (7)

Finally, MVSE optimizes the overall loss L to comprehensively learn represen-
tations considering both the intra-view and inter-view semantics:
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L = αLintra + (1− α)Linter (8)

where α is the hyper-parameter for balancing different loss functions.

4 Experiment

To demonstrate the effectiveness of our proposed model, we conduct comprehen-
sive experiments on three public benchmark heterogeneous graph datasets. We
firstly evaluate our model on two downstream tasks (node classification and link
prediction). Then, we perform ablation study to further demonstrate the effec-
tiveness of the designs in MVSE. Visualization experiments are also conducted
to show the effectiveness of our model intuitively.

4.1 Experimental Setup

Datasets. We employ the following real-world heterogeneous graph datasets to
evaluate our proposed model.
DBLP [28]: We extract a subset of DBLP which includes 4,057 authors (A),
20 conferences (C), 14,328 papers (P) and four types of edges (AP, PA, CP,
and PC). The target nodes are authors and they are divided into four areas:
database, data mining, machine learning, and information retrieval. The node
features are the terms related to authors, conferences and papers respectively.
ACM [45]: We extract papers published in KDD, SIGMOD, SIGCOMM, Mobi-
COMM, and VLDB and construct a heterogeneous graph which includes 5,912
authors (A), 3,025 papers (P), 57 conference subjects (S) and four types of edges
(AP, PA, SP, and PS). The target nodes are papers and they are divided into
three classes according to their conferences: database, data mining, and wireless
communication. The node features are the terms related to authors, papers and
subjects respectively.
IMDB [39]: We extract a subset of IMDB which includes 4,461 movies (M),
2,270 actors (A), 5,841 directors (D), and four types of edges (AM, MA, DM,
and MD). The target nodes are movies labeled by genre (action, comedy, and
drama). The movie features are bag-of-words representation of plot keywords.
Baselines. To comprehensively evaluate our model, we compare MVSE with ten
graph embedding methods. Based on their working mechanisms, these baselines
can be divided into three categories: The unsupervised representation learning
methods, i.e.DeepWalk [31], MP2Vec [3], DGI [37], and HeGAN [12]; the semi-
supervised representation learning methods, i.e. GCN [24], GIN [41], HAN [39],
and GTN [45], and the self-supervised learning methods, i.e. GCC [32] and GPT-
GNN [16]. For unsupervised baselines, the embeddings are learned without label
supervision and then fed into a logistic classifier to perform the downstream
tasks. The semi-supervised methods are optimized through an end-to-end su-
pervised manner, e.g. cross entropy loss in node classification tasks. The self-
supervised methods are firstly pre-trained to fully encode the unlabeled infor-
mation and then fine-tuned by labeled information via cross entropy loss in node
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classification.
Implementation Details. Here, we briefly introduce the experimental set-
tings. For MVSE, in each epoch, we construct semantic subgraphs by per-
forming 3 times of the meta-path constrained fixed-depth random walk (in
Section 3.2) with the maximum depth set as twice the depth of meta-path,
i.e. nRW = 3, kP = 2|P |, where |P | stands for the depth of meta-path P .
The decoders for modeling the semantic correlations are 2-layer MLPs. We use
Adam [21] optimizer with learning rate set as 0.005. The semantic embedding
dimension ds is set as 64, therefore the dimension d of final node embedding
Z is 64|P|. For MoCo-related settings, the dynamic dictionary size K is set as
4096 with τ = 0.07. For all GNN related models, we use 2-layer GCNs [24] with
weight decay set as 1e-5. The code and data to reproduce our results is publicly
available at Github3.

4.2 Node Classification

As a common graph application, node classification is widely used to evaluate
the performance of the graph embedding algorithms. Given a graph with some
labeled nodes, the task of node classification is to predict the labels of unlabeled
nodes. Here, we evaluate the performance of node classification on the three
datasets mentioned above in this section. For each dataset, the percentage of
training labeled nodes are set as 1%, 3%, and 5%, and the rest of the labeled
nodes are used as test nodes. We adopt Macro-F1 and Micro-F1 as metrics and
report the node classification performance on the test set. The results (in percent-
age) of the three datasets are shown in Table 1, Table 2 and Table 3, respectively,
from which we have the following observations: (1) By comprehensively preserv-
ing the rich semantics and their correlations inside heterogeneous graphs, our
proposed MVSE outperforms other baselines, demonstrating the effectiveness
of our proposed model. (2) Most self-supervised learning models (MVSE and
GPT-GNN) generally achieve better performance than other baselines, since
the pre-training of self-supervised tasks extract robust embedding with rich se-
mantics and structural information and provide a better initialization for the
fine-tuning process. The performance improvement is more significant when the
ratio of labeled information is low. (3) Since the node features are of vital im-
portance in node classification tasks, GNN-based models generally outperform
the random walk-based models due to their ability to utilize node features.

