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ABSTRACT: The multiconfiguration time-dependent Hartree
(MCTDH) method and its generalization, the multilayer MCTDH
(ML-MCTDH), result in equations of motion (EOMs) that are
singular when there are virtual orbitalsthe unoccupied single-particle
functionsin the wave function expansion. For decades this singularity
had been numerically removed by regularizing the reduced density
matrix. In this Perspective we discuss our recent proposal to regularize
the coefficient tensor instead, which has significant impact on both the
efficiency and correctness of the EOMs in MCTDH and ML-MCTDH
for challenging problems. We further demonstrate that when the system
becomes large such that it is necessary to use ML-MCTDH with many
layers, it is much more important to employ this new regularization
scheme. We illustrate this point by studying a spin−boson model with a
large bath that contains up to 100 000 modes. We show that even in the weak coupling regime the new regularization scheme is
required to quickly rotate the virtual orbitals into the correct directions in Hilbert space. We argue that this situation can be common
for applying a time-dependent tensor network approach to any large enough system.

I. INTRODUCTION

The multiconfiguration time-dependent Hartree (MCTDH)
method1−5 was proposed 30 years ago6 to treat larger molecular
systems than those that could be handled by the standard, full
configuration-interaction method. Since then, it enjoyed
significant success in molecular quantum dynamics. It made its
mark by being the first numerically exact approach to simulate
the photoexcitation spectrum of pyrazine in full dimensionality.7

It also afforded the study of model electron transfer reactions in
condensed phases8−11 that were once thought to be intractable
by a basis set method. Other applications of MCTDH include
simulating the IR spectrum for the Zundel cation (H5O2

+),12−15

calculating the tunneling splitting in malonaldehyde,16−19 and
obtaining rate constants or cross sections for the H + CH4→H2
+ CH3 reaction.

20−24

The key ingredient of MCTDH is to replace the static orbitals
in the standard method by the time-dependent orbitals, the so-
called single particle functions (SPFs), and propagate both the
expansion coefficients and the SPFs together. The SPFs still
need to be represented, the simplest of which is to use static,
primitive basis functions. This was used in the original
MCTDH.1−5 It all became natural to think about adopting the
same MCTDH philosophy on the SPFs themselves, and even
doing so recursively. The multilayer MCTDH (ML-
MCTDH)25−28 was proposed to achieve this. In ML-
MCTDH the wave function is expressed by a recursive layered
expansion, with only the bottom layer represented by static basis

functions. The Dirac−Frenkel variational principle29 is then
applied to this wave function ansatz, which results in a set of
coupled ordinary differential equations that define the time
evolution for ML-MCTDH.25−28

ML-MCTDHhas been designed to treat much larger systems.
Despite its name (“Hartree”), it is applicable to identical
particles by using a second quantized re-formulation.30

Furthermore, it is not limited to only simulating real time
quantum dynamics but can also be applied to computing
eigenstates31,32 or equilibrium reduced density matrices33 for
systems with many degrees of freedom. Its application in
quantum dynamics includes the study of charge transfer
reactions,34−46 quantum transport,47−54 surface scattering,55

photodissociation of a molecule embedded in a complex,56

vibronic dynamics,57 reactive scattering,23,24 exciton vibrational
dynamics,58−60 and singlet fission.61,62

There has also been significant interest in other fields, e.g.,
applied mathematics, in the form of the ML-MCTDH tensor
contraction. The original MCTDH approach utilizes the so-
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called Tucker form63 of tensor decomposition. The ML-
MCTDH expansion of a wave function was later therefore
called the hierarchical Tucker (H-Tucker) form by mathema-
ticians.64−66 It is also called a tree tensor network. Though ML-
MCTDH (or the H-Tucker format) has a rather general form,
practical implementations often refer to a binary branching or a
similarly balanced tree structure.65 A notable exception to this is
a special skewed tree structure that has gained popularity
recently, which is called the tensor train format in mathematics
and the matrix-product states in physics.67

MCTDH and ML-MCTDH approximate the exact wave
function by tensor contraction. The accuracy of such a
contraction increases when the number of SPFs, hence the
configuration space, increases for all nodes. (As discussed below,
a node is a point in the ML-tree where a SPF of an upper layer is
expanded into the SPFs of a lower layer. A node is labeled by the
index z and is represented mathematically by a coefficient tensor
Am;J
z . And a mode, qκ, denotes a collection of several degrees of

freedom.) An important indicator for convergence are the
eigenvalues pi

(z,κ) of the reduced density matrix ρ(z,κ) for each
node z and mode κ, the so-called natural populations. If the
smallest pi

(z,κ) approaches (or in fact is) zero, the correlation
effect has been completely accounted for in this node. This is
usually a good thing, but it creates a numerical problem in the
equations of motion for the SPFs in this mode: they become
singular. The situation is ubiquitous at short times when most of
the SPFs are unoccupied. Because of this numerical singularity,
there are some concerns in the mathematics community in spite
of the apparent success of MCTDH and ML-MCTDH.
It should be noted that in practice a regularization procedure

was applied to numerically remove the singularities, in essence
setting the zero eigenvalues pi

