
Model-Free Learning of Safe yet Effective Controllers

Alper Kamil Bozkurt, Yu Wang, and Miroslav Pajic

Abstract— We study the problem of learning safe control
policies that are also effective; i.e., maximizing the probability
of satisfying a linear temporal logic (LTL) specification of
a task, and the discounted reward capturing the (classic)
control performance. We consider unknown environments mod-
eled as Markov decision processes. We propose a model-free
reinforcement learning algorithm that learns a policy that
first maximizes the probability of ensuring safety, then the
probability of satisfying the given LTL specification and lastly,
the sum of discounted Quality of Control rewards. Finally, we
illustrate applicability of our RL-based approach.

I. INTRODUCTION

Many sequential decision making problems involve mul-
tiple objectives. For example, a robotic task might require
surveillance without hitting the walls while minimizing the
energy consumption. Quality of Control (QoC) can be of-
ten inherently expressed via scalar reward signals where
the overall performance of a control policy (i.e., QoC)
is measured by the sum of discounted collected rewards
(returns) [1]. Although these return maximization objectives
are convenient for learning policies, the rewards may not be
readily available and crafting them may not be trivial.

Alternatively, the high-level control objectives can be for-
mulated using linear temporal logic (LTL) [2]. LTL provides
a high-level intuitive language to formally specify desired
behaviors of a control task. For a given LTL specification,
the objective can be described as finding a policy maximizing
the probability that the specification is satisfied. Synthesis of
such policies directly from LTL specifications has attracted
significant interest (e.g., [3], [4]). Although LTL specifica-
tions can naturally express many characteristics of interest
such as safety, sequencing, conditioning, persistence and
liveness; optimization of a quantitative performance measure
usually cannot be captured by an LTL specification.

Consequently, in this work, we focus on control design
problems where the objectives include satisfaction of de-
sired properties expressed as LTL specifications as well as
maximization of performance criteria represented by QoC
rewards. In our problem setting, the LTL objectives are prior-
itized above the QoC objectives. In addition, we separate the
safety specifications from the rest of the LTL specification as
ensuring control safety is usually of the utmost importance.

The control design problem in stochastic environments has
been widely studied for multiple return objectives (e.g., [5]
and references therein), as well as for safety and LTL speci-
fications [6]–[9]. Similarly, shielding-like approaches, which

This work is sponsored in part by the ONR under agreements N00014-17-
1-2504, N00014-20-1-2745 and N00014-18-1-2374, AFOSR award number
FA9550-19-1-0169, and the NSF CNS-1652544 grant.

Alper Kamil Bozkurt, Yu Wang, and Miroslav Pajic are with
Duke University, Durham, NC 27708, USA, {alper.bozkurt,
yu.wang094, miroslav.pajic}@duke.edu

prioritize the safety objectives above the QoC objectives,
have been introduced (e.g., [10], [11]). These approaches
require some partial knowledge such as a topology or an
abstraction of the environment to determine unsafe actions
to be eliminated or overridden. This allows for the use of
reinforcement learning (RL) algorithms to learn an optimal
policy subject to the safety constraints. Unfortunately, when
the environment is completely unknown, these synthesis or
shielding approaches cannot be directly used.

Recently, there has been a considerable interest in the
use of RL algorithms to learn policies for LTL objectives
(e.g. [12]–[15]). However, only few RL algorithms for multi-
objectives with LTL specifications have been proposed for
unknown environments. Studies [16], [17] considered time-
bounded LTL specifications; [18] proposed a model-based
RL method that, under some assumptions about the environ-
ment, converges to a near optimal policy for an average QoC
reward objective subject to the specifications; [19] introduced
a model-free RL approach for multiple LTL objectives, max-
imizing the weighted sum of the satisfaction probabilities.

In this work, we introduce an RL algorithm for safety, LTL
and QoC objectives with a lexicographic order where the
safety objectives have the highest priority, while the LTL ob-
jectives have higher priority than the QoC-return objectives.
As we demonstrate in a case study, it is crucial to consider
the satisfaction of safety and LTL specifications as separate
objectives with different priorities rather than the satisfaction
of a single combined LTL specification because such ap-
proach might result in a policy under which the probability of
satisfying the safety specification is significantly reduced. We
show that our algorithm converges to a policy maximizing
the probability that the LTL specification is satisfied under
the constraint that the probability of satisfying the safety
specification is maximized. Furthermore, the derived policy
is near-optimal in terms of QoC returns that can be obtained
while having these maximum satisfaction probabilities. Our
method is completely model-free and does not rely on any
assumptions about the environment and the specifications.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Markov Decision Processes
We consider the stochastic environments modeled as

Markov decision processes (MDPs).

Definition 1. A (labeled) MDP is a tuple M=(S, s0, A, P,
R, γ,AP, L) where S is a finite set of states; s0 is the initial
state; A is a finite set of actions and A(s) denotes the set of
actions allowed in a state s; P : S×A×S 7→ [0, 1] is a prob-
abilistic transition function such that

∑
s′∈S P (s, a, s′) = 1

if a ∈ A(s), and 0 otherwise; R : S 7→ R is a reward
function; γ ∈ [0, 1) is a discount factor; AP is a finite set of
atomic propositions; and L : S 7→ 2AP is a labeling function.

