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Abstract. Smart grids can be vulnerable to attacks and accidents, and
any initial failures in smart grids can grow to a large blackout because of
cascading failure. Because of the importance of smart grids in modern so-
ciety, it is crucial to protect them against cascading failures. Simulation
of cascading failures can help identify the most vulnerable transmission
lines and guide prioritization in protection planning, hence, it is an e↵ec-
tive approach to protect smart grids from cascading failures. However,
due to the enormous number of ways that the smart grids may fail ini-
tially, it is infeasible to simulate cascading failures at a large scale nor
identify the most vulnerable lines e�ciently. In this paper, we aim at 1)
developing a method to run cascading failure simulations at scale and
2) building simplified, di↵usion based cascading failure models to sup-
port e�cient and theoretically bounded identification of most vulnerable
lines. The goals are achieved by first constructing a novel connection be-
tween cascading failures and natural languages, and then adapting the
powerful transformer model in NLP to learn from cascading failure data.
Our trained transformer models have good accuracy in predicting the
total number of failed lines in a cascade and identifying the most vul-
nerable lines. We also constructed independent cascade (IC) di↵usion
models based on the attention matrices of the transformer models, to
support e�cient vulnerability analysis with performance bounds.

Keywords: Power grid · Smart grid · Cascading failure · Transformer ·
Independent cascade model.

1 Introduction

In smart grids, the integration of cyber and physical processes on one hand
enhanced the accessibility to all the functionality of the power grid, but on
the other hand, it leads to potential threat to the grid from the cyber surface,
since for attacks, attackers now may access the grid via internet connections;
for accidents, the cyber surface opens up more possibilities. The damage level
of the potential attacks and accidents can be escalated because of power grid
cascading failures (PGCF) [12], where the failure of one transmission line may
lead to failures of other lines and eventually large blackouts. Many real-world
blackouts, for example, the Northeast America blackout and Italy blackout in
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2003, Brazil and Paraguay blackout in 2009, and India blackout in 2012 are all
related to cascading failure [1, 3, 4, 13]. Because of the catastrophic impact of
cascading failures in smart grids, a key infrastructure network, it is important
to understand cascading failures and perform protection actions.

To prioritize the allocation of protection resources on the transmission lines,
it is crucial to understand what are the most important lines in a cascading
failure. We consider two types of lines as important: 1) the most critical lines:
the failure of those lines could cause the largest scale of cascading failure and 2)
the most vulnerable lines: the lines that are most likely to fail by the failure of
other lines. In order to identify those important lines, the approach of running
simulations of cascading failures is studied. One widely used model for simulation
is the OPA model, which was first introduced in [9, 10, 14, 28], and many of
its variations are studied later [21–23, 26]. Other cascading failure simulation
models include the hidden failure model [11] and the cascading failure model [6].
One essential component of all the models is the calculation of the power flow
equation [5], which is needed for each round in cascading failure. The existing
simulation models face two challenges: 1) Since the number of possible failed
line combinations is huge (

�N
k

�
for an N � k analysis), it is infeasible to do

cascading failure simulations at scale. 2) there exists no e�cient way to identify
the most critical/vulnerable lines with theoretical performance guarantee, as the
cascading failure models are too complicated.

To deal with the first challenge, Machine Learning (ML) models are consid-
ered in literature [15, 25, 29]. The existing models can predict the severity of a
cascading failure given the initial failures, however, it is hard to extract infor-
mation like the actual lines failed in a cascade, which is important for analysis.
We will consider more powerful models that can predict the whole cascading
failure process instead of the severity of cascading failure. The reason why it is
possible is a novel connection between cascading failures and natural languages:
both the lines failed in a cascading failure and the words in a sentence are se-
quences of elements, which makes it possible to adapt the sequence-to-sequence
models in NLP and use them on cascading failure prediction tasks. Among the
sequence-to-sequence deep learning models, the transformer based models [30]
are the state-of-the-art. Comparing to the traditional recurrent neural network,
the transformer sacrifices the focus on the order of the elements in the sequence
but gained stronger ability to learn the correlations between elements. This dis-
advantage may compromise the performance on the pure NLP problems but it
does not a↵ect the performance for the PGCF problem because the order of
failed lines in each set in a cascading failure stage has very little e↵ect on cal-
culating or predicting the set of failing lines for the next stage. To the best of
our knowledge, there exists no research on using sequence-to-sequence models
for the PGCF problem.