(z,κ) of the reduced density matrix
ρ(z,κ) to some regularization parameter ϵ. The thus regularized
density matrix can be safely inverted, and convergence can be
checked with decreasing ϵ. This regularization procedure has
been used for decades by almost all researchers in this field. In
most situations it worked just fine. However, we have shown
recently68,69 that for challenging cases much better results were
obtainedwhen thematrix unfolding of the expansion coefficients
are regularized. The new regularization scheme rotates the
unoccupied SPFs toward their optimal directions much more
quickly than the previous density matrix-based regularization
and may thus increase both the accuracy and efficiency of the
time propagation. In contrast to the “singularity-free” type
integrator,70,71 our regularization scheme takes the advantage of
the singularity to effectively exploit the optimal Hilbert subspace
so that correct results can be obtained.
In this Perspective we discuss our new regularization

scheme68,69 with a focus on ML-MCTDH simulations for
large systems. The necessity of using many layers to handle such
systems makes the new approach muchmore important. We will
show that, for very large systems, the previous density matrix-
based regularization scheme fails even for weak coupling
physical regimes, whereas the new scheme with a reasonably
small regularization parameter ϵ is the only viable option. This
has significant implications for further developments of time-
dependent tensor network methods for large systems.
The paper is organized as follows. In section II we discuss how

to apply our new regularization scheme to the MCTDH
equations of motion. We do so first because the MCTDH
equations are much simpler than those inML-MCTDH, and the
most important aspect of the new regularization scheme is
almost the same between MCTDH and ML-MCTDH. Then in

section III we extend the scheme toML-MCTDH. In section IV
we demonstrate the importance of our approach by considering
several examples of the spin−boson model, and pushing the
model limit to 100 000 bath modes. Section V discusses our
findings.

II. REGULARIZING THE MCTDH EQUATIONS OF
MOTION
II.A. The MCTDH Equations of Motion. The MCTDH

wave function is written as1−5

∑ ∑ ∏

∑

φ

Ψ = Ψ

= ···

= Φ

κ

κ
κ

= =
···

= κ

Q Q t q q t

A t q t

A

( , ..., , ) ( , ..., , )

( ) ( , )

f p

j

n

j

n

j j

p

j

J
J J

1 1

1 1 1

( )

p

p

p

1

1

1

(2.1)

where f denotes the number of physical coordinates, Qi, and
where p denotes the number ofmodes, qκ (also called particles or
logical coordinates26) and κ = 1, ..., p labels the modes. Each
mode, qκ = (Qa, Qb, ...), defines a physical subspace that may
contain one to several physical degrees of freedom, typically, 1,
2, or 3, sometimes more. The orbital functions φ are called single
particle functions (SPF) and there are nκ SPFs for the κth node.
The symbol J = (j1, ..., jp) is a composite index and the
configurat ion is defined as the Hartree product

φ|Φ ⟩ ≡ ∏ | ⟩κ
κ

= κ
J

p
j1
( ) . In MCTDH the SPFs are expanded with

static primitive basis functions χ multiplied by time-dependent
coefficients

∑φ χ=κ
κ

κ κ
κ

=
κ

κ

κ
q t c t q( , ) ( ) ( )j

l

N

j l l
( )

1
,

( ) ( )

(2.2)

where Nκ ≥ nκ denotes the number of primitive functions of the
κth node.
The Dirac−Frenkel variational principle29 is then applied to

the MCTDH wave function above for all time-dependent
variables. Adopting the standard gauge condition, i⟨φl

(κ)|φ̇j
(κ)⟩ =

0, the equations of motion are (the overhead dot denotes time
derivative)

∑̇ = ⟨Φ | |Φ ⟩A H Ai J
L

J L L
(2.3)

ρ φ φ̇ = − ⟨ ⟩κ κ κ κ κP Hi (1 )( ) ( ) ( ) ( ) ( )
(2.4)

where ρ(κ) is the reduced density matrix, ⟨H⟩(κ) is the mean-field

operator, φ(κ) is a vector of SPFs, i.e., φ φ φ=κ κ κ
κ

( ), ..., n
( )

1
( ) ( )T,

φ̇(κ) is the vector of the corresponding time derivative of SPFs,
and P(κ) is the projector

∑ φ φ= | ⟩⟨ |κ κ κ

=

κ

P
j

n

j j
( )

1

( ) ( )

(2.5)

To define the reduced density matrix ρ(κ) and the mean-field
operator ⟨H⟩(κ), one introduces single-hole functions that
project out particular SPFs

∑Ψ = Φκ
κ

κ κAl
J

J l J
( )

,
(2.6)

with
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∏ φ

=

Φ =

=

κ
κ κ

ν ν κ

ν

− +

= ≠
κ

ν

κ
κ κ− +

J j j j j

A A

( , ..., , , ..., )p

J

p

j
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1 1 1

1,

( )

, ,..., , , ,..., p1 1 1 (2.7)

The matrix elements for ρ(κ) and ⟨H⟩(κ) are now defined as

∑ρ = ⟨Ψ |Ψ ⟩ = *κ κ κ
κ

κ κA Ajl j l
J

J j J l
( ) ( ) ( )

, ,
(2.8)

and

⟨ ⟩ = ⟨Ψ | |Ψ ⟩κ κ κH Hjl j l
( ) ( ) ( )

(2.9)

In MCTDH the Hamiltonian is usually written in a sum-of-
products form

∑ ∏=
κ

κ

= =
H c h

r

s

r

p

r
1 1

( )

(2.10)

where cr is a number and hr
(κ) operates on the κth node only.

