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Stochastic Logarithmic Lipschitz Constants:
A Tool to Analyze Contractivity of
Stochastic Differential Equations

Zahra Aminzare

Abstract—We introduce the notion of stochastic
logarithmic Lipschitz constants and use these constants
to characterize stochastic contractivity of Itô stochastic
differential equations (SDEs) with multiplicative noise. We
find an upper bound for stochastic logarithmic Lipschitz
constants based on known logarithmic norms (matrix mea-
sures) of the Jacobian of the drift and diffusion terms of
the SDEs. We discuss noise-induced contractivity in SDEs
and common noise-induced synchronization in network of
SDEs and illustrate the theoretical results on a noisy Van
der Pol oscillator. We show that a deterministic Van der Pol
oscillator is not contractive, while, adding multiplicative
noises makes the system stochastically contractive.

Index Terms—Logarithmic lipschitz constants, logarith-
mic norms, noise-induced contraction, nonlinear Itô SDEs,
stochastic contraction, Van der Pol oscillator.

I. INTRODUCTION

CONTRACTION theory is a methodology for assessing
the global convergence of trajectories of a dynamical

system to each other instead of convergence to a pre-specified
attractor. Contractivity is a metric property, i.e., it depends on
the norm being used, in close analogy to the choice of an
appropriate Lyapunov function.

Given a vector norm with its induced matrix norm, the
logarithmic norms (matrix measures) of a linear operator A
is defined as the directional derivative of the matrix norm
in the direction of A and evaluated at the identity matrix.
Characterizing contractivity of nonlinear systems by comput-
ing logarithmic norms of the Jacobian of the vector field,
evaluated at all possible states, is a classical approach, see
[1], [2], [3], [4], [5], [6], [7], [8]. In control theory, contrac-
tion analysis attracted much attention after the work of
Lohmiller and Slotine [9], where they invented a contraction
metric based on L2 norms. However, large classes of nonlin-
ear systems are contractive for non-L2 norms, see, e.g., [10]
for a typical biochemical example which is contractive for
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only L1 norms. Many works have been done to character-
ize contractivity of nonlinear systems based on L2 norms
(see e.g., a recent review paper [11] and references therein).
Compared with L2 norm approaches, there is only limited
work on non-L2 contraction theory (see e.g., [10] and ref-
erences therein for a general review, [12] for contraction after
short transients, [13] for logarithmic norms on time scales,
and [14] for weak contraction). Logarithmic Lipschitz con-
stants [15], which are extensions of logarithmic norms to
nonlinear operators, provide a rich framework for character-
izing the contraction property of a nonlinear system for any
arbitrary norms, see e.g., [16].

Unlike deterministic systems, there are not too many
attempts to study the contractivity of non-deterministic
systems and, in particular, Itô stochastic differential equations
(SDEs). In [17], [18], and recently in [19], contraction theory
is studied for L2 norms using stochastic Lyapunov function and
incremental stability. In [20], [21], [22] contraction theory is
studied for random dynamical systems. In [23], [24] contrac-
tivity is generalized to Riemannian metrics and Wasserstein
norms, respectively. In [25], stochastic contraction is studied
for Poisson shot noise and finite-measure Lévy noise. This
letter takes a step forward and extends contraction theory to
SDEs using generalized forms of logarithmic norms and log-
arithmic Lipschitz constants which are suitable tools to study
contraction for non-L2 norms as well as L2 norms. In addition,
unlike the existing tools in [17], [18] which are suitable for
studying mean square contractivity, our tools are suitable for
l−th moment contractivity for any integer l ≥ 1.

Stochastic contraction theory can be used to study the stabil-
ity of SDEs and to characterize the synchronization behavior
of networks of nonlinear and noisy systems. Synchronization
induced by common noise has been observed experimentally
and confirmed theoretically in many networks of nonlinear
dynamical systems without mutual coupling (e.g., see [26]
and references therein). Indeed, this kind of synchronization
is equivalent to the stochastic contraction of SDEs that we
study in Section V below. Therefore, extending contraction
theory to SDEs can be beneficial for characterizing networks’
synchronization.