The second challenge can be addressed with an intrinsic feature of trans-
former models: the attention mechanism. The correlations of elements repre-
sented by the attention matrix indicates the percentage that the elements ”at-
tend” to each other. In a transformer model trained for PGCF, it means how
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likely a line will fail after the failure of another line. This possibility representa-
tion can be applied to the independent cascade (IC) di↵usion model [17]. After
converting the attention matrix to a probability matrix, it is possible to simu-
late PGCF with an IC model, which greatly simplifies the process and provides
further performance boost to cascading failure simulation.

To verify the e↵ectiveness of the transformer and IC models in cascading
failure simulation, we trained transformer models for three power grid networks,
including two IEEE test cases and the SciGrid network. The cascading failure
samples are generated using the model from [6]. The IC models are then derived
from the trained transformer models. Both models are capable of doing cascading
failure prediction tasks, the f1 score can go as high as 0.77 for the transformer
model in SciGrid. In terms of e�ciency, the transformer model can generate
cascading failures up to 56 times faster than the classical power flow based
models, while the IC model can be several orders of magnitude faster.

Our contributions are summarized as follows.

– We propose a new approach of simulating PGCF with the transformer model,
based on a novel connection between cascading failures and natural lan-
guages.

– We utilize the parameters from the transformer model to build an IC model
to greatly simplify the simulation of the PGCF process and support vulner-
ability analysis with theoretical performance guarantee.

– We trained the transformer model and constructed the IC model in multiple
widely used power network data sets, including IEEE test cases and SciGrid.
Experiment results on PGCF simulation tasks show that the transformer and
IC models have good accuracy and greatly boost e�ciency, when comparing
to the power flow based cascading failure models.

Organization. The rest of the paper is organized as follows. Section 2 re-
views the related works. Section 3 explains the cascading failure model, the
transformer model and the IC model. Section 4 provides the evaluation and
comparison between the three models. We conclude the paper in Section 5.

2 Literature Review

The analysis of the vulnerability of power grid has been a focus of studies to
improve the security of smart grid. Many of the studies are based on the deter-
ministic models [6, 8–11, 14, 22, 23, 26, 28], and references therein. Other studies
are based on stochastic models [16, 20, 24, 27, 31, 32]. Furthermore, there are lim-
ited number of studies utilize ML techniques to analyze the PGCF [15, 25, 29].
All of those models have their own advantages and limitations.

The foundation of the deterministic models were the power flow equation
from [5]. The model in [11] provides the fundamental template for the cascading
failure which is extended in [6–8] with vulnerability analysis and control impli-
cation modules. The OPA model [9, 10, 14, 28] enriches the template with the
complex factors that dynamically changing the configuration of the grid. The
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variants of the OPA model make the e↵orts with di↵erent point of view. The
improved OPA model [22] makes the improvement with the concept of the hid-
den failure. The OPA model with slow process [26] add on the factors of tree
contacts and temperature variation to the original OPA model. The AC OPA
model [21, 23] changes the DC OPF calculation to the AC OPF calculation. The
deterministic models can reveal details of PGCF, however, they may experience
performance issues due to extensively resolving the power flow equations.

The stochastic factors are introduced to simplify the calculation with Markov
Chain or probability density function [16, 20, 24, 27, 31, 32]. In [15, 25, 29], mul-
tiple ML techniques are used to make statistical analysis from a more general
perspective. Both stochastic and ML models lack the ability to describe the
status of individual components in a cascading failure.

The transformer model [30] has been proven to be the foundation for the
state-of-art Deep Learning (DL) techniques for natural language processing (NLP),
especially for the sequence-to-sequence problem. In [19], the information di↵u-
sion problem for the social network was addressed by a transformer based model.
However, since the mechanism of information di↵usion and PGCF are very dif-
ferent, the model is not applicable in PGCF simulation.

