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Customizing the Angular Memory Effect for Scattering Media
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The memory effect in disordered systems is a key physical phenomenon that has been employed for
optical imaging, metrology, and communication through opaque media. Under the conventional memory
effect, when the incident beam is tilted slightly, the transmitted pattern tilts in the same direction. However,
the “memory” is limited in its angular range and tilt direction. Here, we present a general approach to
customize the memory effect by introducing an angular memory operator. Its eigenstates possess perfect
correlation for tilt angles and directions that can be arbitrarily chosen separately for the incident and
transmitted waves, and can be readily realized with wave front shaping. This work reveals the power of
wave front shaping in creating any desired memory for applications of classical and quantum waves in

complex systems.
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I. INTRODUCTION

Multiple scattering of light in disordered media such as
white paint, paper, and biological tissue randomizes the
propagation of waves and scrambles the spatial information
carried by an incident beam. Once the thickness of a sample
exceeds the transport mean free path, the information about
the incident direction is lost, and light waves are scattered
in all directions. While the interference of these scattered
waves forms a random grainy pattern (speckle) in trans-
mission, some memory is retained, as a result of the
deterministic scattering process [I-3]. One prominent
example is the angular memory effect: if the incident wave
front of a coherent beam is tilted by a small angle, the
transmitted wave front is tilted by the same amount in the
same direction. Both classical and quantum waves possess
such a memory [4-8], which persists even in the deep
diffusive regime where forward-scattered waves are neg-
ligible and the information of the original propagation
direction is lost already [9-12]. In this way the angular
memory effect provides unique access to the transmitted
far-field pattern behind a disordered sample, which can be
conveniently scanned by tilting the incident wave front.
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This feature has enabled a wide range of applications in
imaging, sensing, and optical metrology through turbid
media [13-31].

While the angular memory effect exists for any incident
wave front, it is severely limited by the small angular range of
A/(2zL) for a diffusive sample of thickness L at wavelength
A. Various schemes have been developed recently to increase
the range of the angular memory effect, e.g., by time gating
[32], spatial filtering [33] of the transmitted light or disorder
engineering [34], as well as by combining it with the
translational memory effect [6,35,36] through a forward-
scattering medium, or by coupling light into high-trans-
mission eigenchannels in a diffusive medium [37]. What all
these works have in common, however, is that they are
constrained by the restrictions of the conventional memory
effect for which the output wave front tilts by the same angle
and in the same direction as the input wave front. To
overcome these inherent limitations, we consider here a
radical expansion of the angular memory effect by address-
ing the following questions. Is it possible to achieve a tilt in
the output wave front along a different direction and/or with a
different angle as compared to that of the input wave front?
Can “perfect correlation” be obtained at arbitrarily chosen tilt
angles which will effectively increase the memory effect
range well beyond the conventional one?

The affirmative answers we provide here to these
questions involve a customization of the angular memory
by shaping the incident wave front of a coherent beam. For
this purpose, we introduce an angular memory operator
whose eigenvectors provide perfect memory for arbitrarily
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chosen input and output tilt angles of the incoming and
outgoing wave fronts. By launching coherent light through
such an eigenvector into a diffusive system, we experi-
mentally demonstrate that the transmitted wave front can
even tilt in the opposite direction to that of the incident
wave front. Moreover, we show that such correlations can
be achieved simultaneously at different input and output
angles and that the corresponding tilt angles at both the
input and output may well exceed the conventional angular
memory range. Our methodology is applicable to other
types of memory effects and in different kinds of complex
systems such as chaotic cavities or multimode fibers. It
provides a general framework for designing and creating
desired memories for various applications in imaging,
metrology, and communication through complex media.

II. ANGULAR MEMORY OPERATOR

To customize the angular memory effect, we first define
a correlation coefficient that quantifies the similarity
between a transmitted field pattern t|y) and one with
arbitrary tilt angles 6;, 8, of the input and output wave
fronts, X'(0,)tX(0;)|w):

(w|t'X7(6,)tX(6,)|w)
CE 9,’,00 = s 1
(0.6 Ve ) (wIXT(0,)F 1X(0,)y) M

where y denotes the input field, ¢ the field transmission
matrix of the scattering medium, and X(6;) and X'(,) are
rotation operators that tilt the incoming and outgoing field
profiles by angles 8; and 6, respectively. See Sec. D of the
Supplemental Material for a detailed description of the
rotation operator and how to avoid edge effects [38].