In [27], the authors introduced stochastic logarithmic norms
and used them to study the stability properties of linear SDEs.
Analog to the deterministic version, stochastic logarithmic
norms are proper tools for characterizing the contractivity of
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linear SDEs, but they are not directly applicable to nonlinear
SDEs. Our first contribution is to generalize the notion of
logarithmic Lipschitz constants for nonlinear SDEs. Our sec-
ond contribution is to use the notion of stochastic logarithmic
Lipschitz constants and find a sufficient condition for l−th
contractivity for arbitrary norms. Our third contribution is to
relate stochastic logarithmic Lipschitz constants to logarithmic
norms.

The remainder of this letter is organized as follows.
Section II reviews logarithmic Lipschitz constants of determin-
istic nonlinear operators and contraction properties of ODEs.
Sections III and IV contain the definition of stochastic loga-
rithmic Lipschitz constants and main results on characterizing
the stochastic contractivity of SDEs. Section V discusses how
noise can induce stochastic contractivity and synchronization
and illustrates the results in a numerical example. Section VI
is the conclusion and discussion. Some of the proofs are given
in an Appendix.

II. BACKGROUND

In this section we review the definitions of logarithmic
norms and logarithmic Lipschitz constants and explain how
they are helpful to study contraction properties of ODEs.

Definition 1 (Logarithmic norm): Let (X , ‖·‖X ) be a finite
dimensional normed vector space over R or C. The space
L(X ,X ) of linear transformations A : X → X is also
a normed vector space with the induced operator norm
‖A‖X→X = sup‖x‖X=1 ‖Ax‖X . The logarithmic norm of A
induced by ‖·‖X is defined as the directional derivative of the
matrix norm, µ[A] := limh→0+ 1

h (‖I + hA‖X→X − 1), where
I is the identity operator on X .

Definition 2 ([15], Logarithmic Lipschitz constants):
Assume F : Y ⊆ X → X is an arbitrary function. Two
generalizations of the logarithmic norms are the strong least
upper bound (s-lub) and least upper bound (lub) logarithmic
Lipschitz constants, which are respectively defined by

M+[F] = sup
u '=v∈Y

lim
h→0+

1
h

(‖u − v + h(F(u) − F(v))‖X
‖u − v‖X

− 1
)

,

M[F] = lim
h→0+

sup
u '=v∈Y

1
h

(‖u − v + h(F(u) − F(v))‖X
‖u − v‖X

− 1
)

.

Proposition 1 ([15], [16], Some properties of logarith-
mic Lipschitz constants): M+ and M are sub-linear, i.e., for
F, Fi : Y → X , and α ≥ 0 (similar properties hold for M):

• M+[F1 + F2] ≤ M+[F1] + M+[F2],
• M+[αF] = αM+[F], and
• M+[F] ≤ M[F].
Relationship between logarithmic Lipschitz constants and

logarithmic norms: For finite dimensional space X , the log-
arithmic Lipschitz constants generalize the logarithmic norm
µ, i.e., for any matrix A, M[A] = M+[A] = µ[A]. Let Y be a
convex subset of X and F : Y → Rn be a globally Lipschitz
and continuously differentiable function. Then

M+[F] ≤ sup
x∈Y

µ[JF(x)], (1)

where JF denotes the Jacobian of F. In [8], it is stated (without
proof) that M[F] = supx µ[JF(x)]. Therefore, using M+ ≤ M,

one can conclude (1). In the Appendix, we give a direct proof
of (1).

Definition 3 (Contractive ODE): Consider

ẋ = F(x, t), (2)

where x ∈ Y ⊂ Rn is an n−dim vector describing the state
of the system, t ∈ [0,∞) is the time, and F is an n−dim
nonlinear vector field. Assume that Y is convex and F is
continuously differentiable on x and continuous on t. The
system (2) is called contractive if there exists c > 0 such that
for any two solutions X and Y that remain in Y , and t ≥ 0,
‖X(t) − Y(t)‖ ≤ e−ct‖X(0) − Y(0)‖.

In the following theorem and corollary, we find a value for
the contraction rate c using logarithmic Lipschitz constant of
the vector field F and the logarithmic norm of the Jacobian of
F induced by a norm ‖·‖X on Rn.

Theorem 1 ([10, Proposition 3], Contractivity of ODEs
using logarithmic Lipschitz constants): For any two trajecto-
ries X(t) and Y(t) of (2) that remain in Y and any t ≥ 0 the
following inequality holds

‖X(t) − Y(t)‖X ≤ e
∫ t

0 M+[F]ds‖X(0) − Y(0)‖X .

In particular, if M+[F] < 0, then (2) is contractive.
Corollary 1: Under the conditions of Theorem 1, if,

sup(x,t) µ[JF(x, t)] ≤ −c, for some constant c > 0 and norm
‖·‖X , then (2) is contractive.

