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Abstract—The paper introduces and solves a structural con-
trollability problem for continuum ensembles of linear time-
invariant systems. All the individual linear systems of an en-
semble are sparse, governed by the same sparsity pattern.
Controllability of an ensemble system is, by convention, the ca-
pability of using a common control input to simultaneously steer
every individual systems in it. A sparsity pattern is structurally
controllable if it admits a controllable linear ensemble system.
A main contribution of the paper is to provide a graphical
condition that is necessary and sufficient for a sparsity pattern to
be structurally controllable. Like other structural problems, the
property of being structural controllable is monotone. We provide
a complete characterization of minimal sparsity patterns as well.

Index Terms—Structural controllability, linear ensemble sys-
tems, sparse systems, graph theory

I. INTRODUCTION

In the paper, we introduce and solve a structural con-
trollability problem for continuum ensembles of linear time-
invariant systems. A brief description of the problem is given
below. Motivations for studying the problem are given after.

Let Σ be a closed interval in R. Consider a linear ensemble
system parameterized by a variable σ ∈ Σ as follows:

ẋ(t, σ) :=
∂

∂t
x(t, σ) = A(σ)x(t, σ) +B(σ)u(t), (1)

where A : Σ → Rn×n and B : Σ → Rn×m are matrix-
valued functions on the interval Σ, x(t, σ) ∈ Rn is the
state of the individual system indexed by σ at time t, and
u(t) ∈ Rm is a common control input that applies to
all individual systems. The (A,B) pair considered here is
compliant with a certain sparsity pattern, i.e., certain entries
of A and B are zero functions. The interval Σ is commonly
referred to as the parameterization space. Controllability of the
linear ensemble system (1) is, roughly speaking, the capability
of using the common control input u(t) to simultaneously
steer every individual linear control system in it. Instead of
investigating controllability of a particular sparse pair (A,B),
we characterize sparsity patterns that admit controllable pairs.
A precise problem formulation will be given in Section III.

The above ensemble control problem has connections with
the problem of controlling a large population of recurring
small networks in a much larger complex system. Recurring
patterns with significantly high frequencies of appearances in
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a large-scale complex system are known as motifs [1] and
they are ubiquitous in nature. In many cases, steering of such
complex system is often achieved by “broadcasting” control
inputs to manipulate the network motifs. Notable examples
include social networks where families or companies are in-
fluenced by advertisements or government policies, biological
networks where gene regulatory motifs respond to external
stimuli, and quantum ensembles where coupled nuclear spins
are manipulated by radio-frequency pulses.

The importance of the structures of motifs is in the belief
that these structures are essential for certain functions to
be achieved. The function of our interest in this paper is a
fundamental one in control theory, namely, controllability.

When it comes to engineering, the framework of controlling
an ensemble of relatively small-sized networks complements
existing methods for controlling large-scale multi-agent sys-
tems. Many existing methods rely on the use of leader-
follower hierarchies [2]–[5]; specifically, the controller steers
the network by controlling only a few leading agents and,
meanwhile, let the followers obey certain local feedback con-
trol laws. However, a larger networked system tends to be more
fragile and less scalable; indeed, attacks to the leading agents
or failures in critical communication links can prevent the
entire system from being controllable. The ensemble control
framework (1) provides an alternative: Instead of controlling
a large complex network, one can control a large population
of small ones. Thus, the framework is by nature resilient:
Malfunctions of nodes or links affect only the corresponding
individual systems without touching the others.

It is also worth noting that having the individual systems
to be networks rather than single agents is, in fact, critical for
controllability of an ensemble system. It is well known that
controllability of an individual dynamical system is far from
being sufficient for an ensemble of such systems to be control-
lable. This is true regardless of parameterization. For example,
an ensemble of single integrators ẋ(t, σ) = B(σ)u(t), for
σ ∈ Σ, can never be controllable regardless of any choice
of B. To make an ensemble system controllable, a much more
stringent condition has to be met by every individual system
(e.g., the A-matrix cannot be nilpotent as we will see later).
However, the dynamics of individual agents often do not sat-
isfy these conditions as was illustrated in the above example.
A solution provided by (1) is to let the agents form relatively
small and cooperative networks—cooperative in a sense that
the connections between different agents work together to
“enrich” the dynamics of the individual networked systems
so that the necessary and/or sufficient conditions are met for
ensemble controllability. From this perspective, the structural
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controllability problem we address can be viewed as a problem
for characterizing the types of structures for information flows
between agents that are essential to ensemble controllability.

We further note that the ensemble framework (1) for con-
trolling multi-agent systems is inherently scalable. The scala-
bility is achieved by the formulation that an infinite number
(continuum ensemble) of individual systems are considered.
In particular, these individual systems are required to be
simultaneously controllable under the same control input. To
see why the formulation promotes scalability, we first note a
simple but critical fact [6], [7]: If an ensemble system (1) is
controllable, then so is any subensemble of it—a subensemble
is obtained by collecting individual systems of (1) whose
indices σ belong to a certain closed subset Σ′ of Σ. We will
review the fact at the end of Section II. Different closed subsets
of Σ then correspond to different subensembles. Now, if we let
Σ′ := {σ1, . . . , σN} be a finite subset of the interval Σ, then
the corresponding subensemble is nothing but a finite multi-
agent system. Thus, controllability of the original ensemble
system (1) guarantees controllability of the finite multi-agent
system. We shall note that having Σ to be an infinite set
is not only sufficient for finite subensembles of (1) to be
controllable, but also necessary. Indeed, if every finite Σ′ can
be embedded, as a subset, into Σ, then Σ is necessarily infinite.
In short, addressing the case where Σ is infinite covers all
finite cases. Scalability of the ensemble control framework
then follows as a consequence: Because a multi-agent system
is treated as a finite sub-ensemble of (1), adding (or removing)
any finite number of individual systems into (or out of) the
subensemble gives rise to another subensemble. Controllability
of any subensemble is guaranteed by the controllability of (1).

The problem of structural controllability for linear ensemble
systems is new. To the best of author’s knowledge, there has
not been any work in the area. However, the same problem
for finite-dimensional linear systems was initiated by Lin
almost half a century ago. In his seminal paper [8], Lin
addressed the single-input case and provided a necessary and
sufficient condition (using matrix forms) for sparsity patterns
to be structurally controllable. The result was soon generalized
to a multi-input case by Shields and Pearson [9] and by
Glover and Silverman [10]. For variations of the problem, we
mention strong structural controllability [11]–[13], minimal
controllability [14]–[17], structural controllability over finite
fields [18], and structural controllability for driftless bilinear
control systems [19].

A main contribution of the paper is to provide a graphical
condition that is necessary and sufficient for a sparsity pattern
to be structurally controllable for linear ensemble systems.
The result is formulated in Theorem 1. We compare this
condition with the one for structural controllability of single
linear systems: We show that the condition for linear ensemble
systems is strictly stronger and provide a simple example
for illustration. Furthermore, because the property of being
structurally controllable is monotone (in a sense that if a
sparsity pattern has less zero entries, then it is more likely
to be structurally controllable), we also characterize sparsity
patterns that are minimally structurally controllable. A precise
definition will be given in Section III-C and the corresponding

result is formulated in Theorem 2.
The remainder of the paper is organized as follows: In

Section II, we introduce common notations, basic notions from
graph theory, and preliminaries for linear ensemble systems. In
Section III, we formulate the structural controllability problem
and present the main results. Analysis and proofs of the
results are provided in Section IV. We provide conclusions
and outlooks in Section V. The paper has an Appendix which
provides slight extensions of the main results.

II. PRELIMINARIES

In the section, we gather a few common notations and
present preliminaries about graph theory and control theory
for linear ensemble systems.

Notations. For a vector v = (v1, . . . , vn) ∈ Rn, we let ‖v‖
be the standard Euclidean norm. We use diag(v) to denote a
diagonal matrix, with vi the iith entry.

For matrices A ∈ Rn×n and B ∈ Rn×m, we let C(A,B) be
the controllability matrix C(A,B) := [B,AB, · · · , An−1B].