For the conventional angular memory effect the input
and the output angles are equal, §; = 8,, and within the

(a) Conventional angular memory effect

Input beams

Output beams

FIG. 1.

angular range of 1/(2zL) for a diffusive slab of thickness
L, as sketched in Fig. 1(a). To achieve memory for arbitrary
0; and 8, we tailor the incident wave front y to maximize
|C(6;,0,)| without compromising the overall transmit-
tance. While nonlinear optimization methods can be
employed to search for an optimal y, they are unlikely
to find the global maximum in such a high-dimensional
search. We thus introduce here an angular memory operator
whose eigenvectors maximize the correlations for any
chosen input and output tilt angles. Figure 1(b) shows,
as an example, that while the input wave front is tilted in the
horizontal (x) direction, the output wave front tilts in the
vertical (y) direction, and input and output wave fronts tilt
by different angles.

To build such an angular memory operator, we start with
the expression Q,=1'X"(0,)tX(0,) [appearing in the
numerator of Eq. (1)], with its eigenvectors given by
Q0|V,(10)) = aff’)|vﬁ,°)>. In our angular memory operator,
0, and 0, represent the output and input angles we choose
for customizing the angular memory effect, respectively.

Using these eigenvectors |V,(10)> as input wave fronts, the

numerator of the correlation coefficient C in Eq. (1) equals

to the corresponding complex-valued eigenvalues aﬁ,o).

Correspondingly, the eigenvectors of Q, with large |a£,0)|
have a large numerator of |C|. As it turns out, this does not
necessarily enhance |Cy|, because the eigenvectors may
achieve a large numerator of |C| already by coupling light
into high-transmission eigenchannels. A higher transmis-
sion increases, however, not only the numerator but also the
denominator of |Cg| without necessarily increasing the
similarity between #|V”) and X' (8,)tX(8,)|V").

To enhance |Cg| instead of just its numerator, we adapt
the angular memory operator in the following way:

(b) Customized angular memory effect

Input beams

L Output beams

Conventional versus customized angular memory effect. (a) Schematic of the conventional angular memory effect: a beam of

coherent light (wavelength 1) is impinging onto a diffusive slab of thickness L. When the incident beam is tilted by a small angle
0;, < A/(2zL), the transmitted pattern tilts in the same direction by 6, , = 6; .. (b) Schematic of the customized angular memory effect:
both the input and the output tilt angles can be chosen arbitrarily for a special incident wave front. In this example, when the input wave
front is tilted by 6, , in % direction, the output wave front tilts in § direction by |6, | # |6; /.
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0(6:.0,) = ('1)''X7(8,)1X (6). (2)

The additional term (t7t)~! counterbalances the increase
of the numerator that would result from an increase
in the transmittance only. Alternatively, one can also
counterbalance the transmittance by using the term
{[X7(8,)tX(6;)]TX(8,)tX(;)}~", which results in a similar
expressionin Eq. (2) (see Sec. E in the Supplemental Material
for the derivation [38]). Here, we restrict ourselves to the case
where the number of output channels N, in the transmission
matrix ¢ is no less than the number of input channels N;, i.e.,
N, > N,. This situation is typically realized in experimental
measurements of a transmission matrix ¢, where the number
of controlled input channels N; (i.e., number of columns of )
does not exceed the number of detected output channels N,
(i.e., number of rows of ¢), and guarantees that the expression
(t'1)~'¢" in Eq. (2) (left inverse of ) exists. Moreover, when
the number of input and output channels is the same,
N, = N,, the left inverse just equals ¢~!, and the angular
memory operator in Eq. (2) reduces to the simple expres-
sion Q(0;,0,) = t'X7(8,)tX(0;), with its eigenvectors
0(8:.0,)|V,) = a,|V,,) satistying X"(6,)1X(6;)|V,) =
a,t|V,). More precisely, tilted output field patterns
X7(0,)tX(6,)|V,)’s are identical to the original ones
t|V,)’s, aside from a constant factor a,. The correlation
coefficient thus reaches its maximal value, |C| = 1. Hence,
with the number of input and output channels being equal,
N = N; = N,, the N eigenvectors of Q, regardless of their
associated eigenvalues, provide N incident wave fronts to
create N perfectly correlated pairs of input-output field
patterns for the chosen angles @; and 6,. We note that
eigenvectors of a different operator were recently developed
to correlate the transmitted field profile of a scattering
medium to that of free space [39].