III. STOCHASTIC LOGARITHMIC LIPSCHITZ CONSTANTS

In this section we generalize the definition of logarith-
mic Lipschitz constants given in Definition 2. The goal is to
use these constants and study the contraction behavior of the
solutions of the following Itô SDE

dX(t) = F(X(t))dt + G(X(t))dW(t). (3)

Notation 1: The rest of this letter uses these notations:
• (X , ‖·‖X ) is a normed space over Rn and Y ⊆ X .
• F : Y → Rn is a vector field with components Fi.
• G is an n×d matrix of continuously differentiable column

vectors Gj : Y → Rn, for j = 1, . . . , d.
• W(t) is a d−dim Wiener process with components Wj.
• "Wj := Wj(t + h) − Wj(t) =

∫ t+h
t dWj(s) and "W =

("W1, . . . ,"Wd)
-. Note that "W depends on t and h.

However, for ease of notations, we omit them.
• "W2

i,j :=
∫ t+h

t

∫ s
t dWi(s)dWj(s′) and "W2 is a d × d

matrix with components "W2
i,j.

• M(h,Wt)
F,G is an n−dim function on Y with components:

hFi +
d∑

j=1

Gij"Wj +
d∑

j,k=1

n∑

l=1

Glk
∂Gij

∂xl
"W2

j,k.

Indeed, M(h,Wt)
F,G contains all terms of order hα , 0 < α ≤ 1,

in the Itô-Taylor expansion of a solution of (3). That is,

X(t + h) = X(t) + M(h,Wt)
F,G (X(t)) + R. (4)

R is of order hα , α > 1, i.e., R/h → 0 as h → 0. Ignoring
R gives Milstein approximation of X, [28, Ch. 15].
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Definition 4 (Stochastic logarithmic Lipschitz constants):
The s-lub and lub stochastic logarithmic Lipschitz constants of
F and G in the l-th mean and induced by ‖·‖X are respectively:

M+
l [F, G] = sup

u '=v∈Y
lim

h→0+

1
h

×
(

E
‖u − v + M(h,Wt)

F,G (u) − M(h,Wt)
F,G (v)‖l

X
‖u − v‖l

X
− 1

)

Ml[F, G] = lim
h→0+

sup
u '=v∈Y

1
h

×
(

E
‖u − v + M(h,Wt)

F,G (u) − M(h,Wt)
F,G (v)‖l

X
‖u − v‖l

X
− 1

)

,

where E is the expected value and 1 ≤ l < ∞ is an integer.
In [27] the authors introduced the notion of stochastic

logarithmic norm which is a special case of Ml[F, G] with
linear F and Gj, i.e., F(u) = Au and Gj(u) = Bju for square
matrices A, Bjs. Analog to the logarithmic norm, in the
sense of the existence of a generalized derivative ξ for the
Wiener process W, i.e., dW(t) = ξ(t)dt, and by Itô formula,
Ml[A, B] can be interpreted as the directional derivative
of the matrix norm, i.e., directional perturbation of iden-
tity where the perturbation is A − 1

2
∑

j B2
j + ∑

j Bjξ .
Indeed Ml[A, B] = E µ[A − 1

2
∑

j B2
j + ∑

j Bjξ ].
See [27, Th. 5.1 and Corollary 5.1]. Similar interpretation
can be generalized to the logarithmic Lipschitz constants.
One can interpret (3) in Stratonovich sense, which is,

dX =



F(X) − 1
2

∑

j

JGj Gj(X)



dt + G(X)dW (5)

or, Ẋ = F(X, t) := F(X) − 1
2
∑

j JGj Gj(X) + G(X)ξ(t). Then
Ml[F, G] = lE M[F] and M+

l [F, G] = lE M+[F]. We will
use this interpretation to find an upper bound for M+

l [F, G].
See Proposition 3 below for the details.

Proposition 2 (Some properties of stochastic logarithmic
Lipschitz constants): Let α > 0 be a constant, F, F1, and
F2 be vector functions as described in Notation 1, and G, G1,
and G2 be matrices as described in Notation 1. The following
statements hold.