Let Σ be a closed interval in R and M be a Euclidean space
or a subset of it. We denote by C0(Σ,M) the set of continuous
functions from Σ to M . For any function f ∈ C0(Σ,M), we
let ‖f‖L∞ be its L∞-norm.

Let GL(n,R) be the general linear group of degree n, i.e., it
is the set of n×n invertible matrices. If P ∈ C0(Σ,GL(n,R)),
then P−1 exists and belongs to C0(Σ,GL(n,R)) as well.

Let (A,B) be an element in C0(Σ,Rn×n × Rn×m), i.e.,
A and B are continuous, matrix-valued functions. For conve-
nience, but with slight abuse of terminology, we will still call
A and B “matrices” if there is no confusion.

Let (A′, B′) be another element in C0(Σ,Rn×n ×Rn×m).
We say that (A,B) and (A′, B′) are related by a similarity
transformation if there exists a P ∈ C0(Σ,GL(n,R)) such
that A′ = PAP−1 and B′ = PB.

A. Basic Notions from Graph Theory

Let G = (V,E) be a directed graph (or digraph), with V =
{v1, . . . , vn} the node set and E the edge set. We allow G to
have self-arcs. A digraph without self-arcs will be referred to
as a simple digraph.

An edge from vi to vj is denoted by vivj . We call vj an
out-neighbor of vi and vi an in-neighbor of vj . For a given
subset V ′ of V , we let Nin(V ′) be the set of in-neighbors
of V ′ within G, i.e., a node vi belongs to Nin(V ′) if there
exist a node vj in V ′ and an edge vivj in G. In case we
need to emphasize the role of the digraph G, we will write
Nin(V ′;G). Similarly, we let Nout(V

′) (or Nout(V
′;G)) be

the set of out-neighbors of V ′ in G.
A walk from vi to vj is a sequence of nodes vi1 . . . vik ,

with vi1 = vi and vik = vj , such that each vijvij+1
, for

j = 1, . . . , k − 1, is an edge of G. The length of the walk is
the number of edges contained in it. A walk is a path if there
is no repetition of nodes in the sequence. A walk is a cycle if
there is no repetition of nodes except the repetition of starting-
and ending-nodes. Note that a self-arc at a node vi is a cycle
of length 1.
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A digraph G is strongly connected if for any two different
nodes vi and vj , there is a path from vi to vj . In particular,
if G is a digraph with only a single node (with or without a
self-arc), then G is strongly connected. A digraph G is rooted
if there is a node v0 such that for any other vi in G, there is
a path from v0 to vi. The node v0 is a root of G.

A subgraph G′ = (V ′, E′) of G satisfies V ′ ⊆ V and
E′ ⊆ E. Given a subset V ′ of V , a subgraph G′ = (V ′, E′)
is said to be induced by V ′ if the edge set E′ satisfies the
following condition: For any two nodes vi and vj in V ′, vivj
is an edge of G′ if and only if it is an edge of G.

We say that two subgraphs G′ and G′′ are disjoint if their
node sets are disjoint. For a collection of pair-wise disjoint
subgraphs G1 = (V1, E1), . . . , Gk = (Vk, Ek) of G, we let
their disjoint union be defined as a digraph G′ = (V ′, E′)
with V ′ := tki=1Vi and E′ := tki=1Ei.

A digraph G is acyclic if it does not contain any cycle as
its subgraph. If G is also rooted, then it has a unique root.
A directed tree (also known as an arborescence) is a special
rooted acyclic digraph such that every node, except the root
node v0, has only one in-neighbor. It follows that for any given
node vi other than v0, there is a unique path from v0 to vi.
The depth of the node vi is the length of the path. The depth
of the root v0 is 0 by default. The depth of the tree G is the
maximal value of depths of all the nodes.

Note that if G = (V,E) is rooted with v0 a root, then it
contains a tree G′ = (V,E′), with the same node set, as a
subgraph such that v0 is the root of G′. The subgraph G′ is
called a directed spanning tree of G.

B. Control Theory for Linear Ensemble Systems
Let Σ be the unit closed interval Σ := [0, 1] in R. The choice

of the closed interval is for ease of presentation. The results
established in the paper do not depend on a particular choice
of interval as we will see later in Prop. 1. For convenience,
we reproduce below the linear ensemble system (1):

ẋ(t, σ) = A(σ)x(t, σ) +B(σ)u(t), ∀σ ∈ Σ, (2)

where A : Σ → Rn×n and B : Σ → Rn×m are continuous
functions. The control input u is said to be admissible if for
any given time interval [0, T ], the function u : [0, T ] → Rm
is integrable.

Let xΣ(t) : Σ → Rn be the map that sends σ to x(t, σ).
We call xΣ(t) a profile at time t. In the paper, we consider
only continuous profiles, i.e., xΣ(t) ∈ C0(Σ,Rn).

We now have the following definition:

Definition 1. The linear ensemble system (2) is uniformly
controllable if for any initial profile xΣ(0) ∈ C0(Σ,Rn), any
target profile x̂Σ ∈ C0(Σ,Rn), and any error tolerance ε > 0,
there exist a time1 T > 0 and an admissible control input
u : [0, T ]→ Rm such that the solution xΣ(t) generated by (2)
satisfies ‖xΣ(T )− x̂Σ‖L∞ < ε.

Because system (2) is completely determined by the (A,B)
pair, we will some time use the pair to denote the system and
simply say that (A,B) is uniformly controllable.

1It is known [20] that if system (2) is uniformly controllable for some T ,
then it is uniformly controllable for all T > 0.

Necessary and/or sufficient conditions for uniform control-
lability of system (2) have widely been investigated in the
literature (see, for example, [6], [21]–[23]). We present below
a condition that utilizes the notion of controllable subspace.
For that, we first have the following definition:

Definition 2. Let the (A,B) pair be given in (2). Let L(A,B)
be the L∞-closure of the vector space spanned by the columns
of AkB, for all k ≥ 0. We call L(A,B) the controllable
subspace associated with system (2).

The following necessary and sufficient condition, adapted
from [20], is a straightforward generalization of the Kalman
rank condition for finite-dimensional linear systems:

Lemma 1. A pair (A,B) ∈ C0(Σ,Rn×n × Rn×m) is uni-
formly controllable if and only if L(A,B) = C0(Σ,Rn).

We now relate controllability of system (2) to controllability
of its subensembles. Specifically, let Σ′ be a closed subset of
Σ and consider the following ensemble system:

ẋ(t, σ) = A(σ)x(t, σ) +B(σ)u(t), ∀σ ∈ Σ′, (3)

where the (A,B) pair is the same as the one for system (2),
but with their domains restricted to Σ′. We call system (3) the
subensemble-Σ′ of system (2). The following result is known
(see, for example, [6], [7]):

Lemma 2. If system (2) is uniformly controllable, then so is
system (3).

Finally, note that there are other controllability notions as-
sociated with system (2), such as Lp-controllability, for p ≥ 1.
We review these notions and the corresponding controllability
results in the Appendix.

III. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we formulate the structural controllability
problem for linear ensemble systems and provide complete
solutions. We introduce key definitions and the problem in
Section III-A. Then, in Section III-B, we present a necessary
and sufficient condition for a sparsity pattern to be structurally
controllable (the result is formulated in Theorem 1). Finally,
in Section III-C, we focus on sparsity patterns with minimal
numbers of nonzero entries. A complete characterization of
these patterns is provided in Theorem 2.

A. Problem Formulation for Structural Controllability

We still let Σ be the unit closed interval [0, 1] and note
again that the choice of the interval is irrelevant (see Prop. 1
in the subsection). Let (A,B) ∈ C0(Σ,Rn×n × Rn×m) be a
sparse matrix pair. By convention, we will use a digraph G
to describe the sparsity pattern of (A,B). The construction of
the digraph is given in the following definition:

Definition 3. For a pair (A,B) ∈ C0(Σ,Rn×n × Rn×m),
we define a digraph G = (V,E) on (n + m) nodes as
follows: The node set V is a disjoint union of two subsets
Vα := {α1, . . . , αn} and Vβ := {β1, . . . , βm}. The edge set
E is determined by the following two items:
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1) There is an edge from αj to αi if the ijth entry of A is
not the zero function.