When N, > N;, the eigenstates of (Q satisfy
£'X7(0,)tX(0,)|V,) = a,tt|V,), which is to say that the
outputs projected by #' have perfect correlation. The
unprojected outputs can still exhibit high correlations, even
though less than unity, and the eigenstate with the highest
possible correlation will be shown below.

III. EXPERIMENTS

Next, we construct the angular memory operator Q using
our experimentally measured transmission matrix of a
diffusive sample. Our sample is a densely packed zinc
oxide (ZnO) nanoparticle layer on a cover slip. The layer
thickness is about 10 gm, much larger than the transport
mean free path /, ~ 1 um, such that the light transport in the
7ZnO layer is diffusive. The transmission matrix ¢ is
measured with an interferometer setup shown in Fig. S1
of the Supplemental Material [38]. A linearly polarized
monochromatic laser beam at wavelength 4 = 532 nm is
split and injected into the two arms of the interferometer. A
spatial light modulator (SLM) in the sample arm prepares

the phase front of the light field, which is then projected
onto the front surface of the ZnO layer. The light trans-
mitted through the sample combines with the reference
beam from the other arm. Their interference pattern is
recorded by a CCD camera placed in the far field of the
sample. The phase front of the output field from the sample
is recovered from four interference patterns acquired with
varying global phases displayed on the SLM. The reference
beam has a flat phase front, allowing the retrieval of the
relative phase between output fields at different locations in
the far field. This information is critical to the construction of
the angular memory operator, which requires measurement
of the correlation between fields at different output angles
(corresponding to different far-field locations). In contrast to
the common-path interferometry method [37,40,41], which
measures only the relative phases between different input
channels to the same output channel (i.e., only relative phases
between the columns of ), our method measures the phase
differences between both columns and rows of the trans-
mission matrix.

We construct Q(0;,0,) from the measured 7.
Experimentally we record a part of the total transmission
matrix, with the number of input channels N; equal to the
number of SLM macropixels and the number of output
channels N, being determined by the detection area on the
camera. Figure 2 shows an example with N; = 1024 and
N, = 4096. Since the camera pixel size is smaller than the
average speckle grain size, the number of speckle grains at
the outputis 455. The transverse plane x-y in Fig. 2 is parallel
to the sample surface. We choose opposite tilts for the field
profiles at the input and the output of the scattering sample,
é,-.y = —7.8%and @,,,y = 7.1°. This means when the incoming
wave front is tilted in the —y direction by 7.8°, the outgoing
wave front tilts in +y by 7.1°. We find the eigenvectors of
such Q, and set the input wave front to its first eigenvector
|V) with the largest |a;|. Because N; < N, |C| does not
reach unity, but it increases with |, | and has the maximum at
|y | (see Fig. S3 in the Supplemental Material [38]). Then we
scan the tilt angle of the input wave front 6, , along the y axis
and calculate the output wave front using the measured
transmission matrix . After tilting the output wave front by
an angle 6, , in y, we calculate its correlation Cy with the
original output wave front without tilting the input.

IV. RESULTS AND DISCUSSION

Figure 2(a) shows |Cg| for each pair of §; , and 6, , in the
range of —10° and 10°. The conventional angular memory
effect is buried in the correlation at the origin Cg(0,0),
because its range is only about 1° and is less than the step
size (2.5°) of 0; , and 6, ,,. Therefore, the chosen angles 9”,
and 90,}, are well beyond the conventional angular memory
effect range. Figure 2(b) shows the output wave front
without tilting input or output, ; , = 0 and 6, , = 0. When
the input wave front is tilted by 6;, = éi.y = —7.8° and
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output by 6, , = éoyy =7.1° the output field pattern in
Fig. 2(c) is very similar to the original pattern in Fig. 2(b).
In contrast, the output field pattern in Fig. 2(d) is completely
different for 6, , = 2.6° # 0, and 0,,, = 2.4° # 0, .

In this example (Fig. 2), the input and the output wave
fronts tilt in opposite direction along the y axis. In Fig. S4
of the Supplemental Material, we present examples where
the input wave front is tilted in the y direction, while the
output wave front tilts in the x direction or in the diagonal

6, , (deg)

