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On the H-Property for Step-Graphons
and Edge Polytopes

Mohamed-Ali Belabbas™, Xudong Chen

Abstract—Graphons W can be used as stochastic mod-
els to sample graphs Gp on n nodes for n arbitrarily large.
A graphon W is said to have the H-property if G, admits
a decomposition into disjoint cycles with probability one
as n goes to infinity. Such a decomposition is known as a
Hamiltonian decomposition. In this letter, we provide nec-
essary conditions for the H-property to hold. The proof
builds upon a hereby established connection between the
so-called edge polytope of a finite undirected graph associ-
ated with W and the H-property. Building on its properties,
we provide a purely geometric solution to a random graph
problem. More precisely, we assign two natural objects to
W, which we term concentration vector and skeleton graph,
denoted by x* and S, respectively. We then establish two
necessary conditions for the H-property to hold: (1) the
edge-polytope of S, denoted by X(S), is of maximal rank,
and (2) x* belongs to X(S).

Index Terms—Graphon, network analysis and control.

[. INTRODUCTION

RAPHONS, a portmanteau of graph and functions, have
been recently introduced [1], [2] to study very large
graphs. A graphon can be understood as both the limit object
of a convergent sequence, where convergence is in the cut-
norm [3], of graphs of increasing size, and as a statistical
model from which to sample random graphs. Taking this lat-
ter point of view, we investigate in this letter the so-called
H-property (see Definition 1 below) for graphons.
A graphon is a symmetric, measurable function
W :[0,1> — [0,1]. It gives rise to a stochastic model for
undirected graphs on n nodes, denoted by G, ~ W:
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Sampling Procedure: Let Uni[0,1] be the uniform
distribution on [0, 1]. Given a graphon W, a graph G, =
(V, E) W on n nodes sampled from W is obtained as follows:

1) Sample yq, ..., y, ~ Uni[0, 1] independently. We call y;

the coordinate of node v; € V.
2) For any two distinct nodes v; and v;, place an edge
(vi, vj) € E with probability W(y;, y;).

Note that if 0 < p < 1 is a constant and W(s, t) = p for
all (s,1) € [0, 172, then G, ~ W is nothing but an Erdos-
Rényi random graph with parameter p. Thus, graphons can be
seen, in a sense, as a way to introduce inhomogeneity of edge
densities between different pairs of nodes, and thus increase
greatly the type of random graphs one can model. However,
all large graphs sampled from (non-zero) graphons have the
property of being dense [4].

H-Property: Let W be a graphon and G, ~ W. In the sequel,
we use the notation Gn = (V, E) to denote the directed version
of G,, defined by the edge set

E == {vvj, vvil (v, vj) € E}.

In words, we replace an undirected edge (v;,v;) with two
directed edges v;v; and v;v;. The directed graph én is said
to have a Hamiltonian decomposition if it contains a subgraph

= (V, E' ), with the same node set, such that H is a dis-
]01nt union of directed cycles. With the preliminaries above,
we now have the following definition:

Definition 1 (H-Property): Let W be a graphon and
G, ~ W. Then, W has the H-property if

lim ]P’(én has a Hamiltonian decomposition) = 1.
n—oo

We let £, be the event that én has a Hamiltonian decompo-
sition. The above definition implicitly requires the sequence
P(&,) to converge. We mention here that for almost all
graphons, this sequence converges and, moreover, it converges
to either 1 or 0. In other words, the H-property is a “zero-one”
property. This fact is, however, beyond the scope of this letter
and will be proven in a forthcoming publication.

The H-property is central in the study of structural stability
of linear systems [5], [6] and structural controllability of lin-
ear ensemble systems [7]. Indeed, in [5], [6], the question of
structural stability of linear systems, i.e., of whether a spar-
sity pattern of matrices contains a stable (Hurwitz) matrix was
considered. Using the standard isomorphism between sparsity
patterns of square matrices and directed graphs (stemming
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from interpreting the sparsity pattern as an adjacency matrix),
necessary and sufficient conditions were derived on the asso-
ciated graphs. These conditions required the existence of
subgraphs containing Hamiltonian decompositions. In [7], the
author considered continuum ensembles of sparse linear con-
trol systems where the individual systems share a common
sparsity pattern, represented by a digraph as above, and char-
acterized the digraphs that can sustain ensemble controllability.
A complete solution was provided for the case where the
parameterization spaces of the ensembles are closed intervals.
In particular, it was shown that the subgraph of the state-nodes
needs to have a Hamiltonian decomposition.