2) There is an edge from βj to αi if the ijth entry of B is
not the zero function.

We call G the digraph induced by matrix pair (A,B). The
nodes in Vα and the nodes in Vβ are termed state-nodes and
control-nodes, respectively.

Note that the control-nodes of G do not have any incoming
neighbor. For given nonnegative integers n and m, let Gn,m
be the set of digraphs G induced by matrix pairs (A,B) ∈
C0(Σ,Rn×n × Rn×m). Equivalently, a digraph G belongs to
Gn,m if it has (n + m) nodes α1, . . . , αn and β1, . . . , βm
and the β-nodes do not have incoming neighbors. For a later
purpose, we allow n or m to be 0. If n = 0 (resp. m = 0),
then there is no state-node (resp. control-node) in G. We let

G := ∪∞n,m=0Gn,m.

Every graph G ∈ G then corresponds to a sparsity pattern.
Conversely, for any given such digraph G, we introduce

a class of sparse pairs (A,B) that correspond to it. The
correspondence is given in the following definition:

Definition 4. A pair (A,B) ∈ C0(Σ,Rn×n×Rn×m) is com-
pliant with G = (V,E) ∈ Gn,m if the digraph G′ = (V,E′)
induced by (A,B) is a subgraph of G, i.e., E′ ⊆ E.

Let (A,B) be a pair compliant with a digraph G ∈ G. An
entry aij of A or an entry bij of B is said to be a ?-entry if
αjαi or βjαi is an edge of G. The ?-entries can be arbitrary
continuous functions from Σ to R. The other entries of A or
B have to be identically zero. See Fig. 1 for an illustration.

Fig. 1. Left: A digraph G ∈ G4,2 with four state-nodes (blue dots)
and two control-nodes (red squares). Right: Sparse matrices (A,B)
compliant with G. The ?-entries correspond to the edges of G.

For a given digraph G ∈ Gn,m, we let V(G) be the set of
matrix pairs (A,B) compliant with G:

V(G) := {(A,B) ∈ C0(Σ,Rn×n × Rn×m) |
(A,B) is compliant with G}.

We look for pairs (A,B) ∈ V(G) that are uniformly control-
lable. Structural controllability of G relies on the existence of
these pairs. Precisely, we have the following definition:

Definition 5. A digraph G ∈ G is structurally controllable if
there exists a uniformly controllable pair (A,B) ∈ V(G).

If G has no state-node (i.e., n = 0), then it is structurally
controllable by default.

Apparently, the definition of structural controllability de-
pends on the underlying parameterization space. We have so

far assumed that Σ is the closed unit interval Σ = [0, 1].
The following fact will relax the constraint and establishes
equivalence of structural controllability for a class of param-
eterization spaces:

Proposition 1. A digraph G ∈ G is structurally controllable
for Σ = [0, 1] if and only if it is structurally controllable for
any finite union of closed intervals in R.

Proof. We first show that G is structurally controllable for Σ
if and only if it is for an arbitrary closed interval Σ′ := [r1, r2],
with r1 < r2. For a given continuous pair (A,B) on Σ, we
define a continuous pair (A′, B′) on Σ′ as follows:

A′(σ′) := A (σ
′−r1/r2−r1) and B′(σ′) := B (σ

′−r1/r2−r1) .

It should be clear that if a function f belongs to the control-
lable subspace L(A,B), then the function f ′ : Σ′ → R defined
by f ′(σ′) := f(σ

′−r1/r2−r1), belongs to the controllable
subspace L(A′, B′). Conversely, if f ′ ∈ L(A′, B′), then the
function f : Σ → R defined by f(σ) := f ′(r1 + (r2 − r1)σ)
belongs to L(A,B). Thus, the two Banach spaces L(A,B)
and L(A′, B′) are isomorphic. By Lemma 1, (A,B) is uni-
formly controllable if and only if (A′, B′) is. Moreover, the
pair (A′, B′) is compliant with G if and only if (A,B) is. It
then follows that G is structurally controllable for Σ if and
only if it is for Σ′.

We next let Σ′ be a finite union of pairwise disjoint closed
intervals, i.e., Σ′ = ∪ki=1Σ′i. We show that if G is structurally
controllable for Σ if and only if it is structurally controllable
for Σ′. First, we assume that G is structurally controllable for
Σ′. Then, by Lemma 2, it has to be structurally controllable for
every single closed interval Σ′i. It follows from the previous
arguments that G is also structurally controllable for the unit
closed interval Σ. We now assume that G is structurally
controllable for Σ. Using again the above arguments, we have
that G is uniformly controllable for any closed interval in R.
Let Σ′′ be a closed interval, sufficiently large, such that it
contains Σ′ as a subset. Because G is structurally controllable
for Σ′′, we conclude from Lemma 2 that G is structurally
controllable for Σ′. �

Note that if Σ is not a finite union of closed intervals,
then the class of structurally controllable digraphs can be
completely different. A case of particular interest is that Σ
is a circle. Note that every closed interval (or a finite union
of them) can be embedded into a circle, but not the other way
around. Thus, the class of structurally controllable digraphs
for a circle is a subset of the class for a closed interval. For
continuum spaces whose dimensions are greater than one, we
conjecture that there does not exist any structural controllable
digraph. This conjecture is based upon a recent negative
result [7] which says that any real-analytic linear ensemble
system is not uniformly controllable if the dimension of the
underlying parameterization space is greater than one.

B. A Necessary and Sufficient Condition

In this subsection, we provide a necessary and sufficient
condition for a digraph G ∈ G to be structurally controllable.
The condition comprises two parts: One is about accessibility

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on March 26,2022 at 18:33:57 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3097289, IEEE
Transactions on Automatic Control

5

of G to the control-nodes and the other one is about existence
of Hamiltonian decomposition admitted by the state-nodes
of G. We give precise definitions below.

Definition 6. A digraph G ∈ G is accessible to control-nodes
if for each state-node αj , there exist a control-node βi and a
path from βi to αj .

We also need the following definition:

Definition 7. Let H = (V,E) be an arbitrary digraph. The
digraph H admits a Hamiltonian decomposition if it contains
a subgraph H ′ = (V,E′), with the same node set V and
E′ ⊆ E, such that H ′ is a disjoint union of cycles.

With the above definitions, we will now present the first
main result of the paper:

Theorem 1. A digraph G ∈ G is structurally controllable if
and only if the following hold:
A1. The digraph G is accessible to control-nodes.
A2. The subgraph H induced by the state-nodes admits a

Hamiltonian decomposition.

Definition 8. The two items A1 and A2 combined will be
referred to as condition-A.

For illustration, we consider the digraph G in Fig. 1. First,
note that G is accessible: There are edges β1α1, β2α2, β2α3,
and a path β2α2α4, ending with the four state-nodes. Next,
note that the subgraph H induced by the state-nodes admits
a Hamiltonian decomposition: Nodes α1 and α3 form a 2-
cycle and the remaining two nodes α2, α4 have self-arcs. By
Theorem 1, G is structurally controllable.

It is known (see, e.g., [22, Lemma 1]) that if a linear
ensemble system is uniformly controllable, then all of its
individual systems are controllable. Thus, if G is structurally
controllable for linear ensemble systems, then it is structurally
controllable for finite-dimensional linear systems. However,
the converse is not true. We elaborate below on this fact:

Remark 1. For finite-dimensional linear systems, a necessary
and sufficient condition [8], [9], [17] for structural control-
lability can be formulated as follows: A digraph G ∈ G is
structural controllable if and only if it satisfies item A1 in
Theorem 1 and the following item:
C2. For any subset V ′ of state-nodes of G, |Nin(V ′)| ≥ |V ′|.
We recall that Nin(V ′) is the set of in-neighbors of V ′.
The above item C2 is strictly weaker than the item A2 in
Theorem 1. To see this, we let G satisfy A2 and H be the
subgraph induced by the state-nodes. Let H ′ be a disjoint
union of cycles that cover all the state-nodes. Then, within the
subgraph H ′, we have that for any subset V ′ of state-nodes,
|Nin(V ′;H ′)| = V ′. It then follows that

|Nin(V ′)| = |Nin(V ′;G)| ≥ |Nin(V ′;H ′)| = |V ′|.