4.3 Link Prediction

The objective of link prediction is to predict unobserved edges using the observed
graph. To evaluate the effectiveness of semantic preservation, we use metapath-
based link prediction task [19] on three datasets and evaluate the metapath-based
link prediction performance on 2-hop symmetric meta-paths. Specifically, in each
task, the meta-path instances are firstly randomly splitted as training and test

3 https://github.com/Andy-Border/MVSE
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Models
DBLP (1%) DBLP (3%) DBLP (5%)

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN [24] 72.63 70.86 79.36 78.22 82.08 81.17
GIN [41] 71.22 67.26 88.23 88.28 88.31 88.32
HAN [39] 85.65 85.24 89.42 88.83 89.72 89.36
GTN [45] 85.99 85.45 88.66 88.13 89.73 89.37
DeepWalk [31] 86.58 87.31 87.48 87.95 87.72 88.34
DGI [37] 87.73 86.44 90.01 89.33 91.22 89.57
MP2Vec [3] 86.33 85.87 88.16 87.82 88.91 88.63
HeGAN [12] 79.12 77.73 81.66 80.25 83.78 82.44
GPT GNN [16] 86.61 86.33 90.62 89.26 90.91 89.43
GCC [32] 78.92 77.94 81.78 81.11 82.67 81.89

MVSE 90.46 89.27 91.57 90.97 91.96 89.83
Table 1. Performance of node classification experiment on DBLP dataset in percentage
(Micro-F1 and Macro-F1), MVSE outperforms the baselines in all the settings.

Models
ACM (1%) ACM (3%) ACM (5%)

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN [24] 85.78 85.87 88.97 89.01 89.55 89.62
GIN [41] 78.40 77.99 84.62 84.69 87.09 87.17
HAN [39] 85.77 85.92 87.41 87.62 88.37 88.58
GTN [45] 80.08 79.54 84.56 84.16 88.71 88.24
DeepWalk [31] 79.02 79.28 80.75 81.03 80.15 80.57
DGI [37] 84.99 85.21 88.93 89.06 89.36 89.50
MP2Vec [3] 80.74 80.36 82.42 81.87 82.63 82.12
HeGAN [12] 78.23 78.67 80.84 81.35 81.95 82.52
GPT GNN [16] 84.62 84.86 88.90 89.22 89.27 89.54
GCC [32] 80.14 78.84 83.91 82.35 84.72 83.17

MVSE 86.14 86.17 89.43 89.44 89.74 89.64
Table 2. Performance of node classification experiment on ACM dataset in percentage
(Micro-F1 and Macro-F1), MVSE outperforms the baselines in all the settings.

set with 1:1 ratio. Then, the self-supervised/unsupervised models are applied
to learn the node representations. Finally, the embeddings are fed to logistic
regression classifiers and predict whether the test edges exist by training edges.
We use F1 and AUC-ROC as our evaluation metrics, the results in percentage
are shown in Table 4, from which we have the following observations: (1) MVSE
consistently outperforms other baselines on all the metapath-based link predic-
tion tasks. The reason is that MVSE is able to capture the correlations between
meta-paths, thus alleviates the impact of intrinsic sparseness in graphs [49], e.g.
APA link prediction can be enhanced by APCPA relationship, and further im-
prove the link prediction performance. (2) Models that consider heterogeneity
show better performance than their counterparts since they are able to extract
the rich semantic contexts from the different meta-paths.
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Models
IMDB (1%) IMDB (3%) IMDB (5%)

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN [24] 51.71 42.76 55.06 45.88 58.05 50.69
GIN [41] 48.87 43.24 53.70 48.38 58.03 53.42
HAN [39] 50.76 43.47 52.87 48.46 56.43 51.25
GTN [45] 51.66 45.87 57.83 49.31 59.49 53.58
DeepWalk [31] 53.92 49.34 54.44 49.85 54.48 49.88
DGI [37] 53.02 44.61 56.62 48.29 57.93 50.15
MP2Vec [3] 54.50 49.82 55.10 50.34 56.97 52.79
HeGAN [12] 47.70 41.47 49.98 44.29 51.04 46.46
GPT GNN [16] 55.17 48.30 58.78 52.69 61.24 56.74
GCC [32] 52.33 47.29 53.68 48.82 53.85 49.08

MVSE 55.61 44.25 60.15 53.95 63.32 58.42
Table 3. Performance of node classification experiment on IMDB dataset in percentage
(Micro-F1 and Macro-F1), MVSE outperforms the baselines in most of the settings.