In this letter, we take the first step in our investigation of
the H-property by focusing on a special class of graphons,
which we term step-graphons (the same objects have also
been investigated in [8]). Roughly speaking, W is a step-
graphon W if one can divide the interval [0, 1] into subintervals
Ri,..., Ry so that W is constant when restricted to every
rectangle R; x Rj. A more precise definition can be found
in Definition 2. Step-graphons are a particular case of the
class of step-function graphons introduced in [9], where the
partitioning is into measurable subsets of [0, 1]. The main
contribution of this letter is to obtain necessary conditions,
formulated in Theorem 1, for an arbitrary step-graphon to have
the H-property.

The key observation underlying the proof is a connection
between the H-property and polytopes. The study of graphs
obtained from polytopes has a long tradition in discrete geom-
etry [10] but, later, insights into graph theoretic notions have
been obtained from polytopes derived from graphs [11]. Our
contribution in this letter falls closer to the latter category: we
draw a conclusion about a graphon W from a polytope asso-
ciated with it. The polytope of interest here is the so-called
edge polytope [11], defined as the convex hull spanned by the
columns of the incidence matrix of an undirected graph; see
Definition 6.

This edge polytope appears naturally when seeking char-
acteristics of a step-graphon relevant to whether it has the
H-property or not. The first object we exhibit in this vein is
the concentration vector of a step-graphon W, denoted by x*,
the entries of which are the lengths of the subintervals R;.
These entries are also the probabilities that a random variable
y ~ Uni [0, 1] belongs to R; (see the first item of the sampling
procedure). The second object assigned to a step-graphon is its
skeleton graph S, which can be construed as representing the
adjacency relations between rectangles R; x R; where the step-
graphon is non-zero (see Definition 4). The above mentioned
polytope is then the edge-polytope of the skeleton graph; we
denote it by X'(S). The two necessary conditions we exhibit
in Theorem 1 are as follows: (1) S has an odd cycle (i.e., a
cycle with an odd number of nodes/edges) or, equivalently,
X (S) has maximal rank, and (2) x* € X(S).

Literature Review: In recent years, graphons have been used
as models for large networks in control and game theory. For
control, we mention [8]; there, the authors consider infinite-
dimensional linear control systems x = Ax + Bu, where x
and u are elements in L2([0, 1],R) and A and B are bounded
linear operators on L2([0, 1], R), obtained by adding scalar

(15 us U9 us
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Fig. 1. Left: An undirected graph G on 4 nodes with self-loops on u, and
Ug. Right: The directed graph G obtained from G. There are several dif-
ferent Hamiltonian decompositions in G. For example, the cycle Cq with
edge set {uqup, Upus, UzUy, Uguq} forms a Hamiltonian decomposition
of G. Similarly, the two cycles Cp and C3 with edge sets {uquy, upuq}
and {usuy, ugus}, respectively, also form a Hamiltonian decomposition
of G.

multiples of identity operators to graphons. For this class of
systems they investigate, among others, the associated con-
trollability properties and finite-dimensional approximations.
For game theory, we mention [12], [13] where the authors
introduce different types of graphon games; broadly speaking,
these are the games that comprise a continuum of agents (over
the closed interval [0, 1]) with relations between these agents
described by a graphon. They then proceed to investigate,
among others, the existence of Nash equilibria and properties
of finite-dimensional approximations. Finally, the prevalence
of the Hamiltonian decompositions was also investigated for
Erd6s-Rényi random graphs in [14].

Notations and Terminology: For v = (vi,...,v,) € R", we
let Diag(v) be the n x n diagonal matrix whose iith entry is
v;. We use 1 to denote the vector whose entries are all ones,
and with dimension appropriate for the context.