On the other hand, there exist digraphs that satisfy items A1
and C2, but not A2. One can simply take the class of directed
paths as an example (see Fig. 2).

If G has several connected components, then each com-
ponent corresponds to a sparse linear ensemble system. The

Fig. 2. Consider the path digraph Gn,1 on n state-nodes and a single
control-node, with edges βα1 and αiαi+1 for i = 1, . . . , n − 1.
The path digraph is structural controllable for finite-dimensional
linear systems; indeed, the nth order integrator dn

dtn
x(t) = u(t) is

controllable and the corresponding matrix pair (A,B) is compliant
with Gn,1. However, by Theorem 1, the path digraph is not structural
controllable for linear ensemble systems because the subgraph H
induced by the α-nodes does not admit a Hamiltonian decomposition.
This issue can be resolved by adding, e.g., the edge αnα1 so that
the resulting subgraph H is a Hamiltonian cycle.

dynamics of these ensemble systems are decoupled from each
other. It follows that G is structurally controllable if and only
if every connected component of G satisfies condition-A.

As was mentioned earlier, there are variations on control-
lability notions for linear ensemble systems: One can replace
uniform controllability with Lp-controllability, for 1 ≤ p <∞,
which is known to be weaker. Correspondingly, one relaxes
Def. 5 as follows: A digraph G ∈ G is structural controllability
if there exists an Lp-controllable pair compliant with G. With
such relaxation, one may wonder whether condition-A is still
necessary and sufficient? The answer is affirmative and, in
fact, the proof of this result can be obtained, with slight
modification, from the proof of Theorem 1 given in the next
section. We elaborate on the above arguments in the Appendix.

C. Characterization of Minimal Digraphs

In this subsection, we focus on a special class of structurally
controllable digraphs, namely, digraphs with minimal numbers
of edges. These digraphs corresponds to the sparsity patterns
with minimal numbers of ?-entries. To that end, we have the
following definition:

Definition 9. A structurally controllable digraph G ∈ G is
minimal if removal of any edge out of G causes the digraph
to lose structural controllability.

We provide below a complete characterization of minimally
structurally controllable digraphs. For that, we need a few
preliminaries, and start with the following definition:

Definition 10. Let G = (V,E) be an arbitrary weakly
connected digraph. The strong component decomposition
V = tNi=0Vi satisfies the following conditions:

1) Let Gi be the subgraph of G induced by Vi. Then, every
Gi is strongly connected.

2) If G′ is another induced subgraph of G and is strongly
connected, then G′ has to be a subgraph of Gi for some
i ∈ {0, . . . , N}.

We count the number of strong components from 0 because,
later, we will use G0 to denote the singleton formed by the
unique control-node of a digraph G ∈ Gn,1. It will thus
distinguish itself from others G1, . . . , GN , which are formed
by state-nodes.
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The strong component decomposition exists and is unique
(see, for example, [24]). By condensing these strong compo-
nents into single nodes, one obtains a simple digraph S:

Definition 11. Let V = tNi=0Vi be the strong component
decomposition of G. The skeleton digraph S of G is defined
as follows: There are (N + 1) nodes w0, . . . , wN in S,
corresponding to the (N+1) strong components. The digraph
S does not have self-arcs. For two different nodes wi and wj ,
there is an edge wiwj if and only if there is an edge vivj in
G with vi ∈ Vi and vj ∈ Vj .

It should be clear that S is acyclic. To every edge wiwj of
S, we define a subset of edges of G as follows:

[wiwj ] := {vivj ∈ E | vi ∈ Vi and vj ∈ Vj}, (4)

i.e., [wiwj ] is the collection of edges from Gi to Gj . By the
construction of skeleton digraph, the set [wiwj ] is nonempty.

We now apply condensation to the digraphs G ∈ G and
obtain their skeleton digraphs S. Note that each control-
node βi of G is itself a strongly connected component and,
hence, gives rise to a node of the skeleton digraph S. Other
strongly connected components Gj of G are all contained in
the subgraph H induced by the state-nodes.

Also, note that if G has only one control-node and if G
is structurally controllable, then by Theorem 1, the skeleton
digraph S is rooted acyclic. The unique root of S corresponds
to the control-node of G.

We further recall that an arborescence is a directed rooted
tree. With the above preliminaries, we now have the second
main result that characterizes all minimally structurally con-
trollable digraphs:

Theorem 2. A weakly connected digraph G ∈ G is minimally
structurally controllable if and only if the following hold:
B1. There is only one control-node β. The skeleton digraph S

of G is an arborescence. Moreover, for every edge wiwj
of S, the set [wiwj ] defined in (4) is a singleton.

B2. Let G0, . . . , GN be the subgraphs of G obtained from the
strong component decomposition, with G0 the singleton
{β}. Then, every Gi, for i = 1, . . . , N , is a cycle.

Definition 12. The two items B1 and B2 combined will be
referred to as condition-B.

For illustration, we provide in Fig. 3 all weakly connected,
minimally structurally controllable digraphs G with three
state-nodes (the number of control-nodes is necessarily one).

IV. ANALYSIS AND PROOFS OF MAIN RESULTS

This section is devoted to the proofs of the two main results,
Theorems 1 and 2, formulated in the previous section. The
analysis comprises three parts:

1) In Section IV-A, we show that condition-A is necessary
for structural controllability. This part is more or less
straightforward.

2) In Section IV-B, we show that condition-B is minimal
with respect to condition-A, i.e., every digraph satisfying
condition-A can be reduced, via edge deletion, to a
disjoint union of digraphs satisfying condition-B. In the

1 2 3

4 5 6 7

control-node
state-node

Fig. 3. We enumerate in the figure all seven weakly connected,
minimally structurally controllable digraphs with three state-nodes.
The number of control-nodes is necessarily one.

same subsection, we also recall the fact that the property
of being structural controllable is monotone with re-
spect to edge-set inclusion. Thus, to establish sufficiency
of condition-A, it suffices to establish sufficiency of
condition-B.

3) In Section IV-C, we represent minimal sparsity patterns in
matrix forms. This prepares for explicit constructions of
uniformly controllable pairs (A,B), which will be carried
out in Section IV-D.

A. Necessity of Condition-A

In this subsection, we establish the following result:

Proposition 2. If G is structurally controllable, then G
satisfies condition-A given in the statement of Theorem 1.

Proof. We need to show that G is accessible to control-nodes
and that the subgraph H induced by the state-nodes admits a
Hamiltonian decomposition.
Proof that G is accessible. Recall that Vα is the set of state-
nodes in G. Suppose, to the contrary, that G is not accessible;
then, we can partition the set Vα into two nonempty subsets:
Vα = V +

α t V −α . The subset V +
α is the collection of nodes

to which there exist paths from the control-nodes and V −α :=
Vα\V +

α is the complement of V +
α in Vα. Let k := |V −α |; then,

1 ≤ k ≤ n. By relabeling the nodes, if necessary, we can
assume that V −α comprises the last k nodes αn−k+1, . . . , αn.

We next pick an arbitrary pair (A,B) ∈ V(G), and partition
A and B into blocks: A = [A11, A12;A21, A22] and B =
[B1;B2], where A11 is k×k and B1 is k×m. By construction
of V −α and V +

α , we have that the blocks A21 and B2 are zeros.
Thus, the corresponding ensemble system is in the Kalman
canonical form:[
ẋ1(t, σ)
ẋ2(t, σ)

]
=

[
A11(σ) A12(σ)

0 A22(σ)

] [
x1(t, σ)
x2(t, σ)

]
+

[
B1(σ)

0

]
u(t),

for all σ ∈ Σ.
We claim that the pair (A,B) is not uniformly controllable.

