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Abstract

Let T be a set of n planar semi-algebraic regions in R
3 of constant complexity (e.g., triangles, disks),

which we call plates. We wish to preprocess T into a data structure so that for a query object γ,

which is also a plate, we can quickly answer various intersection queries, such as detecting whether

γ intersects any plate of T , reporting all the plates intersected by γ, or counting them. We also

consider two simpler cases of this general setting: (i) the input objects are plates and the query

objects are constant-degree algebraic arcs in R
3 (arcs, for short), or (ii) the input objects are arcs and

the query objects are plates in R
3. Besides being interesting in their own right, the data structures

for these two special cases form the building blocks for handling the general case.

By combining the polynomial-partitioning technique with additional tools from real algebraic

geometry, we obtain a variety of results with different storage and query-time bounds, depending

on the complexity of the input and query objects. For example, if T is a set of plates and

the query objects are arcs, we obtain a data structure that uses O∗(n4/3) storage (where the

O∗(·) notation hides subpolynomial factors) and answers an intersection query in O∗(n2/3) time.

Alternatively, by increasing the storage to O∗(n3/2), the query time can be decreased to O∗(nρ),

where ρ = (2t − 3)/3(t − 1) < 2/3 and t ≥ 3 is the number of parameters needed to represent the

query arcs.

Our approach can be extended to many additional intersection-searching problems in three

and higher dimensions, even when the input or query objects are not planar. We demonstrate the

versatility of our technique by providing efficient data structures for answering segment-intersection

queries amid a set of spherical caps in R
3.
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1 Introduction

This paper studies intersection-searching problems in R
3, where both input and query objects

are planar semi-algebraic regions of constant complexity (e.g., triangles, disks), which we refer

to as plates.1 We also consider two simpler cases of this setup: (i) the input objects are plates

and the query objects are constant-degree algebraic arcs in R
3, referred to simply as arcs, and

(ii) the input objects are arcs and the query objects are plates in R
3. Besides being interesting

in their own right, the data structures for these two simpler cases form the building blocks

for handling the general case. In each case, we wish to preprocess a set T of input objects

(plates or arcs) in R
3 into a data structure that supports various intersection queries for a

query object (again a plate or an arc) γ, where we want to determine whether γ intersects

any object of T (intersection-detection queries), report all objects of T that γ intersects

(intersection-reporting queries), count the number of objects of T that γ intersects or the

number of intersection points of γ with the input objects (intersection-counting queries),

or, when the query object is a directed arc γ, report the Ąrst input object intersected by γ

(ray-shooting queries). Intersection queries arise in many applications, including robotics,

computer-aided design, and solid modeling.

Notwithstanding a considerable amount of work on segment-intersection or ray-shooting

queries amid triangles in R
3 (see, e.g., the survey by Pellegrini [28]), little is known about

more general intersection queries in R
3, e.g., how quickly one can answer arc-intersection

queries amid triangles in R
3, or triangle-intersection queries amid arcs in R

3. The present

work makes signiĄcant and fairly comprehensive progress on the design of efficient solutions

to general intersection-searching problems in R
3.

1.1 Related work

The general intersection-searching problem asks to preprocess a set O of geometric objects

in R
d, so that one can quickly report or count all objects of O intersected by a query object γ,

or just test whether γ intersects any object of O at all. One may also want to perform some

1 Roughly speaking, a semi-algebraic set in R
d is the set of points in R

d satisfying a Boolean predicate
over a set of polynomial inequalities; the complexity of the predicate and of the set is deĄned in terms
of the number of polynomials involved and their maximum degree. See [13] for details.
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other aggregate operations on these objects (see [2] for a general framework). Intersection

searching is a generalization of range searching (in which the input objects are points) and

point enclosure queries (in which the query objects are points).

A popular approach to answering intersection queries is to write a Ąrst-order formula

for the intersection condition between an input object and a query object. Using quantiĄer

elimination, intersection queries can be reduced to semi-algebraic range queries, by working

in object space, where each input object O ∈ O is mapped to a point Ô and a query object γ

is mapped to a semi-algebraic region γ̂, such that γ̂ contains a point Ô if and only if γ

intersects the corresponding input object O. Alternatively, the problem can be reduced to a

point-enclosure query, by working in query space, where now each input object O is mapped

to a semi-algebraic region Õ and each query object γ is mapped to a point γ̃, so that γ̃ lies

in Õ if and only if γ intersects O. The Ąrst approach leads to a linear-size data structure

with sublinear query time, and the second approach leads to a large-size data structure with

logarithmic or polylogarithmic query time; see, e.g., [6, 8, 17, 24, 31] for the Ąrst approach

and [3, 14] for the second one.

The performance of these data structures depends on the number of parameters needed to

specify the input and query objects. We refer to these numbers as the parametric dimension

(or the number of degrees of freedom (dof)) of the input and query objects, respectively.

Sometimes the performance can be improved using a multi-level data structure, where each

level uses a lower-dimensional sub-predicate [2]. One can also combine these two approaches

to obtain a query-time/storage trade-off. For example, using standard techniques (such as

in [27]), a ray-shooting or segment-intersection query amid n triangles in R
3 can be answered

in O∗(n3/4) time using O∗(n) storage, in O(logn) time using O∗(n4) storage, or in O∗(n/s1/4)

time using O∗(s) storage,2 for n ≤ s ≤ n4, by combining the Ąrst two solutions [27, 28].

As in the abstract, the O∗(·) notation hides subpolynomial factors, e.g., of the form O(nε),

for arbitrarily small ε > 0, and their coefficients which depend on ε. A similar multi-level

approach yields data structures in which a ray-shooting query amid n planes or spheres in R
3

can be answered in O∗(n/s1/3) time using O∗(s) storage, for n ≤ s ≤ n3 [26, 27, 28, 30].

A departure from this approach is the pedestrian approach for answering ray-shooting

queries. For instance, given a simple polygon P with n edges, a Steiner triangulation of P is

constructed so that a line segment lying inside P intersects only O(logn) triangles. A query is

answered by traversing the query ray through this sequence of triangles [23]. The pedestrian

approach has also been applied to polygons with holes in R
2 [4, 23], to a convex polyhedron

in R
3 [18], and to polyhedral subdivisions in R

3 [4, 11]. Some of the ray-shooting data

structures combine the pedestrian approach with the above range-searching tools [1, 9, 17].

Recently, Ezra and Sharir [19] proposed a new approach for answering ray-shooting

queries amid triangles in R
3, using the pedestrian approach in the context of the polynomial-

partitioning scheme of Guth [20]. Roughly speaking, they construct a partitioning polyno-

mial F of degree O(D), for a sufficiently large constant D, using the algorithm in [3]. The

zero set Z(F ) of F partitions R3 into cells, which are the connected components of R3 \Z(F ).

The partitioning scheme guarantees that, with a suitable choice of the degree, each cell τ is

intersected by at most n/D input triangles, but for only at most n/D2 of them their (relative)

boundary intersects τ .3 These latter triangles are called narrow at τ , and the other intersect-

2 We sometimes refer to s as the Şstorage parameter,Ť to distinguish it from the actual storage being
used, which is O∗(s).

3 One actually has to construct two polynomials, one for ensuring the Ąrst property and one for the
second property, and take their product, still a polynomial of degree O(D), as the desired partitioning
polynomial.
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ing triangles are called wide. For each cell τ , the algorithm of [19] recursively preprocesses the

narrow triangles of τ and constructs a secondary data structure for the wide triangles at τ .

A major technical result of [19] is to reduce a ray-shooting or intersection-detection query

amid wide triangles to a similar query amid a set of planes in R
3 (those supporting the input

triangles), and to use the fact that such a query amid planes can be answered in O∗(n/s1/3)

time when O∗(s) storage is available, for any n ≤ s ≤ n3; see [27, 28]. This leads to a data

structure with O∗(n3/2) storage and O∗(n1/2) query time, which improves upon the earlier

solution [27]. Concretely, the previous techniques, which were based on geometric cuttings

and multi-level partition trees [2, 28], reduced the line-triangle-intersection query problem to

a four-dimensional range searching problem, while the technique in [19] managed to reduce

it to three-dimensional range searching, which led to the improved bounds. The approach of

[19] can also support reporting queries in O∗(n1/2 + k) time, where k is the output size, but,

for certain technical reasons, it does not support counting queries.

1.2 Our results

We refer to a connected path π as an (algebraic) arc if it is the restriction of a real algebraic

curve γ : I → R
3 to a subinterval [a, b] ⊆ I. The parametric dimension t of π, also referred

to as the number of degrees of freedom (dof) of π, is the number of real parameters needed

to describe π. Two of these parameters specify the endpoints a and b. We assume that the

degree of the curve is also bounded by t.

We present efficient data structures for three broad classes of intersection searching in R
3:

(i) the input objects are plates and the query objects are arcs in R
3, (ii) the input objects

are arcs and the query objects are plates in R
3, and (iii) both input and query objects are

plates in R
3. Our algorithms combine the polynomial-partitioning technique of Guth [20]

and of Guth and Katz [21] with some additional tools from real algebraic geometry.

For simplicity, we mostly focus on answering intersection-detection queries. Our data

structures extend to answering intersection-reporting queries by spending additional O(k)

time, where k is the output size. For type (i) intersection queries, using the parametric-search

framework of Agarwal and Matoušek [7], our data structures can also answer arc-shooting

queries, where the goal is to Ąnd the Ąrst plate of T hit by a (directed) query arc, if such a

plate exists. Most of the data structures can be extended to answering intersection-counting

queries as well Ů for type (i) and (ii) intersection queries, our data structures count the

number of intersection points between the query arc/plate and the input plates/arcs, and for

type (iii) queries, our approach can count the number of intersecting pairs if both input and

query objects are triangles. Table 1 summarizes the main results of the paper. When we

say that an intersection query can be answered in O∗(t(n)) time, we mean that detection,

counting, and shooting queries can be answered in O∗(t(n)) time and reporting queries in

O∗(t(n)) +O(k) time, where k is the output size.

Intersection-searching with arcs amid plates. We present several data structures for an-

swering arc-intersection queries amid a set T of n plates in R
3 (cf. Sections 2, 4, and 5). Our

Ąrst main result is an O∗(n4/3)-size data structure that can be constructed in O∗(n4/3) ex-

pected time and that supports arc-intersection queries in O∗(n2/3) time (see Section 2). The

asymptotic query time bound depends neither on the parametric dimension of the query

arc nor on that of the input plates, though the coefficients hiding in the O∗-notation do

depend on them. Although our high-level approach is similar to that of Ezra and Sharir [19],

handling wide plates in our setup is signiĄcantly more challenging because the query object

is an arc instead of a line segment. We handle wide input plates using a completely different
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Input Query Storage Query Time Reference

Plates Arc/Curve 4/3 2/3 Theorem 2.2

Plates Arc/Curve (t ≥ 3 dof) 3/2 (2t − 3)/3(t − 1) Theorem 2.4

Plates Planar arc (t ≥ 4 dof) 3/2 (2t − 7)/3(t − 3)

Plates Circular arc 3/2 3/5 Theorem 2.5

Triangles Arc/Curve 1 4/5 Theorem 5.1

Triangles Arc/Curve 11/9 2/3 Theorem 2.3

Spherical caps Segment 5/4 3/4 Theorem 8.1

Spherical caps Segment 3/2 27/40 Theorem 8.1

Segments Plate 3/2 1/2 Theorem 6.3

Arcs/Curves (t dof) Plate 3/2 3(t − 1)/4t Theorem 6.4

Triangles⋆ Triangle 3/2 1/2 Theorem 7.1

Plates (tO dof)⋆⋆ Plate (tQ dof) 3/2 max
{

2tQ−7

3(tQ−3)
, 3(tO−1)

4tO

}

Theorem 7.3

Tetrahedra⋆ Tetrahedron 3/2 1/2 Theorem 7.1

Table 1 Summary of results. Storage and query time are O∗(nα) and O∗(nβ), respectively, and

we specify the values of α and β for each result. The data structures for type (i) and (ii) intersection

queries count the number of intersection points between the input objects and the query object, and

not the number of input objects intersected by the query object.
⋆ Counts the number of triangles/tetrahedra intersected by a query triangle/tetrahedron in O∗(n5/9)

time.
⋆⋆ This data structure does not extend to counting queries. In addition, the Ąrst term

2tQ−7

3(tQ−3)
in

the bound applies when tQ is the maximum parametric dimension of the bounding arcs of the query

plates; if each plate is bounded by a single endpoint-free curve, the Ąrst term in the bound becomes
2tQ−3

3(tQ−1)
.

approach that not only generalizes to algebraic arcs but also simpliĄes, in certain aspects,

the technique of [19] for segment-intersection searching. Handling this much more general

setup, using a battery of tools from range searching and real algebraic geometry, is one of

the main technical contributions of this work (see Section 3). The most interesting among

these tools is the construction of a carefully tailored cylindrical algebraic decomposition

(CAD) (see [13, 15, 29] for details concerning this technique, which are also reviewed later in

Section 3.1 in this work) of a suitable parametric space, where the CAD is induced by the

partitioning polynomial. Consider a plate ∆ and its supporting plane h∆. ∆ \ Z(F ) consists

of several connected components. The CAD is used to further subdivide each component

into smaller pieces (pseudo-trapezoids) and label each piece that is fully contained in the

relative interior of ∆. The label is an explicit semi-algebraic representation of that piece, of

constant complexity, that depends only on the equation of h∆ (and not on ∆) and on the

Ąxed polynomial F . These labels are used in a subsequent semi-algebraic range searching

mechanism that detects the desired intersections for wide plates.

Next, we present a data structure for answering arc-intersection queries amid wide plates

within a cell of the polynomial partition (see Section 4). It reduces the query time by

increasing the storage used. Roughly, the improvement is a consequence of using a combined

primal-dual range-searching approach, where the primal part works in object space, as in the

aforementioned main algorithm. The dual part works in query space, regarding the query

arc γ as a point γ̃ in R
t, where t is the parametric dimension of the query arcs. Each input

plate ∆ is mapped to a semi-algebraic range ∆̃ in query space, and the query reduces to a

point-enclosure query that determines whether γ̃ lies in any of these semi-algebraic ranges ∆̃.