1. For a zero matrix G, M+
l [F, 0] = lM+[F].

2. M+
l [F, G] ≤ Ml[F, G].

3. Unlike the deterministic ones, the stochastic logarithmic
Lipschitz constants are not sub-linear. However, they satisfy:

• M+
l [αF,

√
αG] = αM+

l [F, G], and
• M+

l [F1 + F2, G1 + G2] ≤ M+
l [F1, G1+G2√

2
] +

M+
l [F2, G1+G2√

2
],

and similar properties hold for Ml.
A proof is given in the Appendix.

IV. CONTRACTION PROPERTIES OF SDES

In this section we first define stochastic contractivity and
then provide conditions that guarantee contractivity in SDEs.
Consider (3) where all the terms are as defined in Notation 1.
Furthermore, we assume that F and G satisfy the Lipschitz

and growth conditions: ∃K1, K2 > 0 such that ∀x, y:

‖F(x) − F(y)‖ + ‖G(x) − G(y)‖ ≤ K1‖x − y‖, and
‖F(x)‖2 + ‖G(x)‖2 ≤ K2(1 + ‖x‖2),

where ‖·‖ denotes the Euclidean norm, and for a matrix
G, ‖G‖2 = ∑

i,j |Gij|2. Under these conditions, for any given
initial condition X(0) (with probability one) the SDE has a
unique non-anticipating solution X(t), i.e., for s > t, X(t)
is independent of W(s) − W(t). This means that X(t) is
independent of the future behavior of the Wiener process,
see [28, Ch. 4]. In this letter, inspired by common noise-
induced synchronization, we assume that all the trajectories
realize the same Wiener process W.

Definition 5 (Stochastic contraction): An SDE described
by (3) is l−th moment contractive if there exists a constant
c > 0 such that for any solutions X(t) and Y(t) with initial
conditions X(0) and Y(0), and ∀t ≥ 0,

E‖X(t) − Y(t)‖l
X ≤ E‖X(0) − Y(0)‖l

X e−ct. (6)

Theorem 2 (Stochastic contraction based on stochastic log-
arithmic Lipschitz constants): For any two solutions X(t) and
Y(t) of (3) and ∀t ≥ 0,

E‖X(t) − Y(t)‖l
X ≤ E‖X(0) − Y(0)‖l

X eM
+
l [F,G]t. (7)

Moreover, if M+
l [F, G] ≤ −c for some c > 0, (3) becomes

l−th moment stochastically contractive.
Proof: If E‖X(t)−Y(t)‖l

X = 0, then (7) holds. Therefore, we
assume that E‖X(t) − Y(t)‖l

X '= 0. Writing Itô-Taylor expan-
sions (4) of X and Y and subtracting from each other, we
get

X(t + h) − Y(t + h) = X(t) − Y(t) + M(h,Wt)
F,G (X(t))

− M(h,Wt)
F,G (Y(t)) + O(hα), (8)

where α > 1. Thus, ignoring the term of order hα , (to fit the
equations, we dropped some of (t) arguments):

lim
h→0+

1
h

{
E‖X(t + h) − Y(t + h)‖l

X − E‖X(t) − Y(t)‖l
X

}

= lim
h→0+

1
h

{
E‖X(t) − Y(t) + M(h,Wt)

F,G (X) − M(h,Wt)
F,G (Y)‖l

X

− E‖X(t) − Y(t)‖l
X

}

= lim
h→0+

1
h

{
E‖X − Y + M(h,Wt)

F,G (X) − M(h,Wt)
F,G (Y)‖l

X
E‖X(t) − Y(t)‖l

X
− 1

}

× E‖X(t) − Y(t)‖l
X

≤ M+
l [F, G] E‖X(t) − Y(t)‖l

X .

The last inequality holds by the definition of M+
l [F, G] and

the non-anticipating property of X(t)−Y(t), that is, for h > 0,
X(t)−Y(t) is independent of W(t+h)−W(t). The first term of
the above relationships is the upper Dini derivative of E‖X(t)−
Y(t)‖l

X . Hence,

D+E‖X(t) − Y(t)‖l
X ≤ M+

l [F, G] E‖X(t) − Y(t)‖l
X .

Applying comparison lemma [29, Lemma 3.4], ∀t ≥ 0:

E‖X(t) − Y(t)‖l
X ≤ E‖X(0) − Y(0)‖l

X eM
+
l [F,G]t,
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which is the desired result. Note that we assumed that
all the trajectories realize the same Wiener process W and
therefore (8) is a valid equation.

