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Abstract We prove that some exact geometric pattern matching problems
reduce in linear time to k-SUM when the pattern has a fixed size k. This holds
in the real RAM model for searching for a similar copy of a set of k ≥ 3 points
within a set of n points in the plane, and for searching for an affine image of
a set of k ≥ d+ 2 points within a set of n points in d-space.

As corollaries, we obtain improved real RAM algorithms and decision trees
for the two problems. In particular, they can be solved by algebraic decision
trees of near-linear height.
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1 Introduction

The k-SUM problem is a fixed-parameter version of the NP-complete SUBSET
SUM problem. It consists of deciding, given a set of n numbers, whether any
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subset of size k sum to zero. The problem for k = 3, known as 3-SUM, is now
a well-established bottleneck problem in fine-grained complexity theory (see
for instance [1,29] and references therein). While there are many reductions
showing 3-SUM- or k-SUM-hardness of computational problems in geometry,
only few reductions to 3-SUM and k-SUM are known (from triangle enumera-
tion in graphs, for instance; see Jafargholi and Viola [26]). We give examples
of computational geometry problems that reduce to 3-SUM or k-SUM.

Our results are motivated by the nontrivial improved upper bounds on
the complexity of 3-SUM and k-SUM proven in the recent years. While it has
long been conjectured that no subquadratic algorithm for 3-SUM existed, it is
now known to be solvable in time O((n2/ log n)(log log n)2) in the real RAM
model, and in time O((n2/ log2 n)(log logn)O(1)) if we allow bitwise operations
on fixed-length words [25,20,22,14]. The existence of an O(n2−δ) algorithm
for some δ > 0 remains an open problem. Using folklore meet-in-the-middle
algorithms, k-SUM can be solved in time O(n⌈k/2⌉) if k is odd, and in time
O(nk/2 log n) if k is even. Recently, Kane, Lovett, and Moran [27] showed that
it can be solved in time O(n log2 n) in the linear decision tree model, improving
on previous polynomial bounds [13,19].

Geometric pattern matching We consider two problems involving searching for
a given set P of k points, called the pattern, within a larger set S of points, up
to some geometric transformation. Here we focus on exact algorithms, in which
the pattern must match the subset of points exactly. We consider two types of
geometric transformations: similarity transformations, which are compositions
of a translation, a rotation, and a uniform scaling, and affine transformations,
which are compositions of a translation and a linear map. This yields the
following two problems.

Problem 1 (SIMILARITY MATCHING) For a fixed integer k ≥ 3, given a set
P of k points in the plane and a set S of n points in the plane, determine
whether S contains the image of P under a similarity transformation.

Problem 2 (AFFINE MATCHING) For fixed integers d ≥ 2 and k ≥ d + 2,
given a set P of k points in R

d containing d + 1 affinely independent points,
and a set S of n points in R

d, determine whether S contains the image of P
under an affine transformation.

A large body of the computational geometry and pattern recognition liter-
ature is dedicated to the problems of finding approximate matches up to some
geometric transformation, where the quality of the approximation is typically
measured by the Hausdorff distance [15,24,21,6]. For exact pattern match-
ing problems under different families of transformations, known upper bounds
on time complexity have been compiled in a survey by Peter Braß [11]. We
reproduce them in Table 1.

The complexity of these algorithms are directly related to bounds on the
maximum number of occurrences of a pattern or a distance in a set of n points.
In fact, such bounds directly yield a lower bound on the computational problem
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Transformations Dimension Complexity

congruence 2 O(kn4/3 logn) [11]

congruence 3 O(kn5/3 logn2O(α(n)2)) [5]
translation d O(kn logn) (easy)

homothety d O(kn1+1/d logn) [18,11]
similarity d O(knd logn) [11]

affine d O(knd+1 logn) [11]

Table 1 Known upper bounds on the time complexity of exact geometric pattern matching
in various settings (taken from [11] and [23], Chapter 54). We indicate the dependency on
the pattern size k.

of listing all occurrences of the pattern. A prototypal example is Erdős’ unit
distance problem; see Braß and Pach [12] for more examples. It is known, in
particular, that there can be Θ(n2) similar copies of a pattern in an n-point
set [18,3,4]. Structural results on the extremal point sets are also known [2].
For affine transformations in R

d, there exist pairs P, S such that S contains
Θ(nd+1) copies of P : for instance the d-dimensional lattice {1, 2, . . . , n1/d}d

contains Θ(nd+1) affine images of a cube.