FIG. 2. Angular correlation of output field patterns. (a) Corre-
lation coefficient |C (6, .0, )| for the incident wave front given
by the eigenvector |V} of the angular memory operator Q(@i‘y =
-7.8°, éo.y = 7.1°) with the largest eigenvalue amplitude |a;].
The number of controlled input channels is N; = 1024, and the
number of detected output channels is N, = 4096. (b) With the
incident wave front |V ), the transmitted field pattern in the far
field is represented with the field amplitude by brightness and the
phase by color using the color wheel in (d). The horizontal and
vertical axes denote k,, and k, ,, the components of the output
wave vector in x and y directions, respectively. The white plus
sign marks the origin: k, , = 0, k, , = 0. The scale bar represents
k =0.05(27/4). (c) When the input wave front tilts by 6;, =
9,»_). = —7.8° and the output by 6, , = 90_), = 7.1°, the output field
pattern is highly correlated to the original one in (b), with
|Cg| = 0.9. (d) The transmitted field pattern for §; , = 2.6° # 9,-.),
and 0,, =2.4°# 90‘). is uncorrelated with that in (b), with
|Cg| = 0.05. The conventional angular-memory-effect range is
about 1°. White plus signs in (c) and (d) represent the shift of the
origin (k, , = 0 = k,, ) of the transmitted field pattern. The scale
bars are identical to that in (b). Amplitude and phase patterns in
(b) and (c) are shown in separate panels in Fig. S2 of the
Supplemental Material [38].

direction X +  [38]. As described above, when N, < N,
all eigenvectors of (Q(6;.0,) should achieve perfect
memory with |Cg(6;,6,)| =1 for any input and output
tilt angles ; and 0,. Figure 3(a) shows that such perfect
correlation is indeed observed when we reduce N, to
1024 = N,. For any chosen pair of ; and 8,, the corre-
sponding 1024 eigenstates of Q all have |Cg| =1, as
shown in Fig. 3(c).

The full memory (perfect correlation) in Figs. 3(a) and 3(c)
is obtained from an experimentally measured transmission
matrix in case of full-field (amplitude and phase) modu-
lation of the eigenvectors. However, while injecting the
eigenvectors experimentally, we use a SLM that modulates
only the phase of the input field. When only the phase of an
eigenvector is used, however, the correlation |Cy(6;,0,)|
drops significantly, as shown in Fig. 3(b). This is because
the eigenstates of the angular memory operator consist of
both high- and low-transmission eigenchannels, and the
latter are strongly affected when the amplitude modulation
of the input field is removed. In Fig. 3(c), all eigenstates of
0 have |Cg| significantly less than 1 when only the phase is
used. Such a dramatic reduction in |Cg| due to phase-only

modulation does not occur in the special case of 8, = 0,
where the angular correlation is encoded in the input wave
front (see Fig. S8 in the Supplemental Material for details

[38]). To overcome the degradation at g)o # 0, we discard
the low-transmission eigenchannels when computing the
pseudo-inverse (¢'t)~'t" in Eq. (2), a procedure called
truncated matrix inversion. In Figs. 3(d)-3(f), among 1024
transmission eigenchannels, we keep the top 500 with high
transmittance. Since the eigenstates of Q comprise only
these 500 eigenchannels, their robustness against the
absence of amplitude modulation is notably improved.
In Fig. 3(d), the correlation |Cg| with full-field modulation
is slightly reduced because the degree of control at the input
is reduced by truncated matrix inversion, but the reduction
is small. In Fig. 3(f), we plot |Cg| for all eigenstates of Q
with phase-only modulation. The eigenstates with higher
|r,,| have stronger correlation, because they have smaller
contributions from lower transmission channels, as con-
firmed by their transmittance shown in Fig. S5 of the
Supplemental Material [38]. In Fig. 3(e), the first eigenstate
(n = 1) with |ay]| closest to 1 has |Cg| above 0.73 for all
input and output tilt angles 6, and ,,, even with phase-only
modulation of its incident wave front.

The robustness of the customized angular memory
against the absence of amplitude modulation allows us
to experimentally excite an eigenvector of the Q(Z),-,@U)
operator with a phase-only SLM, as shown in Fig. 4.
Considering the case in Fig. 4, we display on the SLM the
phase front of the first eigenstate (with the largest |a;|) of
0, which is constructed with truncated matrix inversion,
keeping the top 500 transmission eigenchannels out of
1024 (see Sec. H in the Supplemental Material [38]). To tilt
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FIG. 3. Angular correlations of eigenstates and eigenvalues of Q.