In a state s, the controller takes an action a ∈ A(s)
and makes a transition to a state s′ with probability (w.p.)
P (s, a, s′), receiving a reward of R(s′) indicating the QoC,
and a label L(s′) ⊆ AP , a set of state properties. The actions
to be taken by the controller are determined by a policy. In
this study, we are interested in policies with limited memory.

Definition 2. A finite-memory policy for an MDP M is a
tuple π = (M,m0, T,A) where M is a finite set of modes
(memory states); m0 is the initial mode; T : M × S ×
M 7→ [0, 1] is a probabilistic transition function such that
T (m, s,m′) is the probability that the policy switches to the
mode m′ after visiting the state s while operating in the
mode m; A : M × S ×A 7→ [0, 1] is a function that maps a
given mode m ∈M and a state s ∈ S to the probability that
a is taken in s when the current mode is m. A finite-memory
strategy is called pure memoryless if there is only one mode
(|M | = 1) and A(m0, s, a) is a point distribution assigning
a probability of 1 to a single action in all states s ∈ S.

Under a finite-memory policy, the action to be taken not
only depends on the current state but also the current mode.
After each transition, the policy may change its mode based
on the visited state. The infinite sequence of states visited
during an execution of the policy is called a path, denoted by
ρ = s0s1 . . . , where st is the state visited at time step t. For
a given path ρ, we use ρ[t] and ρ[t:] to denote the state st and
the suffix stst+1..., respectively. The paths can be considered
as sample sequences drawn from the Markov chain (MC),
denoted by Mπ , induced by the followed policy π in an
MDPM; the state space of the induced MC is composed of
the S and M , and the transitions are governed by P , T and
A. We use Mπ to denote the induced MC and ρ ∼ Mπ to
denote a path randomly sampled from Mπ .

The QoC return of a path ρ, denoted by G(ρ), is the sum
of discounted QoC rewards collected on the path ρ – i.e.,

G(ρ) :=
∑∞

t=0
γtR(ρ[t]); (1)

the QoC return objective is to find a policy under which
the expected QoC return of a path is maximized. When the
reward and the probabilistic transition functions are unknown
the optimal policies can be obtained using RL methods [1].

B. Linear Temporal Logic
We adopt LTL to specify the desired properties of a control

policy. LTL specifications can be formed according to the
following grammar:
ϕ := true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2, a ∈ AP. (2)

The semantics of an LTL formula ϕ are defined over paths.
A path ρ either satisfies ϕ, denoted by ρ |= ϕ, or not (ρ 6|= ϕ).
The satisfaction relation is recursively defined as follows:
ρ |= ϕ if ϕ = a and L(ρ[0]) = a; if ϕ = ϕ1 ∧ ϕ2, ρ |= ϕ1

and ρ |= ϕ2; if ϕ = ¬ϕ′ and ρ 6|= ϕ′; if ϕ = ©ϕ′ (next
ϕ′) and ρ[1:] |= ϕ′; if ϕ = ϕ1Uϕ2 (ϕ1 until ϕ2) and there
exists t ≥ 0 such that ρ[t:] |= ϕ2 and for all 0 ≤ i < t,
ρ[i:] |= ϕ1. The Boolean operators or (∨) and implies (→)
can be easily obtained via: ϕ1∨ϕ2 := ¬(¬ϕ1∧¬ϕ2), ϕ1 →
ϕ2 := ¬ϕ1 ∨ ϕ2. In addition, we can derive the commonly
used temporal operators eventually (♦) and always (�) using:
♦ϕ := true U ϕ, and �ϕ := ¬(♦¬ϕ).

For an LTL formula, a limit-deterministic Büchi automa-
ton (LDBA) that only accepts the paths satisfying the formula
can be automatically constructed [20].

Definition 3. An LDBA of an LTL formula ϕ is a tuple
A = (Q, q0,Σ, δ, B) where Q is a finite set of automata
states, q0 ∈ Q is an initial state, Σ is a finite alphabet,
δ : Q× (Σ∪{ε}) 7→ 2Q is a transition function, and B ⊆ Q
is a set of accepting states. The set δ(q, θ) is singleton (i.e.,
|δ(q, θ)| = 1) for all q ∈ Q and θ ∈ Σ. The set Q can
be partitioned into an initial and an accepting component,
namely QI and QA, such that all the accepting states are in
QA (i.e., B ⊆ QA), and QA does not have any ε or outgoing
transitions; i.e., for any q ∈ QA,

δ(q, θ) ⊆

{
∅ if θ = ε,

QA if θ ∈ Σ.
(3)

A path ρ in an MDP M is accepted if there is an execution
σ = q0q1 . . . such that qt+1 ∈ δ(qt, L(ρ[t])) ∪ δ(qt, ε) for
all t ≥ 0 and Inf(σ)∩B 6= ∅, where Inf(σ) denotes the set
of automata states visited by σ infinitely many times.