Next proposition gives an upper bound for M+
l [F, G]

based on the deterministic logarithmic norms of JF and JGj ,
j = 1, . . . , d. The upper bound makes the result of Theorem 2
more applicable, since computing deterministic logarithmic
norms induced by some norms, such as Lp norms and weighted
Lp norms for p = 1, 2,∞ are straightforward.

Proposition 3 (Relationship between deterministic and
stochastic logarithmic Lipschitz constants): Let F, G, and W
be as described in Notation 1. Then

M+
l [F, G] ≤ lM+



F − 1
2

∑

j

JGj Gj





+ l√
2π

∑

j

(M+[Gj] + M+[−Gj]). (9)

Furthermore, if F and Gjs are continuously differentiable and
Y is convex, then the following inequality holds.

M+
l [F, G] ≤ l sup

x
µ

[
JF− 1

2
∑

j JGj Gj
(x)
]

+ l√
2π

∑

j

(sup
x

µ[JGj(x)] + sup
x

µ[−JGj(x)]). (10)

See the Appendix for a proof.
Corollary 2: Under the conditions of Proposition 3, if there

exists c > 0 such that the right hand side of (10) is
upper bounded by −c, then (3) is l−th moment stochastically
contractive.

Proof: Since the right hand side of (10) is bounded by −c,
so is its left hand side, i.e., M+

l [F, G] ≤ −c. Therefore, by
Theorem 2, system (3) is stochastically contractive.

V. NOISE-INDUCED CONTRACTIVITY AND
SYNCHRONIZATION

In this section we show how a multiplicative noise can
be beneficial for a system and make it contractive. Suppose
ẋ = F(x) is not contractive, that is, for any given norm ‖·‖X ,
supx µ[JF(x)] ≥ 0. Corollary 2 suggests that for appropriate
choices of the noise term G and norm ‖·‖X , the underlying
stochastic system dx = F(x)dt+G(x)dW may become stochas-
tically contractive. The reason is that there might exist G and
‖·‖X such that for any x, µ[JF− 1

2
∑

j JGj Gj
(x)] becomes a small

enough negative number. Note that by sub-additivity of the
logarithmic norms, 0 = µ[JGj − JGj ] ≤ µ[JGj ] + µ[−JGj ].
Hence, the last sum on the right hand side of (10) is always
non-negative. Therefore, the first term must be small enough
such that the sum becomes negative. For example, for a linear
diffusion term, i.e., Gj(x) = σjx, σj > 0: µ[JGj ] + µ[−JGj ] =
σ (µ[I] + µ[−I]) = 0, and by sub-additivity of logarithmic
norms:

µ

[
JF− 1

2
∑

j JGj Gj

]
= µ



JF − 1
2

∑

j

σ 2
j I





≤ µ[JF] − 1
2

∑

j

σ 2
j . (11)

For some large σjs, µ[JF] − 1
2
∑

j σ
2
j becomes negative, and

hence, the SDE becomes stochastically contractive. Intuitively,
since we assumed all the trajectories sense the same Wiener
process, the noise plays the role of a common external force
to all the trajectories. Therefore, for a strong enough noise,
the trajectories converge to each other. See Example 1 below.

Equation (11) guarantees that linear multiplicative stochastic
terms do not destroy the contraction properties of contraction
systems, no matter how large the perturbations are.

Note that Corollary 2 argues that multiplicative noise may
aid contractivity. For an additive noise, i.e., for a state-
independent noise term Gj(x) ≡ a, µ[JGj ] = µ[−JGj ] = 0
and µ[JF− 1

2 JGj Gj
] = µ[JF]. Therefore, M+

l [F, G] ≤ µ[JF]
and µ[JF] ≥ 0 do not give any information on the sign of
M+

l , and hence, on the contractivity of the SDE.
Example 1: We consider the Van der Pol oscillator subject

to a multiplicative noise

dx =
(

x − 1
3

x3 − y
)

dt + σg1(x)dW,

dy = xdt + σg2(y)dW, (12)

where we assume that the Wiener process is one dimensional,
d = 1. The state of the oscillator is denoted by X = (x, y)-

which its change of rate is described by F = (x− 1
3 x3 −y, x)-.

The noise of the system is described by the column vector
G(x, y) = (σg1(x), σg2(y))-.