To see this, let f ∈ L(A,B), and we decompose f = [f1; f2]
with f2 of dimension k. Then, f2 = 0, and the claim follows
from Lemma 1.
Proof that H admits a Hamiltonian decomposition. To pro-
ceed, we first recall the following necessary condition [22,
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Lemma 1] for a continuous matrix pair (A,B) to be uniformly
controllable: If (A,B) is uniformly controllable and if B has
m columns, then for any finite number q ≥ (m+1) of distinct
points σ1, . . . , σq in Σ, we have that

eig(A(σ1)) ∩ · · · ∩ eig(A(σq)) = ∅, (5)

where eig(A(σi)) is the set of eigenvalues of A(σi).
Next, recall that H is the subgraph of G induced by

the state-nodes. Thus, the sparsity pattern of matrix A is
determined by H . We then make the following observation
(adapted from [25]): If the graph H does not admit a Hamil-
tonian decomposition, then for any pair (A,B) ∈ V(G), the
determinant of A is identically zero, i.e.,

detA(σ) = 0, ∀σ ∈ Σ.

It then follows that for any m ≥ 0 and for any q ≥ (m+1)
distinct points σ1, . . . , σq in Σ,

0 ∈ eig(A(σ1)) ∩ · · · ∩ eig(A(σq)),

which violates the necessary condition given in (5). Thus,
we conclude that if there exists a uniformly controllable
pair (A,B) in V(G), then the subgraph H has to admit a
Hamiltonian decomposition. �

B. Minimality of Condition-B

In this subsection, we show that the digraphs G ∈ G that
are weakly connected and minimal with respect to condition-A
are the ones satisfying condition-B. To proceed, we introduce,
for each n ≥ 0, a set of digraphs as follows:

Kn := {G ∈ Gn,1 | G satisfies condition-B}.

We then let
K := ∪∞n=0Kn.

For clarity of presentation, we will now use letter K to denote
a digraph in K for the remainder of the section. We establish
below the following result:

Proposition 3. A digraph G ∈ G is minimal with respect to
condition-A if and only if it is a disjoint union of Ki where
each Ki belongs to K.

We illustrate in Fig. 4 edge-reductions of the digraph in
Fig. 1 into disjoint unions of digraphs in K.

Prop. 3 will be established after a sequence of lemmas. We
will first show that the digraphs in K satisfy condition-A and,
next, show that these digraphs are minimal with respect to
condition-A. They are done in Lemmas 3 and 4, respectively.
After that, we show that every digraph G ∈ G, minimal with
respect to condition-A, is a disjoint union of the digraphs in K.
This is done in Lemma 5.

We start with the following lemma:

Lemma 3. Every digraph K ∈ K satisfies condition-A.

Proof. Let S be the skeleton digraph of K. Then, S is rooted
by item B1 of Theorem 2. It follows that K is rooted with
the control-node β being the single root. In particular, K is
accessible to the root β.

ER1

ER2

Fig. 4. The digraph on the left is from Fig. 1. It satisfies condition-
A. We give two different edge-reductions (ERs) of the digraph and
obtain disjoin unions of digraphs in K on the right. For ER1, we
remove edges β2α3 and α4α1 from the left. After the reduction, the
two disjoint digraphs belong to K2. For ER2, we remove edges β1α1

and β2α3. After the reduction, the two disjoint digraphs belong to
K0 and K4, respectively.

Next, we let H be the subgraph of K induced by the
state-nodes. We need to show that H admits a Hamiltonian
decomposition. But, this follows from item B2 of Theorem 2.
To see this, let K0,K1, . . . ,KN be the subgraphs of K
obtained from the strong component decomposition, with K0

being the singleton {β}. Note that all the other Ki, for
i = 1, . . . , N , are cycles. Moreover, they are subgraphs of
H and form a Hamiltonian decomposition of H . �

We next have the following fact:

Lemma 4. Every digraph K ∈ K is minimal with respect to
condition-A.

Proof. We show that removal of any edge out of K violates
condition-A. We again let K0, . . . ,KN be the strong compo-
nents of K obtained from the strong components decomposi-
tion, with K0 being the singleton of control-node β. We now
remove an edge out of K. There are two cases for the edge: (1)
it belongs to a certain component Ki for some i ∈ {1, . . . , N},
or, (2) it connects two different components.

We first deal with case (1). Note that by item 2 of Def. 10,
each strong component Ki cannot be contained in any strongly
connected subgraph of K other than itself. Thus, the sub-
graph H induced by the state-nodes admits a Hamiltonian
decomposition if and only if each Ki admits a Hamiltonian
decomposition. Since every Ki, for i = 1, . . . , N , is a cycle
by item B2, the Hamiltonian decomposition of H is unique,
given by the union of these Ki. It follows that removing an
edge out of one of these cycles violates item A2.

We now deal with case (2). Let S be the skeleton digraph
of K and w0, . . . , wN be the nodes of S. By item B1, the
skeleton digraph S is an arborescence. Thus, if we remove an
edge wiwj out of S, then S is disconnected. Correspondingly,
if we remove all the edges in the set [wiwj ] (defined in (4))
out of K, then K will be disconnected and, hence, is not
accessible anymore. Finally, note that by the same item B1,
[wiwj ] contains only one single edge, so removing the edge
out of K will violate item A1. �

To establish Prop. 3, it remains to prove the following result:
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Lemma 5. Let G = (V,E) ∈ G satisfy condition-A. Then,
there exist subgraphs Ki = (Vi, Ei), for i = 1, . . . ,m, of G
such that every Ki belongs to K and V = tmi=1Vi.

Proof. We first consider the special case where G has a single
control-node β. In this case, G is rooted with β the root. We
show below that G can be reduced to a digraph K in K.

Let H be the subgraph of G induced by the state-nodes
and H1, . . . ,HN be a Hamiltonian decomposition of H (so
every Hi is a cycle). For convenience, let H0 := {β} be the
singleton of the control-node. Similar to the strong component
decomposition, we build a digraph S by condensing all the
Hi to single nodes wi, for i = 0, . . . , N , and by adding edges
wiwj , for i 6= j, if there exists at least one edge from Hi to
Hj . With slight abuse of notation, we will still let [wiwj ] be
the set of edges vivj in G with vi belonging to Hi and vj
belonging to Hj .

Since G is rooted, the resulting digraph S is also rooted
with w0 the unique root. Let S′ be a directed spanning tree
of S. Given S′, we remove edges out of G as follows: If wiwj
is an edge of S′ and if [wiwj ] has more than one edge, then
we keep one edge in the set and remove the others from G.
If wiwj is not an edge of S′, then we remove all the edges
in [wiwj ] from G. We let K be the trimmed subgraph of G.
Then, it should be clear that S′ is the skeleton digraph of K.
By construction, the digraph K satisfies condition-B.

We now consider the general case where G has m control-
nodes β1, . . . , βm for m ≥ 1. For each βi, we let V ∗i be
the union of the control-node βi and the set of state-nodes
accessible to βi. Since G is accessible, the union of V ∗i is the
entire node set V of G. We next let

Vi := V ∗i \ ∪i−1
k=1 V

∗
k , ∀i = 1, . . . ,m.

These Vi then form a disjoint union of V . Note that Vi is
never empty because it always contains βi. However, Vi may
not contain any state-node. For each i = 1, . . . ,m, we let Gi
be the subgraph of G induced by Vi. There is only one single
control-node, namely βi, in Gi.

We show below that every Gi satisfies condition-A. Note
that if this is the case, then one can apply the edge-reduction
to every Gi to obtain a digraph Ki ∈ K as was described
earlier in the proof.

We first show that every Gi is rooted (and, hence, satisfies
item A1). Specifically, we show that for any αj ∈ Vi, there
is a path from βi to αj within Gi. By construction, nodes in
V ∗i are accessible to βi and Vi is a subset of V ∗i . Thus, there
exists a path from βi to αj in G. Clearly, every node along
the path belongs to V ∗i . We show below that all of these nodes
(on the path) belong to Vi, i.e., none of them belongs to V ∗k
for any k = 1, . . . , i − 1. This holds because otherwise, the
endpoint αj of the path will be accessible to V ∗k for some
k ∈ {1, . . . , i− 1}, which contradicts the fact that αj ∈ Vi.