Using the sum-of-products form, the mean-field operators can
be written as

∑⟨ ⟩ =κ κ κ

=
H hjl

r

s

jl
r

r
( )

1

( , ) ( )

(2.11)

where the mean-field matrix κ r( , ) has elements

∑∑= *κ κ
κ κ

κ κ κ κA M Ajl
r

J L
J j J L

r
L l

( , )
, ,

( , )
,

(2.12)

in which

∏=κ

ν ν κ

ν

= ≠
κ κ

ν ν
M c mJ L

r
r

p

j l
r

,
( , )

1,
,

( , )

(2.13)

with

φ φ= ⟨ | | ⟩κ κ κ κm hj l
r

j r l,
( , ) ( ) ( ) ( )

(2.14)

II.B. Regularization of the MCTDH Equations of
Motion. The time derivatives for the expansion coefficients in
eq 2.3 are explicit and can be obtained straightforwardly.
However, the time derivatives for the SPFs in eq 2.4 require
solving a system of linear equations for the unknown φ̇(κ). There
are two questions regarding eq 2.4: First, is the linear system
consistent? I.e., does the system possess at least one solution?
Second, if solutions exist, is the solution unique? Unfortunately,
when the reduced density matrix ρ(κ) is singular, there is no
guarantee of either of them.
In MCTDH only the occupied SPFs are well-defined initially.

The unoccupied SPFs can be chosen at complete random. There
is no problem with it because these unoccupied SPFs make no
contribution to the wave function. This redundancy makes it
possible, at least in principle, to choose the initial unoccupied
SPFs to make the linear system consistent, thus answering the
first question. One can also go beyond the first order equations
to define the optimal form of the initially unoccupied SPFs, as
discussed by Manthe,72 and also by Lee and Fischer,73 and by
Mendive-Tapia and Meyer.74

The answer is almost always no to the second question if ρ(κ) is
singular. That is, even if the system is consistent, it is
underdetermined, which means there are fewer equations than

unknowns. This is also a manifestation of the zero contribution
from the unoccupied SPFs, which provides infinite possibilities
for these SPFs. In practice, one may write a formal solution to eq
2.4 as

φ ρ φ̇ = − ⟨ ⟩κ κ κ κ κ−P Hi (1 )( )( ) ( )
reg
( ) 1 ( ) ( )

(2.15)

where (ρreg
(κ))−1 is a pseudoinverse of the reduced density matrix

ρ(κ), e.g., first regularizing ρ(κ) by replacing its zero eigenvalues
by some regularization parameter ϵ and then inverting the
resulting regular matrix. For a particular ϵ the solution is
uniquely defined above, and this was the standard regularization
approach used previously. It is hoped that the solution
dependence on ϵ is weak such that convergence can be achieved
by decreasing ϵ. In most situations exploited so far this was
indeed the case. TheMCTDH equations of motion show a “self-
healing” effect. Unsuitable SPFs are rotated quickly into their
“correct direction” in Hilbert space, i.e., into the direction in
which they contribute optimally to the expansion of the wave
function.
The rotation of the unoccupied SPFs nevertheless takes some

time. If this time is comparable to or longer than the physical
time scale, then the MCTDH wave function is no longer an
accurate approximation to the true wave function. Our recently
proposed new regularization scheme aims at solving this
problem. One can, of course, define the initially unoccupied
SPFs to let them point into the optimal direction, as done by
Manthe72 and others.73,74 Our approach is much simpler to
implement and works well for very challenging cases.
The starting point is to introduce the matrix unfolding of the

coefficient tensor for the κth node κ
κ

AJ j, as an element of the

matrix A(κ) of dimension (n̅κ × nκ), with ̅ = ∏κ ν ν κ ν= ≠n np
1, .

Then some of the equations above are written as matrix products

ρ =κ κ κ†A A( ) ( ) ( ) (2.16)

= κκ κ κ†A M Ar r( , ) ( ) ( , ) ( ) (2.17)

and eq 2.4 is written as

∑φ φ̇ = −κ κ κ κ κ κ κ κ κ† †P hA A A M Ai( ) (1 )
r

r
r

( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( )

(2.18)

Now we can write matrix A(κ) as a singular value decomposition
(SVD), and for simplicity we drop the mode index κ in the
following expressions

λ= †A U V (2.19)

Instead of regularizing the reduced density, our new approach
regularizes A

λ= †A U Vreg reg (2.20)

which can be done, for example, via a simple procedure

λ λ= ϵmax( , )j j
reg 1/2

(2.21)

Inserting (2.20) into (2.18) and making use of the unitarity ofU
and V, the new regularization scheme yields

∑φ λ φ̇ = − − †P hV U M Ai (1 )
r

r
rreg

1 ( )

(2.22)

where the last coefficient matrix is not regularized in order to be
minimally invasive.
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The connection between the old and the current regulariza-
tion approach is given via the reduced density matrix