A simple calculation shows that the Jacobian of F evaluated
at the origin is not Hurwitz, i.e., the eigenvalues are not nega-
tive. Therefore, the deterministic Van der Pol is not contractive
with respect to any norm. Figure 1(a) depicts two trajectories
(x1, y1)

- and (x2, y2)
- of (12) in the absence of noise which

do not converge.
In Figure 1(b), an additive noise g1(x) = g2(y) = 1 with

intensity σ = 0.35 is added. We observe that the trajecto-
ries still do not converge. As discussed above, our result in
Corollary 2 does not guarantee noise-induced contractivity in
the case of additive noise.

In Figure 1(c), a state-dependent multiplicative noise
(g1(x), g2(y)) = (1+4x, 1+4y) with noise intensity σ = 0.35
is added and two trajectories with initial conditions (1,−1)-

and (2,−2)- are plotted. We observe that the two trajec-
tories converge to each other. A simple calculation shows
that µ2[JG] + µ2[−JG] = 4σ − 4σ = 0, where µ2[A] =
1
2 max λ(A+A-) is the logarithmic norm induced by L2 norm
and max λ denotes the largest eigenvalue. Also,

sup
(x,y)

µ2[JF− 1
2 JGG(x, y)] = 1 − 8σ 2.

By Corollary 2, M+
l [F, G] ≤ 2(1 − 8σ 2). Therefore, for σ >

1√
8

≈ 0.35, M+
l [F, G] < 0 and the system becomes l−th

moment stochastically contractive for any l ≥ 1.
Figure 1(d) shows the mean square difference of the two

solutions plotted in Figure 1(c) over 5000 simulations, which
converges to zero, as expected.

Consider a network of N nonlinear systems which are driven
by a multiplicative common noise, i.e., the only interaction
between the systems is through the common noise. The
dynamics of such a network is described by the following
SDEs: dXi = F(Xi)dt +σG(Xi)dW for i = 1, . . . , N, and with
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Fig. 1. Contraction behavior of van der Pol oscillator given in Example 1.
(a) Two trajectories of the deterministic oscillator are plotted to show the
system is not contractive. (b) An additive noise (g1(x) = g2(y ) = 1) with
intensity σ = 0.35 is added but does not make the system contractive.
(c) A multiplicative noise (g1(x) = 1 + 4x, g2(y ) = 1 + 4y ) with intensity
σ = 0.35 is added which makes the system contractive. (d) The mean
square difference of two solutions over 5000 simulations is shown.

initial conditions Xi(0) = Xi0. Then the network stochastically
synchronizes if for any i, j, E‖Xi(t)−Xj(t)‖l

X → 0 as t → ∞,
which can be concluded from (3) being contractive.

VI. CONCLUSION

Deterministic logarithmic Lipschitz constants generalize
classical logarithmic norms to nonlinear operators. These
constants are proper tools to characterize the contraction prop-
erties of ODEs. In this letter, we introduced the notions of
stochastic logarithmic Lipschitz constants and used them to
extend contraction theory to a class of SDEs. Unlike some log-
arithmic norms, computing stochastic (or deterministic) loga-
rithmic Lipschitz constants is not straightforward. Therefore,
to make our theory more applicable, we found some rela-
tionships between stochastic logarithmic Lipschitz constants
and logarithmic norms. We discussed how multiplicative noise
could aid contractivity and foster stochastic synchronization in
nonlinear dynamical systems.

In this letter, we assumed that a common Wiener process
drives all the trajectories. Studying contractivity (respectively,
network synchronization) in the case that distinct and inde-
pendent Wiener processes drive the trajectories (respectively,
nonlinear dynamical systems) is a topic of future investi-
gations. In this case, we need to define an “approximate”
contraction in the sense that the trajectories exponentially
enter a tube and stay there but do not necessarily converge.
See [17] (respectively, [30]) for this type of contractivity
(respectively, synchronization) which are based on stochas-
tic Lyapunov function. Proposition 3 provides a mechanism
to characterize stochastic contractivity in a class of nonlinear
SDEs and understand stochastic synchronization in networks
driven by common noise. Generalizing this result to the case
of distinct and independent Wiener processes is another topic
of future investigations. In the proof of Proposition 3 we
assumed that generalized derivative of Wiener process exists.
Relaxing this assumption and exploring tighter upper bounds
for the logarithmic Lipschitz constants are other topics of
future studies.