DL techniques have been widely used to solve di↵erent power grid tasks [18].
The BiLSTM with Attention, for example, is used to analyse the stability of the
power grid [33]. However, the model only predicts a binary results of whether if
the grid is stable or not. To the best of our knowledge, no study has applied the
transformer based model to simulate the PGCF process.

PGCF simulation may also be addressed using the di↵usion models [2, 17],
in which the state of nodes in a network can be impacted by the state of the
neighboring nodes in a stochastic manner. However, it is pointed out in [6] that
cascading failure may propagate non-locally, hence, a di↵usion model based on
the smart grid topology cannot be directly applied to simulate PGCF and some
transformation is needed.

3 Models

In this section, we first describe the cascading failure model, which is used to
generate the data set for the training and testing for the transformer model.
Then, we introduce the text generation task in NLP and show how it is related
to PGCF simulation, and describe the transformer model. In the end, we dis-
cuss an approach to construct an IC model with the attention matrix from the
transformer model.

3.1 Cascading Failure Model

To generate cascading failure samples for model training and testing, a simplified
cascading failure model from [6] is used in this paper. The power grid can be
described as a graph G with as set of nodes N , which can be further divided
into two groups: the supply nodes S ✓ N and the demand nodes D ✓ N . For
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node i 2 S, si represents the active power generated at i, di represents the
demand power of i 2 D and ✓i represents the phase angle of i. �+(i)(��(i))
represents the set out(in)-neighbors of node i. We use a tuple (i, j) to represent
a transmission line between nodes i and j, with fij indicating the power flow,
xij as the reactance, and uij as the capacity.

The cascading failure model has the following steps:

1. A set of lines is randomly selected to fail as the initial state.
2. The power flow of the grid is calculated by the equation 1 and 2.

X

j2�+(i)

fij �
X

j2��(i)

fji =

8
><

>:

si, i 2 S

�di, i 2 D

0, otherwise

(1)

✓i � ✓j � xijfij = 0, 8(i, j) (2)

3. The lines with power flow higher than the capacity (fij < uij) are set to
failed.

4. If no lines failed in step 3, the cascade ends and all the failed lines are
recorded as the final state. Otherwise, repeat steps 2 and 3.

3.2 Transformer Model

Text Generation vs. PGCF The text generation task is one of the most clas-
sical NLP problems which is normally solved by a sequence-to-sequence model.
The model is ”asked” with a sequence of words as input then ”answer” with
another sequence of words as the output. This is the same as a simplified PGCF
process which has a sequence of initial failed lines and a sequence of final failed
lines. Since almost all the state-of-art sequence-to-sequence models for NLP
problems are based on the transformer model, it could be a great fit for the
PGCF analysis (Fig. 1).

Attention Mechanism The detailed structure of the transformer model can be
found in [30]. The most powerful feature of this model is the attention mechanism
(Eq. 3) which calculates the correlation between all elements in the sequence [30].

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (3)

The matrix multiplication of QK
T represents the relationship between Query

matrix Q and Key matrix K. dk is the dimension of the matrix K.
p
dk is used

for scaling, which does not have direct impact to the result, but may improve
model training e�ciency [30]. By taking the softmax of the matrix multiplication
result and multiply with the Value matrix V , we obtain the level of the attention
between each pair of elements in the Query and Key. The complexity for Eq. 3 is
O(n2) which is a great improvement to the power flow based models. However,
with multi-layer structure and the recurrent calculation to simulate the PGCF,
the transformer model is still computational expensive.
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(a) NLP Encoder-Decoder Structure

(b) PGCF Encoder-Decoder Structure

Fig. 1. The general structure of Encoder-
Decoder Model for NLP and PGCF prob-
lem. ”hstarti” and ”hendi” are the tokens
to indicate the start and the end of the
sequence. Fig. 2. Transformer Structure [30]

3.3 Independent Cascade Model

Since the transformer model is still ”heavy” for prediction, with the attention
matrix extracted from the trained transformer model, it is possible to construct
an IC model that greatly simplifies the PGCF simulation. If we converted the
set of all transmission lines into a complete directed graph G(N,E). For edge
(i, j) from node i to j, its weight wij determines how likely node j will fail after
node i’s failure. The weight can be seen as the attention paid by i to j. If i
attends j significantly, it is more possible that j will be failed by the failure of
i. The attention mechanism of the transformer has exactly same purpose.