SpeciĄcally, we build a data structure of size O∗(n3/2) with O∗


n
2t−3

3(t−1)



query time, for
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parametric dimensions t ≥ 3.

Another contribution of this work is a general technique for reducing the parametric

dimension t by 2, for planar query arcs, eliminating the dependence of the asymptotic query

time bound on the endpoints of the arc (see Section 4.2). For example, if the query objects

are circular arcs, their parametric dimension is eight (three for specifying the supporting

plane, three for specifying the containing circle in that plane, and two for the endpoints).

We show how to improve the query time from O∗(n13/21) (the query time bound for t = 8)

to O∗(n3/5) (the bound for t = 6), with the same asymptotic storage complexity O∗(n3/2).

We note that t = 6 when the query objects are line segments in R
3; by reducing this to t = 4,

we get the query time O∗(n5/9) for this case, which is slightly worse than the bound O∗(n1/2)

in [19]. This deterioration in the performance is the cost we pay for proposing a general

approach that extends to query objects being arcs, as well as to answering counting queries.

We leave it as an open problem whether the query bound of our approach can be further

improved for general intersection-detection queries of the sort considered in this work.

Next, if T is a set of triangles in R
3, we present an alternative near-linear-size data

structure that can answer an arc-intersection query, for a constant-degree algebraic arc,

in O∗(n4/5) time (see Section 5). This is done by reducing arc-intersection searching to

multi-level semi-algebraic range searching in a suitably deĄned sequence of Ąve-dimensional

parametric spaces and constructing a multi-level partition tree on the input set of triangles,

to handle the resulting sequence of sub-queries. By using this structure at the bottom level

of recursion in our main algorithm, we obtain a data structure of improved size O∗(n11/9)

that can still answer arc-intersection queries in time O∗(n2/3).

Intersection searching with plates amid arcs. Next, we present data structures for the

complementary setup where the input objects are arcs and we query with a plate (see

Section 6). We Ąrst show that we can preprocess a set T of n line segments, in expected

time O∗(n3/2), into a data structure of size O∗(n3/2), so that an intersection query with a

plate can be answered in O∗(n1/2) time. We then extend this result to the case where the

input is a set of n arcs of (constant degree and) parametric dimension t, and the query object

remains a plate. We obtain a data structure of size O∗(n3/2) that can answer an intersection

query in O∗


n
3(t−1)

4t



time; see Theorem 6.4.

Intersection searching with plates amid plates.4 The above results can be used to provide

simple solutions for the case where both input and query objects are plates (see Section 7).

For simplicity, assume Ąrst that both input and query objects are triangles in R
3. We

observe that if a query triangle ∆ intersects an input triangle ∆′ then ∆∩∆′ is a line segment,

and each of its endpoints is either an intersection of an edge of ∆ with ∆′ or of ∆ with an

edge of ∆′. The former (resp., latter) kind of intersection can be detected using type (i)

intersection queries, of arcs amid plates (resp., type (ii) queries, of plates amid arcs). Using

O∗(n3/2) storage, this results in the query time bound O∗(n1/2), if we use the data structure

from [19] for type (i) queries. For counting queries, we have to use our arc-intersection data

structure, leading to a query time of O∗(n5/9).

The technique can be extended to the case where both input and query objects are

arbitrary plates. In this case, the boundary of a plate consists of O(1) algebraic arcs of

constant complexity. Let tO and tQ be the parametric dimensions of the boundary arcs of

4 This study was inspired by a question of Ovidiu Daescu related to collision detection in robotics.
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input and query plates, respectively. We obtain a data structure of O∗(n3/2) size with query

time O∗(nρ), where ρ = max
{

2tQ−7
3(tQ−3) ,

3(tO−1)
4tO

}

.5

Our data structure for the plate-plate case also works if the input and query objects are

constant-complexity, not necessarily convex three-dimensional polyhedra. This is because

an intersection between two polyhedra occurs when their boundaries meet, unless one of

them is fully contained in the other, and the latter situation can be easily detected. We can

therefore just triangulate the boundaries of both input and query polyhedra and apply the

triangle-triangle intersection-detection machinery.

The case of spherical caps. Finally, we present an application of our technique to an

instance where the input objects are not Ćat (see Section 8). SpeciĄcally, we show how to

answer segment-intersection queries amid spherical caps (each being the intersection of a

sphere with a halfspace), using either a data structure with O∗(n5/4) storage and O∗(n3/4)

query time, or a structure with O∗(n3/2) storage and O∗(n27/40) query time.

We conclude the paper with Section 9, which contains a brief discussion of our results

and some open problems.

2 Intersection searching with query arcs amid plates

Let T be a set of n plates in R
3, and let Γ be a family of algebraic arcs that has parametric

dimension t for some constant t ≥ 3. We present algorithms for preprocessing T into a data

structure that can answer arc-intersection queries with arcs γ ∈ Γ efficiently. We begin by

describing a basic data structure, and then show how its performance can be improved.

2.1 The overall data structure

Our primary data structure consists of a partition tree Ψ on T , which is constructed using

the polynomial-partitioning technique of Guth [20]. More precisely, let X ⊆ T be a subset of

m plates and let D > 1 be a parameter. Using the result by Guth, a real polynomial F of

degree at most c1D can be constructed, where c1 > 0 is an absolute constant, such that each

open connected component (called a cell) of R3 \ Z(F ) is crossed by boundary arcs (which

we refer to as edges from now on) of at most m/D2 plates of X and by at most m/D plates

of X ; the number of cells is at most c2D
3 for another absolute constant c2 > 0. Agarwal et

al. [3] showed that such a partitioning polynomial can be constructed in O(m) expected time

if D is a constant. Using such polynomial partitionings, Ψ can be constructed recursively in

a top-down manner as follows.

Each node v ∈ Ψ is associated with a cell τv of some partitioning polynomial and a

subset Tv ⊆ T . If v is the root of Ψ, then τv = R
3 and Tv = T . Set nv = ♣Tv♣. We set

a threshold parameter n0 ≤ n, which may depend on n, and we Ąx a sufficiently large

constant D. For the basic data structure described here, we set n0 = n1/3; the value of n0

will change when we later modify the structure.

Suppose we are at a node v. If nv ≤ n0 then v is a leaf and we store Tv at v. Otherwise,

we construct a partitioning polynomial Fv of degree at most c1D, as described above, and

store Fv at v. We construct a secondary data structure Σ0
v on Tv for answering arc-intersection

5 The Ąrst term
2tQ−7

3(tQ−3) in the bound applies only when the query plate is bounded by more than one arc,

of maximum parametric dimension tQ. When the query plates are bounded by a single endpoint-free

curve (such as circular or elliptical disks) with parametric dimension tQ, the term becomes
2tQ−3

3(tQ−1) .
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queries with an arc γ ∈ Γ that is contained in Z(Fv). Σ0
v is constructed in an analogous

manner as Ψ by using the polynomial-partitioning scheme of Agarwal et al. [3], which, given

a (constant) parameter D1 ≫ D, constructs a polynomial G of degree at most c1D1 so that

each cell of Z(F ) \Z(G) intersects at most nv/D1 plates of Tv and the boundaries of at most

nv/D
2
1 plates. Further details of Σ0

v are omitted from here (see [3]), and we conclude:

▶ Proposition 2.1. For a partitioning polynomial F of sufficiently large constant degree and

a set T of n plates, one can construct, in O∗(n) expected time, a data structure of size O∗(n)

that can answer an arc-intersection query with an arc contained in Z(F ) in O∗(n2/3) time.

Next, we compute (semi-algebraic representations of) all cells of R3 \ Z(Fv) [13]. Let τ

be such a cell. We create a child wτ of v associated with τ . We classify each plate ∆ ∈ Tv

that crosses τ as narrow (resp., wide) at τ if an edge of ∆ crosses τ (resp., ∆ crosses τ , but

none of its edges does). Let Wτ (resp., Tτ ) denote the set of the wide (resp., narrow) plates

at τ . We construct a secondary data structure Σ1
τ on Wτ , as described in Section 3 below,

for answering arc-intersection queries amid the plates of Wτ with arcs of Γ that lie inside

τ . Σ1
τ is stored at the child wτ of v. The construction of Σ1

τ for handling the wide plates is

the main technical step in our algorithm. By Proposition 3.2 in Section 3, Σ1
τ uses O∗(♣Wτ ♣)

space, can be constructed in O∗(♣Wτ ♣) expected time, and answers an arc-intersection query

in O∗(♣Wτ ♣2/3) time. Finally, we set Twτ
= Tτ , and recursively construct a partition tree

for Twτ
and attach it as the subtree rooted at wτ . Note that two secondary structures are

attached at each node v, namely, Σ1
v and Σ0

v, for handling wide plates and for handling query

arcs that are contained in Z(Fv), respectively.

Denote by S(m) the maximum storage used by the data structure for a subproblem

involving at most m plates. For m ≤ n0, S(m) = O(m). For m > n0, Propositions 2.1

and 3.2 imply that the secondary structures for a subproblem of size m require O∗(m) space.

Therefore S(m) obeys the recurrence:

S(m) ≤

{

c2D
3S(m/D2) +O∗(m) for m ≥ n0,

O(m) for m ≤ n0,
(1)

where c2 is the constant as deĄned above. Starting with m = n, we unfold the recurrence until

we reach subproblems of size at most n0 = n1/3, that is, we reach level i with n/D2i ≈ n1/3,

or Di ≈ O(n1/3). The overall storage that we accumulate so far, dominated by the storage

at level i, is therefore

O∗


D3i ·
n

D2i



= O∗(nDi) = O∗(n4/3).

At the bottom of the recursion the overall storage is also

O∗


D3i ·
n

D2i



= O∗(nDi) = O∗(n4/3).

Therefore the solution of (1) is S(n) = O∗(n4/3).

A similar analysis shows that the expected preprocessing time is also O∗(n4/3).

2.2 The query procedure

Let γ ∈ Γ be a query arc. We answer an arc-intersection query, say, intersection-detection,

for γ by searching through Ψ in a top-down manner. Suppose we are at a node v of Ψ. Our

goal is to determine whether γv := γ ∩ τv intersects any plate of Tv. For simplicity, assume

that γv is connected, otherwise we query with each connected component of γv.
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If v is a leaf, we answer the intersection query naïvely, in O(n0) time, by inspecting all

plates in Tv. If γv ⊂ Z(Fv), then we query the secondary data structure Σ0
v with γv and

return the answer. So assume that γv ̸⊂ Z(Fv). We compute all cells of R3 \ Z(Fv) that γv

intersects; there are at most c3D such cells for some absolute constant c3 > 0 [13]. Let τ be

such a cell. We Ąrst use the secondary data structure Σ1
τ to detect whether γv intersects any

plate of Wτ , the set of wide plates at τ . We then recursively query at the child wτ to detect

an intersection between γ and Tτ , the set of narrow plates at τ .

For intersection-detection queries, the query procedure stops as soon as an intersection

between γ and T is found. For reporting/counting queries, we follow the above recursive

scheme, and at each node v visited by the query procedure, we either report all the plates

of Tv intersected by the query arc, or add up the intersection counts returned by various

secondary structures and recursive calls.

Denote by Q(m) the maximum query time for a subproblem involving at most m plates.

Then Q(m) = O(m) for m ≤ n0. For m > n0, Propositions 2.1 and 3.2 imply that the query

time of the auxiliary data structures for subproblems of size m is O∗(m2/3). Therefore Q(m)

obeys the recurrence:

Q(m) ≤

{

c3DQ(m/D2) +O∗(m2/3) for m ≥ n0,

O(m) for m ≤ n0,
(2)

where c3 is the constant as deĄned above. Unfolding the recurrence as in the storage analysis,

one easily veriĄes that Q(n) = O∗(n2/3). This is because up to level i the nonrecursive terms

O∗(m), over all visited nodes, add up to O∗(n2/3), and at the bottom of the recurrence the

brute-force search costs O∗(Di(n/D2i)) = O∗(n2/3) time too. Putting everything together

we obtain:

▶ Theorem 2.2. A given set T of n plates in R
3 can be preprocessed, in expected time

O∗(n4/3), into a data structure of size O∗(n4/3), so that an arc-intersection query amid the

plates of T can be answered in O∗(n2/3) time.

2.3 Improved storage for triangles

In Section 5 we present a different technique for preprocessing a set T of n triangles, in

expected time O∗(n), into a data structure of O∗(n) size that can answer arc-intersection

queries in O∗(n4/5) time. Using this data structure, we can modify our main structure Ψ, as

follows: We set n0 = n5/9, i.e., a node v is a leaf if nv ≤ n5/9. We construct the structure of

Section 5 at each leaf of Ψ. The recursion now terminates at depth i satisfying n/D2i ≈ n5/9,

or Di = n2/9. The overall storage is now O∗(D3i · (n/D2i)) = O∗(nDi) = O∗(n11/9). The

query procedure is the same as above except that we use the query procedure of Section 5

at each leaf. The cost of a query is then the sum of O∗(n2/3), for querying in the recursive

structures for wide triangles, plus O∗(Di · (n/D2i)4/5) = O∗(n4/5/D3i/5), for querying at

the leaves of the structure; by our choice of i, the latter cost is also O∗(n2/3). This can be

shown to yield:

▶ Theorem 2.3. A set T of n triangles in R
3 can be processed, in expected time O∗(n11/9),

into a data structure of size O∗(n11/9), so that an arc-intersection query amid the triangles

of T can be answered in O∗(n2/3) time.
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2.4 Space/query-time trade-offs

As we show in Section 4.1, we can improve the query time for the secondary structure on

wide plates by increasing the size of the structure. SpeciĄcally, we show that a set Wτ of n

wide plates at some partition cell τ can be preprocessed, in expected time O∗(n3/2), into

a data structure of size O∗(n3/2), so that the query time improves to O∗


n
2t−3

3(t−1)



, where

t ≥ 3 is the parametric dimension of the query arcs. We adapt our primary data structure

Ψ, as follows: (a) we now set n0 to be a sufficiently large constant; and (b) we apply a

standard primal-dual range-searching algorithm for the wide plates, instead of the primal-only

approach of [24] used in the basic solution. We obtain similar recurrence relations for the

storage complexity and query time as in (1) and (2), and plug into them the aforementioned

modiĄcations to the secondary data structure Σ1
τ for the wide plates. It can be veriĄed that

the solutions are S(n) = O∗(n3/2) and Q(n) = O∗


n
2t−3

3(t−1)



for t ≥ 3. We have thus shown:

▶ Theorem 2.4. Let T be a set of n plates in R
3, and let Γ be a family of arcs of parametric

dimension t ≥ 3. T can be preprocessed, in expected time O∗(n3/2), into a data structure

of size O∗(n3/2), so that an arc-intersection query with an arc in Γ can be answered in

O∗


n
2t−3

3(t−1)



time.