We write Aϕ to denote an LDBA constructed by an LTL
formula ϕ. All the accepting states of an LDBA Aϕ are
in the accepting component and ϕ is satisfied by a path
if and only if the labels of states on the path trigger an
execution that visits some of these accepting states infinitely
often. The only nondeterministic transitions in an LDBA
are the outgoing ε-transitions from the states in the initial
component QI . When an LDBA consumes the label of a
state L(s), it deterministically transitions from its current
state q to the state in the singleton set δ(q, L(s)) if δ(q, ε) is
empty. Once the accepting component QA is reached, it is
not possible to make a nondeterministic transition. LDBAs
can be constructed in a way that any ε-transition leads to a
state in the accepting component, allowing for at most one ε-
transition in an execution. These LDBAs are called suitable,
as they facilitate quantitative model-checking of MDPs [20],
and we henceforth assume that any given LDBA is suitable.

Safety LTL is an important fragment of LTL, which can be
used to specify the properties ensuring “something bad never
happens”. For instance, any LTL formula in a positive normal
form without any temporal modalities other than © and �
is a safety formula [21]. Safety formulas can be translated
into simpler automata where the transitions are deterministic
and all non-accepting automata states are absorbing, meaning
visiting a non-accepting automata state results in rejection.
We refer these automata as safety automata [21].

C. Problem Formulation

In this work, we focus on RL for three lexicographically
ordered objectives: safety (primary), LTL (secondary) and
QoC (tertiary). In our problem setting, the safety constraints
are specified as an LTL safety formula and meeting these
constraints is of highest priority. The other desired temporal
properties are expressed as a general LTL formula and we
are interested in policies satisfying the LTL formula with the
highest probability. Finally, among such policies we want to
learn the ones maximizing the expected QoC return. Hence,
we formally state our problem as follows.

s0
{},+1 β1

β2

s1
{b},0

β3

Fig. 1: An example deterministic MDP. The circles represent the
states and the arrows represent the actions. The labels and QoC
rewards of the states s0 and s1 are {},+1 and {b}, 0 respectively.

Problem 1. For a given MDP M where the transition
probabilities P and the rewards R are unknown, a safety
specification ψ and an LTL specification ϕ, design a model-
free RL algorithm that learns a policy πRψ,ϕ ∈ ΠR

ψ,ϕ where

ΠR
ψ,ϕ := argmax

π∈Πψ,ϕ

Eρ∼Mπ
[G(ρ)] , (4)

Πψ,ϕ := argmax
π∈Πψ

Prρ∼Mπ
{ρ | ρ |= ϕ} , (5)

Πψ := argmax
π∈Π

Prρ∼Mπ
{ρ | ρ |= ψ} , (6)

and Π denotes the set of all finite-memory policies.

Intuitively, our objective is to learn a lexicographically
optimal policy πRψ,ϕ that first maximizes the probability of
ensuring the safety, then the probability of satisfying the LTL
specification and lastly, the sum of discounted QoC rewards.
However, such optimal policies might not always exist as
illustrated in the following example.

Example 1. Consider the MDP from Fig. 1 where the LTL
specification ϕ is �♦b and there is no safety specification
(i.e., ψ = true). The policy π∗ choosing β2 in s0 maximizes
the QoC return. Now, let πRψ,ϕ be a policy in the set ΠR

ψ,ϕ

defined in (4). The expected value of the QoC return obtained
under πRψ,ϕ is strictly less than the one obtained under π∗

because β1 needs to be eventually taken by π∗ϕ to satisfy ϕ,
which leads to a reward of zero. Thus, a policy that randomly
follows either π∗ or πRψ,ϕ in s0 increases the expected QoC
return; the more often β2 is chosen, the higher QoC return is
obtained. In addition, such a mixed policy satisfies ϕ as well,
because the mixed policy takes β1 in s1 with some positive
probability due to πRψ,ϕ. As a result, we obtain a policy better
than πRψ,ϕ, which leads to a contradiction.

Consequently, we consider near-optimality for the QoC
objective. Specifically, for a given ν>0, a policy πRνψ,ϕ is
called ν-optimal if it belongs to the set ΠRν

ψ,ϕ defined as

ΠRν
ψ,ϕ :=

{
π ∈ Πψ,ϕ

∣∣ vRψ,ϕ − Eρ∼Mπ [G(ρ)] ≤ ν
}
, (7)

where vRψ,ϕ := supπ∈Πψ,ϕ
Eρ∼Mπ

[G(ρ)]. We note that the
supremum exists as we assume the rewards are bounded.

III. MODEL-FREE RL FOR LEXICOGRAPHIC SAFETY,
LTL AND QOC OBJECTIVES

In this section, we introduce our model-free RL algorithm
that learns lexicographically near-optimal policies defined
in (7). Our algorithm first constructs a product MDP by
composing the initial MDP with the automata of the given
safety and LTL specifications, where the satisfaction of these
specifications is reduced into meeting the acceptance condi-
tions of the automata; it then uses the safety and the LTL
rewards crafted for the acceptance conditions as described

in [15] and the QoC rewards of the original MDP to learn
the policies via a model-free approach similar to [22].

A. Product MDP Construction
The first step in our approach is to construct a product

MDP of the given MDP and the automata derived from the
given safety and LTL specifications. The product MDP is
merely a representation of the synchronous execution of the
MDP and the automata. Thus, even if the transition graph
and probabilities of the MDPs are unknown, the product
MDP can be conceptually constructed; i.e., the resulting
probabilities, and the transition graph, will be unknown.