Our results We suppose we can perform exact computations over the reals.
Therefore, all the algorithms that we consider are either uniform algorithms in
the real RAM model, or nonuniform algorithms in the real algebraic decision
tree model. For simplicity, we will also assume that in the RAM model, we
have access to random real numbers. We show that they can be replaced by
polynomially bounded random integers, at the cost of a polynomially vanishing
probability of error. Our main result is the following.

Theorem 1 SIMILARITY MATCHING and AFFINE MATCHING reduce in ran-
domized linear time to k-SUM.

We refer the reader to the exact definitions of the k-SUM problem and
the notion of randomized linear-time reduction given later. Theorem 1 has a
number of consequences. Let us consider the special case of the SIMILARITY

MATCHING problem in which k = 3.

Problem 3 (TRIANGLE) Given a triangle ∆ and a set S of n points in the
plane, determine whether S contains three points whose convex hull is similar
to ∆.

Combining the reduction provided by Theorem 1 with the real RAM algorithm
for 3-SUM from Chan [14], we obtain the following.

Corollary 1 There exists an O((n2/ log n)(log log n)2) randomized real RAM
algorithm for TRIANGLE. In particular, there exists a subquadratic algorithm
to detect equilateral triangles in a point set.

This contrasts with our current knowledge on the related 3-SUM-hard
problem of finding three collinear points, also known as GENERAL POSITION
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TESTING. Despite recent attempts [10,14], it is still an open problem to find
a subquadratic algorithm for GENERAL POSITION TESTING.

Our next corollary is obtained directly from known algorithms for k-SUM.
It improves on the best known O(nd+1 log n) algorithm whenever k < 2(d+1).

Corollary 2 There exists an O(n⌈k/2⌉) (for k odd), or an O(nk/2 log n) (for
k even) randomized real RAM algorithm for AFFINE MATCHING.

Finally, we consider the nonuniform decision tree complexity, also known
as query complexity, of the two problems. By applying a recent result of Kane,
Lovett, and Moran [27], we can bound the number of algebraic tests that are
required to detect copies of P in an input set S.

Corollary 3 There exist randomized algebraic decision trees of height
O(n log2 n) for SIMILARITY MATCHING and AFFINE MATCHING.

In fact, if the pattern P is a fixed parameter, that is, when P is not part
of the input, but known at the algorithm design time, then the decision tree
in the statement above only involves linear tests.

Corollary 4 There exist randomized linear decision trees of height
O(n log2 n) for the fixed-parameter versions of SIMILARITY MATCHING and
AFFINE MATCHING, in which P is a fixed parameter of the problems.

In a recent paper, Aronov, Ezra, and Sharir [8] study the following prob-
lem: Given three sets A,B,C of n points in the plane, decide whether there
exists (a, b, c) ∈ A × B × C that simultaneously satisfies two real polynomial
equations. They provide a subquadratic upper bound on the algebraic deci-
sion tree complexity of this problem. In a preliminary version of their paper [9]
(version 2, Corollary 4.4), they considered the TRIANGLE problem as a spe-
cial case of this problem. This version also contains a proof that TRIANGLE is
3-SUM-hard. As our result shows, it turns out that this special case is in fact
much easier than the general problem, as the two polynomial equations can
be made linear. Hence TRIANGLE is actually linear-time equivalent to 3-SUM,
and its decision tree complexity is near-linear. We refer to [8,9] for a thorough
discussion of the relation between these and other related problems.

Note that our results rely on a randomized reduction. We leave as an open
problem the question of whether analogous deterministic reductions exist.

Plan In the next section, we define a number of variants of the k-SUM problem
and prove they are all equivalent in the computation model we consider. In Sec-
tion 3, we prove our main result for SIMILARITY MATCHING. Section 4
considers the AFFINE MATCHING problem. The last section is dedicated
to the proof of Corollaries 3 and 4.
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2 Linear degeneracy testing

We first give a definition of the k-SUM problem. Here, k ≥ 3 is a fixed integer,
and X is a ring.

Problem 4 (k-SUM(X)) Given k sets A1, . . . , Ak of n elements of X, de-
termine whether there exists a k-tuple (a1, . . . , ak) ∈ "

k
i=1Ai such that

∑k
i=1 ai = 0.