ρ λ= =† †AA V V2 (2.23)

which recognizes pj = λj
2 as the natural populations. By

transforming a set of SPFs with V†, one obtains the so-called
natural orbitals. The old approach (2.15) only regularizes the
reduced density matrix. Put it in context with (2.22), it reads

∑φ λ λ φ̇ = − − †P hV U M Ai (1 )
r

r
rreg

2 ( )

(2.24)

This small difference has a profound impact on the perform-
ance.68,69

To visualize the difference between eqs 2.22 and 2.24, we plot
in Figure 1 the modulus of the time derivative of a natural orbital

versus λ. For natural orbitals the transformation matrix V
becomes a unit matrix and the time derivative is proportional to
λreg

−1 or λreg
−2 λ, respectively. The new regularization (full line)

limits the time derivative to a constant value. Note in particular
that the time derivative, i.e., the speed of rotation of the natural
orbital, is large when λ vanishes. For the old regularization
scheme, on the other hand, the time derivative vanishes when λ
approaches zero (dashed line). Figure 1 makes it clear that the
new scheme rotates unoccupied or weakly occupied natural
orbitals much faster than the old scheme. Moreover, truly
unoccupied natural orbitals, λ = 0, are not at all rotated by the
old scheme! The unoccupied SPF has first to gain some tiny
occupation (of the order of ϵ) by A-vector propagation to be
able to get rotated. As the unoccupied SPFs are in general not
orthogonal to the optimal ones, they acquire some tiny
occupation during the first steps of propagation and the old
regularization scheme works fine. But if the SPFs are of rather
high dimensionality, a situation that frequently appears in the
upper layers of an ML-MCTDH calculation, then it is more
likely that the initially unoccupied SPFs are (almost) orthogonal
to the optimal ones. This makes it clear that the new

regularization scheme is more important for ML-MCTDH
than for MCTDH.
An interesting situation appears in case of symmetries.

Consider rotational excitation of H2 by collision. Starting from
the rotational ground state, j = 0, only even j-states can be
populated due to symmetry. If one (erroneously) provides a j = 1
Legendre function as unoccupied SPF, this SPF cannot acquire
occupation by A-vector propagation due to the symmetry
restriction and thus cannot be rotated by the old scheme. It will
stay in the j = 1 state for all times and will be useless for
improving the expansion of the wave function. However, when
the new regularization scheme is used, the algorithm will
immediately start to rotate the j = 1 SPF to an even j-state.

III. EXTENDING THE REGULARIZATION SCHEME TO
ML-MCTDH

The principle idea remains the same when extending the new
regularization scheme to ML-MCTDH. However, the ML-
MCTDH equations of motion25−28 are muchmore complicated
than the MCTDH ones, and it is not at all obvious how to
implement the new scheme. In particular, a recursive
formulation is needed to treat an arbitrary number of layers.
Here we outline a few salient features how this could be done.
For more details the readers may consult ref 69.

III.A. The ML-MCTDH Equations of Motion. To describe
an ML-MCTDH wave function a more complex nomenclature
is needed. We rewrite eq 2.1 in ML-MCTDH nomenclature as

∑ ∑ φ φ

Ψ

= ··· · · ·

q q t

A t q t q t

( , ..., , )

( ) ( , ) ... ( , )

p

j

n

j

n

j j j j
p

p

1
1 1

1; ,...,
1 (1;1)

1
1 (1; ) 1

p

p

p p

1

1

1
1

1

1
1

1 1
1

1

1

1

(3.1)

The upper index 1 indicates that the quantities are for the layer
number 1, also called top layer. In the MCTDH method, which
is equivalent to a two-layer75 ML-MCTDH approach, the
multidimensional SPFs are given by the second-layer equation
(cf. eq 2.22)

∑ ∑

φ

χ χ= ··· · · ·

κ
κ

κ κ κ κ κ
κ

κ

κ
κ

κ κ

κ
κ

q t

A t q q

( , )

( ) ( ) ... ( )

m

j

N

j

N

m j j j j
p

p

1; 1

; ,...,
2; ( ,1)

1
2; ( , ) 2;

p

p

p p

1

1

1

1
1

2; 1

2; 1
1

1 2; 1
1

1

1 1
2; 1

1
2; 1

2; 1
1

(3.2)

where χ denotes a primitive basis function and κ
κq 2;

2

1 is here the

physical coordinate (or a combined mode) of the κ2th DOF of
the node (2; κ1), which has κp2; 1 branches.
Adding additional layers, one has to specify which node of the

ML-tree is under consideration. For this it is convenient to
introduce the symbol

κ κ κ κ= − = −− −z l z l; , ..., and 1 1; , ...,l l1 1 1 2
(3.3)

Here l denotes the layer and κ1, ..., κl−1 denote the modes of the
layers above which leads to the node under consideration.
Hence, z precisely defines one particular node in the ML-
tree.26,27

The ML expansion can now be written in full generality

Figure 1. Comparison of the two regularization schemes. The full line
shows symbolically the speed of orbital rotation (in arbitrary units) of
the new regularization scheme versus the singular value λ, i.e., the
function λreg

−1. The dotted line is the continuation of the 1/λ curve for
small λ. The dashed line displays the speed of orbital rotation of the old
regularization scheme, i.e., λreg