Definition 4. A product MDP of an MDP M, a safety
automaton Aψ , and an LDBA Aϕ is a tuple M× =
(S×, s×0 , A

×, P×, R×, γ, B×ψ , B
×
ϕ) such that S× = S ×

Qψ × Qϕ is the set of product states; s×0 = 〈s0, q0ψ, q0ϕ〉
is the initial product state; A× = A ∪ {εqϕ | qϕ ∈ Qϕ}
where A×(〈s, qψ, qϕ〉) denotes the set A(s) ∪ {εq′ϕ | q

′
ϕ ∈

δϕ(qϕ, ε)}; P× : S× × A× × S× 7→ [0, 1] is the transition
function such that P×(〈s, qψ, qϕ〉, a, 〈s′, q′ψ, q′ϕ〉) =
P (s, a, s′) if a∈A(s), q′ψ∈δψ(qψ, L(s)), q′ϕ∈δϕ(qϕ, L(s)),

1 if a=εq′ϕ , q
′
ϕ∈δϕ(qϕ, ε), q

′
ψ=qψ, s=s

′,

0 otherwise;
R× : S× 7→ R is the reward function such that
R×(〈s, qψ, qϕ〉) = R(s); γ is the discount factor; B×ψ =
S × Bψ × Qϕ is the set of accepting states for ψ; B×ϕ =
S ×Qψ ×Bϕ is the set of accepting states for ϕ.

Due to the ε-transitions in Aϕ, M× has ε-actions in
addition to the actions in M. Taking an ε-action εqϕ does
not cause an actual transition in M; it only makes Aϕ to
move to qϕ. A policy π× for M× induces a finite-memory
policy π for M where the automata states and transitions
act as the memory mechanism. The mode of the induced
policy π at any time step is represented by the joint state
〈qψ, qϕ〉 of the states that Aψ and Aϕ are in. When a state s
is visited, π switches its mode to 〈q′ψ, q′ϕ〉, where q′ψ and q′ϕ
are the automata states that Aψ and Aϕ transition to after
consuming L(s). The induced policy π then takes the action
that π× takes in 〈s, 〈q′ψ, q′ϕ〉〉.

A path ρ× inM× satisfies the safety condition, denoted by
ρ× |= �B×ψ , if ρ× only visits the product states in B×ψ . This
means that its induced path ρ in M is accepted by Aψ and
thereby satisfying the safety specification ψ. Similarly, if ρ×

visits some product states in B×ϕ infinitely many times, ρ×

satisfies the Büchi condition, denoted by ρ× |= �♦B×ϕ , and
its induced path ρ satisfies the LTL specification ϕ. Finally,
the QoC return of ρ×, denoted by G×(ρ×), is equivalent to
the QoC return of its induced path.

B. Lexicographically Optimal Policies for Product MDPs
Pure memoryless policies suffice for safety, Büchi [2], and

QoC objectives [1]. However, mixing might be necessary
to obtain a lexicographically near-optimal policy defined
in (7), as illustrated in Example 1. Hereafter, we focus on
memoryless, but possibly mixed, policies for the product
MDP as their induced policies in the original MDP suffice
for lexicographic near-optimality as stated in the lemma.

Lemma 1. For a given MDP M , a safety automaton Aψ ,
an LDBA Aϕ and their product MDPM×, let ΠRν×

ψ,ϕ , Π×ψ,ϕ
and Π×ψ be the sets of policies defined as follows:

ΠRν×
ψ,ϕ :=

{
π×∈Π×ψ,ϕ

∣∣vR×ψ,ϕ−Eρ×∼M×
π×

[
G×(ρ×)

]
≤ ν

}
, (8)

Π×ψ,ϕ:= argmax
π×∈Π×ψ

Prρ×∼M×
π×

{
ρ× | ρ×|=�♦B×ϕ

}
, (9)

Π×ψ := argmax
π×∈Π×

Prρ×∼M×
π×

{
ρ× | ρ×|=�B×ψ

}
; (10)

here, Π× denotes the set of all memoryless policies forM×
and vR×ψ,ϕ := supπ×∈Π×ψ,ϕ

Eρ×∼M×
π×

[G×(ρ×)]. Then ΠRν×
ψ,ϕ is

non-empty and any policy in ΠRν×
ψ,ϕ induces a policy for M

belonging to the set ΠRν
ψ,ϕ defined in (7).