(a) All eigenstates of Q customized for any combination of input
and output tilt angles §; and ,, have perfect correlation |Cz| = 1 at
the chosen angles. The number of input and output channels is
N; = N, = 1024. (b) Angular correlation |Cg| is reduced when
only the phase front of the eigenvector is modulated, except when
6, = 0. The eigenstate of index n = 500 has the highest correlation
averaged over all input and output tilt angles within the range of
(=10°,10°). (c) All 1024 eigenstates of Q for a given pair of §; =
—7.8°and 0, = 7.1°, marked by white x in (a) and (b), have perfect
angular correlation |C| = 1 with full-field modulation of the input
wave front (red, left axis). Phase-only modulation dramatically
reduces the angular correlation |Cg| of all eigenstates (green, left
axis). (d) The truncated matrix inversion slightly reduces angular
correlation for full-field modulation of the input wave front, but the
first (n = 1) eigenstate of Q with the highest |a; | has [Cg| > 0.95
for any combination of the input and the output tilt angles &; and 0,,.
(e) With phase-only modulation of the input wave front the
truncated matrix inversion keeps |Cg| > 0.73 for the first eigen-
state, much improved over that with no truncation in (b). (f) The
truncated matrix inversion reduces the number of eigenvalues «,, to
500 (blue, right axis). Their angular correlation with full-field
modulation (red, left axis) is compared to that with phase-only
modulation (green, left axis). The angular memory eigenstate with
a larger eigenvalue amplitude |, | has a higher correlation |Cp|.
White x signsin (d) and (e) represent the selected 0;and 6, for 0. In
(b), (d), and (e), the eigenstates of Q have varying degree of
correlation |Cy| < 1, and we select the one with the highest
correlation averaged over all pairs of 6; and 0,,.

6, , (deg)
() Double memory eigenstate (d) Angular range
-10 N 1 — Conventional memory effect
= — - Memory eigenstate
L_) Double memory eigenstate
=) 1
b} °©
o | 3 0.8
~ 05 =
> 5 0.6
< €04
(@]
Z0.2
10 0 B ~=]
-10 0 10 32 -1 0 1 2 3
6,, (deg) 6., — 0., (deg)

FIG. 4. Experimentally measured angular memory effect.
(a) The angular correlation coefficient |Cp| is enhanced only
near the origin for a random input wave front. N; = 1024 and
N, =4096. (b) [Cg| increases to 0.66 at (8;, = —7.8°
0,, = 7.1°) when the incident phase front is set to that of the
first eigenstate of the angular memory operator Q designed for
this set of angles. The conventional memory effect increases the
correlation at (f;, =0, 6,, = 0). (c) |Cg| is enhanced at two
designated angle pairs far from the origin: |Cg| = 0.43 at
0;,,=-178° 6,,=171° and |[Cg| =05 at (8;, =728,
0,, = —3.5°). White dashed lines in (b) and (c) have the slope
of n;/n, = 1/1.5, where n; = 1.0 is the refractive index of air on
the input side of the sample and n,, = 1.5 is the refractive index of
the glass substrate on the output side. (d) Normalized correlation
functions, plotted along the white dashed lines in (b) and (c), have
identical widths for conventional and customized memory
effects. The customized memory effects persist over identical
angular range around the chosen tilt angles compared to the
conventional memory effect around 6; =0. In (a)-(d) we
experimentally display phase-only wave fronts for random input
and eigenstate inputs. In (b)-(d) we construct angular memory
operators using truncated matrix inversion with the 500 highest
transmission eigenchannels.

the incident wave front on the sample, we laterally shift the
phase front on the SLM, which is at the Fourier plane of the
sample front (input) surface. The step size for input angle
scanning is 0.29° significantly smaller than the conven-
tional angular memory effect range 66 = 1.7°. For each tilt
angle, we measure the transmitted field profile on the CCD
camera with four-phase-shift interferometry. Then we tilt
the transmitted wave front and compute its correlation with
the original wave front. For comparison, we display a
random phase front on the SLM to measure the conven-
tional angular memory effect.
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For a random input wave front, the conventional angular
memory effect manifests itself as a large correlation |Cp]|
when 6; , and 6, ,, are close to 0 in Fig. 4(a). Note that the
memory exists only when the shift in the incident trans-
verse wave vector equals to the shift in the outgoing
transverse wave vector. When the two sides of the medium
have the same refractive index, the conventional memory
effect exists along the diagonal where 0;, =6, ,. In our
case, the refractive index of air (n; = 1.0) above the ZnO
layer is lower than that of the glass substrate (n, = 1.5)
underneath the layer, so the conventional memory effect is
tilted from the diagonal, and the white dashed line denotes
0,y/0;y = n;/n, =1/1.5. In addition, the unequal sam-
pling rate of input and output tilt angles in our experiment
contributes to the off-diagonal tilt, as detailed in Sec. I of
the Supplemental Material [38].