In Section 4.2 we present a further improvement in the query time for the case where

the query arcs are planar algebraic arcs of constant degree. For example, for circular arcs, a

naïve application of Theorem 2.4 would lead to a query time of O∗(n13/21) (t = 8 in this case,

see the introduction) with O∗(n3/2) storage. We improve the query time bound, for general

planar arcs, by eliminating the effect of the two parameters that specify the endpoints of

the query arc γ, thereby effectively reducing the parametric dimension by 2. This improves

the query time for circular arcs to O∗(n3/5) (the bound for t = 6), still with storage and

expected preprocessing time O∗(n3/2) (see Proposition 4.4). A similar reduction holds for

general planar query arcs, with similar improvements in the query time bounds. SpeciĄcally,

we show:

▶ Theorem 2.5. Let T be a set of n plates in R
3, and let Γ be a family of planar arcs of

parametric dimension t ≥ 4. T can be preprocessed, in expected time O∗(n3/2), into a data

structure of size O∗(n3/2), so that an arc-intersection query with an arc in Γ can be answered

in O∗


n
2t−7

3(t−3)



time. For circular arcs, where t = 8, the query time is O∗(n3/5).

▶ Remark. One example of this general technique is the case of vertical parabolas, describing

the trajectories of stones thrown under gravity, say (see Sharir and Shaul [30] for an earlier

study of this setup, where near-linear storage was used). Since a vertical parabola has t = 5

degrees of freedom (two for specifying its plane and three for its coefficients within that

plane), we obtain O∗(n7/12) query time, using O∗(n3/2) storage. The queries improve further

to O∗(n5/9) if we just consider vertical parabolas that represent stone trajectories under the

Ąxed constant of gravitation (t = 4 in this case), and deteriorates if we consider arbitrary

parabolas.

3 Handling wide plates

Let T be a set of n plates in R
3, Γ a family of arcs, and F a partitioning polynomial, as

described in Section 2. In this section we describe the algorithm for preprocessing the set of

wide plates, Wτ , for each cell τ of R3 \ Z(F ), for intersection queries with arcs of Γ. Fix a

cell τ . Let ∆ ∈ Wτ be a plate that is wide at τ , and let h∆ be the plane supporting ∆. Since
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∆ is wide at τ , each connected component of ∆ ∩ τ is also a connected component of h∆ ∩ τ

(though some connected components of h∆ ∩τ may be disjoint from ∆). Roughly speaking, by

a careful construction of a cylindrical algebraic decomposition (CAD) Ξ of F (see Section 3.2),

we decompose ∆ ∩ τ into O(1) pseudo-trapezoids, each contained in a connected component

of ∆ ∩ τ . We collect these pseudo-trapezoids of all wide plates at τ and cluster them into

O(1) families, using Ξ so that, for each family Φ, all pseudo-trapezoids within Φ can be

represented by a Ąxed constant-complexity semi-algebraic expression (that is, predicate).

Each such predicate only depends on F and on the (coefficients of the) plane supporting the

pseudo-trapezoid φ (but not on the boundary of the plate containing φ). Roughly speaking,

the predicate is of the form σ(a, b, c, x, y), so that a plane z = a0x + b0y + c0 contains a

pseudo-trapezoid φσ so that σ(a0, b0, c0, x, y) holds precisely for those points (x, y, z) in that

plane that lie in φσ; see Section 3.3. This semi-algebraic representation of Φ enables us

to reduce the arc-intersection query on Φ to semi-algebraic range searching in only three

parametric dimensions (see Section 3.4).

3.1 An overview of cylindrical algebraic decomposition

We begin by giving a brief overview of cylindrical algebraic decomposition (CAD), also known

as CollinsŠ decomposition, after its originator Collins [15]. This tool is a central ingredient of

our algorithmŮsee Section 3.2. A detailed description can be found in [13, Chapter 5]; a

possibly more accessible treatment is given in [29, Appendix A].

Given a Ąnite set F = ¶f1, . . . , fs♢ of d-variate polynomials, a cylindrical algebraic

decomposition induced by F , denoted by Ξ(F), is a (recursive) decomposition of Rd into a

Ąnite collection of relatively open simply-shaped semi-algebraic cells of dimensions 0, . . . , d,

each homeomorphic to an open ball of the respective dimension. These cells reĄne the

arrangement A(F) of the zero sets of the polynomials in F , as described next.

Set F =
∏s

i=1 fi. For d = 1, let α1 < α2 < · · · < αt be the distinct real roots of F .

Then Ξ(F) is the collection of cells ¶(−∞, α1), ¶α1♢, (α1, α2), . . . , ¶αt♢, (αt,+∞)♢. For d > 1,

regard R
d as the Cartesian product Rd−1 ×R and assume that xd is a good direction, meaning

that for any Ąxed a ∈ R
d−1, F (a, xd), viewed as a polynomial in xd, has Ąnitely many roots.

Ξ(F) is deĄned recursively from a ŚbaseŠ (d− 1)-dimensional CAD Ξd−1, as follows. One

constructs a suitable set E := E(F) of polynomials in x1, . . . , xd−1 (denoted by ElimXk
(F) in

[13] and by Qb in [29]). Roughly speaking, the zero sets of polynomials in E , viewed as subsets

of Rd−1, contain the projection onto R
d−1 of all intersections Z(fi) ∩ Z(fj), 1 ≤ i < j ≤ s,

as well as the projection of the loci in each Z(fi) where Z(fi) has a tangent hyperplane

parallel to the xd-axis, or a singularity of some kind. The actual construction of E , based on

subresultants of F , is somewhat complicated, and we refer to [13, 29] for more details.

One recursively constructs Ξd−1 = Ξ(E) in R
d−1, which is a reĄnement of A(E) into

topologically trivial open cells of dimensions 0, 1, . . . , d− 1. For each cell τ ∈ Ξd−1, the sign

of each polynomial in E is constant (zero, positive, or negative) and the (Ąnite) number of

distinct real xd-roots of F (x, xd) is the same for all x ∈ τ . Ξ(F) is then deĄned in terms

of Ξd−1, as follows. Fix a cell τ ∈ Ξd−1. Let τ × R denote the cylinder over τ . There is an

integer t ≥ 0 such that for all x ∈ τ , there are exactly t distinct real roots ψ1(x) < · · · < ψt(x)

of F (x, xd) (regarded as a polynomial in xd), and these roots are algebraic functions that

vary continuously with x ∈ τ . Let ψ0, ψt+1 denote the constant functions −∞ and +∞,

respectively. Then we create the following cells that decompose the cylinder over τ :

σ = ¶(x, ψi(x)) ♣ x ∈ τ♢, for i = 1, . . . , t; σ is a section of the graph of ψi over τ , and
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σ = ¶(x, y) ♣ x ∈ τ, y ∈ (ψi(x), ψi+1(x))♢, for 0 ≤ i ≤ t; σ is a portion (ŚlayerŠ) of the

cylinder τ × R between the two consecutive graphs ψi, ψi+1.

The main property of Ξ is that, for each cell τ ∈ Ξ, the sign of each polynomial in F is

constant for all x ∈ τ . Omitting all further details (for which see [13, 15, 29]), we have the

following lemma:

▶ Lemma 3.1. Let F = ¶f1, . . . , fs♢ be a set of s d-variate polynomials of degree at most D

each. Then, assuming that all coordinates are good directions, Ξ(F) consists of O(Ds)2d

cells, and each cell can be represented semi-algebraically by O(D)2d

polynomials of degree at

most O(D)2d−1

. Ξ(F) can be constructed in time (Ds)2O(d)

in a suitable standard model of

algebraic computation.

3.2 Constructing a CAD of the partitioning polynomial

Let E3 denote the space of all planes in R
3. More precisely, E3 is the (dual) three-dimensional

space where each plane h : z = ax+by+c is mapped to the point (a, b, c). For (a0, b0, c0) ∈ E3,

we use h(a0, b0, c0) to denote the plane z = a0x+ b0y + c0. We consider the Ąve-dimensional

parametric space E := E3 × R
2 with coordinates (a, b, c, x, y). We construct in E a CAD of

the single 5-variate polynomial F (x, y, ax+ by + c). We use a generic choice of coordinates

to ensure that all the axes of the coordinate frame are in good directions for the construction

of the CAD, coming up next. Such a generic choice of coordinates also allows us to assume

that none of the input plates lies in a vertical plane.

The construction of the CAD recursively eliminates the variables in the order y, x, c, b, a.

That is, unfolding the recursive deĄnition given in Section 3.1, each cell of the CAD is given

by a sequence of equalities or inequalities (one from each row) of the form:

a = a0 or a−
0 < a < a+

0

b = f1(a) or f−
1 (a) < b < f+

1 (a)

c = f2(a, b) or f−
2 (a, b) < c < f+

2 (a, b) (3)

x = f3(a, b, c) or f−
3 (a, b, c) < x < f+

3 (a, b, c)

y = f4(a, b, c;x) or f−
4 (a, b, c;x) < y < f+

4 (a, b, c;x),

where a0, a−
0 , a+

0 are real parameters, and f1, f
−
1 , f

+
1 , . . . , f4, f

−
4 , f

+
4 are constant-degree

continuous algebraic functions (any of which can be ±∞), so that, whenever we have an

inequality involving two reals or two functions, we then have a−
0 < a+

0 , and/or f−
1 (a) < f+

1 (a),

f−
2 (a, b) < f+

2 (a, b), f−
3 (a, b, c) < f+

3 (a, b, c), and f−
4 (a, b, c;x) < f+

4 (a, b, c;x), over the cell

deĄned by the preceding set of equalities and inequalities in (3).

As a simple illustration of this concept, consider the special case where only horizontal

planes of the form z = c are considered. The function is then F (x, y, c), and the CAD is of

the three-dimensional cxy-space. The CAD partitions the c-axis into intervals and delimiting

points. For each c-interval C0, the CAD over each c ∈ C0 is a CAD partition of the xy-plane

(which, by construction, is a decomposition of the plane into vertical pseudo-trapezoids, each

given by a simpler version of the set of the last two equations or inequalities in (3)). This

is in fact a reĄnement of the partition induced by the cross section of Z(F ) with the plane

z = c, which has a Ąxed combinatorial structure, for each interval C0, independent of c ∈ C0.

In other words, the topology of this reĄned partition of the cross section does not change

as c varies in C0. At a delimiting endpoint c, the combinatorial representation of the cross

section changes, which implies a change in its topology. In other words, the CAD in this



P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir 13

case is a reĄnement of the Morse structure for Z(F ) with respect to the z-height (or rather

c-height) function; see [25] for a classical reference for Morse theory.

Returning to the construction of CAD for the general case, let Ξ5 = Ξ5(F ) denote the

Ąve-dimensional CAD just deĄned, and let Ξ3 denote the projection of Ξ5 onto E3, which we

refer to as the base of Ξ5 and which itself is a CAD of a suitable set of polynomials. Each

base cell of Ξ3 is given by a set of equalities and inequalities from the Ąrst three rows of

(3), one per row. For a point (a0, b0, c0) ∈ E3, let Ξ2(a0, b0, c0) denote the decomposition

in the xy-subspace that is induced by Ξ5 over (a0, b0, c0). This is the decomposition of the

xy-plane into pseudo-trapezoids, each of which is given by equalities and/or inequalities

from the last two rows of (3), with a = a0, b = b0, c = c0. We refer to Ξ2(a0, b0, c0) as

the two-dimensional Ąber of Ξ5 over (a0, b0, c0). As a matter of fact, and this is the main

rationale for the CAD construction, Ξ2(a0, b0, c0) can be identiĄed with the xy-projection

of a reĄnement of the partition induced by Z(F ) in the plane h(a0, b0, c0). That is, each

2-cell of this two-dimensional Ąber of Ξ5 is contained in the projection of a single connected

component of h(a0, b0, c0) \Z(F ), and each 0-cell, as well as each 1-cell that is not y-vertical,

of the Ąber is contained in the projection of a portion of Z(F ) ∩ h(a0, b0, c0). See Figure 1

for an illustration.

Moreover, similar to the Morse theory example mentioned above, the topology of the

partition induced by Z(F ) in h(a0, b0, c0) does not change as long as (a0, b0, c0) stays in the

same cell C0 of Ξ3, and changes in the topology occur only when we cross between cells

of Ξ3. In particular, each cell C of Ξ5 can be associated with a Ąxed cell of R
3 \ Z(F ),

denoted as τC , such that for all points (a0, b0, c0) in the base cell C↓ ⊂ E3 of C, which is the

projection of C onto E3, the two-dimensional portion C2 of the Ąber Ξ2(a0, b0, c0) for which

¶(a0, b0, c0)♢ × C2 ⊆ C is the xy-projection of a pseudo-trapezoid of a connected component

of h(a0, b0, c0) ∩ τC . This property will be useful in constructing the data structure to answer

arc-intersection queries amid the wide plates at τ .

(a0, b0, c0)

C0

Z(F )

Ξ2(a0, b0, c0)

Figure 1 An illustration of the CAD construction. C0 is a three-dimensional cell of Ξ3. For a

point (a0, b0, c0) ∈ C0, its two-dimensional Ąber Ξ2(a0, b0, c0) is shown. Formally, the purple curve

is the xy-projection of Z(F ) ∩ h(a0, b0, c0).
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3.3 Decomposing wide plates into pseudo-trapezoids

We are now ready to describe how to decompose each plate ∆ ∈ Wτ , for each cell τ

of R3 \Z(F ), into pseudo-trapezoids, and how to cluster the resulting pseudo-trapezoids. Let

∆ ∈ T be a plate, let h∆ be the plane supporting ∆, and let ∆∗ = (a0, b0, c0) be the point in

the abc-subspace E3 dual to h∆. We locate (in constant time, by brute force) the cell C0 of Ξ3

(in E3) that contains ∆∗. Let φ be a cell of Ξ2(∆∗), let φ↑ = ¶(x, y, a0x+b0y+c0) ♣ (x, y) ∈ φ♢

be the lifting of φ onto h∆, and let C be the cell of Ξ5 that contains ¶∆∗♢ ×φ. We determine

whether φ↑ is fully contained in ∆, lies fully outside ∆, or intersects ∂∆. We keep φ only

if φ↑ is contained in ∆, and associate φ↑, as well as the plate ∆, with C. (In general, ∆ is

associated with many cells C, one for each cell φ of Ξ2(∆∗) whose lifting is contained in ∆.)