To summarize, the IC Model simulates the cascading failure with the follow-
ing steps: (1) assign scaled Attention

✓
ij to wij ; (2) randomly fail a set of lines

Rm,m = 0; (3) fail set of lines Rm+1 = {j|wij > P (ij), 8i 2 Rm, (i, j) 2 E\Rm},
where P (ij) is uniformly randomly sampled in [0, 1] independently for each (i,j);
(4) terminate if Rm+1 = ;, else increment m and repeat step (3).

Because the calculation for the state of each node is just one comparison,
the complexity is only O(n) which is another great improvement than the trans-
former model. Also, due to the simplicity, many optimization problems defined
on the IC model can have theoretically bounded solutions (e.g. [17]), which makes
the IC model valuable in cascading failure vulnerability analysis for future stud-
ies.

4 Experiments

To validate the performance of the proposed approaches, we train the trans-
former model and construct the IC model on three widely used synthetic power
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grids, and generate cascading failure samples using the model in [6]. The stats of
the networks and samples are summarized in Table. 1. We use 80% samples for
training and 10% each for testing and validation. A virtual Google compute en-
gine with 4 vcpus plus 15 GB memory and one NVIDIA Tesla T4 GPU was used
in training. When testing the computational e�ciency, we use a machine with
80 CPUs (Intel(R) Xeon(R) CPU E5-4650v2 @ 2.40GHz) and 566 GB memory,
GPUs are not used to ensure all models are evaluated under the same condition.

We use the power flow based model in [6] as a baseline to compare with
the transformer and IC models. The reason for not comparing with the existing
ML/DL models [15, 25, 29] is that they are fundamentally di↵erent, for example,
they may use power flow features to train the parameters, or combining the
power flow calculation with the ML techniques.

4.1 Transformer Model Hyperparameter

The structure of the transformer model is shown in Fig. 2. Considering the
”vocabulary” size (total number of lines in our cases) is a lot less than the
common NLP problems, and because the improvements are limited with heavier
model according to the results of our experiments, we chose to only have 2
encoder layers and 2 decoder layers. For the embedding and attention matrix,
the dimensionality is set to 128, the same as the inner feed-forward layer.

4.2 Total Number of Failed Lines Prediction

(a) Case 118 (b) Case 300 (c) Case SciGrid

Fig. 3. Total number of failed lines predictions - transformer model

The distribution of the total number of failed lines is shown in Fig. 3. It is
obvious to see that the more lines in the grid, the larger scale of PGCF may
occur. For case 300, it appears our prediction is more consist with the targets
comparing to other cases. However, it is also closer to a normal distribution for
both the predictions and targets. That could mean the vulnerability is more
normally distributed throughout the grid. Especially comparing the results with
case SciGrid, there are reasons to believe some of the lines may always trigger
more lines to fail.
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Table 1. Dataset description

case lines total samples
IEEE-118 173 1,000,000
IEEE-300 283 100,000
SciGrid 852 191,479

Table 2. SSD of Line Failure Frequency

case predict SSD target SSD
IEEE-118 0.227 0.187
IEEE-300 0.196 0.174
SciGrid 0.335 0.335

4.3 Line Failure Frequency

In Table 2, the scaled standard deviation (SSD) of the failure frequency (f) for
each line in three cases is calculated by

SSD = SD(f)/S

where SD(.) is the function for standard deviation and S is the size of test set.
Since SSD for case 300 is the lowest, the failed frequency for each line does

not deviate much which is consist with the result we obtained from Section 4.2
that the vulnerability is more normally distributed for case 300. We could also
expect the prediction of actual failed lines can be more di�cult for case 300 and
more accurate and reliable for the case SciGrid.

In Table 3, 8/10 predicted most vulnerable lines are the same as the target
set for case 118 and case 300, and 6/10 predictions are correct for case SciGrid.
But, the general error distribution (Fig. 4) indicates that the error rate for most
of the predictions are within [0, 0.1], especially for case SciGrid. If the above
expectation was correct, this distribution could mean the transformer model
performs well for the most vulnerable lines prediction for complex power grids.