Our next problem is often referred to as linear degeneracy testing [7,17].
We consider the cases where X = R or C with the usual addition and multi-
plication operations, or where X = R

d or Cd for some integer d ≥ 2, with the
vector addition and Hadamard (entrywise) product defined by (uv)i = uivi.
In the latter cases, the all-zero vector is denoted by 0, and the all-one vector
by 1.

Problem 5 (k-LDT(X)) For a linear function f : Xk → X given by

f(a1, . . . , ak) = β0 +
∑k

i=1 βiai with βi ∈ X for 0 ≤ i ≤ k, given k sets
A1, . . . , Ak of n elements of X, determine whether there exists a k-tuple
(a1, . . . , ak) ∈ "

k
i=1Ai such that f(a1, . . . , ak) = 0.

We make two observations. First, these are fixed-parameter problems: the
integer k is part of the definition of the problem, not of the input. The same
can be assumed for the function f . Such parameters will be referred to as fixed
in what follows. Another observation is that using the Hadamard product in
the definition of the function f allows us to combine conditions on the sought
k-tuples: In the ring X, searching for k-tuples that simultaneously satisfy d
linear equations can be cast as k-LDT(Xd).

It is clear that k-SUM is the special case of k-LDT in which β0 = 0 and
βi = 1 for 1 ≤ i ≤ k. On the other hand, k-LDT is not harder than k-SUM.

Lemma 1 For any integer d > 0, k-LDT(X) reduces in linear time to k-
SUM(X).

Proof Consider the sets Ai from the k-LDT instance, and let A′
i := {βia | a ∈

Ai} for all 1 ≤ i < k, and A′
k := {βka + β0 | a ∈ Ak}. Then the instance of

k-SUM composed of the sets A′
i has a solution if and only if the instance of

k-LDT has a solution. ⊓⊔

In what follows, we say that a problem A reduces to problem B in random-
ized g(n) time if there exists an algorithm in the real RAM model with access
to random real numbers in [0, 1] that maps any instance of size n of A to an
equivalent instance of B in time O(g(n)) with probability 1. Over the reals,
the vector and scalar versions of k-SUM are also essentially equivalent, up to
such a randomized reduction.

Lemma 2 For any fixed integer d > 0, k-SUM(Rd) reduces in randomized
linear time to k-SUM(R) .
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Proof Given an instance {A1, . . . , Ak} of k-SUM(Rd), pick a uniform random
unit vector v ∈ R

d (see for instance Chapter V in Devroye’s classical text-
book [16] for the generation of random vectors on the unit hypersphere) and
consider the sets A′

i := {a · v | a ∈ Ai} ⊂ R, where a · v is the usual dot
product. They form an instance of k-SUM(R) such that any solution to the
original instance of k-SUM(Rd) is also a solution. In the other direction, sup-

pose there is a k-tuple (a′1, . . . , a
′
k) ∈ "

k
i=1A

′
i such that

∑k
i=1 a

′
i = 0, where

a′i = ai ·v. Hence we have
∑k

i=1 ai ·v = 0, which is either because v ⊥
∑k

i=1 ai
and

∑k
i=1 ai 6= 0, or because

∑k
i=1 ai = 0. Since v ⊥

∑k
i=1 ai and

∑k
i=1 ai 6= 0

occurs with probability 0, the k-tuple (a1, . . . , ak) is a solution of the instance
{A1, . . . , Ak} of k-SUM(Rd) with probability 1. ⊓⊔

In a model of computation where random real numbers are not available,
one can replace a random unit vector in R

d by a random vector v from the
integer grid cube [nc]d, for a suitably large constant c. There is no need to
normalize the length of v. The above dot product becomes zero only if v lies
on a particular hyperplane. Since the grid cube intersects any hyperplane in
at most (nc)d−1 points, the probability of such an event is at most 1/nc.

We also make the following simple observation:

Observation 1 k-SUM(Cd) is equivalent to k-SUM(R2d).

3 Searching for a similar copy

Recall that in the TRIANGLE problem, we want to determine whether an
input set S of n points in the plane contains three points whose convex hull is
similar to a given triangle ∆. The short proof of the following result uses the
interpretation of points in the plane as complex numbers, an idea that was
exploited in a combinatorial context before [18,28].

Lemma 3 TRIANGLE reduces in linear time to 3-SUM(C).