For § = (U, F), an undirected grgph, without multi-edges
but possibly with self-loops, we let S be the directed version
of S, as defined above, but if (u;, u;) is a self-loop on node
u; € U, then we replace it with a single self-loop u;u;.

Given a directed graph G= v, E) on n nodes without self-
loops, the Laplacian matrix L = [L;] associated with G is the
n x n infinitesimally row stochastic matrix with off-diagonal
entries L;; given by L;j = 1 if v;v; is an edge of G and L;; =0
otherwise, and with diagonal entries picked so that the row
sums of L are all 0, i.e., L1 = 0.

For positive integers £, ¢, and a set of vectors zip, ...
R?, we denote by conv{zy, ..., z¢} their convex hull:

Vi Vi
conv{zy,...,z¢} = {Zkim Zki =1and A; > O}.
=1 =1

, 21 €

Il. PRELIMINARIES AND MAIN RESULT

In this section, we start by defining step-graphons, in
Section II-A, and then their associated skeleton graphs and
concentration vectors, in Section II-B. Then, in Section II-C,
we present the main result of this letter.

A. Step-Graphons

We have the following definition:
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Fig. 2. Left: A step-graphon W with the partiton o =

(0,0.25,0.5,0.75, 1). Right: The associated skeleton graph S(W).

Definition 2 (Step-Graphon and Its Partition): We call a
graphon W a step-graphon if there exists an increasing
sequence 0 = o9 < 01 < --- < o4 = 1 such that W
is constant over each rectangle [0}, 0i11) X [0}, 0j41) for all
0 <i,j < g—1 (there are ¢° rectangles in total). The sequence
o = (09,01, ...,04) is called a partition for W.

Remark 1: If W is a step-graphon, then there exists an infi-
nite number of compatible partitions for W. Indeed, given any
partition o for the step-graphon W, the partition o’ obtained
from o by inserting o/, for any o; < o/ < 0j41, is also a
partition for W.

We provide an example of a step-graphon in Fig. 2. Note
that a graph G, sampled from a step-graphon could be seen
as a graph sampled from the so-called stochastic block-
model [15], but with a random assignment of the nodes to
the g communities with a multinomial distribution determined
by the partition.

Throughout this letter, we let n;(G,) be the number of nodes
vj of G, whose coordinates y; € [0;_1, 0;) (see item 1 of the
sampling procedure in Section I). When G, is clear from the
context, we simply write n;.

B. Concentration Vectors and Skeleton Graphs

In this subsection, we introduce three key objects associated
with a step-graphon; namely, its concentration vector, skeleton
graph, and the so-called edge polytope of the skeleton graph.

Concentration Vector: We have the following definition:

Definition 3 (Concentration Vector): Let W be a step-
graphon with partition ¢ = (0o, ...,04). The associated
concentration vector x* = (x],.. .,x;) has entries defined
as follows: x} :=0; —o;_y, foralli=1,...,q.

There is a one-to-one correspondence between concen-
tration vectors and partitions for W. We further define the
empirical concentration vector of a graph G, ~ W:

1
x(Gp) = ;(nl (Gn)y v vy nq(Gn)) (1)

whose name is justified by the following observation:
nx(Gy) = (n1(Gy), . .., ng(Gy)) is a multinomial random vari-
able with n trials and ¢ events with probabilities x;*, for
1 < i < gq. A straightforward application of Chebyshev’s
inequality yields that for any € > 0,

P(Ix(Gy) — x*]| > €) < nz—iz ®)

where c is some constant independent of € and n. When G, is
clear from the context, we will suppress it and simply write x.

Skeleton Graph: A partition o for a step-graphon W induces
a partition of the node set of any G, ~ W according to which
of the intervals [0;_1, 0;) the coordinate y; (of the sampling
procedure) of v; belongs. Elaborating on this, we can in fact
construct a graph which encompasses most of the relevant
characteristics of a step-graphon.