Before proving this lemma, we first introduce notation for
satisfaction probabilities. We write Prπ×(s× |= φ) for the
probability of satisfying φ after visiting s×; i.e.,

Prπ×(s× |= φ) := Prρ×
s×
∼M×

π×,s×

{
ρ×s× | ρ

×
s× |= φ

}
, (11)

where ρ×s× ∼ M
×
π×,s denotes the random path drawn from

the M×π×,s× , which is obtained from M×π× by changing
its initial state to s×. Similarly, we denote the satisfaction
probability after taking a× in s× by Prπ× ((s×, a×) |= φ),
which can be described as

Prπ×
(
(s×, a×)|=φ

)
:=
∑

s×′∈S×
P×(s×, a×, s×′)Prπ×(s×′|=φ), (12)

and we denote the maximum satisfaction probabilities by

Prmax

(
(s×, a×) |= φ

)
:= max

π×
Prπ×

(
(s×, a×) |= φ

)
. (13)

Proof. Let A×ψ (s×) denote the action set maximizing satis-
faction probabilities for the safety condition in s× defined as

A×ψ (s×) := argmax
a×∈A×(s×)

Prmax

(
(s×, a×) |= �B×ψ

)
. (14)

A policy π× maximizes the probability of satisfying the
safety condition (i.e., π×∈Π×ψ) if and only if it does not
choose an action a× 6∈A×ψ (s×) (this can be shown using the
techniques provided for the reachability probabilities in [2]);
thus, all the actions not in A×ψ (s×) can be pruned. We now
can define similar action sets for the Büchi condition as

A×ψ,ϕ(s×) := argmax
a×∈A×ψ (s×)

Prmax

(
(s×, a×) |= �♦B×ϕ

)
, (15)

where the maximum probabilities are obtained for the pruned
MDP. Choosing from A×ψ,ϕ(s×) in state s×, similar to the
safety condition, is necessary but not sufficient for the Büchi
condition; the actions should eventually lead to a state in B×ϕ
whenever it is possible. This can be overcome by following
a policy π× choosing any action in A×ψ,ϕ(s×) with some
positive probability. Under π×, a state in B×ϕ is eventually
reached and visited infinitely many times (i.e., π×∈Π×ψ,ϕ).

We can now focus on the MDP obtained by pruning all
the actions that do not belong A×ψ,ϕ(s×) in any state s×.
Let π×u denote a policy that uniformly chooses a random
action and π×o be an optimal policy maximizing the expected
QoC return in this pruned MDP. As previously discussed,
a policy π×υ that follows π×u w.p. υ and π×o w.p. 1−υ
belongs to Π×ψ,ϕ. As υ goes to zero, the expected QoC return

under π×υ approaches the maximum expected QoC return
that can be obtained in the pruned MDP. Thus, there exists
a sufficiently small υ such that π×υ belongs to ΠRν×

ψ,ϕ .
C. Reduction from Safety and Büchi Conditions to Rewards

We provide a reduction from the safety and Büchi accep-
tance conditions to the rewards introduced in [15] to enable
model-free RL to learn lexicographically optimal policies.
We note that these crafted reward are independent from the
QoC rewards that are native to the original MDP. The idea
behind the reduction is to provide small rewards whenever an
acceptance state is visited in order to encourage the repeated
visits, and discount in a way that ensures the values approach
the satisfaction probabilities as the rewards provided goes to
zero. Since the reduction requires state-based discounting,
we extend the definition of the return in this context as

G×R×,Γ×(ρ×) :=
∞∑
t=0

(
t∏
i=0

Γ×(ρ×[i])

)
R×(ρ×[t]), (16)

where R× and Γ× are given reward and discount functions.
We further define the near-optimal action set in a state s×

for given R×, Γ× and τ > 0 as

A×R×,Γ×,τ (s×) :=
{
a×∈A×(s×) | (17)

argmax
a×∈A×(s×)

q×max,R×,Γ×(s×, a×)−q×max,R×,Γ×(s×, a×) ≤ τ
}

where q×max,R×,Γ×(s×, a×) denotes the maximum expected
return for R× and Γ× obtained after taking a× in s×.

The following lemma provides a way to obtain the optimal
action sets for the safety condition via learning the near-
optimal actions for the reward and discount functions crafted
for the condition.

Lemma 2. There exist sufficiently small rψ > 0 and τψ > 0
such that for all s× ∈ S×,

A×ψ (s×) =
{
a×∈A×(s×)

∣∣ v×ψ(s×)−q×ψ(s×, a×) ≤ τψ
}

;

here A×ψ (s×) is defined in (14), q×ψ(s×, a×) denotes the
maximum expected return that can be obtained by taking
a× in s× for Γ×ψ (s×) := 1− rψ and

R×ψ (s×) :=

{
rψ if s×∈B×ψ ,
0 if s× 6∈B×ψ ;

finally, v×ψ(s×) := maxa×∈A×(s×)q
×
ψ(s×, a×).

Proof. Any safety condition can be considered as a Büchi
condition and therefore the proof immediately follows from
Theorem 1 in [15]. The idea is that as rψ goes to zero, the
safety return of a path approaches one if it stays in safe states
and zero if it reaches an unsafe state; hence, the maximum
expected safety return approaches to the maximum satis-
faction probability. Since the MDP is finite, for sufficiently
small τψ > 0 there must exist rψ > 0 such that A×ψ (s×) and
the near-optimal action sets are equivalent.

We now establish a similar result for the Büchi condition.

Lemma 3. There exist sufficiently small rϕ>0 and
τϕ>0 such that for all s×∈S×, A×ψ,ϕ(s×)={a×∈A×ψ(s×)|
v×ψ,ϕ(s

×)−q×ψ,ϕ(s×, a×)≤τϕ}; here A×ψ,ϕ(s×) is from (15);
q×ψ,ϕ(s

×, a×) denotes the maximum expected return that can
be obtained by taking a× in s× for

R×ϕ (s×):=

{
rϕ if s×∈B×ϕ ,
0 if s× 6∈B×ϕ ,

Γ×ϕ (s×):=

{
1−rϕ if s×∈B×ϕ ,
1−r2

ϕ if s× 6∈B×ϕ ;

in the MDP where all the actions not in A×ψ (s×′) are pruned
in each s×′; and v×ψ,ϕ(s

×) := maxa×∈A×(s×)q
×
ψ,ϕ(s

×, a×).