In this case, we use ∆C to denote the pseudo-trapezoid φ↑, which is uniquely determined by

∆ and C and which lies in a connected component of ∆ ∩ τC . For a cell C ∈ Ξ5, let TC ⊆ T

be the subset of plates that are associated with C, and let ΦC = ¶∆C ♣ ∆ ∈ TC♢ be the

subset of pseudo-trapezoids associated with C. Finally, for a plate ∆ ∈ T , let Ξ∆ be the set

of all cells of Ξ5 with which ∆ is associated. Again, see Figure 1 for an illustration.

The advantage of this approach is that for each plate ∆ ∈ T , the set ∆∥ := ¶∆C ♣ C ∈ Ξ∆♢

is a reĄnement into pseudo-trapezoids of those cells of h∆ \ Z(F ), referred to as inner cells,

that lie fully inside ∆. Furthermore, the set Ξ∆ provides an operational ŞlabelingŤ scheme

for the pseudo-trapezoids in ∆∥ Ů the pseudo-trapezoid ∆C is labeled with C, or rather with

the semi-algebraic representation that it inherits from C. That is, each such pseudo-trapezoid

φ↑ on the plate ∆, with the point ∆∗ belongs to some base cell C0 of Ξ3, is represented by

equalities and inequalities of the form

x = f3(∆∗) or f−
3 (∆∗) < x < f+

3 (∆∗) and y = f4(∆∗) or f−
4 (∆∗) < y < f+

4 (∆∗),

where f3, f
−
3 , f

+
3 , f4, f

−
4 , f

+
4 are constant-degree continuous algebraic functions over the

corresponding domains, as in (3). This is a simple semi-algebraic representation, of constant

complexity, of the xy-projection φ of φ↑, which does not explicitly depend on ∆ (but only on

its plane h∆). Moreover, this representation is Ąxed for all plates ∆ for which the points ∆∗

lie in the same cell of Ξ3, and is therefore also independent of h∆,6 as long as ∆∗ belongs

to that cell. See Figure 2 for an illustration. This constant-size ŞlabelingŤ is used for

clustering the pseudo-trapezoids into which the inner cells of h∆, for ∆ ∈ T , are partitioned.

Namely, we put all pseudo-trapezoids labeled with the same cell C of Ξ5 into one cluster,

and ¶ΦC ♣ C ∈ Ξ5♢ is the desired clustering of the pseudo-trapezoids.

3.4 Reduction to semi-algebraic range searching

Fix a cell C of Ξ5. For an arc γ ∈ Γ, contained in the cell τC of R
3 \ Z(F ), we wish

to answer an arc-intersection query on ∆C with γ. To this end, we deĄne the predicate

ΠC : Γ × E3 → ¶0, 1♢ so that ΠC(γ; a, b, c) is 1 if and only if γ crosses h(a, b, c) at a point

(x, y, z) such that (x, y) belongs to C (that is, (a, b, c, x, y) ∈ C), and (x, y, z) lies in τC . It is

easy to verify that ΠC(γ; a, b, c) is a semi-algebraic predicate of constant complexity (that

depends on D and t, the parametric dimension of arcs in Γ). We now deĄne the semi-algebraic

range

QC,γ := ¶(a, b, c) ♣ ΠC(γ; a, b, c) = 1♢, (4)

6 More precisely, its dependence on h∆ is only in terms of the coeffcients (a, b, c) of h∆ that are substituted
in the Ąxed semi-algebraic predicate given above.
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C0

Z(F )

h∆

∆

φC

h∗
∆

Figure 2 The labeling scheme provided by the CAD (the plate depicted in this Ągure is a triangle).

The cell C labels, by an explicit semi-algebraic expression, the highlighted inner pseudo-trapezoidal

subcell φC within the plate ∆. Another inner subcell, with a different label, in a different partition

cell τ , is also highlighted.

which is of constant complexity too. By construction, γ crosses ∆C if and only if the point

∆∗ ∈ QC,γ . Set T ∗
C := ¶∆∗ ♣ ∆ ∈ TC♢.

▶ Remark. The semi-algebraic predicate ΠC can be replaced by b predicates Π
(i)
C , for

i = 1, . . . , b, where b is the maximum number of intersections of a query arc with a plane, so

that Π
(i)
C (γ; a, b, c) asserts that (is equal to 1 when) γ meets h(a, b, c) at exactly i points that

belong to the region labeled by C. These predicates, which are formed using quantiĄers that

can then be eliminated, are also of constant complexity, albeit larger than that of ΠC . This

enhancement will be used for answering intersection-counting queries.

For each cell C ∈ Ξ5, we preprocess T ∗
C ⊂ E3, in O(♣TC ♣ logn) expected time, into a

data structure ΣC of size O(♣TC ♣), using the range-searching mechanism of Matoušek and

Patáková [24] (see also [8]). For a query range QC,γ , the range query on T ∗
C can be answered

in O∗(♣TC ♣2/3) time.

Finally, for a cell τ of R3 \ Z(F ), let

Ξτ = ¶C ∈ Ξ5 ♣ τC = τ♢

be the set of all CAD cells associated with τ . We store the structures ΣC , for all C ∈ Ξτ , at

τ as the secondary structure Σ1
τ . To test whether an arc γ ∈ Γ, which lies inside τ , intersects

a plate of Wτ , we query each of the structures ΣC stored at τ with QC,γ and return yes if

any of them returns yes. Putting everything together, we obtain the following:

▶ Proposition 3.2. A set W of n wide plates at some cell τ can be preprocessed into a

data structure of size O∗(n), in O∗(n) expected time, so that an arc-intersection query, for

intersections within τ , can be answered in O∗(n2/3) time.

This at last completes the analysis for the wide plates, which implies the main result of

this paper.



16 Intersection Queries for Flat Semi-Algebraic Objects

4 Space/query-time trade-off for arc-intersection queries

In this section we show that the query-time of arc-intersection searching amid plates can be

improved by increasing the size of the data structure. As above, let T be a set of n plates

in R
3 and Γ a family of algebraic arcs of parametric dimension t ≥ 3. We Ąrst describe

the data structure for general algebraic arcs in R
3 of constant parametric dimension (see

Section 4.1). Recall that the parameter t depends on whether the arcs in Γ are proper

bounded portions of their containing curves, with two delimiting endpoints, or full (close or

unbounded) algebraic curves. If we need t parameters to specify the arc, t− 2 parameters

are enough to specify the curve. In Section 4.2, we show that the effect of these two extra

parameters can be eliminated if Γ is a family of planar algebraic (bounded) arcs, thereby

improving the performance bounds further.7

4.1 The case of general arcs

In this subsection we present a data structure for arc-intersection searching amid plates by

working in query space, where a query arc γ, with parametric dimension t, is represented as a

point qγ in R
t and each wide plate ∆ is represented as a constant-complexity semi-algebraic

region Q∆ which does not depend on ∂∆, as in the main algorithm. Here too we use the CAD

construction to label all possible intersections between an arc and a plate. An arc-intersection

query is now formulated as a point-enclosure query, namely, determining whether the query

point qγ lies in any of the regions Q∆. This latter task can be solved using the technique of

Agarwal et al. [3], which, for n input regions, answers a point-enclosure query in O(logn)

time using O∗(nt) storage. We actually use a primal-dual approach, in a manner detailed

shortly, that combines the point-enclosure data structure with the range searching data

structure described in the previous sections.

Processing arcs with t degrees of freedom.

For each cell C of the full CAD Ξ5 and each query arc γ, we consider the corresponding

semi-algebraic predicate ΠC(γ; a, b, c), as deĄned in Section 3. We map γ to the point qγ ∈ R
t

whose coordinates are the t parameters specifying γ. For each input plate ∆ ∈ T whose

supporting plane h∆ is stored at C, we map ∆ to the region

Q∗
C,∆ = ¶qγ ∈ R

t ♣ ΠC(γ; a, b, c) = 1♢,

where (a, b, c) is the parameterization of h∆. Q∗
C,∆ is a semi-algebraic region in R

t of constant

complexity. We denote by T ∗
C the collection of all these regions.

As before, for each cell C of Ξ5, there is a unique partition cell τC with the following

property. For any plane h = h(a, b, c), where (a, b, c) lies in the abc-projection of C, the

Ąber Ξ2(a, b, c) contains a trapezoidal cell ξ such that ¶(a, b, c)♢ × ξ ⊂ C, and the copy of ξ

lifted to h is contained in τC . We refer to τC as the partition cell associated with C.

Let γ be a query arc in Γ. We process the cells τ of the polynomial partition crossed

by γ, in their order along γ. 8 Let τ be such a cell, and assume for simplicity, as before, that

γ is fully contained in τ (simply consider each maximal connected portion of γ within τ).

7 For semi-unbounded arcs (such as rays), t − 1 parameters specify the containing curve. The analysis
in Section 4.2 can be applied for such arcs too, with a straightforward adaptation of the analysis. It
yields a different, albeit similar improvement, but we omit the details of this variant.

8 The order is important for arc-shooting queries, but is immaterial for the other kinds of intersection
queries.
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We iterate over all CAD cells C for which τ = τC . Fix such a cell C. By construction, if

∆ is a wide plate at τ that is included in TC then qγ ∈ Q∗
C,∆ if and only if γ crosses ∆ at a

point (x, y, z) such that (a, b, c, x, y) ∈ C (which also holds if and only if ∆∗ ∈ QC,γ in our

primal parametric three-space).

Our primal-dual approach proceeds as follows. The top part of the structure implements

the semi-algebraic range-searching technique of [8, 24] in the object three-space (as in

Section 2.1). We stop the recursive construction prematurely, when the size of the subproblems

reaches some threshold value, determined by the storage we are willing to allocate to the

structure, and then solve each of these subproblems in the query t-space, using the point-

enclosure technique of [3] in the setup described above. Using standard arguments in range

searching (see, e.g., [2, 5]), this results in a structure that, with storage parameter s, answers

an arc-intersection query in O∗


n
2t

3(t−1) /s
2

3(t−1)



time.

We then need to repeat this for every cell C for which τ = τC , and later for other partition

cells τ that γ crosses.9 As there are only O(1) such repetitions (recalling that D is constant),

this does not affect the asymptotic performance bounds.

The overall structure.

We run the recursive polynomial partitioning machinery until we reach a level k satisfying

Dk ≈ s/n; to simplify the calculations, assume that Dk = s/n. We obtain O∗(D3k)

subproblems, each with at most n/D2k plates. Starting with storage parameter s, each

subproblem, at any recursive level j, is allocated the storage parameter s/D3j for its at

most n/D2j plates. Note that at the bottom of recursion we have s/D3k = n/D2k, so

s/D3j ≥ n/D2j at each intermediate level j. Hence, answering a query on the wide plates at

τ , with this value of the storage parameter, takes time10

O∗



(n/D2j)
2t

3(t−1)

(s/D3j)
2

3(t−1)



= O∗



n
2t

3(t−1)

s
2

3(t−1)D
2(2t−3)j

3(t−1)



.

Summing over all levels j, the total cost so far is O∗



n
2t

3(t−1)

s
2

3(t−1)



, for t ≥ 2.

At the bottom level of the recursion, we handle the plates by a brute force inspection, i.e.,

in O(n/D2k) = O(n3/s2) time per leaf subproblem. Thus, summing over the O∗(s/n) leaves

that the query reaches, the total cost of a query is O∗



n
2t

3(t−1)

s
2

3(t−1)

+
n2

s



. If we set s = n3/2,

the cost of a query is O∗


n
2t−3

3(t−1) + n1/2


= O∗


n
2t−3

3(t−1)



, for t ≥ 3. For example, for full

circles, where t = 6, the query time becomes O∗(n3/5), and for circular arcs, where t = 8, it

is O∗(n13/21) (both with s = n3/2). One can of course allocate less storage and get a larger

query time, with the tradeoff given above. In summary, we have

▶ Proposition 4.1. A set of n plates in R
3 can be preprocessed into a data structure of

size O∗(s), in expected time O∗(s), for any prescribed parameter n ≤ s ≤ n3, so that

9 As already noted, for intersection detection and arc-shooting queries, there is no need to perform this
repetition once an intersection has been detected.

10 The factors hidden in the O∗(·) notation depend on D but not on j, which is important in bounding
the query time.
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intersection queries with algebraic arcs of parametric dimension t ≥ 3 can be answered in

time O∗



n
2t

3(t−1)

s
2

3(t−1)

+
n2

s



. For s = n3/2, the query cost is O∗


n
2t−3

3(t−1)



.

▶ Remark. The Ąrst term in the bound O∗



n
2t

3(t−1)

s
2

3(t−1)

+
n2

s



dominates the second term when

s ≥ n
4t−6
3t−5 . For smaller values of s the second term dominates. For example, for circles (with

t = 6) the threshold value is s = n18/13.

Further improvement for triangles. In the previous approach, we handled the plates at

the bottom of the recursion by a brute-force inspection. As already mentioned, this can

be improved for triangles. As we show in Section 5, we can construct, for n triangles,

a data structure of size O∗(n), in O∗(n) time, that can answer an arc-intersection query

in O∗(n4/5) time. We construct this structure at each cell at the bottom level of the

recursion. The overall storage and expected preprocessing cost of this structure are both

O∗(D3k · (n/D2k)) = O∗(nDk) = O∗(s). The cost of querying this structure at a single leaf

cell is O∗
(

(n/D2k)4/5
)

= O∗
(

n4/5/D8k/5
)

, so, summed over the O∗(Dk) cells crossed by the

query arc, yields the total cost O∗



n4/5

D3k/5



= O∗



n7/5

s3/5



. In conclusion, the overall cost

of a query is O∗



n
2t

3(t−1)

s
2

3(t−1)

+
n7/5

s3/5



. Comparing the two terms, we see that the Ąrst term

dominates the bound when s ≥ n
11t−21
9t−19 and the second term dominates when s ≤ n

11t−21
9t−19 .