We next show that every Gi satisfies item A2. Specifically,
we need to show that the subgraph Hi of Gi induced by
the state-nodes admits a Hamiltonian decomposition. Since G
satisfies item A2, there are disjoint cycles H1, . . . ,HN that
cover all the state-nodes. The key observation is that if a node
αj of Gi belongs to a cycle H` some ` ∈ {1, . . . , N}, then all

the nodes of the cycle belong to Gi. To see this, note that if
αj is accessible to βi, then so is every node in the cycle H`.
Conversely, if αj is not accessible to βk, for k = 1, . . . , i− 1,
then neither is any node in H`. The above arguments then
imply that all the state-nodes of Gi are covered by a certain
selection of disjoint cycles Hi1 , . . . ,HiN′ . These cycles then
form a Hamiltonian decomposition of Hi. �

Prop. 3 is now established by Lemmas 3, 4, and 5.
For the remainder of the section, we will focus only on the

digraphs in K. In particular, we will establish the sufficiency of
condition-A by showing that the digraphs in K are structurally
controllable. We can do this because the digraphs in K

are minimal with respect to condition-A and, moreover, the
property of being structural controllability is monotone with
respect to edge-set inclusion:

Lemma 6. Let G = (V,E) ∈ G and G′ = (V,E′) be a
subgraph of G, with the same node set V and E′ ⊆ E. If G′

is structurally controllable, then so is G.

Proof. The result directly follows from the fact that if (A,B)
is a uniformly controllable pair and is compliant with G′, then
it is also compliant with G. �

C. Sparsity Patterns in Matrix Form

Let K ∈ K and (A, b) be a pair in V(K). We use little b to
indicate the fact that b is a column vector (since m = 1). The
goal of the subsection is to introduce a matrix form to represent
the sparsity pattern of (A, b). This matrix form will be used
later for explicit construction of a uniformly controllable pair.

Let β be the unique control-node in K and Ki = (Vi, Ei),
for i = 1, . . . , N , be the cycles of K. These cycles form a
Hamiltonian decomposition of the subgraph induced by the
state-nodes. Let S be the skeleton digraph of K and w0 be
its root. Let w1, . . . , wN be the nodes corresponding to the
cycles K1, . . . ,KN .

Recall that S is an arborescence and the depth of a node
wi in S is the length of the unique path from the root w0

to wi. The depth of w0 is 0 by default. By relabelling the
nodes w1, . . . , wN (and, hence, the cycles K1, . . . ,KN ), if
necessary, we can assume that

1 = dep(w1) ≤ · · · ≤ dep(wN ). (6)

Let ni := |Vi| and we have that
∑N
i=1 ni = n. Without loss

of generality, we assume that the first n1 nodes of K belong
to K1, the next n2 nodes belong to K2 and, in general,

Vi =
{
αsi−1+1, . . . , αsi−1+ni

}
, ∀i = 1, . . . , N, (7)

where s0 := 0 and si :=
∑i
k=1 nk for i ≥ 1. Moreover,

by relabeling the nodes within each Ki, if necessary, we can
assume that the edge set Ei of Ki is given by

Ei =
{
αsi−1+1αsi−1+2, αsi−1+2αsi−1+3, . . . ,

αsi−1+niαsi−1+1

}
. (8)

We now return to the sparse pair (A, b). By the way we
label the state-nodes of K, we have the following fact:
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Lemma 7. The pair (A, b) ∈ V(K) satisfies the following
conditions:

1) The matrix A is lower block triangular:

A =


A11 0 · · · 0
A21 A22 · · · 0

...
...

. . .
...

AN1 AN2 · · · ANN

 ,
where each block Aij is ni × nj .

2) Every diagonal block Aii takes the following form:

Aii =


0 0 · · · 0 ai,1ni

ai,21 0 · · · 0 0
0 ai,32 · · · 0 0
...

...
. . .

...
...

0 0 · · · ai,nini−1 0

 . (9)

3) Partition the vector b = [b1; . . . ; bN ], where each bi is
ni-dimensional. For each i = 1, . . . , N , there is at most
one nonzero block or vector among {Ai1, . . . , Ai,i−1, bi}.
Moreover, the nonzero block or vector has only one
nonzero entry.

Proof. The lower block triangular structure of A follows
from (6) and (7). Specifically, if wjwi is an edge, then
dep(wi) > dep(wj). Thus, the increasing sequence (6) implies
that j < i and, hence, the corresponding Aij is below the
diagonal. The second item of the lemma follows from the fact
that every Ki is a cycle and the way of labeling the nodes
in Ki as given in (8). The third item follows from the fact
that the skeleton graph S is an arborescence and [wiwj ] is a
singleton for every edge wiwj of S. �

D. Sufficiency of Condition-B

In this subsection, we establish the following result:

Proposition 4. Every minimal digraph K ∈ K is structurally
controllable.

To establish Prop. 4, we construct below a uniformly
controllable pair (A, b) ∈ V(K). It takes two steps: We will
start by finding a pair (A(0), b(0)) such that the corresponding
finite-dimensional system is controllable and, then, extend
(A(0), b(0)) to a pair of functions (A, b) over the entire
interval Σ = [0, 1] so that (A, b) is uniformly controllable.

With a slight abuse of terminology, we say that a pair
(A(0), b(0)) ∈ Rn×n × Rn is compliant with the digraph K
if each nonzero entry of A(0) and b(0) corresponds to an
edge of K. We assume that (A(0), b(0)) takes the form given
in Lemma 7. Let Aii(0) be the iith block of A(0), and the
dimension of Aii(0) is ni × ni. We have the following fact:

Lemma 8. There exists a pair (A(0), b(0)) ∈ Rn×n × Rn,
compliant with K, such that the following two items hold:

1) For any i = 1, . . . , N , the ?-entries of Aii(0) are positive.
Furthermore, let

ri(0) :=
(
ai,1ni(0)ai,21(0) · · · ai,nini−1(0)

) 1
ni . (10)

Then, 0 < r1(0) < · · · < rN (0).

2) The controllability matrix C(A(0), b(0)) is nonsingular.

Proof. By Remark 1, condition-A is sufficient for K to be
structural controllable for finite-dimensional linear systems.
Thus, there exist controllable pairs (A(0), b(0)) compliant
with K. Moreover, these controllable pairs are open and
dense in Rn×n × Rn with respect to the standard Euclidean
topology [8]. Now, let (A(0), b(0)) be chosen such that item 1
of the lemma is satisfied. If C(A(0), b(0)) is nonsingular, then
the proof is complete. Otherwise, we can perturb (A(0), b(0))
to obtain a controllable pair (A′(0), b′(0)), arbitrarily close to
(A(0), b(0)). By (10), each ri(0) is continuous in the ?-entires
of Aii(0), so the pair (A′(0), b′(0)) will still satisfy item 1 of
the lemma as long as the perturbation is sufficiently small. �

We will now extend the pair (A(0), b(0)) described in
Lemma 8 to a pair of matrix-valued functions (A, b) that
belongs to V(K). First, we define a positive real number:

κ :=
1

2
min

{
ri+1(0)

ri(0)
− 1 | i = 1, . . . , N − 1

}
. (11)

By item 1 of Lemma 8, κ is well defined and is positive. We
next define a linear function ρ : Σ→ R as follows:

ρ(σ) := κσ + 1. (12)

Because κ is positive, ρ is everywhere nonzero and strictly
monotonically increasing. We then let

A(σ) := ρ(σ)A(0) and b(σ) := b(0), ∀σ ∈ Σ. (13)

Since (A(0), b(0)) is compliant with K, so is (A(σ), b(σ)) for
all σ ∈ Σ. It follows that (A, b) ∈ V(K). To establish Prop. 4,
it now remains to establish the following fact:

Lemma 9. The pair (A, b) defined in (13), with ρ given
in (12), is uniformly controllable.

Proof. The following condition, adapted from [22], is a suffi-
cient condition for (A, b) to be uniformly controllable:

1) For every σ ∈ Σ, the finite-dimensional linear system
(A(σ), b(σ)) is controllable;

2) For every σ ∈ Σ, the eigenvalues of A(σ) have algebraic
multiplicity one;

3) Let eig(A(σ)) be the set of eigenvalues of A(σ). If σ 6=
σ′, then eig(A(σ)) ∩ eig(A(σ′)) = ∅.

To show that the above three items are satisfied for the given
(A, b), we need some preliminaries.