Proof. The proof follows from Theorem 1 in [15]. Here, we
provide the key idea. Unlike the safety condition, the Büchi
condition requires repeatedly visiting some states in B×ϕ and
the frequency of the visits is not important. To capture that,
the rewards are discounted less in the states that do not
belong to B×ϕ ; as rϕ goes to zero, the discounting due to
visiting these states vanishes. In the limit, the Büchi return
of a path is 1 only if the path visits some states in B×ϕ
infinitely many times, and 0 otherwise.

D. Model-Free Learning Algorithm

We now unify these ideas into a single RL algorithm.
For any state s×, our algorithm simultaneously learns the
optimal action set for the safety condition A×ψ (s×), and
among those actions learns the ones optimal for the Büchi
condition A×ψ,ϕ(s×). Additionally, it learns an optimal υ-
greedy policy that chooses the best action among A×ψ,ϕ(s×)
in s× for the QoC objective w.p. 1−υ and uniformly chooses
a random action in A×ψ,ϕ(s×) w.p. υ.

Our algorithm uses Q-learning to obtain the sets A×ψ (s×)

and A×ψ,ϕ(s×) for each state s×, and SARSA to obtain
a near-optimal policy belonging to the set ΠRν×

ψ,ϕ . Both
Q-learning and SARSA learn an estimate of the value,
which is the expected QoC return obtained after taking
a× in s×, denoted by Q(s×, a×) [1]. The update of these
estimates in our approach is shown in Algorithm 2. After
observing a transition (s×, a×, r, s×′, a×′), SARSA updates
QRψ,ϕ(s×, a×) using r+γQRψ,ϕ(s×′, a×′) as the target value.
Q-learning, on the other hand, updates Qψ(s×, a×) and
Qψ,ϕ(s×, a×) using r and the maximum value estimate in
the next state s×′, independently from the action taken.

Under regular conditions on the step size α and a proper
exploration policy visiting every state action pair large num-
ber of times, Q-learning converges to the optimal values
and SARSA converges to the values of the policy being
followed [1]. In our approach, an ε-greedy policy where
ε gradually decreased to zero is used as the exploration
policy. The greedy action to be taken is chosen from the
estimate Â×ψ,ϕ(s×), which is obtained using Qψ(s×, a×) and
Qψ,ϕ(s×, a×) as described in Algorithm 3. Lastly, an υ-
greedy policy decides if a random action or a greedy one for
the QoC objective will taken from Â×ψ,ϕ(s×).

We now show that our overall model-free RL approach
summarized in Algorithm 1 learns a lexicographically near-
optimal policy assuming that the step size α and the explo-
ration parameter ε are properly decreasing to 0.

Theorem 1. Consider an MDPM, a safety specification ψ,
an LTL specification ϕ, and a near-optimality parameter ν.
Algorithm 1 converges to a policy π× for the product MDP
M×, inducing a policy π for M belonging to the set ΠRν

ψ,ϕ

from (7), for sufficiently small positive rψ, rϕ, τψ, τϕ and υ.

Proof. Due to Lemma 2, Lemma 3 and the convergence of
Q-learning, the estimate Â×ψ (s×) and thereby Â×ψ,ϕ(s×) con-
verge to A×ψ (s×) and A×ψ,ϕ(s×), respectively for sufficiently
small positive rψ, rϕ, τψ, τϕ. Similarly, due to Lemma 1,
there exists a υ > 0 ensuring the near-optimality.

IV. CASE STUDY

We implemented Algorithm 1 on top of CSRL [23], [24].
We set the discount factor γ=0.99, safety reward rψ=0.0001,
and the LTL reward rϕ=0.01. In addition, we initialized the
learning rate α, safety threshold τψ , LTL threshold τϕ, and
the parameter υ for the LTL objective to 0.5, and gradually
decreased them to 0.05. Similarly, we slowly decreased the
exploration parameter ε from 0.5 to 0.005.

We conducted our numerical experiments on the 5 × 6
grid world shown in Fig. 2, where each cell represents a
state. The agent starts in the cell (0, 0) moves from one cell
to one of its neighbors via four actions: up, down, right and
left. When an action is taken, the agent moves in the intended
direction w.p. 0.8; and moves sideways w.p. 0.2 (0.1 for each
direction). If the direction is blocked by an obstacle or the
boundary of the grid, the agent stays in the same cell. Lastly,
if the agent moves into an absorbing state it cannot leave.

The safety specification is ψ = �¬(d∧©d), which means,
in the context of this grid, the cell (0, 3) should not be visited
consecutively. The LTL specification is ϕ = �♦b ∧ ♦�c,
which can be interpreted as the right part of the grid must be
eventually reached and must not be left after some time steps,
and the cell (2, 5) must be repeatedly visited. Both formulas
are translated to a 3-state automaton. All the rewards are zero
except for the reward of the cell (0, 5), which is 1.