When the SLM is configured to display the input phase
front of the first eigenstate of the Q(6;,6,,) operator, |Cg| is
greatly enhanced at the preselected angles 6;, = éiy), =
—7.8°and 0, , = éoyy = 7.1° of the Q operator in Fig. 4(b).
In spite of the phase-only modulation of input fields and a
relatively large ratio N,/N; = 4, |Cg| = 0.66 is obtained
experimentally. The phase front of the incident eigenstate,
displayed on the SLM, does not exhibit any spatial
correlation. As shown in Fig. S8 of the Supplemental
Material, autocorrelations of both the input and the output
field patterns give sharply peaked functions, confirming the
angular correlation is not encoded at the input or the output
fields [38]. Instead, the angular memory is created via an
interplay between the spatial modulation of the incident
field and the deterministic scattering of light in the
disordered medium. In special cases such as 8, =0 or
0; = 0, either the input or the output fields of the eigen-
states of Q feature periodic modulations; more details about
these special cases are presented in Sec. K of the
Supplemental Material [38].

Finally, to demonstrate the versatility of our approach,
we create the angular memory simultaneously for two
different input and output tilt angles. In order to realize this
with a single incident wave front, we construct two angular
memory operators: Q,(6; .0, )=(¢"t)"'¢'x"(0,,)tX(8;,)
and  05(0;2.0,,) = (1) X7(0,,)tX(0;,). Then we
obtain the joint operator Qy,, = (Q; + Q,)/+/2 and find
its eigenvectors with Q;,,|V,) = @,|V,). The phase-only
modulation of the input wave front, given by the eigen-
vector with the highest |a,|, enhances the angular corre-
lation |Cg(6;,6,)| at two locations far from the origin in
Fig. 4(c). This means the incident wave front has two
memories: if tilted by 7.8° in the —y direction, the trans-
mitted wave front tilts by 7.1° in +y; however, if the same
wave front is tilted by 7.8° in +y at the input, the output
wave front tilts by 3.5° in —y instead. The correlation

coefficients |Cg| are reduced roughly by a factor of /2,

compared to the case of single memory in Fig. 4(b). Such
reduction is less than that of superimposing the eigenvec-
tors of O and Q, in the incident wave front, which would
reduce the correlation approximately by a factor 2, as
shown in Sec. J of the Supplemental Material [38].

The customized memory effect holds not only at the
preselected input and output angles, but also over a range
around them. This behavior is similar to that of the
conventional memory effect. In Fig. 4(b), with the incident
wave front equal to the first eigenvector of the angular
memory operator Q(0;,8,), the correlation remains high as
we scan the tilt angle 6, of incoming wave front around 6;,
meaning the outgoing wave front remains nearly
unchanged but tilted away from 6,. The scanning range
of the customized memory effect, given by the angular
width of the normalized correlation function in Fig. 4(d), is
identical to that of the conventional memory effect at the
origin (§; =0,6, =0). Even when we simultaneously
create memories at two pairs of input and output angles
in Fig. 4(c), the scanning range of the memory effect at each
pair is the same as that of the conventional memory effect,
as shown in Fig. 4(d).

V. CONCLUSION

In conclusion, we have introduced a general angular
memory operator Q(6;,6,) to customize the angular
memory effect for any tilt angle of the incident and the
transmitted wave fronts. As long as the number of detected
output channels does not exceed that of controlled input
channels, the eigenstates of Q exhibit perfect correlation for
arbitrarily and independently chosen input and output tilt
angles and directions. Experimentally, we observe strong
correlations even when only the phase of the input field is
modulated. Furthermore, we simultaneously create memo-
ries for different pairs of input and output tilt angles.

Although our experiment is performed on a diffusive
sample with multiple scattering, our method can also be
applied to a thin diffuser with forward scattering or to a
multimode fiber with random mode mixing. While in the
latter case the conventional angular memory effect does not
even exist, our approach allows us to create any desired
angular memory by launching coherent light into an
eigenstate of the angular memory operator. Our approach
is applicable not only to classical waves, but also to
quantum waves, opening the door to customizing quantum
correlations between entangled photons in complex sys-
tems [7,8]. Since memory effects exist in various domains
[6,35,36,42,43], the angular memory operator can be
extended to the translational memory operator, the rota-
tional memory operator, etc. Our methodology establishes
the memory effect as a versatile and flexible tool for wave
front shaping applications to classical and quantum waves
in complex systems.
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