To that end, we extend each ri(0), for i = 1, . . . , N , defined
in (10) to a scalar function ri : Σ→ R. For each σ ∈ Σ, we let
ri(σ) be defined in the same way as was in (10), but with the
argument 0 replaced with σ. Because A(σ) = ρ(σ)A(0) with
ρ(σ) positive, we have that ri(σ) = ρ(σ)ri(0). Also, since ρ
is everywhere nonzero and strictly monotonically increasing,
so is every ri. Further, for any i = 1, . . . , N − 1, we use the
fact that ri(1) = ρ(1)ri(0) = (κ+ 1)ri(0) to obtain that

ri+1(0)− ri(1) = ri(0) (ri+1(0)/ri(0)− 1− κ) > 0,

where the inequality follows from the construction of κ given
in (11). This inequality, combined with the monotonicity of
each ri, imply that if i 6= j, then

ri(σ) 6= rj(σ
′), ∀σ, σ′ ∈ Σ, (14)
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i.e., the images of ri and rj do not overlap.
With the above preliminaries, we now return to the proof

that the three items given at the beginning of the proof are
satisfied for the pair (A, b) defined in (13).

Proof that item 1 is satisfied. Because A(σ) = ρ(σ)A(0), the
two controllability matrices C(A(σ), b(σ)) and C(A(0), b(0))
(which are square matrices) satisfy the following relation:

C(A(σ), b(σ)) =

C(A(0), b(0)) diag[1, ρ(σ), · · · , ρn−1(σ)]. (15)

By item 2 of Lemma 8, C(A(0), b(0)) is nonsingular. Since
ρ(σ) is positive for all σ ∈ Σ, the diagonal matrix next to
C(A(0), b(0)) in (15) is also nonsingular. We thus conclude
that C(A(σ), b(σ)) is nonsingular and, hence, the finite-
dimensional linear system (A(σ), b(σ)) is controllable.

Proof that item 2 is satisfied. First, note that every matrix A(σ)
is lower block triangular. Thus, the eigenvalues of A(σ) are
the union of the eigenvalues of the diagonal blocks Aii(σ), for
i = 1, . . . , N . We next note that the sparsity pattern of Aii(σ)
is given in (9). In particular, the characteristic polynomial of
Aii(σ) can be computed explicitly as follows:

det(λI −Aii(σ)) = λni − rnii (σ),

where ri(σ) > 0 is defined earlier in the proof. The roots of
the above polynomial are given by:

eig(Aii(σ)) =
{
ri(σ)e

i2πk
ni | k = 0, . . . , ni − 1

}
,

so the ni eigenvalues of Aii(σ) are pairwise distinct. More-
over, the N sets eig(Aii(σ)), for i = 1, . . . , N , are pair-
wise disjoint. This holds because if λi ∈ eig(Aii(σ)) and
λj ∈ Ajj(σ), with i 6= j, then

|λi| = ri(σ) and |λj | = rj(σ).

By (14), if i 6= j, then ri(σ) 6= rj(σ) and, hence, λi 6= λj .
Thus, the matrix A(σ) has n distinct eigenvalues for all σ ∈ Σ,
i.e., the eigenvalues of A(σ) have algebraic multiplicity one.

Proof that item 3 is satisfied. Let σ and σ′ be two distinct
points in Σ. Without loss of generality, we assume that σ < σ′.
Let λ and λ′ be two arbitrary eigenvalues of A(σ) and A(σ′),
respectively. We show below that λ 6= λ′. Since A(σ) and
A(σ′) are lower block triangular, λ and λ′ are eigenvalues
of certain diagonal blocks of A(σ) and A(σ′), respectively.
Without loss of generality, we assume that λ ∈ eig(Aii(σ))
and λ′ ∈ eig(Ajj(σ

′)). There are two cases: If i = j,
then |λ| = ri(σ) and |λ′| = ri(σ

′). Since ri is strictly
monotonically increasing, ri(σ) < ri(σ

′) and, hence, λ 6= λ′.
If i 6= j, then |λ| = ri(σ) and |λ′| = rj(σ

′). By (14),
ri(σ) 6= rj(σ

′). In either case, we have that λ 6= λ′. �

We further provide an example that illustrates the procedure
for constructing a pair (A, b) compliant with a given K ∈ K.

Example 1. Consider the minimal graph K ∈ K in Fig. 5.

Fig. 5. A minimal graph K ∈ K. The two 2-cycles in the subgraph H
induced by the state-nodes form a Hamiltonian decomposition of H .

To construct a controllable pair (A, b) compliant with K,
we first specify their values at σ = 0:

A(0) =


0 1 0 0
1 0 0 0
0 1 0 3
0 0 3 0

 and b(0) =


1
0
0
0

 .
Note that (A(0), b(0)) satisfies the two items of Lemma 8.
Indeed, the controllability matrix computed below:

C(A(0), b(0)) =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 3

 ,
is nonsingular. Also, the two scalars r1(0) = (a12(0)a21(0))

1
2

and r2(0) = (a34(0)a43(0))
1
2 associated with the two 2-cycles

are given by r1(0) = 1 and r2(0) = 3, so r1(0) < r2(0).
Correspondingly, the scalar κ introduced in (11) takes

value 1, so the linear function ρ(σ) is simply given by ρ(σ) =
σ + 1. We then follow (13) to define A(σ) := (σ + 1)A(0)
and b(σ) := b(0), for all σ ∈ Σ = [0, 1].

By construction, (A(σ), b(σ)) is a controllable pair for all
σ ∈ Σ. The eigenvalues of A(σ) are given by ±(1 + σ)
and ±3(1 + σ), all of which have algebraic multiplicity one.
Furthermore, for any two distinct σ and σ′ in [0, 1], eig(A(σ))
does not intersect with eig(A(σ′)). Thus, the three items given
at the beginning of the proof of Lemma 9 are satisfied, and
we conclude that the pair (A, b) is uniformly controllable.

We now combine results established in this section and
prove the two theorems formulated in Section III:

Proof of Theorems 1 and 2. The necessity of condition-A for
structural controllability is established in Prop. 2. The proof
of sufficiency relies on the use of the monotonicity property
(Lemma 6): We have shown in Prop. 3 that condition-B is
minimal with respect to condition-A and, then, in Prop. 4 that
condition-B itself is sufficient for structural controllability. �

V. CONCLUSIONS AND OUTLOOKS

We have introduced and solved the structural controllability
problem for linear ensemble systems over (finite unions of)
closed intervals in R. A necessary and sufficient condition is
provided in Theorem 1 for a sparsity pattern to be structural
controllable. The minimal sparsity patterns are further charac-
terized in Theorem 2.

Recall that in the definition of structural controllability
(Def. 5), we only need (A,B) to be continuous. The condition
can be made stronger by requiring that (A,B) be kth contin-
uously differentiable, for k = 0, . . . ,∞, or even real-analytic,
i.e., k = ω. But, changing the condition does not affect
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the results. This holds because the (A, b) pair constructed in
Subsection IV-D is, in fact, linear in σ.

A relevant question we will aim to investigate in the future
is formulated below: Let G ∈ Gn,m be structurally controllable
digraph. For two nonnegative integers k and `, we let

Vk,`(G) :=
(
Ck(Σ,Rn×n)× C`(Σ,Rn×m)

)
∩ V(G),

i.e., a pair (A,B) belongs to Vk,`(G) if and only if A (resp.
B) is kth (resp. `th) continuously differentiable and (A,B)
is compliant with G. We endow the space Ck(Σ,Rn×n)
(resp. C`(Σ,Rn×m)) with, e.g., the Whitney Ck- (resp. C`-
) topology. The subspace Vk,`(G) is then endowed with the
subspace topology. Define a subset of Vk,`(G) as follows:

Vk,`∗ (G) :=
{

(A,B) ∈ Vk,`(G) |
(A,B) is uniformly controllable

}
.