APPENDIX

Proof of Inequality 1: For fixed u, v, and h, and Mean Value
Theorem for vector functions, we have

1
h

(‖u − v + h(F(u) − F(v))‖X
‖u − v‖X

− 1
)

= 1
h

(
‖u − v + h

∫ 1
0 JF(v + s(u − v)(u − v)ds)‖X

‖u − v‖X
− 1

)

= 1
h

(∥∥∥∥∥

∫ 1

0
(I + hJF(v + s(u − v))) ds

∥∥∥∥∥
X→X

− 1

)

≤
∫ 1

0

1
h
(‖(I + hJF(v + s(u − v)))‖X→X − 1) ds

Taking limit as h → 0+, the integrand of the last term becomes
µ[JF(v + s(u − v))] which is bounded by supx µ[JF(x)].
Therefore,

lim
h→0+

1
h

(‖u − v + h(F(u) − F(v))‖X
‖u − v‖X

− 1
)

≤
∫ 1

0
µ[JF(v + s(u − v))]ds

≤
∫ 1

0
sup

x
µ[JF(x)]ds = sup

x
µ[JF(x)].
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Next, taking sup over u, v from the left hand side of the above
inequality (the left hand side is independent of u and v), we
get the desired result: M+[F] ≤ supx µ[JF(x)].

Proof of Proposition 2:
1. For h > 0, let ((h) = ‖u−v+hF(u)−hF(v)‖X

‖u−v‖X . Using the
equality (l − 1 = (( − 1)((l−1 + · · · + 1) and the fact that
limh→0 ((h) = 1, we get M+

l [F, 0] = lM+[F].
2. The proof is straightforward from the definitions of M+

l
and Ml.

3. By the definition of M(h,Wt)
F,G given in Notation 1,

M(h,Wt)

αF,
√

αG = M(αh,
√

αWt)
F,G . Using the fact that W(t +h)−W(t)

is of order
√

h (it is a normal distribution with standard devi-
ation

√
h), and therefore,

√
α(W(t + h) − W(t)) is of order√

αh, we have:

M+
l [αF,

√
αG] = sup

u'=v∈Y
lim

h→0+

α

αh

×



E
‖u − v + M(αh,

√
αWt)

F,G (u) − M(αh,
√

αWt)
F,G (v)‖l

X

‖u − v‖l
X

− 1





= αM+
l [F, G].

The second inequality in part 3 can be obtained by the
definition of M+

l and the following equality.

2M(h,Wt)

F1+F2,G1+G2 = M(2h,
√

2Wt)

F1, G1+G2√
2

+ M(2h,
√

2Wt)

F2, G1+G2√
2

.

Proof of Proposition 3: As discussed in Section III, assum-
ing a generalized derivative ξ for the wiener process W, that is,
dWj(t) = ξj(t)dt, where ξj is the standard normal distribution,
M+

l [F, G] can be interpreted as lEM+[F− 1
2
∑

j JGj Gj+Gjξj].
Therefore, using the sub-additivity property of M+, we get

M+
l [F, G] = lE M+



F − 1
2

∑

j

JGj Gj + Gjξj





≤ lM+



F − 1
2

∑

j

JGj Gj



+ l
∑

j

E M+[Gjξj]

Since ξj is standard normal distribution, with probability 1
2 ,

ξj is positive or negative. Using this symmetric property of ξj
and second part of Proposition 1, we write the last term of the
above inequality as follows:

l
∑

j

E M+[Gjξj] = l
2

∑

j

(
EM+[|ξj|Gj] + EM+[−|ξj|Gj]

)

= l
2

∑

j

E|ξj|
(
M+[Gj] + M+[−Gj]

)
.

Therefore, (9) is obtained by plugging E|ξj| =
√

2
π .

Equation (10) holds by Equation (1).
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[4] B. P. Demidovič, “On the dissipativity of a certain non-linear system
of differential equations. I,” Vestnik Moskovskogo Universiteta Seriya I,
Matematika Mekhanika, no. 6, pp. 19–27, 1961.

[5] T. Yoshizawa, Stability Theory by Liapunov’s Second Method, vol. 9.
Math. Soc. Japan, Tokyo, Japan, 1966.

[6] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions
and Almost Periodic Solutions (Applied Mathematical Sciences),
vol. 14. New York, NY, USA: Springer-Verlag, 1975.
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