That is, as in the general case, when s is smaller than that threshold, we can improve upon

the bound obtained by the simpler approach described above.

4.2 A further improvement for planar query arcs

In this subsection we present a further improvement in the query time for the case where the

query arcs are planar algebraic arcs of constant degree. For example, for circular arcs, a naïve

application of Theorem 2.4 would use t = 8 ( which is the parametric dimension of circular

arcs, as already noted in the introduction), and the current improvement amounts to reducing

t to 6, by getting rid of the two parameters that specify the endpoints of the query arc γ. This

improves the query time from O∗(n13/21) (which is the bound for t = 8) to O∗(n3/5) (the

bound for t = 6), still with storage and preprocessing time O∗(n3/2) (see Proposition 4.4). A

similar reduction holds for general planar query arcs, with similar t-dependent improvements

in the query time bounds.

To simplify the presentation, we consider Ąrst the case of circular arcs, and then discuss

the fairly straightforward extension to general planar arcs. Extending it further to nonplanar

arcs remains an open problem.

The case of circular arcs.

We show how to effectively reduce the parametric dimension t for circular arcs from eight to

six. To do that, we construct a multi-level structure where each level uses at most six of the

eight parameters specifying a query arc γ. Concretely, each level uses either the circle cγ

containing γ, or an endpoint of γ, or some other feature of γ with no more than six degrees

of freedom.
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For technical reasons that will be clear shortly, we assume that γ is directed, and slightly

modify the deĄnition of the semi-algebraic predicate ΠC , so that ΠC(γ; a, b, c) is 1 if and only

if γ crosses h(a, b, c) at a point (x, y, z) such that (a, b, c, x, y) ∈ C, and (x, y, z) is the Ąrst

crossing of γ with h(a, b, c). Here too, one can use quantiĄers (and then eliminate them) to

express (the modiĄed) ΠC(γ; a, b, c) as a semi-algebraic predicate of constant (albeit larger)

complexity.

In what follows we assume that the angular span of γ is not too large, say at most 10◦.

Longer arcs are simply broken into O(1) smaller subarcs with this property, and the following

procedure is applied to each subarc in order.

The approach is to replace γ by a directed semicircle γ̂ ⊇ γ whose endpoints belong to a

set of O(1) canonical points, uniformly and sufficiently densely placed along cγ , in such a

manner that γ̂ intersects a plane h∆ so that its Ąrst intersection point belongs to C (in the

above sense) if and only if γ intersects h∆ so that its Ąrst intersection point belongs to C. The

advantage of this replacement is that γ̂ has only six degrees of freedom, modulo the constantly

many choices of its endpoints, as opposed to γ which has eight. The disadvantage is the

possibility of false-positive answers: we want to ensure that any detected (Ąrst) intersection

of γ̂ with h∆ is also an intersection of γ with h∆.

So let Eγ be a set of O(1) canonical points,11 uniformly and sufficiently densely placed

along cγ . For example, put in Eγ the point w0 on cγ with the smallest x-coordinate, say, and

then place in Eγ all the points wj that lie at respective angular distances 2πj/k from w0,

for j = 1, . . . , k − 1, where k is some sufficiently large constant.12

The following two cases can arise:

(i) The endpoints of γ lie on the same side of h∆. This is the simplest situation. Informally,

either γ points towards h∆, in a sense to be made precise shortly, from both its endpoints

(as depicted in Figure 3), or γ points away from h∆ from both its endpoints, or γ moves

monotonically towards (or away from) h∆, so that the distance to h∆ increases (or decreases)

monotonically. In the second and third scenarios we conclude right away that γ does not

hit h∆, but additional effort is needed to determine whether it hits h∆ in the Ąrst scenario.

We use the following lemma.

▶ Lemma 4.2. Let γ be a directed circular arc, whose angular span is at most 10◦. Let πγ

be the plane supporting γ, let cγ be the circle supporting γ, and let pγ , qγ be the initial and

terminal endpoints of γ, respectively. Let h be a plane with the property that pγ and qγ lie on

the same side of h.

Let γ̂ be a semicircle that contains γ, and let p̂γ and q̂γ be the initial and terminal

endpoints of γ̂ (so that the points p̂γ, pγ, qγ and q̂γ appear in this order along γ̂). Then

γ crosses h if and only if

(a) γ̂ crosses h, and

(b) both tangents τγ(pγ), τγ(qγ) to γ at pγ and qγ, respectively, oriented towards γ, point

towards h, meaning that the angles between the normal to h that points away from pγ,

qγ and the tangents τγ(pγ) and τγ(qγ) are both acute; see Figure 3.

11 These points are not Śglobally canonicalŠ as they depend on cγ , but they do not depend on the endpoints
of γ.

12 The construction has to be modiĄed in straightforward ways for an arc γ contained in plane parallel to
the yz-plane, for example, by subdividing the circle cγ at equispaced points, as follows: Add to Eγ the
point w0 on cγ with the smallest z-coordinate and then proceed as above.
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h

u

v

pγp̂γ

qγ

q̂γ

τγ(pγ)

τγ(qγ)

γ

Figure 3 Condition (b) in Lemma 4.2.

When this is the case, the Ąrst intersection point of γ with h is also the Ąrst intersection

point of γ̂ with h.

Proof. Assume Ąrst that γ crosses h, necessarily at two points u, v; the case where γ is

tangent to h can be handled by a slight variant of the same argument. Property (a) holds

trivially. For (b), assume that the points pγ , u, v, and qγ appear in this order along γ. The

planes πγ and h meet at a line ℓ = uv. Consider the tangents τγ(u), τγ(v) to γ at u, v,

respectively, that point to the other side of h. Since the angular span of γ is at most 10◦,

and γ has a tangent (at a point between u and v) that is parallel to h, it follows that the

tangents τγ(pγ), τγ(qγ) also point towards h, and (b) holds.

Conversely, assume that (a) and (b) hold but γ does not cross h. Then the complementary

arc γc of γ crosses h twice, and let u and v be the two corresponding intersection points. If

at least one of the tangents τγc(pγ), τγc(qγ) points towards h then the corresponding tangent

τγ(pγ) or τγ(qγ) points away from h, which contradicts the assumption in (b). Hence both

tangents τγc(pγ), τγc(qγ) point away from h, which is impossible since γc has a tangent

parallel to h, and the angular span of each of the two portions of γc that are delimited at

this tangency point would then have to be larger than π, which is clearly impossible. See

Figure 4 for an illustration.

The Ąnal claim in the lemma is clear because, by construction, the portions of γ̂ between

p̂γ and pγ , and between q̂γ and qγ are disjoint from h. ◀

▶ Remark. We note that the condition that both tangents τγ(pγ), τγ(qγ) point towards h is

crucial. Indeed, it is possible that γ does not intersect h while γ̂ does, but in such a case one

of the tangents τγ(pγ), τγ(qγ) must point away from h.

We therefore proceed as follows. We prepare a multi-level data structure, where the

Ąrst Ąve levels collect canonical sets of wide plates, so that all plates ∆ in any such set

are such that γ and h∆ satisfy (a) and (b) of Lemma 4.2, for some canonical choice of a

semicircle γ̂ ⊇ γ. The Ąrst two levels ensure that pγ and qγ lie on the same side of h∆, the

next two levels ensure that the tangents τγ(pγ), τγ(qγ) point towards h, and the Ąfth level

ensures that γ̂ crosses h∆. The number of degrees of freedom that a query object has is three

for the Ąrst two levels, two for the next two levels (a direction in three-space has two degrees

of freedom, and testing whether a direction forms an acute angle with a query direction is

easily reduced to halfplane, or rather hemisphere, range searching), and six for the Ąfth level.
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h

u p

v

q

Figure 4 Illustration of the property that a circular arc pq, that starts behind h with a tangent

parallel to h and ends in front of h with a tangent pointing away from h, must have angular span

greater than π.

We then apply the machinery presented in Section 4.1 to each of the canonical sets

produced at the Ąfth level except that now we replace γ by its containing semicircle γ̂. We

actually prepare a separate data structure for each of the O(1) choices of the endpoints

of γ̂. In each such structure we modify the deĄnition of the range QC,γ in (4), so that

it involves γ̂ instead of γ. In this modiĄcation, the endpoints of γ̂, instead of being two

additional parameters, are expressed in terms of cγ and the speciĄc discrete choice of γ̂ along

that circle.13 Thus QC,γ̂ has only t = 6 degrees of freedom (in its dependence on γ̂).

This leads to an algorithm that uses s = O∗(n3/2) storage and answers a query

in O∗


n
2t

3(t−1) /s
2

3(t−1)



= O∗(n3/5) time (with t = 6).

(ii) The endpoints of γ lie on opposite sides of h∆. Again, we replace γ by some canonical

directed semicircle γ̂ that contains it, whose endpoints p̂γ and q̂γ both belong to Eγ .

It is easily checked that at least one of the portions γ̂−(p) and γ̂+(q) of γ̂, between p̂γ

and pγ , and between q̂γ and qγ , respectively, does not meet h∆. When p̂γ and q̂γ also lie on

opposite sides of h∆, this holds for both portions γ̂−(p), γ̂+(q). When p̂γ and q̂γ lie on the

same side of h∆, this holds for γ̂−(p) (resp., γ̂+(q)) if pγ (resp., qγ) is the endpoint of γ that

lies on that side.

If this endpoint is pγ , we use the same machinery as above, of range searching with the

region QC,γ̂ , with the original orientation of γ̂. When the relevant endpoint is qγ , we use

QC,γ̂ , with the orientation of γ̂ reversed (from q̂γ to p̂γ).

We recall the peculiar way in which QC,γ has been (re-)deĄned at the beginning of this

section, that is, that we consider the Ąrst crossing of γ with h(a, b, c). The situation we want

to avoid is that γ̂ crosses ∆ at a point (x, y, z) (with (a, b, c, x, y) ∈ C), but this is its second

crossing point with h∆, and this point does not belong to γ, whereas its Ąrst crossing point,

which does belong to γ, does not satisfy the appropriate condition with C and may well lie

outside ∆; see Figure 5 for an illustration. This bad situation is indeed avoided when QC,γ ,

or rather ΠC(γ; a, b, c), is deĄned to be 1 only when the above condition is enforced for the

13 Recall that the endpoints of γ̂ are not known at preprocessing time, because γ is not known then, and
all we know in advance is their angular placements along cγ , up to a constant number of possibilities.
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Ąrst crossing point. We summarize this property in the following lemma.

▶ Lemma 4.3. Let γ, h∆, and ΠC(γ; a, b, c) be as deĄned above, and suppose that the

endpoints of γ lie on opposite sides of h∆. Then γ can be replaced by an appropriate oriented

canonical semicircle γ̂ that contains γ, such that γ crosses h∆ if and only if γ̂ crosses h∆.

Moreover, when this is the case, the Ąrst intersection point of γ with h is also the Ąrst

intersection point of γ̂ with h.

Lemma 4.3 implies that the replacement of γ by γ̂ does not affect the output to a query,

but it involves ranges (at each level of the structure) that have at most t = 6 degrees of

freedom, allowing us to get the improved query time O∗(n3/5), as in case (i).

h∆

γ γ̂

∆

Figure 5 An instance where only the second crossing point of γ̂ with h∆ lies in C but this point

does not belong to γ.

As all cases have been covered, we have obtained a data structure for circular arc

intersection queries with respect to the wide plates of τ that uses O∗(n3/2) storage and

answers a query in O∗(n3/5) time. As discussed in Section 2.1, we can modify the semi-

algebraic test described by ΠC(γ; a, b, c) to include the exact number of intersections (one or

two) using additional quantiĄer elimination.

We have thus shown:

▶ Proposition 4.4. For a cell τ of the polynomial partition, and a set W of n wide plates at

τ , one can construct a data structure of size and expected preprocessing cost O∗(n3/2), so

that a circular-arc intersection query within τ can be answered in O∗(n3/5) time.

By plugging this improved procedure into the algorithm in Section 4.1, we obtain the

improved performance asserted in Theorem 2.5.

The case of general planar arcs.

The machinery presented above also works, with minor modiĄcations, for intersection queries

with arbitrary constant-degree planar algebraic arcs. To obtain this extension, we Ąrst

break the curve cγ containing the query arc γ, and γ too if needed, at its O(1) inĆection

points, and also at a constant number of additional points, so that the turning angle of each

resulting portion of the curve is sufficiently small, say, at most 10◦. (The overall number of

these breakpoints is linear in the degree of γ.) By construction, each of these portions is a

convex arc. We then apply the intersection searching algorithm to each portion separately.

Since each portion is convex, it can intersect a plane in at most two points. The algorithm

presented above for circular arcs, and its analysis, can then be easily extended to handle

such general arcs, with suitable and straightforward modiĄcations; the routine details are

omitted. (Note in particular that Lemmas 4.2 and 4.3 continue to hold for general convex

planar arcs with a small turning angle.)
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The performance of the resulting algorithm depends on the number of degrees of freedom

needed to specify the curve supporting the query arc, which is14 t− 2. That is, as already

argued, with O∗(n3/2) storage, a query takes

O∗


n
2t−4

3(t−3) /s
2

3(t−3)



= O∗


n
2t−7

3(t−3)



time. We observe that the top levels of the structure deal with queries whose parametric

dimension is only three or two, and only the bottom level uses all t degrees of freedom of the

supporting curve. With this procedure for handling wide plates, the rest of the algorithm

proceeds as described in Section 2, and yields Theorem 2.5.

5 Arc intersection queries amid triangles with near-linear storage

The main technique in this paper is based on polynomial partitioning, which results in

improved query time at the cost of using (substantially) superlinear storage (see, e.g., the

survey in [2] for the current state-of-the-art, and recall the discussion in the introduction,

including Table 1, regarding our bounds). It is therefore instructive to study the case where

only near-linear storage is allowed. Besides being an interesting problem in itself, which does

not seem to have been studied earlier, it is also needed as a subroutine in the main algorithm

of Section 3, for obtaining some further improvement in the storage bound; see Theorem 2.3.