Models
DBLP (APA) ACM (PAP) ACM (PSP) IMDB (MAM) IMDB (MDM)

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

DeepWalk [31] 79.08 77.72 72.99 72.73 78.65 69.85 72.62 75.37 59.16 60.37
DGI [37] 80.59 81.28 73.31 72.41 84.87 74.4 70.13 69.54 61.37 59.24
MP2Vec [3] 81.64 80.66 75.64 74.82 82.88 75.16 82.55 81.06 64.39 63.78
HeGAN [12] 80.75 80.26 78.67 78.51 81.25 71.02 80.27 80.11 67.75 68.13
GPT-GNN [16] 86.84 86.02 80.94 80.55 86.31 78.25 91.88 91.31 68.54 68.12
GCC [32] 79.15 78.63 73.62 72.98 74.22 68.17 81.63 82.37 64.71 63.85

MVSE 88.09 87.92 81.18 80.73 87.72 79.22 98.25 98.23 69.51 69.54
Table 4. Performance of link prediction experiment on different datasets and meta-
paths in percentage (Micro-F1 and ROC-AUC), MVSE outperforms the baselines on
all the datasets and meta-paths.

4.4 Ablation Study

In order to verify the effectiveness of the delicate designs in MVSE, we design
five variants of MVSE and compare their node classification performance against
MVSE on three datasets. The results in terms of Micro-F1 are shown in Figure
2 (a), Figure 2 (b) and Figure 2 (c), respectively.

Effectiveness of Heterogeneous Context Encoders. As discussed in
Section 3.2, to capture the intrinsic heterogeneity [2, 28] in different metapath-
based semantics, MVSE use semantic-specific encoders to embed the contexts
of different meta-paths. To verify the effectiveness of semantic specific encoders,
we propose a variant of MVSE which uses metapath-shared encoders, namely
MVSE-MP-Shared. The results in Figure 2 show MVSE outperforms the vari-
ant on the three datasets since MVSE-MP-Shared ignores the heterogeneity of
semantics by modeling them using an unified (homogeneous) model. This phe-
nomenon further demonstrates the importance of considering heterogeneity in
heterogeneous graph contrastive learning.
Effectiveness of Multi-View Contrastive Learning. As discussed in Section
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Fig. 2. Performance of MVSE variants on different datasets (Micro-F1), MVSE out-
performs the variants over all the datasets and settings. MVSE-Inter-Only has better
performance than other variants, which demonstrates the importance of preserving
semantic correlations.

3.3, MVSE comprehensively learns the heterogeneous semantics and their cor-
relations by intra-view and inter-view contrastive learning tasks. To investigate
the effects of these contrastive learning tasks, we propose two variants of MVSE
which only consider intra-view (MVSE-Intra-Only) and inter-view (MVSE-Inter-
Only) respectively and evaluate their node classification performance. From the
results shown in Figure 2, we can find that MVSE beats all variants on ev-
ery task, which indicates the effectiveness of performing multi-view contrastive
learning by optimizing both intra- and inter-semantic SSL tasks. Besides, the
phenomenon that MVSE-Inter-Only outperforms the other two variants further
demonstrates the importance of preserving semantic correlations.
Effectiveness of Unlabeled Data Utilization. To investigate the ability of
utilizing unlabeled information, we propose MVSE-Finetune-Only which skips
the pre-training process and trains the model from scratch. As shown in Figure 2,
MVSE consistently outperforms this variant in all tasks since MVSE-Finetune-
Only cannot fully utilize the unlabeled information by optimizing objective that
considers labeled information only [20]. The self-supervised pre-training strat-
egy provides a better start point than the random initialization and further
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improves the classification performance. In addition, the performance improve-
ment of MVSE over MVSE-Finetune-Only is generally more significant when
the percentage of labeled nodes is low, demonstrating the superiority of SSL in
tasks with little label supervision.

(a) DeepWalk (b) MP2Vec

(c) GCC (d) MVSE

Fig. 3. Node embedding visualization of different methods on DBLP dataset. Each
point indicates one author and its color indicates the research area. MVSE has least
overlapping area and largest cluster-wise distance.

4.5 Visualization

To examine the graph representation intuitively, we visualize embeddings of au-
thor nodes in DBLP using the t-SNE [29] algorithm. Here, we choose DeepWalk,
MP2Vec, and GCC as the representatives of homogeneous embedding, heteroge-
neous embedding, and self-supervised based embedding methods, respectively.
The visualization results are shown in Figure 3, from which we can find that
although all of the baselines can roughly embed the authors with same research
fields into same clusters, the heterogeneous models generate more distinct bound-
aries and less overlapping area between clusters. What’s more, among all of the
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unsupervised graph learning algorithms, MVSE generates embeddings with the
largest cluster-wise distance, indicating better embeddings are learned.

5 Conclusion

In this paper, we study self-supervised learning on heterogeneous graphs and
propose a novel model named MVSE. MVSE samples and encodes semantic
subgraphs of different views defined by meta-paths and captures the intra- and
inter-view semantic information comprehensively by contrastive self-supervised
learning. Our extensive experiments demonstrate the effectiveness of our pro-
posed model and the necessity of preserving cross-view interactions for learning
heterogeneous graph embeddings.
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