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ABSTRACT

Congestion pricing has long been hailed as a means to mitigate
traffic congestion; however, its practical adoption has been limited
due to social inequity issues, e.g., low-income users are priced out
off certain roads. This issue has spurred interest in the design of
equitable mechanisms that refund the collected toll revenues to
users. Although revenue refunding has been extensively studied,
there has been no characterization of how such schemes can be
designed to simultaneously achieve system efficiency and equity
objectives.

In this work, we bridge this gap through the study of conges-
tion pricing and revenue refunding (CPRR) schemes in non-atomic
congestion games. We first develop CPRR schemes, which in com-
parison to the untolled case, simultaneously (i) increase system
efficiency and (ii) decrease wealth inequality, while being (iii) user-
favorable: irrespective of their initial wealth or values-of-time (which
may differ across users) users would experience a lower travel
cost after the implementation of the proposed scheme. We then
characterize the set of optimal user-favorable CPRR schemes that
simultaneously maximize system efficiency and minimize wealth
inequality. These results assume a well-studied behavior model of
users minimizing a linear function of their travel times and tolls,
without considering refunds. Overall, our work demonstrates that
through appropriate refunding policies we can achieve system effi-
ciency while reducing wealth inequality.
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1 INTRODUCTION

The study of road congestion pricing is central to transportation eco-
nomics and traces back to 1920 with the seminal work of Pigou [27].
Since then, the marginal cost pricing of roads, where users pay
for the externalities they impose on others, has been widely ac-
cepted as a mechanism to alleviate traffic congestion. In particular,
congestion pricing can be used to steer users away from the user
equilibrium (UE) traffic pattern, which forms when users selfishly
minimize their own travel times [29], towards the system optimum
(SO) [30]. Despite the system-wide benefits of congestion pricing,
its practical adoption has been limited [32]. A primary driving force
behind the public opposition to congestion pricing has been the
resultant inequity, e.g., high income users are likely to get the most
benefit with shorter travel times while low income users suffer
exceedingly large travel times since they avoid the high toll roads.
Several empirical works have noted the regressive nature of con-
gestion pricing [13, 24], which has often been viewed as “a tax on
the working class [26]” Further, a recent theoretical work [16] has
characterized the influence of road tolls on the Gini coefficient, a
measure of wealth inequality. Most notably, the latter paper [16]
developed an Inequity Theorem for users travelling between the
same origin-destination (O-D) pair, and proved that any form of
road tolls increases wealth inequality.

The lack of support for congestion pricing due to its social in-
equity issues [20, 34] has led to a growing interest in the design
of equitable congestion-pricing schemes [36] that refund the col-
lected toll revenues to users. Our work is centered on the design
of congestion pricing and revenue refunding (CPRR) schemes that
improve system performance, reduce wealth inequality, and benefit
every user irrespective of their wealth or value-of-time. We view
our work as paving the way for the design of practical, sustainable,
and publicly acceptable congestion pricing schemes.
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Figure 1: We develop congestion pricing with revenue refunding (CPRR) schemes that improve both system efficiency and
wealth inequality, while being favorable to all users. On the left we illustrate the concept of a user-favorable CPRR scheme
through a scatter plot. The horizontal X axis shows six distinct user groups, where all users in a given group have the same
value-of-time, income, and O-D pair, and the vertical Y axis shows the travel cost of each user group. Two sets of points are
depicted on this diagram to illustrate the travel cost of each user group (i) after the implementation of a user-favourable CPRR
scheme, and (ii) under the untolled setting. In particular, for any user-favorable CPRR scheme, every user group, irrespective
of their initial income, has a lower travel cost after the implementation of the scheme compared with the untolled setting.
On the right we illustrate the concept of Pareto-improving CPRR schemes through a diagram. The horizontal X axis shows
the wealth inequality of the income distribution of users after the implementation of a CPRR scheme, while the vertical Y
axis shows the system efficiency. We depict a point corresponding to the level of system efficiency and the wealth inequality
of the untolled setting as well as a point representing the optimal CPRR scheme. Then, any Pareto-improving CPRR scheme
is depicted by a point in the rectangular region, whose opposite corners are the optimal solution and no tolls or refunds
(untolled) solution. This rectangular region denotes the set of all points with a higher system efficiency and lower wealth
inequality compared to the untolled case. We also illustrate an optimal user-favorable CPRR scheme, which we characterize
in this work, and show that it simultaneously achieves the highest system efficiency and the lowest wealth inequality.