There are two ways to reach the right part of the grid
to satisfy ϕ: (i) through the cell labeled with d ((0, 3))
and (ii) through the cells between the absorbing states
((3, 2), (3, 3)). Through (i), the right part can be reached
w.p. 1 (Prmax(s0|=ϕ)=1); however, the safety property
ψ can be violated w.p. 0.2 (Prmax(s0|=ψ)=0.8), due to
the probability that the agent goes sideways and hit the
boundary or the obstacle and stays in (0, 3) in two con-
secutive time steps. Through (ii), ψ is guaranteed to be
satisfied (Prmax(s0|=ψ) = 1) although the probability that
the agent gets stuck in one of the absorbing states is 0.36
(Prmax(s0|=ϕ) = 0.64). Thus, a policy prioritizing the
safety chooses (ii) over (i) while a policy with a single
objective ϕ′ = ψ ∧ ϕ prefers (i) because Prmax(s0|=ϕ′) =
0.8 through (i) and Prmax(s0|=ϕ′) = 0.64 through (ii).

The policy shown in Fig. 2 is learned after 128K (K =
210) episodes, each with a length of 1K. The agent learned
to eliminate the actions other than left in (0, 2) and the ones
other than right in (0, 4) for satisfaction of ψ. Similarly,
except for (3, 2) and (3, 3), the agent prunes all the actions
that might lead to an absorbing state due to ϕ. Since the only
positive reward can be obtained in (0, 5), the policy aims to
reach (0, 5) as soon as possible using the remaining actions.
Once reached, the policy takes the action ε2 to change the
LDBA state to satisfy the Büchi condition. In addition, it
takes a random action w.p. υ = 0.05 in (0, 5), (1, 5), (2, 5),
(3, 5), (4, 5) and (1, 4), which ensures visiting (2, 5), the cell
labeled with b and c, infinitely many times. The maximum

Algorithm 1: Model-free RL for lexico-
graphical safety, LTL and QoC objectives
Input: Safety ψ, LTL ϕ, MDP M
Translate ψ and ϕ to Aψ and Aϕ
Construct M× of M, Aψ and Aϕ
Initialize Qψ , Qψ,ϕ and QRψ,ϕ on M×
for i = 0, 1, . . . do

for t = 0 to T − 1 do
a×t ←get action(Qψ , Qψ,ϕ, QRψ,ϕ, s×t)
Take a×t and observe rt and s×t+1
if t > 0 then
update Qs(Qψ , Qψ,ϕ, QRψ,ϕ,

(s×t−1, a
×
t−1, rt−1, s

×
t , a
×
t))end if

end for
end for

Algorithm 2: update Qs
Input: Qψ , Qψ,ϕ, QRψ,ϕ, (s

×, a×, r, s×′, a×′)

if s×′∈B×ψ then
Qψ(s

×, a×)← (1−α)Qψ(s×, a×)
+α(rψ+(1−rψ)maxa× Qψ(s

×′, a×))else
Qψ(s

×, a×)← (1− α)Qψ(s×, a×)
end if
if s×′∈B×ϕ then

Qψ,ϕ(s
×, a×)← (1−α)Qψ,ϕ(s×, a×)

+α(rϕ+(1−rϕ)maxa× Qψ,ϕ(s
×′, a×))else

Qψ,ϕ(s
×, a×)← (1−α)Qψ,ϕ(s×, a×)

+α((1−r2ϕ)maxa× Qψ,ϕ(s
×′, a×))

end if
QRψ,ϕ(s

×, a×)← (1−α)QRψ,ϕ(s
×, a×)

+α(r+γQRψ,ϕ(s
×′, a×′))

Algorithm 3: choose action
Input: Qψ , Qψ,ϕ, QRψ,ϕ and s×

u ∼ U(0, 1)
if u ≤ ε then

return a random action a× ∈ A×(s×)
end if
Vψ(s

×)←maxa×∈A×(s×)Qψ(s
×, a×)

Â×ψ(s
×)←{a×∈A×(s×) | Vψ(s×)−Qψ(s×, a×)≤τψ}

Vψ,ϕ(s
×)←max

a×∈Â×
ψ
(s×)

Qψ,ϕ(s
×, a×)

Â×ψ,ϕ(s
×)←{a×∈Â×ψ(s

×)|Vψ,ϕ(s×)−Qψ,ϕ(s×, a×)≤τϕ}
if u ≤ ε+ υ then

return a random action a× ∈ Â×ψ,ϕ(s
×)

end if
return a×∈ argmax

a×∈Â×
ψ,ϕ

(s×)
QRϕ,ψ(s

×, a×)

0 1 2 3 4 5

0

1

2

3

4

d c
ε2
c

c c

c b, c

c c

c c

Fig. 2: The grid world
with the learned policy.
Empty circles: absorbing
states. Filled circle: obsta-
cle. Encircled letters: la-
bels. Arrows: actions. Es-
timated values are rep-
resented by the shades
of blue; the darker, the
higher value.

expected QoC return that can be obtained after visiting (0, 5)
is about 88, and approximately a QoC return of 85 is obtained
by following the learned policy.