Definition 4 (Skeleton Graph): To a step-graphon W with
a partition o = (o, ..., 04), we assign the undirected graph
S = (U, F) on g nodes, with U = {uy, ..., uy} and edge set F’
defined as follows: there is an edge between u; and u; if and
only if W is non-zero over [0;_1, 0;) X [0j-1,0)). We call §
the skeleton graph of W for the partition o.

We decompose the edge set of S as F = Fy U Fy, where
elements of F are self-loops, and elements of F| are edges
between distinct nodes.

Let Z := {1, ..., |F]|} be the index set for F. Let Zy (resp.
71) index the self-loops (resp. edges between distinct nodes)
of S: fj € Fy for i € Iy (resp. f; € F for i € Iy).

Given a step-graphon W and a skeleton graph S, there is a
graph homomorphism which assigns the nodes of an arbitrary
G, = (V,E) ~ W to their corresponding nodes in S:

wivieVis () =u €U, 3)

where u; is such that o;_1 < y; < oy, with y; the coordinate
of v;. It should be clear that n;(G,) = |r =V (u;)| for all i =
I,...,q.

Edge Polytope of a Skeleton Graph: To introduce the
polytope, we start with the following definition:

Definition 5 (Incidence Matrix): Let S = (U,F) be a
skeleton graph. Given an arbitrary ordering of its edges and
self-loops, we let Z = [z;;] be the associated incidence matrix,
defined as the |U| x |F| matrix with entries:

2, if fj € Fy is a loop on node u;,
1, if node u; is incident to f; € Fy, 4)
0, otherwise.

Zij ==

Owing to the factor % in (4), all columns of Z are probability
vectors, i.e., all entries are nonnegative and sum to one. The
edge polytope of S was introduced in [11] and is reproduced
below (with slight difference in inclusion of the factor % of
the generators z;).

Definition 6 (Edge Polytope): Let S = (U, F) be a skeleton
graph and Z be the associated incidence matrix. Let z;, for
1 <j < |F|, be the columns of Z. The edge polytope of S,
denoted by X (S), is the finitely generated convex hull:

X(S) =conv{z|j=1,...,|F|}. 4)

Since each z; is a probability vector and &'(S) is a convex
hull spanned by these vectors, X'(S) is a subset of the standard
simplex in RY. We provide below relevant properties of X'(S).

We first describe X'(S) by characterizing its extremal gen-
erators. Recall that x is an extremal point of X'(S) if there is
no line segment in X'(S) that contains x in its interior. Then,
the maximal set of extremal points is the set of extremal gen-
erators for X'(S). Because X'(S) is generated by the columns
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of Z, the set of extremal generators is necessarily a subset of
the set of these column vectors. To characterize it further, we
let Z, € 7 index the edges of S that are not incident to two
self-loops. We then have the following result.

Proposition 1: The set of extremal generators of X'(S) is
{zili € o U 15}

Proof: It should be clear from (4) that every z;, for i € Zy, is
an extremal point. Next, note that if f;, for i € 7y, is incident to
two self-loops, say f; and fi, then z; = %(zj + z) and, hence,
z; 1s not extremal. It now remains to show that if i € 75,
then z; is an extremal point. Suppose not; then, one can write
zi = Y2 ¢jzj» With ¢; > 0. Since z; only has two non-zero
entries and since the ¢;’s are non-negative, if the support of z;
is not included in the support of z;, then ¢; = 0. It has two
implications: (i) For any j € Z; —{i}, ¢; = 0; (ii) If j € Zo, then
the self-loop f; has to be incident to f;. Thus, the expression
zj = D gz Ceze reduces to z; = ¢jzj, where fj is the self-loop
incident to z; (if it exists), which clearly cannot hold. |

We conclude this subsection with a known result [11] on
the rank of X'(S) (or, similarly, a result [16] on the rank of
Z introduced in Definition 5), where the rank of X'(S) is the
dimension of its relative interior.

Proposition 2: Let S = (U, F) be a connected, undirected
graph on g nodes, possibly with loops. Then,

— 1 if S has an odd cycle,
— 2 otherwise.

rank X (S) = { Z (6)

C. Main Result

For ease of exposition, we assume from now on that the
step-graphons W are such that their corresponding skeleton
graphs S are connected. However, all the results below hold
for step-graphons W whose skeleton graphs have several con-
nected components by requiring that the conditions exhibited
for S hold for each connected component of S.