Contributions. In this work, we present the first study of the
wealth-inequality effects of CPRR schemes in non-atomic conges-
tion games and devise CPRR schemes that simultaneously reduce
the total system cost, i.e., the value-of-time weighted travel times
of all users, without increasing the level of wealth inequality. We
consider the setting of heterogeneous users, with differing values-
of-time and income, who seek to minimize their individual travel
cost in the system. As in previous work [16], we incorporate the
income elasticity of travel time, i.e., the lost income due to a loss of
time, to reason about the income distribution of users before and
after the imposition of a CPRR scheme.

To capture the behavior of selfish users, we study the effect of
the Nash equilibria induced by CPRR schemes on wealth inequality
for non-atomic congestion games. We consider an exogenous equi-
librium setting, wherein users minimize a linear function of their
travel time and tolls, without considering refunds, as in [18], for
which we obtain the following results:

(1) We develop CPRR schemes that improve both system efficiency
and wealth inequality, while being favorable to all users. We
establish the existence of a CPRR scheme that, compared
with the untolled outcome, (i) is user-favorable, i.e., every
user group, irrespective of their initial wealth, has a lower
travel cost after the implementation of the scheme, (ii) lowers

total system cost, and (iii) decreases wealth inequality (see
Figure 1). We call such CPPR schemes Pareto improving.

(2) We characterize the set of optimal CPRR schemes that are fa-
vorable to all users. In particular, we establish that the optimal
CPRR schemes are those that simultaneously minimize total
system cost and level of wealth inequality among all CPRR
schemes that are favorable to any user (see Figure 1).

In the extended version of our paper [22] we also study CPRR
schemes in the context of endogenous equilibria, wherein users
also consider refunds in their travel cost minimization. Our work
demonstrates that if we utilize the collected toll revenues to de-
vise appropriate refunding policies then we can achieve system
efficiency whilst also progressing towards reduced inequality. Fur-
ther, in doing so, we ensure that our designed schemes are publicly
acceptable since we guarantee that each user is at least as well off
as before the introduction of the CPRR scheme. As a result, we view
our work as a significant step in shifting the discussion around con-
gestion pricing from one focused on the societal inequity impacts
of road tolls to one that centers around how to best preserve equity
through the distribution of toll revenues.

Organization. This paper is organized as follows. Section 2 re-
views related literature. We then present a model of traffic flow as
well as metrics to evaluate the inequality of the wealth distribution
and the efficiency of a traffic assignment in Section 3. We then prove



When Efficiency meets Equity in Congestion Pricing and Revenue Refunding Schemes

the existence of Pareto improving and optimal CPRR schemes for
the exogenous setting in Sections 4, and 5, respectively. Finally, we
present a discussion of how our work fits into the broader conver-
sation around equitable transportation in Section 6 and provide
directions for future work in Section 7.

2 RELATED WORK

The design of mechanisms that satisfy both system efficiency and
user fairness desiderata has been a centerpiece of algorithm design
for a range of applications including resource allocation, classifica-
tion tasks for machine learning algorithms and fair traffic routing.
For instance, Bertsimas et al. [6] quantified the loss in efficiency
in resource allocation settings when the allocation outcomes are
required to satisfy certain fairness criteria. For machine learning
classification tasks, Dwork et al. [12] studied group-based fairness
notions to prevent discrimination against individuals belonging
to disadvantaged groups. In the context of traffic routing, Jahn et
al. [21] introduced a fairness-constrained traffic-assignment prob-
lem to achieve a balance between the total travel time of a traffic
assignment and the level of fairness, i.e., the maximum discrepancy
between the travel times of users travelling between the same O-D
pair [28], that it provides. Subsequent work on fair traffic routing
has focused on developing algorithms to solve the fairness con-
strained traffic assignment problem [2-4], whilst obtaining methods
to price roads to enforce the fairness constrained flows [23].

Resolving the efficiency and equity trade-off is particularly im-
portant for allocation mechanisms involving monetary transfers
given the welfare impacts of such mechanisms on low-income
groups. Although achieving system efficiency involves allocating
goods to users with the highest willingness to pay, in many set-
tings, e.g., cancer treatment, the needs of users are not well ex-
pressed by their willingness to pay [35]. Since Weitzman’s seminal
work [35] on accounting for agent’s needs in allocation decisions,
there has been a rich line of work on taking into account redistribu-
tive considerations in the allocation of scarce resources to users.
For instance, Besley and Coate [7] analyzed the free provision of a
low-quality public good to low-income users by taxing individuals
that consume the same good of a higher quality in the private mar-
ket. More recently, Condorelli [9] studied the allocation of identical
objects to agents with the objective of maximizing agent’s values
that may be different from their willingness to pay.