The subset Vk,`∗ (G) can hardly be dense in Vk,`(G). We are
interested in its openness. More precisely, we ask when does
Vk,`∗ (G) contain open sets in Vk,`(G)? On one hand, we
conjecture that if the topology on the space of A-matrices is
too coarse (e.g., the Whitney C0-topology), then V0,`

∗ (G) does
not contain an open set. The conjecture is based on the analysis
carried out in Section IV-D; specifically, the monotonicity of
each (continuous) branch of eigenvalues of A is crucial to
uniform controllability of (A, b). However, a perturbation of
A, in the C0-sense, can easily violate such a property. On the
other hand, we conjecture that if k ≥ 1, then Vk,`∗ (G) contains
open sets in Vk,`(G) (the space of A-matrices is endowed with
the Whitney Ck-topology).

Other potential extensions of the current work include char-
acterizations of structurally controllable digraphs for linear
ensemble systems whose parameterization spaces are circles
and, further, for nonlinear ensemble systems (a prototype of
sparse bilinear ensemble system is investigated in [26]).
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APPENDIX

We provide here extensions of Theorem 1 by addressing
Lp-controllability, for 1 ≤ p < ∞. We will first review a
few preliminary results, next introduce the notion of structural
Lp-controllability and, then, show that the same condition,
condition-A given in Theorem 1, is still necessary and suf-
ficient for a digraph G ∈ G to be structurally Lp-controllable.

Let Σ = [0, 1] be the parameterization space. We represent
a linear ensemble system over Σ by a matrix pair (A,B), with
A ∈ C0(Σ,Rn×n) and B ∈ Lp(Σ,Rn×m), i.e., each entry of
B has finite Lp-norm. Correspondingly, profiles xΣ(t) of the
linear ensemble system are now elements in Lp(Σ,Rn).

The pair (A,B) is said to be Lp-controllable if for any initial
profile xΣ(0), any target profile x̂Σ, and any error tolerance
ε > 0, there exist a time T > 0 and an integrable control input
u : [0, T ]→ Rm such that the solution xΣ(t) generated by the
ensemble system (A,B) satisfies ‖xΣ(T )− x̂Σ‖Lp < ε.

Similarly, one defines the Lp-controllable subspace, denoted
by Lp(A,B), as the Lp-closure of the vector space spanned
by the columns of AkB, for k ≥ 0. A counterpart of Lemma 1
is given below (which is also adapted from [20]):
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Lemma 10. A pair (A,B) ∈ C0(Σ,Rn×n) × Lp(Σ,Rn×m)
is Lp-controllable if and only if Lp(A,B) = Lp(Σ,Rn).

We further note the following fact as a counterpart of
Lemma 2 (a proof can be found in [7]):

Lemma 11. Let (A,B) ∈ C0(Σ,Rn×n)×Lp(Σ,Rn×m). For
a closed sub-interval Σ′ of Σ, let A′ and B′ be obtained by
restricting A and B to Σ′. If (A′, B′) is not Lp-controllable,
then neither is (A,B).

Given a digraph G ∈ Gn,m, let Vp(G) be the set of
matrix pairs (A,B) ∈ C0(Σ,Rn×n)×Lp(Σ,Rn×m) compliant
with G. The following definition is a variation of Def. 5:

Definition 13. A digraph G ∈ G is said to be structurally
Lp-controllable if there is an Lp-controllable pair in Vp(G).

With the definition above, we have the following result:

Theorem 3. A digraph G ∈ G is structurally Lp-controllable
if and only if condition-A given in Theorem 1 is satisfied.

Proof. The proof for sufficiency of condition-A is straight-
forward. If G satisfies condition-A, then, by Theorem 1,
there is a continuous matrix pair (A,B) such that (A,B) is
uniformly controllable and compliant with G. By Lemma 1,
L(A,B) = C0(Σ,Rn). Since L(A,B) ⊆ Lp(A,B) and since
the Lp-closure of C0(Σ,Rn) is Lp(Σ,Rn), by Lemma 10,
(A,B) is also Lp-controllable.

The necessity of condition-A is also not too hard to es-
tablish. The arguments for necessity of accessibility of G to
control-nodes are the same as the ones in the proof of Prop. 2.
The proof of this part is thus omitted.

It remains to show that the subgraph H of G induced by
the state-nodes has to admit a Hamiltonian decomposition in
order for G to be structurally Lp-controllable. Recall from
the arguments in the proof of Prop. 2 that if the subgraph H
does not admit any Hamiltonian decomposition, then for any
(A,B) ∈ Vp(G), detA ≡ 0. Thus, it suffices to show that any
matrix pair (A,B), with detA ≡ 0, is not Lp-controllable.

The proof will be carried out by induction on n. For the
base case where n = 1, det(A) ≡ 0 implies that A ≡ 0.
Because Lp(0, B) is the column space of B which is finite
dimensional, it follows from Lemma 10 that (0, B) is not Lp-
controllable.

For the inductive step, we assume that the result holds for
all k ≤ (n − 1) and we prove for n. Since rankA(σ) takes
value from the finite set {0, . . . , n}, there is a σ∗ ∈ Σ such
that rankA(σ∗) achieves the maximal value, denoted by k,
over Σ. Since detA ≡ 0, k is strictly less than n.

Because A is continuous in σ and rankA is locally nonde-
creasing in σ, there is a closed interval Σ′ := [σ′−, σ

′
+] in Σ,

with σ′− < σ∗ < σ′+, such that rankA(σ) = k for all σ ∈ Σ′.
It is known [27] that there exists a continuous function P :
Σ′ → GL(n,R) such that A′ := PAP−1 = [0, A′12; 0, A′22],
where A′22 is k × k. We next let B′ := PB and partition
B′ = [B′1;B′2], where B′2 is k ×m.

Next, consider the linear ensemble system given by the

(A′, B′) pair constructed above:[
ẋ1(t, σ)
ẋ2(t, σ)

]
=

[
0 A′12(σ)
0 A′22(σ)

] [
x1(t, σ)
x2(t, σ)

]
+

[
B′1(σ)
B′2(σ)

]
u(t), (16)

for all σ ∈ Σ′. By construction, the above system is obtained
by first restricting the (A,B) pair to Σ′ and, then, applying
a similarity transformation via P . Note that similarity trans-
formation preserves Lp-controllability. Thus, by Lemma 11,
to show that (A,B) is not Lp-controllable, it suffices to show
that (A′, B′) is not. We now consider two cases:
Case 1: detA′22 ≡ 0. Note that the dynamics of x2(t, σ)
in (16) do not depend on the dynamics of x1(t, σ):

ẋ2(t, σ) = A′22(σ)x2(t, σ) +B′2(σ)u(t), ∀σ ∈ Σ′. (17)

It should be clear that if system (17) is not Lp-controllable,
then neither is (16). Since detA′22 ≡ 0 and A′22 is k× k with
k < n, we apply the induction hypothesis to conclude that
system (17) is not Lp-controllable. The proof is then done.
Case 2: detA′22 6≡ 0. Because A′22 is continuous, there is a
closed interval Σ′′ := [σ′′−, σ

′′
+] in Σ′, with σ′′− < σ′′+, such

that detA′22(σ) 6= 0 for all σ ∈ Σ′′. It follows that A′22 is
invertible when restricted to Σ′′. Let P ′ : Σ′′ → GL(n,R) be
defined as follows:

P ′ :=

[
In−k −A′12A

′−1
22

0 Ik

]
.

The inverse P ′−1 is simply given by

P ′−1 =

[
In−k A′12A

′−1
22

0 Ik

]
.

Next, define A′′ := P ′A′P ′−1 and B′′ := P ′B′. By compu-
tation, we have that A′′ = [0, 0; 0, A′22]. Correspondingly, we
partition B′′ = [B′′1 ;B′′2 ], where B′′2 is k ×m.

Consider the linear ensemble system given by the (A′′, B′′)
pair, which is obtained by first restricting (A′, B′) from Σ′

to Σ′′ and, then, applying a similarity transformation via P ′.
Thus, to show that (A′, B′) is not Lp-controllable, we only
need to show that (A′′, B′′) is not. For any f ∈ Lp(A′′, B′′),
we decompose f = [f1; f2] with f1 of dimension (n − k).
Then, by the structure of matrix A′′, we have that f1 belongs to
the column space of B′′1 , which is finite dimensional. It follows
that Lp(A′′, B′′) 6= Lp(Σ′′,Rn) and, hence, by Lemma 10,
(A′′, B′′) is not Lp-controllable. This completes the proof. �
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