Since polynomial partitioning inherently leads to superlinear storage in the way we employ

it, we will not use it here. As a consequence, we do not have wide and narrow triangles

anymore, and thus cannot replace a triangle by its supporting plane, as was done in the main

algorithms. Instead, we use the following approach. Let γ be a constant-degree algebraic arc,

contained in an algebraic curve δ = cγ , which we assume to be parameterizable, so a point

on δ can be represented as xδ(ξ) = (xδ(ξ), yδ(ξ), zδ(ξ)), for ξ real. We also assume that δ is

taken from some Ąxed collection Γ of algebraic curves that have t degrees of freedom. Thus

each of xδ(ξ), yδ(ξ), zδ(ξ) depends on t additional real variables, and we simply denote the

t-tuple of these variables as δ, so each of these expressions is a constant-degree algebraic

function of t+ 1 variables.

Let ∆ be a triangle, lying on some plane h∆. We break the predicate that γ crosses ∆

into a conjunction of several sub-predicates, and use a multi-level data structure, each level

of which tests for one of those sub-predicates. The purpose of this step is, as above, to reduce

the number of parameters of ∆ on which each sub-predicate depends.

SpeciĄcally, γ intersects ∆ if and only if the following conditions hold.

γ intersects h∆.

One of the intersection points lies, within h∆, on the positive side of each of the lines ℓ1,

ℓ2, ℓ3 supporting the respective edges e1, e2, e3 of ∆, where the positive side of a line

in h∆ is the halfplane of h∆ bounded by the line and containing ∆.

For technical reasons, we rewrite these conditions as follows:

There exists ξ ∈ R such that

(i) xδ(ξ) ∈ h∆.

(ii) ξ−(γ) ≤ ξ ≤ ξ+(γ), where ξ−(γ) and ξ+(γ) are the parameters specifying the endpoints

of γ (this sub-condition is vacuous when γ is a full algebraic curve).

14 More precisely, on the maximum number of degrees of freedom used at each level of the structure.
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(iii) xδ(ξ) lies on the positive side of ℓ1.

(iv) xδ(ξ) lies on the positive side of ℓ2.

(v) xδ(ξ) lies on the positive side of ℓ3.

As said, we use a Ąve-level data structure to test for these Ąve sub-conditions. A major

technical issue that arises is that δ may intersect h∆ in several points, and we need to

test these conditions for each point separately. For each of these separate tests we need

to specify which point (i.e., which value of ξ) is to be used, and all Ąve levels must use

the same value. More speciĄcally, condition (i) gives ξ as a root of the algebraic equation

zδ(ξ) = axδ(ξ) + byδ(ξ) + c, where (a, b, c) are the coefficients of h∆, and we need to specify

which root to use in testing for conditions (ii)Ű(v).

The solution is to use, once again, a CAD, which is constructed for the function

G(a, b, c; δ; ξ) := zδ(ξ) − axδ(ξ) − byδ(ξ) − c, in the (t + 4)-dimensional (a, b, c, δ, ξ)-space,

where the order of coordinate elimination is Ąrst ξ, then δ, and then c, b, a. (Technically,

the functions xδ, yδ, zδ need not be polynomials, but algebraic functions, and the CAD

construction is deĄned over polynomials. To address this formally, we construct the CAD

over the three polynomials G̃(a, b, c;x, y, z) := z − ax− by − c, Φ1(x, y, z), and Φ2(x, y, z),

where Φ1 and Φ2 are polynomials, having together t degrees of freedom, so that δ is the

intersection of their zero sets. This calls for a CAD in t+ 6 dimensions, and does not affect

the algorithm in any signiĄcant way, but we prefer to describe the construction under the

parametric representation of δ, in the interest of clarity. We thus assume, solely for the sake

of presentation, that δ has a polynomial parameterization.

Many of the technical details are similar to those used for the CAD introduced earlier,

but we spell them out, albeit brieĆy, because the setup is different here. Denote the CAD

as Ξt+4, denote its projection onto the three-dimensional abc-space as Ξ3, and its projection

onto the (t+3)-dimensional abcδ-space as Ξt+3. For each point (a, b, c) denote by Ξt+1(a, b, c)

the (t + 1)-dimensional Ąber of Ξt+4 over (a, b, c), and for each point (a, b, c; δ) denote by

Ξ1(a, b, c; δ) the one-dimensional Ąber of Ξt+4 over (a, b, c; δ). For each cell C0 of Ξt+3,

Ξ1(a, b, c; δ) has a Ąxed combinatorial structure for all (a, b, c; δ) ∈ C0. This structure is a

partition of the ξ-axis into a Ąxed number of intervals and delimiting points, where each

delimiter is given as a Ąxed constant-degree algebraic function of a, b, c, and δ. Moreover,

some delimiters are zeros of G(a, b, c; δ; ξ) for every (a, b, c; δ) ∈ C0, while the others are not

zeros, again for every (a, b, c; δ) ∈ C0, and the CAD tells us which delimiters are zeros and

which are not.

For each triangle ∆, whose supporting plane is parameterized by some triple (a, b, c), we

Ąnd the cell C ′ of Ξ3 that contains (a, b, c). We collect all cells C of Ξt+4 whose abc-projection

is C ′, for which the ξ-component of C is a delimiter that is a zero of G, and associate (i.e.,

store) ∆ with each of these cells. Denote the set of triangles stored at a cell C as TC .

Answering a query.

Let γ be a query arc and let δ ∈ Γ be its supporting curve. We iterate over all cells

of Ξt+4 whose ξ-component is a zero of G. For each such cell C we want to pick out

of TC those triangles ∆ for which δ appears in the Ąber Ξt+1(a, b, c), where (a, b, c) are the

coefficients of h∆ (more precisely, δ appears in the base of this Ąber, obtained by ignoring the

ξ-coordinate). Concretely, the tuple δ = (δ1, . . . , δt) has to satisfy equalities or inequalities
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of the form

δ1 = f1(a, b, c) or f−
1 (a, b, c) < δ1 < f+

1 (a, b, c)

δ2 = f2(a, b, c; δ1) or f−
2 (a, b, c; δ1) < δ2 < f+

2 (a, b, c; δ1) (5)

...

δt = ft(a, b, c; δ1, . . . , δt−1) or f−
t (a, b, c; δ1, . . . , δt−1) < δt < f+

t (a, b, c; δ1, . . . , δt−1),

for suitable constant-degree continuous algebraic functions f1, f
−
1 , f

+
1 , . . . , ft, f

−
t , f

+
t .

This set of equalities and inequalities deĄnes a semi-algebraic range QC(δ) in the three-

dimensional abc-space. Using the semi-algebraic range searching technique of [8, 24], we

obtain all the triangles ∆ ∈ TC that satisfy (5) as the union of prestored canonical sets.

For each such canonical set T ′, we can express the parameter ξ of the speciĄc intersection

point xδ(ξ) of δ and h∆, for any ∆ ∈ T ′, as an explicit algebraic function of the coefficients

(a, b, c) of h∆ and of δ. We denote this function as φC(a, b, c; δ).

This completes the description of the Ąrst (and most involved) level of our structure. We

apply this procedure to each relevant cell C of Ξt+4 separately. Let C be a Ąxed such cell.

We pass to the next level the canonical sets T ′ that comprise TC , as well as the speciĄc

expression ξ = φC(a, b, c; δ), which will be used in the four other levels too.

Once we know how to express ξ algebraically, the other levels are easier to implement.

The second level, which tests for condition (ii), is implemented as a semi-algebraic range

searching query, in the abc-space, with the range

¶(a, b, c) ♣ ξ−(γ) ≤ φC(a, b, c; δ) ≤ ξ+(γ)♢.

We then build, for each canonical set of triangles of the second-level structure, three subsequent

levels, each testing one of the conditions (iii)Ű(v). SpeciĄcally, let T0 be such a canonical

set of triangles. Let ∆ be a triangle in T0, whose plane h∆ is parameterized by (a, b, c), let

e1 denote the Ąrst designated edge of ∆, and let ℓ1 denote its supporting line. We need two

additional parameters to specify ℓ1 within h∆; denote them as µ, ν.

Let Π
(1)
C (γ; a, b, c, µ, ν) denote the predicate that is equal to 1 when xδ(ξ) lies on the

positive side of ℓ1, and put

Q
(1)
C (γ) := ¶(a, b, c, µ, ν) ♣ Π

(1)
C (γ; a, b, c, µ, ν) = 1♢.

(The subscript C reminds us that Π
(1)
C and Q

(1)
C depend on the particular cell C of Ξt+4

that we are processing.) Q
(1)
C (γ) is a semi-algebraic region of constant complexity in a

Ąve-dimensional parametric space, each point of which represents a plane h∆ and a line ℓ1

within that plane. We query with Q
(1)
C (γ) in the set H∗

1 consisting of all 5-tuples (a, b, c, µ, ν)

that correspond to the triangles of T0, each with some designated edge e1 that spans the line

given by (µ, ν), together with its positive side that contains the corresponding triangle.

The two other levels of the structure are essentially identical to this level, except that

they handle the two other respective edges of each of the corresponding triangles.

By repeating the whole procedure for each relevant cell C of Ξt+4, we ensure that all

possible intersection points of γ with any triangle ∆ will be detected. That is, the Ąnal

output of the query is nonempty, for at least one cell C (and corresponding multi-level

structure), if and only if γ intersects a triangle of T .

The Ąrst two levels of the structure are semi-algebraic range searching structures in three

dimensions, and the last three levels are semi-algebraic range searching structures in Ąve

dimensions. It follows from standard arguments in range searching (see [2] and [8, 24]) that
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one can implement the overall structure so that it uses O∗(n) storage and preprocessing time,

and answers an algebraic arc intersection query in O∗(n4/5) time (the query cost at the last

three levels dominates the cost for the entire structure). That is, we have:

▶ Theorem 5.1. A set T of n triangles in R
3 can be processed, in expected O∗(n) time, into

a data structure of size O∗(n) so that an arc-intersection query amid the triangles of T can

be answered in O∗(n4/5) time.

6 The case of plate queries and input lines

We now move to the second part of the paper, in which the nature of the input and query

objects is interchanged: the input now consists of a collection of arcs, and we query with

plates. The goal is the same: detect, count, or report intersections between the query object

and the input objects (shooting has no reasonable parallel in this reverse setup).

We begin by focusing on the special case where the input consists of lines and the queries

are plates. Later we will show how to extend the technique to handle the more general

context of input arcs and of query plates.

Let L be a set of n lines in R
3. For concreteness, consider the intersection detection

task. We construct, in linear time, a partitioning polynomial F of degree O(D), for some

sufficiently large constant parameter D, so that each cell of the partition that the zero

set Z(F ) of F induces, namely each connected component of R3 \ Z(F ), is crossed by at

most n/D2 lines of L; see [3, 20], as well as [10]. We note that the zero set may contain any

number of input lines; these lines will be handled separately.

For a cell τ of the partition and a query plate ∆, we call ∆ narrow (resp., wide) at τ if

an edge of ∆ crosses τ (resp., ∆ crosses τ but none of its edges does).

Each line ℓ ∈ L not fully contained in Z(F ) crosses Z(F ) at O(D) points, which break ℓ

into O(D) segments (and rays), so that the relative interior of each segment e is fully

contained in a single cell τ of the partition, and the endpoints of e lie on the boundary of τ .

A cell τ may contain several such segments of the same line ℓ. We denote by Lτ the set of

input lines that cross τ , and recall that15 ♣Lτ ♣ = O(n/D2).

Let ∆ be a query plate. There are O(D) partition cells at which ∆ is narrow, and O(D2)

cells at which ∆ is wide. We process the query by a direct nonrecursive procedure at cells τ

where ∆ is wide, and handle the cells at which ∆ is narrow recursively.

Handling cells where ∆ is wide.

Let τ be such a cell, and let Lτ be as deĄned above.

Solely for the purpose of this subprocedure, we partition τ further into subcells with a

simple structure and a simple topology. Concretely, we construct the CAD of Z(F ) in R
3

(see again [13, 15, 29] and Section 3.1 for details). Each full-dimensional cell π of the CAD

(as well as some lower-dimensional cells16) is fully contained in some cell τ of the partition.

15 The number of segments within τ into which these lines are broken may be larger, but this will not
affect our analysis.

16 The vertical walls of π are easier to handle, and the ceiling and Ćoor of π are contained in Z(F ) and are
handled separatelyŮsee below.
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As in Section 3, π is a prism-like cell (we refer to it simply as a prism) of the form

α1 < x < α2

f1(x) < y < f2(x)

g1(x, y) < z < g2(x, y),

where α1, α2 are reals, and f1, f2, g1, g2 are continuous algebraic functions of constant

degree (which depends on D); some of α1, α2 and these functions might be ±∞. In general,

π has six two-dimensional faces, contained respectively in the algebraic surfaces x = α1,

x = α2, y = f1(x), y = f2(x), z = g1(x, y) and z = g2(x, y). Each face is simply connected,

monotone (with respect to a suitable coordinate plane), and of constant complexity (again,

which depends on D); π has fewer faces when some of α1, α2, f1, f2, g1, g2 are ±∞.

For each partition cell τ , each segment of Lτ is split into several subsegments, each of

which is fully contained in some prism π of the CAD, and its endpoints lie on the boundary

of π. Let Lπ denote the set of these subsegments in a prism π.

Let π be a CAD sub-prism of τ . Since ∆ is wide at τ , it is also wide at π. Let π(∆) be

the arrangement of π ∪ ¶∆♢, i.e., the decomposition of π by ∆. (It is important that we

decompose π by ∆ and not by the plane supporting ∆.) The complexity of this arrangement

is a constant that depends on D.

▶ Lemma 6.1. A segment e of Lπ intersects ∆ if and only if its endpoints lie on the boundary

of different three-dimensional cells of π(∆).

Proof. Since ∆ is wide at π, its intersection ∆ ∩ π consists of one or several regions, all

fully contained in the relative interior of ∆. Consequently, each of these pieces fully slices π.

Informally, the purpose of the lemma is to argue that a point on one side of such a slice

cannot reach a point on the other side, within π, without crossing the slice.