Theorem 1: Let W be a step-graphon with o a partition.
Let S and x* be the associated (connected) skeleton %raph and
concentration vector, respectively. Let G, ~ W and G,, be the
directed version of G,. If S has no odd cycle or if x* ¢ X (S),
then

lim ]P’(é,, has a Hamiltonian decomposition) = 0. (7)
n—oo

The proof goes by showing that if one of the two condi-
tions holds, then the edge polytope X (S) contains at most a
zero-measure subset of the support of x*. In particular, if §
does not have an odd cycle, then the codimension of X'(S)
in the standard simplex is 1 (see Proposition 2) and thus the
probability that the vector x* belongs to X'(S) is negligible in
the asymptotic regime.

The conditions exhibited in Theorem 1 almost completely
determine whether W has the H-property: we can show that
if § has an odd cycle and x* is in the interior of X(S),
then lim,_, o IED(G has a Hamiltonian decomposition) = 1.
The proof of this statement is much more involved than the
proof of Theorem 1, and will be presented on another occasion.

Remark 2: It may seem at first that the main result depends
on a certain partition o, which defines S and x*. We have estab-
lished in [17, Proposition 3] the following fact: The condition

that S has an odd cycle and the condition that x* € X'(S) are
independent of the choice of o. More specifically, for any two
partitions o and o’ for W, let x*, x* be the corresponding
concentration vectors and let S, S’ be the corresponding skele-
ton graphs. Then, it holds that (1) S has an odd cycle if and
only if S’ does, and (2) x* € X(S) if and only if x* € X(5).

I1l. ANALYSIS AND PROOF OF THEOREM 1
A. On the Edge Polytope of S

Let W be a step-graphon with partition sequence o and cor-
responding skeleton graph S on ¢ nodes. In this subsection,
we introduce in Definition 7 the set A(S) of sparse infinitesi-
mally stochastic matrices whose sparsity pattern is determined
by the skeleton graph S. We then show that the edge polytope
X (S), defined by (5), is exactly the set of row sums of these
matrices. This expression of X'(S) will be used in the proof
of Theorem 1.

We start with the following result.

Lemma 1: Assume that G, has a Hamiltonian decomposi-
tion, denoted by H, and let njj (H) be the number of edges of
H from a node in 7 ~I(u;) to a node in 7 1(u]) Then, for all
u; € U,

ni(Gy) = Y ny(H) =

wi €N (u;)

> miH). ®)

u; €N (u;)

Proof: Each node of H has exactly one incoming edge and
one outgoing edge. The result then follows from the fact that
Zu NGy Tij (H) counts the number of outgomg edges from the

nodes of 77~ (u;) while 3=, ) nji(H) counts the number of

incoming edges to the nodes of 7 ~I(u;), and the fact that H
has the same node set as G,, |

Following Lemma 1, we now assign to the skeleton graph
S a convex set that will be instrumental in the study of
Hamiltonian decompositions of Gy:

Definition 7: To an arbitrary undirected graph S = (U, F)
on g nodes, possibly with self-loops, we assign the set A(S) of
g X g nonnegative matrices A = [a;;] that satisfy the following
two conditions:

1) if (u;, uj) ¢ F, then a;; = 0;

2) A1=A"1,and 1TA1 = 1.

Note that 1T A1 is nothing but the sum of all the entries
of A. Because every defining condition for A(S) is affine, the
set A(S) is a convex set. -

Now, to each Hamiltonian decomposition H of G,, we
assign the following g x g matrix:

- 1 >
p(H) = —[i’l[j(H)]lfi,qu' ©)

The next lemma then follows immediately from Lemma 1:

Lemma 2: IfHisa Hamlltonlan decomposition of G,,, then
,o(H) e A(S) and p(H)l = x, where x is the empirical
concentration vector of G,,.