Table 3. 10 most vulnerable lines

Case Prediction Target
IEEE-
118

73, 65, 30, 31, 32, 129, 67, 141, 142,
144

73, 65, 67, 30, 31, 32, 144, 143, 129,
158

IEEE-
300

202, 230, 20, 164, 123, 153, 93, 5, 279,
143

202, 164, 230, 93, 20, 123, 153, 76,
143, 99

SciGrid 71, 26, 65, 8, 3, 252, 141, 253, 38, 86 26, 71, 8, 65, 38, 86, 25, 30, 13, 126

4.4 Line Failure Magnitude

To predict the most critical lines, we use the concept ”magnitude” as defined
by Equation 4. For each cascading failure sample, the contribution of one ini-
tial failed line can be considered as the total number of failed lines divided by
the number of initial failed lines. For each transmission line, its magnitude can
be the average contribution out of all cascading failure samples that line had
contributed to.
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magnitude(linei) =

P
i2initialj

num of(cascadej)
num of(initialj)

frequencyi
(4)

The transformer model performs even better for the most critical lines pre-
diction (Fig. 5). The higher error rate for the case 118 implies the transformer
model may perform worse for simpler grids.

Fig. 4. Line Failure Frequency Fig. 5. Line Failure Magnitude

4.5 F1 Score

The precision, recall, and f1 scores for three cases are listed in Table 4. It is
obvious to see that the transformer model performs better with the SciGrid case
(f1: 0.77) which is still consistent with the observation in previous experiments.
The reason that case 300 did not perform better than case 118 could also be the
normally distributed vulnerability.

Table 4. F1 score - transformer

cases precision recall f1
IEEE-118 0.46 0.67 0.55
IEEE-300 0.41 0.72 0.52
SciGrid 0.70 0.87 0.77

Table 5. Time Consumption (sec/sample)

cases power flow transformer IC
IEEE-118 5.35 2.91 0.017
IEEE-300 9.93 4.75 0.021
SciGrid 103.17 1.82 0.067

4.6 IC Model Simulation

The IC model simplifies PGCF simulation at the cost of lower accuracy. Hence,
the prediction of the total number of failed lines (Fig. 6) could be worse compar-
ing to the result from the transformer model (Fig. 3). The higher distribution
for the smaller scale cascading failure prediction implies the conversion between
the attention and the weights needs to be more sophisticated that the potential
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large scale cascading failures won’t be missed. The implication is also supported
by the peak distribution for case SciGrid because the oversimplified conversion
may encourage the cascading failure with the deactivation of the vulnerable lines.

(a) Case 118 (b) Case 300 (c) Case SciGrid

Fig. 6. Total number of failed lines predictions - IC model.

4.7 Computational E�ciency

Complexity Analysis From the equations 1 and 2, the linearized power flow
model has time complexity O(n3) for the worst case scenario. From the equation
3, we know the complexity for the attention calculation is n2 (Section 3.2). And,
the complexity for the IC model is O(n) as explained in Section 3.3.

It is obvious that the transformer model will perform much faster when n

is larger. However, when n is smaller, the di↵erence won’t be that significant
because the other factors in the transformer model may contribute more to the
computational complexity. For example, when n is close to the dimensionality
of the embedding matrix d, the complexity can be close to O(n3)

Computing Time In Table 5, we can see when the power grid gets more
complex (852 lines vs. 173 lines and 283 lines), the power flow model takes sig-
nificantly longer time. The IC model is the fastest as expected. These results are
consistent with the discussion above. Besides, because the computing speed for
transformer model will be a↵ected by the dimensionality of the feature matrix,
there is no exponential di↵erence between di↵erent cases.

5 Conclusion

In this paper, we studied the problem of predicting cascading failures with trans-
former models and further construct an IC model as a simplified cascading model,
which can be used for both prediction and theoretical analysis. By considering
line failures in cascading failure as a sequence, we trained transformers on cas-
cading failure data, and then built IC models using attention matrices in the
transformers. Comparison with the power-flow based cascading failure model in
three widely used power grid test cases showed that the transformer and IC
models have acceptable accuracy and can greatly improve simulation e�ciency.
Also, it is possible to use the trained models to support identification of the
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most critical and vulnerable lines in cascading failure, which can contribute to
protection planning.
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