Proof Let u = reiθ be such that the three numbers 0, 1, u are the vertices of
a triangle similar to ∆ in the complex plane. Recall that multiplying by reiθ

has a geometric interpretation in the complex plane as scaling by a factor r
and rotating by an angle θ. Hence three other complex numbers a, b, c ∈ C

form a triangle similar to ∆ in the complex plane with the same orientation
if and only if c− a = u(b− a), or equivalently if (u− 1)a− ub+ c = 0. Hence
TRIANGLE reduces to 3-LDT(C) with β = (0, u− 1,−u, 1). From Lemma 1, it
reduces in linear time to 3-SUM(C). ⊓⊔

Combining with Observation 1 and Lemma 2, we obtain:

Theorem 2 TRIANGLE reduces in randomized linear time to 3-SUM(R).

Recall that TRIANGLE is also known to be 3-SUM-hard [9], hence it is
actually linear-time equivalent to 3-SUM. Our result generalizes naturally to
larger patterns.
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Lemma 4 SIMILARITY MATCHING reduces in linear time to k-SUM(Ck−2).

Proof Let u1, . . . , uk−2 ∈ C be such that the set Q = {0, 1, u1, . . . , uk−2} is
similar to P in the complex plane. Then k numbers a1, . . . , ak ∈ C form a
similar copy of Q in the complex plane, with a1 mapped to 0, a2 to 1, and
so on, if and only if ai − a1 = ui−2(a2 − a1) for all 3 ≤ i ≤ k. These are
k−2 linear equations on the k complex numbers a1, . . . , ak, hence SIMILARITY
MATCHING reduces in linear time to k-LDT(Ck−2). From Lemma 1, it reduces
in linear time to k-SUM(Ck−2). ⊓⊔

Again, combining with Observation 1 and Lemma 2, we obtain the first
statement of Theorem 1.

Theorem 3 SIMILARITY MATCHING reduces in randomized linear time to
k-SUM(R).

4 Searching for an affine image

We now prove the analogous result for the affine case. As a warm-up, we first
consider the following simpler special case of AFFINE MATCHING in which the
pattern is a square. Four points form the affine image of vertices of a square
if and only if they are the vertices of a (possibly degenerate) parallelogram.
Hence the problem can be cast as follows.

Problem 6 (PARALLELOGRAM) Given a set S of n points in the plane, de-
termine whether S contains four points whose convex hull is a parallelogram.

Theorem 4 PARALLELOGRAM reduces in randomized linear time to 4-
SUM(R).

Proof Four points a1, a2, a3, a4 ∈ S in this order form a parallelogram with
a1a2 parallel to a4a3 and a2a3 parallel to a1a4 if and only if a2−a1 = a3−a4,
or equivalently if a1 − a2 + a3 − a4 = 0. Hence PARALLELOGRAM reduces to
4-LDT(R2) with β = ((0, 0), (1, 1), (−1,−1), (1, 1), (−1,−1)). From Lemmas 1
and 2, it also reduces in randomized linear time to 4-SUM(R). ⊓⊔

The general case follows from the following observation. Consider a matrix
Q ∈ R

n×n, and let Qk denote the matrix obtained from Q by replacing its
kth column by the column vector xT , where x1, x2, . . . , xn are variables. Then
detQk is a linear combination of x1, x2, . . . , xn, with coefficients defined by Q.

Lemma 5 AFFINE MATCHING reduces in linear time to k-SUM(Rℓ) with ℓ =
d(k − (d+ 1)).

Proof We use the notation [k] := {1, 2, . . . , k}. Let pi = (pi,1, . . . , pi,d) be a
row vector representing the ith point of P . From the problem definition, P
must contain d + 1 affinely independent points. Since we suppose k and d
fixed, these points can be determined in constant time. We therefore assume
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without loss of generality that they are the first d+1 points p1, . . . , pd+1. Let
A = {a1, . . . , ak} ∈

(

S
k

)

be a candidate match. In order for the set A to be
the image of P under an affine transformation, there must be a solution to
the system of k linear equations of the form piF + t = ai for all i ∈ [k], with
d2 + d real unknowns F ∈ R

d×d and t ∈ R
d. The system can be decomposed

into d systems, one for each coordinate j ∈ [d]. Each consists of k equations
with d + 1 unknowns, of the form piFj + tj = aij for i ∈ [k], where Fj is the
jth column of F . We consider one such system, for a fixed j ∈ [d], and restrict
it to the first d+ 1 equations only:

Q ·

(

Fj

tj

)

=







a1,j
...

ad+1,j






, where Q =







p1 1
...