−2λ, which is λ/ϵ for λ ≤ ϵ1/2 and 1/λ
otherwise.
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(3.4)

which implicitly defines the configurations ΦJ
z and the

composite index J, and where the coordinates are combined as

= { }κ
−
−

q q q, ...,z z
p
z1

1l
z

1 (3.5)

eq 3.4 holds also for the top layer if one defines q0 as the
combination of all DOFs and setsΨ(q0, t) =φ1

0(q0, t), and it also
holds for the bottom layer if one identifies φ κz , l with the
primitive function χκl, when z points to a bottom node. Hence
eq 3.4 holds for all layers.
The ML-MCTDH equations of motion for the SPFs are

formally the same for all layers, which has the same form as eq
2.4

∑ ∑ρ
φ

φ·
∂
∂

= − ̂ ⟨ ̂ ⟩κ
κ

κ κ κ
t

P Hi ( ) (1 )
n

z
mn

n
z

z

n
mn
z

n
z,

,
, , ,l

l
l l l

(3.6)

where φ φ̂ = ∑ | ⟩⟨ |κ κ κPz
n n

z
n
z, , ,l l l is the projector onto the space

spanned by theφ κ
n
z , l SPFs, ρ κz , l is a densitymatrix, and⟨ ̂ ⟩ κH z , l is a

matrix of mean-field operators acting on theφ κ
n
z , l functions. The

difference between ML-MCTDH and MCTDH lies on how the
reduced density matrix is constructed

∑ ∑ρ ρ=κ κ
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(3.7)

That is, the reduced density matrix ρ κz , l for a node z and mode κl
requires the expansion coefficients of the present node z and
reduced density matrix ρ κ− −z 1, l 1 of the parent node. This
recursion means ρ κz , l formally involves the expansion
coefficients of both zth and (z − 1)th nodes, except for the
top layer, where eq 2.8 is still valid. A similar expression applies
to the mean-field operator matrix.25−28

III.B. Regularization of the ML-MCTDH Equations of
Motion. If one tries to express ρ κz , l using a similar matrix
unfolding as for the MCTDH case described in the previous
section, e.g., eq 2.16, then one has to deal with the full-length
products of the expansion coefficients of two adjacent layers.
The resulting matrix size can be huge. Instead, we insert the
diagonal form of the density,

ρ λ=κ κ κ κ− − − †V V( )z z z z1, 1, 1, 2 ,l l l l (3.8)

into the recursion formula for the density, eq 3.7
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where in the first step we have introduced the definition
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and in the second step we have made use of a singular value
decomposition of Ã, where κa J( ; )l is considered a composite
index.

∑ λ̃ =κ κ κ κ
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(3.11)

This is a practical implementation as thematrix unfolding ̃ κAz , l is
usually not quite large. Equation 3.9 shows how to recursively
perform the SVD and diagonalize the reduced density matrix,
where the first layer [the base case (3.8)] is given by eqs 2.16 and
2.23. The recursion for the matrixU in the SVD can be done in a
similar fashion, which is a minor (but tedious) detail that can be
found in ref 69.
Once the SVD can be defined recursively as in eqs 3.9−3.11,

regularization can be done similarly as for the MCTDH case
described in the previous section. As for the old integration
scheme, ML-MCTDH requires two sweeps to complete the
equations of motion. First, the h-matrix elements are build
bottom up, until the top-level mean-field matrices are build.
Then top-down recursions for the mean fields are performed,
which requires the building of Ã and its SVD. The regularized
equations of motion that correspond to (3.6) are thus generated.

IV. ILLUSTRATED EXAMPLES
In our previous work68,69 we have tested the new regularization
scheme on the spin−boson model.76,77 Here we do it again but
for much bigger systems. The spin−boson Hamiltonian has
been widely used to model electron transfer reactions. It
contains two electronic states (|ϕ1⟩ and |ϕ2⟩) linearly coupled to
a bath of harmonic oscillators. Using mass-weighted coordinates
the Hamiltonian reads

∑ ∑σ σ ω σ= + Δ + + +
= =

H D p q c q
1
2

( )z x
j

N

j j j z
j

N

j j
1

2 2 2

1 (4.1)

where σx and σz are Pauli matrices

σ ϕ ϕ ϕ ϕ= | ⟩⟨ | + | ⟩⟨ |x 1 2 2 1 (4.2a)

σ ϕ ϕ ϕ ϕ= | ⟩⟨ | − | ⟩⟨ |z 1 1 2 2 (4.2b)

The properties of the bath that influence the dynamics of the
two-state subsystem are specified by the spectral density
function76,77

∑ω π
ω

δ ω ω= −J
c

( )
2

( )
j

j

j
j

2

(4.3)

In the test examples below we use an Ohmic (linear) spectral
density with an exponential cutoff

ω π αω= ω ω−J( )
2

e / c

(4.4)

where α is the dimensionless Kondo parameter that character-
izes the system−bath coupling strength and ωc is the cutoff
frequency of the bath. The continuous bath spectral density of
eq 4.4 can be discretized to the form of eq 4.3 via the relation9,25
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(4.5)

in which the density of frequency ρ(ω) is defined from the
integral relation

∫ ω ρ ω = =
ω

j j Nd ( ) 1, ...,
0

j

(4.6a)