The relation p(ﬁ)l = x in the above lemma leads us to
investigate the set of the possible row sums of A € A(S). The
main result of this subsection is that this set is equal to X'(S)
introduced in (5).
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Proposition 3: The following holds:

X (S) = {x € R?|x = A1l for some A € A(S)}. (10)

Proof: We prove the result by using double-inclusion:

1. Proof that X(S) € A(S)I: We show that for each gen-
erator z; of X'(S) as in (4), there exists an A € A(S) such
that z; = Al. If j € Zo, then f; is a loop on some node
ui. Let Aj = e,-el-T e A(S); then, Ajl = z. If j e 1,
then ﬁ (uk, up) is an edge between two distinct nodes. Let
Aj = 2(eke1Z + egek) € A(S); then, Aj1 = z;.

2. Proof that X(S) 2 A(S)I: Let A € A(S), and we show
that A1 € X'(S). By Definition 7, A1 belongs to the standard
simplex. Thus, it suffices to show that A1 can be written as
a nonnegative combination of the z;’s; indeed, if this holds,
then it has to be a convex combination of the z;’s and, hence,
Al € X(S).

Decompose A =: Ag+A| where Ag (resp. A1) is the diagonal
(resp. off-diagonal) part of A. Then, A1 = Apl + A;1. We
show that both Agl and A;1 can be written as nonnegative
combinations of z;’s.

For Apl, note that if the iith entry of Ag is not O, then u; has
a self-loop, say f;. Thus, we obtain that Agl can be expressed
as a nonnegative combination of z;’s, for j € Zp.

For A1, we translate the problem into a problem about
decompositions of infinitesimally doubly stochastic matrices
into Laplacian matrices of cycles. First, since A1 = Airl,
replacing the diagonal entries of A; with the entries of —A;1
results in an infinitesimally doubly stochastic matrix. We
denote it by A| (i.e., A} :== A; — Diag(A1)).

Now, con51der the directed version of S, denoted by S.
For each directed cycle Ck of S, other than self- loops, we
let L be the associated Laplacian matrix. It is known that
A/ can be expressed as a nonnegative combination of these
L;{ [18, Proposition 3] (the statement can be viewed as an
infinitesimal version of the Birkhoff Theorem [19] for doubly
stochastic matrices). In particular, the diagonal of A (which
is —A11) is a nonnegative combination of the diagonals of L;.
Hence, it remains to show that the diagonal of each L;( can be
written as a nonpositive combination of the z;’s, for j € Z;. Let
J1, - .-, Jm be the indices Ln 7, that correspond to the undirected
versions of the edges of C. Then, —diag(L;) = > /_, zj,. This
completes the proof. |

B. Proof of Theorem 1

Let G, ~ W and x be the associated empirical concentration
vector. We will address subsequently the two conditions (1)
x* ¢ X(S), and (2) S having no odd cycle:

Condition (1) (x* ¢ X(S)): Since X(S) is closed, if
x* ¢ X(S), then there is an open neighborhood U of x*
the standard simplex such that &/ N X (S) = &. On the one
hand, by (2), the probability that x belongs to U tends to 1 as n
goes to infinity. On the other hand, if G admits a Hamiltonian
decomposition H, then by Lemma 2, A := p(H) € A(S) and
x = Al € X(S). The above arguments imply that if x* ¢ X' (S),
then (7) holds.

Condition (2) (S has no odd Cycle): In this case, by the
definition of X'(S) in (5) and Proposition 2, the co-dimension

0.5 1
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Fig. 3. The step-graphon depicted in Fig. 3(a) has the skeleton graph
shown in Fig. 3(e); the step-graphons depicted in Figs. 3(b), 3(c), 3(d)
have the skeleton graph shown in Fig. 3(f). The value of W(s,t) is
color-coded, with black being 1 and white being 0. The gray value in
step-graphon 3(d) is 0.2. For each of these step-graphons, we sampled
N = 2.10%* graphs Gy, for various n and evaluated whether Gn have a
Hamiltonian decomposition. The results are shown in Fig. 4.