The segment e lies inside π, so if the endpoints of e lie in different cells of π(∆), then

e has to intersect ∆ to go from one cell to another; it has to be through ∆ because the

relative interior of e does not meet the boundary of π. On the other hand, assume that the

two endpoints lie in the same three-dimensional cell ψ but e intersects ∆. At each such

intersection, e has to move from one three-dimensional cell of π(∆) to another cell. See

Aronov et al. [12] for a (nontrivial) proof of this seemingly obvious property. Informally, it

holds because each cell of π(∆) is topologically a ball. We note that (i) this property also

holds, as shown in [12], for arbitrary connected arcs e, and (ii) this property may fail for more

general, non-CAD cells π (such as, e.g., a torus). See Figure 6 for an illustration for the case

of a CAD cell. It follows that e leaves ψ when it crosses ∆, and has to return to ψ, necessarily

at a second such crossing. Thus e intersects ∆ (at least) twice, which is impossible. (Note

that this last part of the argument fails when e is not straight, as illustrated in Figure 7.) ◀

Data structure.

We build a family of O(1) two-level two-dimensional semi-algebraic range searching data

structures as follows. For each two-dimensional face φ0 of π, we collect the subset Eφ0
of

endpoints of segments in Lπ that lie in φ0. We construct a separate structure for each pair

φ0, φ′
0 of (not necessarily distinct) faces of π. The Ąrst level of the structure associated with

the pair is constructed over the set Eφ0
. We use the fact that φ0 is monotone with respect

to one of the coordinate planes, so we simply project it, and the set Eφ0 , onto that plane,

and construct a two-dimensional semi-algebraic range searching structure for the projected
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e′

e′′

∆

e π

Figure 6 A two-dimensional rendering of the scenario analyzed in Lemma 6.1. The red segment

e has endpoints in the same three-dimensional cell of π(∆) and does not cross ∆, whereas each of

the green segments e′, e′′ has endpoints in different cells of π(∆) and crosses ∆.

set; the ranges with which we will be searching will be of constant complexity, and will be

speciĄed shortly. The construction uses the algorithm of Matoušek and Patáková [24] (see

also [8]), which, for N input points, uses O∗(N) storage and preprocessing, and answers a

range searching query in O∗(N1/2) time.

For each canonical set E produced by the structure, we take the set E′
φ′

0
that consists of

the second endpoints of those segments whose Ąrst endpoint is in E, for which that second

endpoint lies in φ′
0. We construct a secondary range searching structure for E′

φ′

0
, projected

onto the coordinate plane over which φ′
0 is monotone, using the same machinery of [24], as

above.

Standard analysis of multi-level data structures (see, e.g., [2]) implies that the overall

structure uses O∗(n) storage and preprocessing, and answers a query in O∗(n1/2) time. This

completes the description of the data structure.

Query procedure.

To answer a query for a wide plate ∆ at a CAD subcell π, we construct the corresponding

decomposition π(∆) of π. We iterate over all pairs of two-dimensional faces of π. For each

such pair φ0, φ′
0, we iterate over all pairs of subfaces φ ⊆ φ0, φ′ ⊆ φ′

0 in π(∆), so that

φ and φ′ lie on the boundaries of different three-dimensional cells of π(∆). For each such pair

φ, φ′, we query the data structure associated with (φ0, φ
′
0) with the pair of semi-algebraic

ranges φ, φ′ (projected onto the corresponding respective coordinate planes), where the query

at the Ąrst level is with the projection of φ, and the query at the second level is with the

projection of φ′. Clearly these are semi-algebraic ranges of constant complexity, as promised.

Each segment in the output of any of these sub-queries crosses ∆ (within π), and every

segment that crosses ∆ within π appears in such an output, exactly once over all sub-queries.

As already noted, the cost of a query is O∗(n1/2).

Handling input lines and queries on the zero set.

If a query plate is contained in Z(F ), then it must be contained in one of the at most O(D)

planar components of Z(F ). We simply take each such component h, collect the set Eh

of the intersection points ℓ ∩ h, over the lines ℓ ∈ L that are not contained in Z(F ), and

preprocess Eh for planar range searching, where the query ranges are plates. Since there are

only O(1) components h, the overall storage and preprocessing cost of this step is O∗(n),

and a query takes O∗(n1/2) time.
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To handle input lines that are fully contained in Z(F ), we process each irreducible

component of Z(F ) separately. Computing the irreducible components of Z(F ) can be done

in constant time, since D is a constant. We can also retrieve these components from the

CAD of Z(F ). We omit the further technical details of this step, some of which can be found

in [13, 16]. Any such component V that is not ruled by lines can contain at most O(D2)

lines (this is the Cayley-Salmon theorem; see, e.g., [21], and see [22] for a review of ruled

surfaces), so only O(1) lines of L can lie in V , and we simply store them with V and process

them by brute force, in constant time, during a query. For each component V , we check, for

each line ℓ ∈ L, whether it is contained in V (say, using BézoutŠs theorem). If the number of

such lines does not exceed the Cayley-Salmon threshold, then this set of lines is processed as

above by brute force. Otherwise, we conclude that V must be a ruled surface and proceed as

described below.

For planar components V , a typical query plate crosses V in a constant number of

segments, and our problem then reduces to a two-dimensional intersection detection problem,

with the lines contained in V as input and with segments as queries. The degenerate cases

where the query plate is contained in V are also easy to handle, in a similar manner, since

this problem can be formulated as a planar semi-algebraic range searching.

Consider then the case where the component V is singly or doubly ruled by lines. Suppose

for speciĄcity that V is singly ruled; doubly ruled components can be handled by a variant

of this argument. As observed in [21], for example, with the exception of at most two

lines, all lines that are contained in V belong to the single ruling family, and these lines

are parameterized by a single real parameter t. We form the set of the values of t that

correspond to the input lines, and preprocess them into a trivial one-dimensional range

searching structure, over the parameter t, which uses O∗(n) storage and O(logn) query time.

We map a query plate ∆ into a range that is a union of a constant number of intervals

along the t-axis, representing the values of t for which the corresponding line in the ruling

crosses ∆. We then query our structure with each of these intervals.

Putting everything together, we obtain a data structure that uses O∗(n) storage, and

answers an intersection detection query in O∗(n1/2) time.

Analysis.

To recap, we have shown above how to handle the nonrecursive processing in cells where the

query plate is wide, as well as the nonrecursive processing of the zero set. We recall that

we handle cells τ at which the query ∆ is narrow recursively. Putting all these ingredients

together, we obtain that the overall storage S(n) of the structure for n lines obeys the

recurrence

S(n) ≤ c1D
3
(

S(n/D2) + SW (n/D2)
)

+O∗(n),

where c1 > 0 is an appropriate absolute constant, SW (n) = O∗(n) is the storage used by the

structure for querying on n lines with a wide plate at a cell τ , and the third term is the

storage used for handling the zero set. We thus obtain S(n) = O∗(n3/2).

The cost Q(n) of a query obeys the recurrence

Q(n) ≤ c2DQ(n/D2) + c3D
2QW (n/D2) +O∗(n1/2),

where c2, c3 > 0 are appropriate absolute constants, QW (n) = O∗(n1/2) is the cost of the

query on n lines with a wide plate at a cell, and the third term is for querying within the

zero set. Substituting this into the above recurrence, we obtain Q(n) = O∗(n1/2).

In summary, we have shown:
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▶ Theorem 6.2. A set L of n lines in R
3 can be preprocessed into a data structure of

size O∗(n3/2), in expected time O∗(n3/2), so that, for any query plate ∆, we can perform an

intersection query with ∆ in L in O∗(n1/2) time.

For counting queries, we add up the sizes of the canonical sets produced at the bottom

level of the structure, exploiting the fact that each intersection with the query plate ∆ is

encountered exactly once in the entire process. For the reporting version, we output the

elements of the above canonical sets.

6.1 Extensions

The technique presented above can be easily extended to the following setups.

Queries on a set of segments.

Assume that the input objects are n straight segments, instead of lines. An input segment e

is said to be short (resp., long) at a cell τ if τ contains an endpoint of e (resp., crossed by e

but does not contain an endpoint); e is long at all the cells that it crosses, except for at most

two. A variant of the construction of Guth [20] and of Guth and Katz [21] lets us construct

a partitioning polynomial F of degree O(D) so that each cell contains at most n/D3 short

segments, and is crossed by at most n/D2 segments.

Handling long segments at a cell is done exactly as before. To handle short segments,

for each cell τ , we prepare a two-level halfspace range searching data structure that allows

us, for a query plate ∆ that crosses τ , to obtain the set of all the short segments in τ that

cross the plane h∆ supporting ∆, as the union of a few canonical sets. (Clearly, ∆ cannot

cross any segment that is not crossed by h∆.) This can be done so that, with s = O∗(n3/2)

storage, a query costs O∗(n/s1/3) = O∗(n1/2) time (see, e.g., [2]). For each canonical set

of the structure, we replace each original segment e by its extension e′, which is connected

component of τ ∩ ℓ containing e, where ℓ is the line supporting e. Since a query plate has

to process only sets of segments that h∆ crosses, this replacement does not cause any new

(false positive) intersections to arise.

We now process the extended segments as before. By standard analysis of multi-level

data structures [2], adding the above extra levels to the structure (for handling cells at which

the query plate is wide) does not affect the performance bounds in any signiĄcant manner:

the storage and preprocessing for the structure remain O∗(n3/2) and the query still takes

O∗(n1/2) time. Handling the zero set is done in a similar manner as in the case of input lines,

after a similar construction of canonical sets of segments that intersect h∆, and replacing

these segments by the lines containing them. The recurrence for handling cells at which the

query plate is narrow retains the same performance bounds as before. We thus obtain:

▶ Theorem 6.3. A set L of n line segments in R
3 can be preprocessed into a data structure

of size O∗(n3/2), in expected time O∗(n3/2), so that, for any query plate ∆ we can perform

an intersection query with ∆ in L in O∗(n1/2) time.

Queries on a set of arcs.

We use a suitable extension of the above algorithm. We face however the following major

new issue. When the input objects were straight segments, Lemma 6.1 provided us with

a necessary and sufficient condition for an input segment to intersect the query plate ∆,

namely, that the endpoints of the segment lie in different cells of the arrangement π(∆).
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However, when the input objects are curved arcs, this criterion remains sufficient but in

general not necessary; see Figure 7 for an illustration.

δ

π

∆

Figure 7 Lemma 6.1 may fail when the input consists of curved arcs. The arc δ has both

endpoints in the same cell of π(∆) but it still intersects ∆.

We therefore need to modify the algorithm for cells at which the query plate ∆ is wide,

which we do as follows, borrowing ideas and tools from the earlier part of the paper.

First, there is no need to construct the CAD of Z(F ). Instead, let τ be a cell of the

polynomial partition at which the query plate ∆ is wide. ∆ ∩ τ is a collection of connected

semi-algebraic regions, all lying fully in the relative interior of ∆, and we want to test each

of them for intersection with the input arcs.

We use the labeling scheme of Section 3, which constructs a CAD Ξ5 of the polynomial

F (x, y, ax+ by+ c), in the Ąve-dimensional abcxy-space E, where a, b, c are the coefficients of

the plane h∆ (that is, h∗
∆ = (a, b, c)). The two-dimensional Ąber Ξ2(a, b, c) over h∗

∆ partitions

the xy-projection of h∆ into pseudo-trapezoids, and each of the regions of ∆ ∩ τ is the

disjoint union of some of these trapezoids. Each trapezoid has a discrete label, which is its

semi-algebraic representation and which has constant complexity.

For each cell C of Ξ5, and its three-dimensional abc-projection C0, there is a Ąxed semi-

algebraic representation of the trapezoid ξ on ∆, for which ¶h∗
∆♢ × ξ↓ ⊆ C (so h∗

∆ ∈ C0). We

prepare a semi-algebraic range searching data structure where the objects are the boundary

curves of the input regions, and the query range is the trapezoid ξ that corresponds to the

cell C. We use a primal-dual approach, where in the primal setup the input curves are

represented as points in R
t, where t is the parametric dimension of these arcs (including the

two parameters for specifying the endpoints), and we query with the semi-algebraic range

QC,h∗

∆
, consisting of all points in R

t representing arcs δ that cross the trapezoid ξ as deĄned

above. The dual setup is cast in R
3, and here too there is a separate data structure for every

possible CAD cell C. The query region ∆ is represented as a point h∗
∆ = (a, b, c), as above,

and each boundary arc δ is represented as a semi-algebraic region Q∗
C,δ, consisting of all

points h∗
∆ such that δ intersects the trapezoid corresponding to C on h∆.

Standard analysis of the primal-dual approach (see, e.g., [2, 5]) shows that, with s =

O∗(n3/2) storage, a query takes O∗(n
3(t−1)

4t ) time. Note that this bound is different than the

one obtained earlier, for querying with an arc amid plates, since the primal-dual scheme for

the current scenario consists of point-enclosure queries in R
3 and range-searching queries

in R
t. For example, when the input arcs are circles and the query plates are disks, we have

t = 6 and the cost of an intersection query is O∗(n5/8).

So far we have handled partition cells at which the query plate is wide. Handling cells at

which the query plate is narrow is done similarly as in the case of lines described earlier.

Handling the zero set. Consider next the task of handling input arcs that lie in Z(F ).

Using arguments as above, we may assume, without loss of generality, that Z(F ) is irreducible

and xy-monotone. Project Z(F ) and the input arcs that it contains on the xy-plane. We
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get a collection Γ of (at most) n arcs of constant complexity, with the same parametric

dimension t as the original arcs. The query plate ∆ crosses Z(F ) in O(1) arcs (where the

constant of proportionality depends on the parametric dimension of the bounding arcs of ∆).

Let δ be such an arc, and we denote by δ∗ its xy-projection. The curve containing δ∗ is an

algebraic curve of constant complexity and of parametric dimension 3 (inherited from the

plane h∆). The parametric dimension of δ∗ itself is 5, including its endpoints, but we will

get rid of the effect of these two extra parameters.

Construct a partitioning polynomial G, of degree O(D1), for D1 ≫ D, which partitions

the plane into O(D2
1) cells, each crossed by at most n/D1 arcs of Γ. The arc δ∗ crosses O(D1)

cells, and it is long (i.e., the cell does not contain any of its endpoints) in all of them except

for at most two.