...
pd+1 1






.

Since the first d+1 points of P are affinely independent, Q is invertible and
the system defines a unique solution for the coefficients Fj and tj of the affine
transformation. From Cramer’s rule, the value of the kth unknown is the ratio
detQk/ detQ, where Qk is the matrix obtained by replacing the kth column
of Q by (a1,j , . . . , ad+1,j)

T . From the above observation and the fact that Q
does not depend on S, the expressions detQk/ detQ are linear combinations
of the values a1,j , . . . , ad+1,j , with coefficients determined by P . Hence the
explicit solution for the coefficients Fj and tj are linear combinations of the
a1,j , . . . , ad+1,j .

A necessary and sufficient condition for the set A to be a match is that the
remaining k − d − 1 points of A are also images of the corresponding points
in P . Hence we require that for all i > d+ 1 the ith equation piFj + tj = aij
is also satisfied by this solution. The unknowns Fj and tj can be replaced by
linear combinations of a1,j , . . . , ad+1,j . Hence we obtain a set of k − (d + 1)
linear equations on the variables a1,j , . . . , ak,j , with coefficients depending on
P .

Since these k − (d + 1) equations must hold for all coordinates j ∈ [d]
simultaneously, we obtain that AFFINE MATCHING reduces to k-LDT(Rℓ) with
ℓ = d(k − (d+ 1)). From Lemma 1 it also reduces to k-SUM(Rℓ). Since d and
k are fixed, the reduction takes linear time. ⊓⊔

Combining with the randomization step in Lemma 2, we get the second
part of Theorem 1.

Theorem 5 AFFINE MATCHING reduces in randomized linear time to k-
SUM(R).

5 Algebraic decision tree complexity

An algebraic decision tree is a type of nonuniform algorithm for problems on
inputs composed of n real numbers. For each input size n, it consists of a binary
tree whose internal nodes are labeled with inequalities of the form “q(x) ≤ 0”
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on the input x ∈ R
n, where q is a bounded-degree n-variate polynomial in

x1, x2, . . . , xn. Inequalities are interpreted as queries on the input, and the
two subtrees correspond to the possible outcomes of the query on the input.
Leaves of the tree are labeled with the answer to the problem. The minimum
height h(n) of an algebraic decision tree solving instances of size n the problem
is the decision tree complexity, or query complexity of the problem. When the
queries only involve linear functions, such trees are called linear decision trees.
In that case, a query is said to be t-sparse when it involves at most t numbers
of the input.

We have the following recent result on the linear decision tree complexity
of the k-SUM problem.

Theorem 6 (Kane, Lovett, Moran [27]) The k-SUM problem on n ele-
ments can be solved by a linear decision tree of height O(kn log2 n) in which
all the queries are 2k-sparse and have only {−1, 0, 1} coefficients.

We now show that this result directly applies to the SIMILARITY MATCH-
ING and AFFINE MATCHING problems, thereby proving Corollary 3.

We first consider the SIMILARITY MATCHING problem, an instance y of
which consists of two coordinates per point of P and S, hence of 2(k+n) real
numbers. Suppose we apply the randomized reduction proposed in Theorem 3
to obtain an instance of k-SUM(R). Now consider the linear decision tree from
Theorem 6. Each linear query on the transformed input maps to a query on the
original input numbers y. Because the reduction only involves multiplications
and additions on these numbers, such queries are algebraic queries on the
original input y. Therefore, the linear decision tree for k-SUM maps to an
algebraic decision tree of the same height for SIMILARITY MATCHING. The
same reasoning applies to AFFINE MATCHING. In that case, it suffices to
observe that multiplying both sides of every query by the quantity detQ for
the matrix Q used in the proof of Lemma 5 yields algebraic queries again. Note
that since k and d are constant and the linear queries in Theorem 6 are sparse,
the queries have bounded degree and bounded size. This proves Corollary 3.

Also note that if we suppose the pattern P is a fixed parameter of the
problem, then the two problems are solved by linear decision trees of height
O(n log2 n). It can indeed be checked that the algebraic queries do not in-
volve multiplications between coordinates of the points of S, hence are linear
whenever P is fixed. This proves Corollary 4. It applies in particular to the
PARALLELOGRAM problem, or for finding an equilateral triangle in a point
set.
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Graham and Jaroslav Nešetřil, editors, The Mathematics of Paul Erdős II, pages 294–
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