of X(S) is 1 in the standard simplex. We introduce the random
variable w, = /n(x—x*)+x*. Since Ex = x*, it is known [20]
that w, converges in law to a Gaussian random variable w
with mean x* and covariance ¥ := Diag(x*) —x*x*T. A short
calculation yields that ¥1 = 0 and that ¥ has rank (g — 1)
(one could see this by, e.g., relating it to a weighted Laplacian
matrix of a complete graph). Hence, the support of w is the
affine hyperplane Q := {x* +v|[v'1 = 0}. Next, let Q' C Q
be the smallest afﬁne hyperplane containing X'(S), i.e., Q' :=
{ZlF‘ Aizil Z Ai = 1}. Its co-dimension in Q is 1, so P(w €
Q) =0. Smce wy, converges in law to w, lim,— P(w, €
Q') = 0. We conclude the proof by noting that the event
wy € Q' is necessary for x € X'(S) and, hence, by Lemma 2,
necessary for G, to have a Hamiltonian decomposition.

IV. NUMERICAL VALIDATIONS

We performed numerical studies to understand how rapidly
the asymptotic regime appears as n grows larger. The simu-
lation results can also be understood as a validation of our
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Fig. 4. Plot of the proportion Py of én, with Gn, ~ W, that
have a Hamiltonian decomposition, for the four step-graphons depicted
in Fig. 3.

main theorem and the claims made in this letter. The set-up is
the following: we consider the four step-graphons depicted in
Fig. 3. For each step-graphon, we sampled sets of N = 2-10*
graphs G, for each n € {10,20, 50, 100, 250, 500, 1000}
and evaluated the proportion of G, that have a Hamiltonian
decomposition. Namely, we evaluated

#a,, with Hamiltonian decomposition
Pr = 2108 '

Below are the observations from the experiments:

Experiment (a): The step-graphon shown in Fig. 3(a) has
associated concentration vector x* = [0.25, 0.25, 0.25, 0.25].
Its skeleton graph S, shown in Fig. 3(e), does not have an odd
cycle, but x* € X(S). We observe in Fig. 4 that the proportion
of G, ~ W that contains a Hamiltonian decomposition goes
to zero as n — oQ.

Experiment (b): The step-graphon shown in Fig. 3(b) has
associated concentration vector x* = [0.6, 0.1, 0.1, 0.2]. The
skeleton graph S, shown in Fig. 3(f), has an odd cycle.
However, x* ¢ X(S). We observe in Fig. 4 that the proportion
of G, ~ W that contains a Hamiltonian decomposition goes
to zero as n — oQ.

Experiment (c): The step-graphon shown in Fig. 3(c) has
associated concentration vector x* = [0.25,0.25,0.25, 0.25].
The skeleton graph S, shown in Fig. 3(f), has an odd cycle. One
can check that x* € 9X(S), i.e., the boundary of X(S). We
observe in Fig. 4 that the proportion of G, ~ W that contains
a Hamiltonian decomposition does not vanish as n — oo nor
goes to 1. Note that the class of step-graphons such that x* €
a X (S) is not generic.

Experiment (d): The step-graphon shown in Fig. 3(d) has
associated concentration vector x* = [0.25, 0.25, 0.25, 0.25].
The skeleton graph S, shown in Fig. 3(f), has an odd cycle.
One can check that x* € int X'(S), the interior of X(S).

We observe in Fig. 4 that the proportion of E}n ~ W that contain
a Hamiltonian decomposition converges to 1 as n — oo.

V. CONCLUSION

We have exhibited two necessary conditions for the
H-property to hold for the class of step-graphons W. The start-
ing point of our analysis was the introduction of two novel
objects associated with W: its concentration vector x* and its
skeleton graph S. We have then highlighted a novel connec-
tion between the edge polytope of S, denoted by X'(S), and
the H-property for the underlying graphon W: it requires that
x* € X(S) and X (S) is of maximal rank. We also validated our
results via numerical studies in Section IV. As was claimed
after Theorem 1 and shown in Figure 4, the two conditions
that x* belongs to the interior of X'(S) and that X'(S) is of
maximal rank are sufficient for a step-graphon W to have the
H-property.
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