In this work, ρ(ω) is chosen as

ρ ω
ω

= + ω ω−N
( )

1
e

c

/ c

(4.6b)

where ωN+1 = ∞ is removed from the simulation.
IV.A. An Example of Strong Coupling. First we consider

an example of strong system−bath coupling, with Kondo
parameter α = 2, and other parametersD/Δ = 0,ω/Δ = 25. The
dynamical property examined here is the time-dependent
population (difference) of the two-level subsystem

σ σ≡ ⟨ ⟩ = ⟨Ψ | |Ψ ⟩P t t t t( ) ( ) ( ) ( )z z (4.7)

where initially the system state |ϕ1⟩ is populated and the bath
starts from its ground state for all the modes.
The first case is for a bath of 10 000 modes, with its P(t)

displayed in Figure 2. Here we use dimensionless units, but for a

typical characteristic frequency ωc = 52.1 cm−1, the wave
function is propagated to 2000 fs. A 7-layer ML-MCTDH was
used in the simulation. The first layer has five bath nodes and
one node for the two system states. There are eight SPFs per
bath node, resulting in a total of 85 × 2 = 65 536 configurations
for the first layer. For the other layers, there are up to three child
nodes under each parent node, with five SPFs per node. Mode
combination and adiabatic basis contraction are used for each
bottom layer node, which holds up to 4 bath modes. A variable
stepsize predictor-corrector ordinary differential equation
(ODE) solver was used in the time integration, with its absolute
tolerance set to 10−10 and relative tolerance set to 10−6. These
parameters have passed extensive convergence tests.
For the same regularization parameter ϵ the new regulariza-

tion scheme has an added bonus. Compared with regularization
of the reduced density matrix, eq 2.23, which requires replacing
small λj

2 with ϵ, the new regularization scheme (2.20) replaces λj
with ϵ1/2 as shown in (2.21). This allows a smaller ϵ to be used in
the new scheme for more difficult cases. If 10−16 is approximately
the double precision limit, then this is the smallest ϵ that can be

used in the old scheme. The new scheme, however, can be
extended to ϵ = 10−32. Such a small ϵwill be used to generate the
reference data for all the examples discussed below. As shown in
Figure 2, the old regularization scheme with a typical parameter
ϵ = 10−8 gives a completely erroneous result.
As in our previous work, we measure the convergence of the

result using a relative cumulative deviation (hereafter simply
referred to as “deviation”), defined as

∫τ=
−

| − |
τ

P P
P t P t tdeviation

1 1
( ) ( ) d

max min 0
ref

(4.8)

where τ is the time scale of the simulation, Pref(t) is the reference
result obtained by using ϵ = 10−32 in the new regularization
scheme, Pmax and Pmin are the maximum and minimum values of
Pref(t). The error tolerance of the predictor-corrector ODE
solver was set such that there is ∼10−5 roundoff error in the
deviation. Any deviation in this range can be considered as
allowable numerical noise. For the numerical convergence of
P(t), we set the criterion that deviation be less than ∼10−4,
which is stringent enough as compared with other convergence
parameters and is still larger than the roundoff error. Finally, we
measure the computational cost by the number of calls to the
ML-MCTDH derivative subroutine.
Table 1 shows the performance for both the old and new

regularization schemes. There are several clear messages. First,

the typical regularization parameter ϵ = 10−8 does not work for
either scheme. It simply cannot provide the quick rotation
needed to adjust the initially unoccupied SPFs. As a result, not
only is the accuracy terrible but also the cost is expensive. As ϵ
decreases, both schemes provide better accuracy with actually
reduced computational expense. However, even ϵ = 10−16 does
not provide sufficient accuracy. This is bad news for the old
regularization scheme, since such an ϵ is already near the double
precision limit for this scheme. The first acceptable result is
obtained with ϵ = 10−18 where both schemes give accurate
enough results. However, the old scheme costs 2 orders of
magnitudemore and is obviously not practical. The new scheme,
on the other hand, shows clear convergence with reasonable
cost. For reference, the simulation that employs the new

Figure 2. Time dependence of P(t) = ⟨σz(t)⟩ for D/Δ = 0, α = 2, and
ωc/Δ = 25. A bath of 10 000 modes is used in a seven-layer ML-
MCTDH simulation. The solid line is the reference P(t) employing the
new regularization scheme with ϵ = 10−32, where the dashed line is (the
incorrect) P(t) obtained using the old regularization scheme with ϵ =
10−8.