For each cell τ , we let Γτ denote the set of arcs of Γ that cross τ , where each arc is

clipped to within τ (so the number of connected components of the clipped arcs may be

larger than n/D1, but this will not affect the analysis). Note that each arc in Γτ still has

t degrees of freedom. We preprocess Γτ into a data structure for intersection queries with

arcs that have three degrees of freedom. SpeciĄcally, each query arc is a clipped connected

portion of δ∗ within a cell τ at which δ∗ is long. Some care has to be exercised here, to

ensure that each query subarc still has only three degrees of freedom, but we omit here the

details, which are similar to the CAD labeling scheme used earlier.

To answer a query with an arc δ∗, we Ąrst query with each subarc of δ∗ at the cells where

δ∗ is long, using the procedure sketched above, and then recurse at the at most two cells

where δ∗ is short. We repeat this step for each of the O(1) subarcs δ∗ whose lifted arc δ

appears on the intersection of the query plate ∆ and Z(F ). The cost is easily seen to be

asymptotically the same as that of the above procedure. Using a primal-dual approach, as

before, the previous analysis yields the summary result:

▶ Theorem 6.4. A set Γ of n constant-degree algebraic arcs in R
3, with parametric dimen-

sion t, can be preprocessed into a data structure of size O∗(n3/2), in expected time O∗(n3/2), so

that, for any query plate ∆, we can perform an intersection query with ∆ in Γ in O∗(n
3(t−1)

4t )

time.

7 The case where both input and queries are triangles or plates

Finally, we move to the third part of the paper, in which both input and query objects are

plates. We Ąrst focus on the case where both input and query objects are triangles, and later

comment on the relatively easy extension to the general case.

Consider then the case where the input is a set T of n triangles in R
3 and the query is a

triangle, and the goal is to detect, count, or report intersections between the query triangle

and the input triangles. Consider Ąrst the detection version.

The solution is quite simple, and is based on a combination of the analysis in [19] and

Section 6 of this paper. Note that if two triangles ∆, ∆′ intersect (in general position) then

their intersection is a line segment e = pq, where each of the endpoints p, q is an intersection

point of an edge of one triangle with the other triangle.

It follows that if a query triangle ∆q intersects some input triangle ∆ then either

(i) an edge of ∆q crosses ∆, or

(ii) ∆q crosses an edge of ∆.

(Any combination of (i) and (ii) can occur at the two respective endpoints p, q.)



P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir 33

To detect intersections of type (i), we apply the algorithm of [19], which uses O∗(n3/2)

storage and answers a query in O∗(n1/2) time. To detect intersections of type (ii), we use the

algorithm of Section 6, which also uses O∗(n3/2) storage and answers a query in O∗(n1/2)

time.

The reporting version is an easy extension of the detection procedure just described. We

note that, in general position, each intersection of a query triangle with an input triangle

is detected exactly twice, once for each endpoint of the intersection segment, and each of

these detections can be either of type (i) or of type (ii). Omitting the further straightforward

details, we therefore conclude:

▶ Theorem 7.1. A set T of n triangles in R
3 can be preprocessed into a data structure of

size O∗(n3/2), in expected time O∗(n3/2), so that, for any query triangle ∆, we can detect

whether ∆ intersects any triangle of T in time O∗(n1/2). We can report all k such intersected

triangles in time O∗(n1/2 + k log k).

The counting version is also easy, observing that, in general position, each pair of

intersecting triangles (the query triangle and an input triangle) is encountered by the above

procedure exactly twice, once for each endpoint of the intersection segment. However, the

algorithm of [19] is unable to count intersections, so we need to use the alternative technique

in Theorem 2.4, which, still with O∗(n3/2) storage, answers a query in O∗(n5/9) time. We

thus obtain (by the above observation, we need to divide the resulting count by 2):

▶ Theorem 7.2. A set T of n triangles in R
3 can be preprocessed into a data structure of

size O∗(n3/2), in expected time O∗(n3/2), so that, for any query triangle ∆, we can count

the number of input triangles that ∆ intersects in time O∗(n5/9).

7.1 Extensions

Consider next the general setup, where both the input and query objects are plates.

We begin by considering the detection version. Many aspects of the algorithm of

Theorem 7.1 are fairly easy to generalize. Here the intersection of a query plate ∆q with an

input plate ∆ is the union of O(1) pairwise disjoint segments, all lying on the intersection line

of the two supporting planes, and each endpoint of each of these segments is an intersection

of either (i) ∆ with a boundary arc of ∆q, or (ii) a boundary arc of ∆ with ∆q. (There is

only one intersection segment when both plates are convex.)

Detecting intersections of type (i).

We use the techniques of the Ąrst part of the paper. Among the variety of solutions that

it provides, we apply Theorem 2.5, observing that the query arcs are planar. We therefore

obtain a data structure of size O∗(n3/2), which is constructed in expected time O∗(n3/2), so

that an arc intersection query, with a constant-degree algebraic arc of parametric dimension

t ≥ 3, can be answered in O∗


n
2t−7

3(t−3)



time. We comment that if the query plate is bounded

by a single endpoint-free curve, the query time bound is O∗


n
2t−3

3(t−1)



(where t is now the

parametric dimension of the bounding curve).

Detecting intersections of type (ii).

For this case we use the technique presented in Section 6.1. That is, we apply Theorem 6.4 on

the boundary arcs of the input plates, and obtain a data structure of sizeO∗(n3/2) (constructed
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in expected time O∗(n3/2)), which supports plate-intersection queries in O∗


n
3(t−1)

4t



time,

where t ≥ 3 is the parametric dimension of the input arcs.

Combining the bound in Theorem 6.4 with the one in Theorem 2.4, we obtain:

▶ Theorem 7.3. A set T of n plates in R
3 can be preprocessed into a data structure of size

O∗(n3/2), in expected time O∗(n3/2), so that an intersection detection query with a plate can

be answered in time

max



O∗(n
2tQ−7

3(tQ−3) ), O∗(n
3(tO−1)

4tO )



,

where tQ is the parametric dimension of the boundary arcs of the query region, and tO is the

parametric dimension of the boundary arcs of the input regions.

8 Segment-intersection queries for spherical caps

In the Ąnal result of this study, we consider the case where the queries are segments and

the input objects are n spherical caps (where a cap is the portion of a sphere cut off by a

halfspace). This is different from the previous cases in that the input objects are not Ćat.

We use this case as an example of how far the techniques of this paper can be extended to

non-Ćat inputs.

We go over the steps of the algorithms presented in Sections 2Ű5 and discuss the modiĄ-

cations that they require for the new problem.

(i) Constructing the CAD.

In the spirit of the technique in Sections 2Ű5, we replace the caps by their containing spheres,

and construct the CAD for the pair of polynomials

F (x, y, z) and (x− a)2 + (y − b)2 + (z − c)2 − r2,

where (a, b, c) is the center of a sphere and r is its radius. The CAD is thus constructed in

R
7, with coordinates a, b, c, r, x, y, z, in the reverse elimination order (starting with z).

The ŚbaseŠ (projected) CAD is now in the four-dimensional abcr-space, each point of

which represents a sphere. The xyz-Ąber over each point (a, b, c, r), restricted to the sphere

S, represented by (a, b, c, r), is a reĄnement of the partition of S induced by Z(F ). As before,

each (now curvy) pseudo-trapezoidal cell σ of the partition on S is labeled by the cell of the

CAD that contains it (in the same sense as before), and we use this label to represent σ by

an explicit semi-algebraic expression that will be used in the subsequent range searching

step.

Note that, contrary to the setup in Sections 2Ű5, where the input consisted of plates

and it was sufficient to consider the xy-projection of the CAD cells induced on the planes

h(a, b, c), in the case of spherical caps we also need to consider the z-coordinate of the

pseudo-trapezoidal cells.

(ii) The range searching mechanism.

For each cell C of the CAD and for the corresponding cell τ = τC of the polynomial

partition, we take the set SC of all caps stored at C and wide at τ , and run a semi-algebraic

range searching procedure that Ąnds, for a query segment s that is contained in τ , the

set of all caps κ ∈ SC that are crossed by s at a point (x, y, z) that belongs to C; that is,

(a, b, c, r, x, y, z) ∈ C, where (a, b, c, r) are the parameters of the sphere containing κ.
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(iii) The overall performance.

This range searching step has six degrees of freedom for the queries (segments in R
3) and

four for the input objects (spheres). As we show, this implies that we can either (i) perform

a query, with O∗(n5/4) storage, in O∗(n3/4) time, in full analogy to the bounds O∗(n4/3) for

storage and O∗(n2/3) for query time in our basic algorithm (see Sections 2 and 3), or (ii)

perform a query, with O∗(n3/2) storage, in O∗(n27/40) time, similar to the previous bounds

O∗(n3/2) for storage and O∗(n
2t−3

3(t−1) ) for query time (see Theorem 2.4).

To obtain these results, we Ąrst observe that since a sphere is represented by a point in a

four-dimensional space, the bound O∗(n2/3), which is based on the primal-only technique of

[24], is now replaced by O∗(n3/4). Thus, to obtain the Ąrst result, we choose the threshold

n0 = n1/2 in the construction of the partition tree Ψ. The solutions of recurrences (1) and (2)

now become O∗(n5/4) for storage (and expected preprocessing time) and O∗(n3/4) for query

time.

To obtain the second result, we set n0 = O(1) in the construction of Ψ, and apply a

primal-dual range searching algorithm for the wide caps. The primal part of the structure is

constructed for points (representing spheres) in a four-dimensional space, and the dual part of

the structure is constructed for regions in a six-dimensional space (corresponding to the input

segments). Aiming for s = O∗(n3/2) (which is also the size of Ψ), we stop the construction

of the primal part as soon as the size of the subproblems becomes at most x = n1/10 (which,

as is easily veriĄed, is the correct threshold for keeping the storage O∗(n3/2)), which yields

an improved query time of O∗(n27/40).

▶ Theorem 8.1. We can perform segment-intersection queries amid n spherical caps in R
3

by a structure that uses O∗(n5/4) storage and expected preprocessing, and answers a query

in O∗(n3/4) time, or, alternatively, by a structure that uses O∗(n3/2) storage and expected

preprocessing, and answers a query in O∗(n27/40) time.

Remarks. (1) Our main goal in studying segment intersection queries amid spherical

caps was to demonstrate the versatility of our technique, and we did not make an effort to

optimize the bounds. In particular, we did not try to devise a data structure of near-linear

size and sublinear query time, as we did in Section 5. Such a data structure would allow

us to improve the storage bound in the Ąrst result. We also did not attempt to reduce the

number of degrees of freedom of the query objects (which are segments), by replacing a query

segment with its supporting line, as we did for arc intersection amid plates.

(2) We only considered the case where the query object is a line segment. However, the

technique easily extends to queries with arcs, similar to the extensions noted earlier for

input plates (except for the algorithm that reduces the effective parametric dimension by

2, by getting rid of the effect of the endpoints of the query arc, as this reduction relies on

the assumption that the input objects are Ćat). The performance deteriorates with the

parametric dimension of the query arcs, and the concrete bounds (which can easily be worked

out, although we skip this step in this brief discussion) result from using a primal-dual range

searching technique, where in the primal we have a semi-algebraic range searching problem in

R
4 (the parametric dimension of the spheres containing the input caps), and in the dual we

have a point enclosure problem in R
t, where t is the parametric dimension of the query arcs.

9 Discussion

The analysis in this paper raises many open issues that would be interesting to pursue, and

we mention a few here.
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Detection vs. counting. It is constructive to compare our results with the previous work of

Ezra and Sharir [19], for the special case of intersection detection where the queries are line

segments (or lines or rays). In this case, with O∗(n3/2) storage, the algorithm of [19] yields

query time O∗(n1/2), which is better than what we get, namely O∗(n5/9). Nevertheless, there

are two major advantages of our algorithm. First, it completely bypasses the second (and

rather involved) recursive mechanism that is applied in [19] to the wide input triangles at a

partition cell τ , making this aspect of the algorithm much simpler conceptually. Moreover,

the second recursion in [19] has the disadvantage that it might process a wide triangle at

τ many times, and therefore cannot handle intersection-counting queries, where we want

to report either the number of triangles that the query segment hits, or the number of

intersection points of the query with the triangles (these two quantities are the same for

querying with straight segments but may differ for querying with algebraic arcs). Since we

do not need this recursion in our approach, it can handle intersection-counting queries, but

still only queries that seek the number of intersection points of the query arc with the input

triangles.17 It therefore remains an open challenge to perform intersection-counting queries

for, say, circular arcs, where the goal is to report the number of triangles (rather than the

number of the intersection points) that a query arc crosses.

Detecting intersections of anything with anything. The technique presented in this

paper is sufficiently versatile to support many other types of intersection queries, where the

input objects are non-Ćat surface patches (as in the case of spherical caps considered earlier),

or when the query objects are non-Ćat patches. We give a high-level view of possible such

extensions, based on the approach used so far. This view merely sketches the approach that

has to be taken, but the actual implementation, in many cases, remains an open challenge.

In general, the CAD construction facilitates the passage from an input consisting of

surface patches (such as triangles or spherical caps) to the full surfaces containing them (such

as planes or spheres). This leads to a reduction (often signiĄcant) in the number of degrees

of freedom of the input objects, which in turn leads to improved performance bounds for

the resulting algorithm. However, this reduction becomes possible only if we use polynomial

partitioning. The partitioning allows us to focus on wide input objects within each partition

cell τ , namely objects that cross τ but whose relative boundary does not cross τ . The CAD

technique, appropriately modiĄed, can give us a succinct semi-algebraic representation of

each trapezoidal piece of each connected portion of a wide input object within τ , which can

then be used to facilitate the subsequent range searching step.

A similar reduction in the number of degrees of freedom is also desirable for the query

object, but it is far from obvious and has to be worked out, especially when the objects

are non-planar arcs or patches. For arcs, as in the cases studied in the paper, it typically

amounts to eliminating the effect on the bounds of the endpoints of the query arc, effectively

replacing it by its full containing curve.

The query time bound of the resulting algorithm would depend on the number of degrees

of freedom of (a) the surfaces containing the input objects, and (b) the curve of surface

containing the query object, and also on the amount of storage we allocate to the structure.

17 We do not know how to count the actual number of intersected input regions, because the intersection
points of an input region with the query arc may be detected (counted) at different instances of the
algorithm, and we do not see how to avoid a multiple count of that region in such cases.
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