V. CONCLUSION
In this paper, we have introduced a model-free RL method

that learns near-optimal policies for given safety, LTL and
QoC objectives, where the safety objective is prioritized
above the LTL objective, which is prioritized above the QoC
objective. Our algorithm learns the safest actions and among
those learns the actions sufficient to maximize the probability
of satisfying the LTL objective. Finally, using these actions,
our algorithm converges to a policy maximizing the expected
return for a given parameter υ controlling the randomness
of the obtained policy. We have shown that as long as υ is
positive, the satisfaction probability for the LTL objective is
maximized and as υ goes to zero, the expected return ap-
proaches its supremum value. Lastly, we have demonstrated
the applicability of our algorithm on a case study.

REFERENCES

[1] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduc-
tion. MIT press, 2018.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

[3] H. Kress-Gazit, F. E. Fainekos, and G. J. Pappas. Temporal-logic-
based reactive mission and motion planning. IEEE Transactions on
Robotics, 25(6):1370–1381, 2009.

[4] E. Plaku and S. Karaman. Motion planning with temporal-logic speci-
fications: progress and challenges. AI communications, 29(1):151–162,
2016.

[5] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A survey
of multi-objective sequential decision-making. Journal of Artificial
Intelligence Research, 48:67–113, 2013.

[6] M. Svoreňová and M. Kwiatkowska. Quantitative verification and
strategy synthesis for stochastic games. European Journal of Control,
30:15–30, 2016.

[7] E. M. Hahn, V. Hashemi, H. Hermanns, M. Lahijanian, and A. Turrini.
Interval Markov decision processes with multiple objectives: from
robust strategies to Pareto curves. ACM Transactions on Modeling
and Computer Simulation, 29(4):1–31, 2019.

[8] K. Chatterjee, J. Katoen, M. Weininger, and T. Winkler. Stochastic
games with lexicographic reachability-safety objectives. In Interna-
tional Conference on Computer Aided Verification (CAV), pages 398–
420, 2020.

[9] K. C. Kalagarla, R. Jain, and P. Nuzzo. Synthesis of discounted-reward
optimal policies for Markov decision processes under linear temporal
logic specifications. arXiv:2011.00632, 2020.

[10] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu. Safe reinforcement learning via shielding. In AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[11] G. Avni, R. Bloem, K. Chatterjee, T. A. Henzinger, B. Könighofer,
and S. Pranger. Run-time optimization for learned controllers through
quantitative games. In International Conference on Computer Aided
Verification (CAV), pages 630–649, 2019.

[12] J. Fu and U. Topcu. Probably approximately correct MDP learning
and control with temporal logic constraints. In Robotics: Science and
Systems (RSS), 2014.

[13] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Using
reward machines for high-level task specification and decomposition
in reinforcement learning. In International Conference on Machine
Learning (ICML), pages 2107–2116, 2018.

[14] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and
D. Wojtczak. Omega-regular objectives in model-free reinforcement
learning. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 395–412, 2019.

[15] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. Control
synthesis from linear temporal logic specifications using model-free
reinforcement learning. In IEEE International Conference on Robotics
and Automation (ICRA), pages 10349–10355, 2020.

[16] X. Li and C. Belta. Temporal logic guided safe reinforcement learning
using control barrier functions. arXiv:1903.09885, 2019.

[17] D. Aksaray, Y. Yazicioglu, and A. S. Asarkaya. Probabilistically guar-
anteed satisfaction of temporal logic constraints during reinforcement
learning. arXiv:2102.10063, 2021.

[18] J. Křetı́nskỳ, G. A. Pérez, and J. Raskin. Learning-based mean-payoff
optimization in an unknown MDP under omega-regular constraints. In
International Conference on Concurrency Theory, 2018.

[19] L. Hammond, A. Abate, J. Gutierrez, and M. Wooldridge. Multi-agent
reinforcement learning with temporal logic specifications. In Interna-
tional Conference on Autonomous Agents and MultiAgent Systems,
pages 583–592, 2021.

[20] S. Sickert, J. Esparza, S. Jaax, and J. Křetı́nskỳ. Limit-deterministic
Büchi automata for linear temporal logic. In International Conference
on Computer Aided Verification (CAV), pages 312–332, 2016.

[21] O. Kupferman and M. Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

[22] Z. Gábor, Z. Kalmár, and C. Szepesvári. Multi-criteria reinforcement
learning. In Int. Conf. on Machine Learning, pages 197–205, 1998.

[23] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. Model-
free reinforcement learning for stochastic games with linear temporal
logic objectives. In IEEE International Conference on Robotics and
Automation (ICRA), 2021.

[24] A. K. Bozkurt, Y. Wang, and M. Pajic. Learning optimal strategies
for temporal tasks in stochastic games. arXiv:2102.04307, 2021.

	Introduction
	Preliminaries and Problem Statement
	Markov Decision Processes
	Linear Temporal Logic
	Problem Formulation

	Model-free RL for Lexicographic Safety, LTL and QoC objectives
	Product MDP Construction
	Lexicographically Optimal Policies for Product MDPs
	Reduction from Safety and Büchi Conditions to Rewards
	Model-Free Learning Algorithm

	Case Study
	Conclusion
	References