Table 1. Number of Calls to the ML-MCTDH Derivative
Subroutine and Deviation versus the Regularization
Parameter ϵa

old regularization new regularization

ϵ no. of calls deviation no. of calls deviation

10−8 165912 5.1 × 10−1 161408 5.1 × 10−1

10−10 133369 5.0 × 10−1 22317 3.7 × 10−1

10−12 21742 4.3 × 10−2 16128 4.3 × 10−2

10−14 14321 2.7 × 10−2 13895 7.9 × 10−3

10−16 97996 2.8 × 10−3 12669 1.0 × 10−3

10−18 1536865 2.9 × 10−4 14336 1.2 × 10−4

10−20 13834 4.8 × 10−5

10−22 19749 2.1 × 10−5

10−24 32387 1.4 × 10−5

10−26 39732 2.3 × 10−5

10−28 56707 7.4 × 10−6

10−30 76131 2.3 × 10−6

10−32 103485 reference
aThe physical parameters are α = 2, D/Δ = 0, ωc/Δ = 25. A seven-
layer ML-MCTDH is used to treat a bath of 10 000 modes.
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regularization scheme with ϵ = 10−18 takes less than 3 h on a
modest Intel core-i5 computer.
The above finding reveals a tough reality that for a large

system the old regularization scheme may no longer be useful.
This is confirmed from our investigations on a series of models
with a different number of modes N. For this example the old
regularization scheme works fine when N < 500, difficult but
manageable in the range 1000 < N < 2000 (with a small enough
regularization parameter such as ϵ = 10−14), and becomes
prohibitively expensive for larger N. It is essentially impractical
to use the old scheme for N > 5000. Since most systems in
previous applications of ML-MCTDH were well below this size,
the defect of the old regularization scheme was not considered
serious.
To illustrate the importance of employing the new

regularization scheme on large systems, we show the results
for the same physical parameters but obtained for a bath of
100 000 modes. Previously we tried to avoid a very deep
layering, because such a calculation was difficult to converge.
With the new regularization scheme, however, the use of a
deeply layeredML-tree is no longer problematic and here we use
the large number of 17 layers (18 layers if one considers
MCTDH as a two layer approach). For simplicity we use a
binary branching of the ML tree: the first layer contains two
nodes, one for the bath and the other for the system states. The
bath node is recursively bifurcated to the next 16 layers, thus
generating 215−216 bottom layer nodes (some branches are
trimmed during the automatic layer construction.) Mode
combination and basis contraction are again used for each
bottom node, which contains at most 3 bath modes. The
number of primitive basis functions range from 3 for high-
frequency modes and 14 for low-frequency modes. We use the
notation (16 × 8|4 × 9) to denote the configuration setting such
that there are 16 SPFs per node of each layer for the first 8 layers,
and 4 SPFs per node of each layer for the next 9 layers. This is
more than enough to reach convergence as for another much
smaller setting (6 × 8|3 × 9), the deviation is ∼10−4 from it.
Table 2 shows that numerically converged results can only be

obtained when ϵ < 10−20 (which rules out the use of the old
scheme). With a rather broad range ϵ ∈ [10−28 to 10−20], the

computational cost stays roughly the same and only doubles for
the smallest ϵ = 10−32. This suggests the robustness of the new
regularization scheme and its practicality for ML-MCTDH
simulation of large systems. The calculations do become more
expensive. With ϵ = 10−24, the (16 × 8|4 × 9) configuration
setting takes 85 h whereas the (6× 8|3× 9) configuration setting
takes 5 h on the same Intel core-i5 computer. Nevertheless, these
calculations are manageable by modern standards.
One may notice that in Table 2 a smaller tolerance was set for

the ODE integrator: 10−12 absolute and 10−8 relative. This is one
of the reasons that calculations take more time steps in Table 2.
It may be thought that a larger tolerance such as in Table 1 can
be used to accelerate the calculations. Table 3 shows that it is not

capable of providing accurate enough results. It is often tempting
to cut corners by increasing the error tolerance of an integrator,
but robustness and accuracy are more important in our point of
view, especially when one uses ML-MCTDH to generate
benchmark results.
The above results are obtained with a narrow but tall tree. One

may think that because of this particular tree structure the old
regularization scheme fails and the new regularization scheme
requires a small ϵ < 10−20 to achieve convergence. To check this,
we have exploited different tree structures and obtained almost
the same finding. For example, for a wider tree where the first
layer has 5 nodes and each subsequent layer contains at most 3
nodes, an 11-layer ML tree can accommodate 100 000 modes.
Convergence is again only achieved when ϵ < 10−20. Thus, it is
the number of degrees of freedom rather than the tree structure
that demands a small regularization parameter.

IV.B. What about Weaker Couplings? The previous
example of the spin−boson model is in a very strong coupling
regime. A natural question is whether the integration is easier for
a weaker coupling. Table 4 illustrates this for α = 0.5, which is
usually considered an intermediate coupling strength. Integra-
tion requires almost the same regularization parameter: ϵ <
10−18. The finding is similar from Table 5, which shows the
result for α = 0.02, a very weak coupling case. Convergence still
requires ϵ < 10−18. All this suggests that with this many degrees
of freedom, the old regularization scheme is no longer
applicable. One has to employ the new regularization scheme
with a small enough regularization parameter to obtain
meaningful results.

Table 2. Number of Calls to the ML-MCTDH Derivative
Subroutine and Deviation versus the Regularization
Parameter ϵa

ϵ no. of calls deviation

10−12 231978 4.8 × 10−1

10−14 62546 5.4 × 10−2

10−16 50460 2.7 × 10−2

10−18 70927 3.7 × 10−3

10−20 135616 4.0 × 10−4

10−22 117491 2.9 × 10−5

10−24 126699 8.7 × 10−6

10−26 90164 5.2 × 10−5

10−28 119135 6.3 × 10−5

10−30 216717 1.3 × 10−6

10−32 256434 reference

aThe physical parameters are α = 2, D/Δ = 0, ωc/Δ = 25. A 17-layer
ML-MCTDH is used to treat a bath of 100 000 modes. The
configuration setting is (16 × 8|4 × 9). For the ODE integrator the
absolute tolerance is set to 10−12 and the relative tolerance is set to
10−8. Only the results under the new regularization scheme are shown
since the old scheme completely fails.

Table 3. Number of Calls to the ML-MCTDH Derivative
Subroutine and Deviation versus the Regularization
Parameter ϵa

ϵ no. of calls deviation

10−12 688706 5.3 × 10−1

10−16 237369 3.4 × 10−1

10−20 233597 3.4 × 10−1

10−24 45510 6.9 × 10−2

10−28 38658 1.2 × 10−2

10−32 37887 1.3 × 10−3

10−34 42490 4.8 × 10−4

aA 17-layer ML-MCTDH is used to treat a bath of 100 000 modes.
The parameters are the same as in Table 2 except for the ODE
integrator the absolute tolerance is set to 10−10 and relative tolerance
set to 10−6. The reference result is the same as in Table 2.
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V. CONCLUSIONS
In this Perspective we have reviewed our recently proposed new
scheme for regularizing the equations of motion for MCTDH
and ML-MCTDH. Different from regularizing the reduced
density matrix in the old scheme, the new approach regularizes
the matrix unfolding of the coefficient tensor via the use of
singular value decomposition. This allows a much faster
adjustment of the virtual orbitals and allows them to be
populated quickly. The new regularization scheme is muchmore
important for ML-MCTDH simulations, because the SPFs of
the upper layers of an ML-tree are of rather high dimensionality.
This makes it likely that initially the virtual SPFs are orthogonal
to their optimal form.72−74 As long as they are orthogonal to
what they should be, they cannot gain occupation. Only the new
regularization scheme is able to rotate a truly unoccupied SPF
into its optimal direction in Hilbert space (see Figure 1).
As the size of the simulation system becomes larger, the

underlying whole Hilbert space becomes much larger than the
subspace that ML-MCTDH simulation resides. This sparsity
was coined as the “curse of dimensionality” by Bellman. As a
result, variation calculations require a very fast exploitation of
the correct Hilbert subspace. Our examples of the spin−boson
model show that it becomes common to employ a very small
regularization parameter to achieve numerical convergence.
This has more to do with the size of the system than the coupling
strength when the system is particularly large. While the spin−
boson model has a simple Hamiltonian, it is similar (from the
perspective of ML-MCTDH simulations) to vibronic coupling
models used in many other applications such as computation of
photoexcitation spectra,7,78 photoionization spectra,57,79 ex-
citation energy transfer,60 singlet fission,61,62 and quantum

transport.34,35,49 The examples illustrated in this paper suggest
that as the ML-MCTDH algorithm becomes mature enough to
tackle bigger systems, it is time to adopt the new regularization
scheme for its equations of motion.
ML-MCTDH employs a very general ansatz for the wave

function, it is closely related to several other tensor network
approaches. The manipulation of tree structures is in principle
straightforward. For example, one may adopt a balanced tree in
the first few layers and then use the tensor train format for
deeper layers, or one can do it reversely.80 These approaches are
being explored by different researchers in different fields. We
have experimented with several different tree structures and all
of them require a careful use of the new regularization scheme.
We thus believe that this is a rather general requirement for time-
dependent tensor network applications to large systems. Of
course, it is not easy to use a skewed tree such as the tensor train
format to handle 100 000 modes, at least not for the moment. So
the problem of correctly regularizing the equations of motion
may not seem so urgent for some applications. However, our
study shows that it is time to seriously consider this for realistic
applications of ML-MCTDH.
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Table 4. Number of Calls to the ML-MCTDH Derivative
Subroutine and Deviation versus the Regularization
Parameter ϵa

ϵ no. of calls deviation

10−12 107117 2.8 × 10−1

10−16 27556 4.7 × 10−3

10−18 30696 1.0 × 10−4

10−20 33236 2.9 × 10−5

10−24 39708 5.4 × 10−5

10−28 54501 6.5 × 10−5

10−32 56211 reference
aA 17-layer ML-MCTDH is used to treat a bath of 100 000 modes.
The configuration setting is (8 × 8|4 × 9). The parameters are the
same as in Table 2 except the coupling is weaker, α = 0.5.

Table 5. Number of Calls to the ML-MCTDH Derivative
Subroutine and Deviation versus the Regularization
Parameter ϵa

ϵ no. of calls deviation

10−12 741946 1.2 × 10−2

10−16 96017 1.0 × 10−2

10−18 31791 5.1 × 10−4

10−20 38324 2.8 × 10−6

10−24 40767 6.6 × 10−7

10−28 46341 5.2 × 10−7

10−32 53031 reference
aA 17-layer ML-MCTDH is used to treat a bath of 100 000 modes.
The configuration setting is (8 × 8|4 × 9). The parameters are the
same as in Table 2 except the coupling is weaker, α = 0.02.
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