In the context of congestion pricing, revenue redistribution has
long been considered as a means to alleviate the inequity issues
of congestion pricing [31]. Several revenue redistribution strate-
gies have been proposed in the literature, such as the lump-sum
transfer of toll revenues to users [17]. In Vickrey’s bottleneck con-
gestion model [33]—a benchmark representation of peak-period
traffic congestion on a single lane—Arnott et al. [5] investigated
how a uniform lump-sum payment of toll revenues can be used to
make heterogeneous users better off than prior to the implementa-
tion of the tolls and refunds. To extend the application of revenue
redistribution schemes to a two parallel-routes setting, Adler and
Cetin [1] designed a mechanism wherein the revenue collected from
users on the more desirable route was directly transferred to users
travelling on the less desirable route. In more general networks
with a single O-D pair, Eliasson [13] established the existence of
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a tolling mechanism with uniform revenue refunds that reduced
the travel cost for each user while also decreasing the total system
travel time as compared to before the tolling reform. The exten-
sion of this result to general road networks with a multiple O-D
pair travel demand and heterogeneous users was investigated by
Guo and Yang [18]. Our work builds on [18] by characterizing the
influence of CPRR schemes on wealth inequality.

3 PRELIMINARIES

In this section, we introduce basic definitions and concepts on traffic
flow, congestion pricing and revenue refunding (CPRR) schemes,
and efficiency and wealth-inequality metrics through which we
evaluate the quality of CPRR schemes.

3.1 Elements of Traffic Flow

We model the road network as a directed graph G = (V, E), with
the vertex and edge sets V and E, respectively. Each edge e € E
has a flow-dependent travel-time function ¢, : R>¢g — R, which
maps x., the traffic flow rate on edge e, to the travel time t¢(x,).
As is standard in the literature, we assume that the function t., for
each e € E, is differentiable, convex and monotonically increasing.

Users make trips in the transportation network and belong to
a discrete set of user groups based on their (i) value-of-time, (ii)
income, and (iii) O-D pair. Let G denote the set of all user groups,
and let vg > 0,94 >0 and wg = (sg, tg) denote the value-of-time,
income and O-D pair represented by an origin s, and destination
tg, respectively, for each user in group g € G. The total travel
demand dy of user group g represents the amount of flow to be
routed on a set of directed paths Py, which is the set of all simple
paths connecting O-D pair wy.

A path flow pattern f = {fpy : g € G,P € P4} specifies
for each user group g, the amount of flow fp 4 routed on a path
P € P4, where fp, g =0.In particular, a flow f must satisfy the
user demand, i.e., X pep, fp,g = dg, forall g € G. We denote the
set of all non-negative flows that satisfy this constraint as Q.

The corresponding edge flows associated with a path flow f =
{fp.g : 9 € G, P € Py} is represented as (i) Zpeipg:eep frg = xJ,
for all e € E, and (ii) deg xg = Xe, for all e € E, where e € P
denotes whether edge ¢ is in path P, while x represents the flow of
users in group g on edge e. For conciseness, we denote x = {x¢ }ecp
as the vector of edge flows and x9 = {x?} e denote the vector of
edge flows for user group g.

3.2 Congestion Pricing and Revenue
Refunding Schemes

A congestion pricing and revenue refunding (CPRR) scheme is
defined by a tuple (z,r), where (i) T = {7 : e € E} is a vector
of edge prices (or tolls), and (ii) = {ry : g € G} is a vector of
group-specific revenue refunds, where each user in group g receives
a lump-sum transfer of ry. In other words, everybody pays the same
toll for using an edge independent of their group, and all users with
the same income, value-of-time and O-D pair get the same refund,
irrespective of the actual route. Under the CPRR scheme (z, r) and
a vector of edge flows x, the total value of tolls collected is given
by IT = ).k TeXe. In this work, we consider CPPR schemes such



EAAMO ’21, October 5-9, 2021, -, NY, USA

that the total sum of the revenue refunds equals the total sum of
the revenue collected from the edge tolls, i.e., deg rgdg =1II.In
addition, we consider revenue refunding schemes that depend only
on the groups G and the total revenue II induced by a flow f, but
not on the specific paths that the users take under f. We leave the
study of more complex refund schemes for future work.

The total travel cost incurred by the user includes a linear func-
tion of their travel time and tolls, which is a commonly-used mod-
elling approach [8, 14], and a component which reflects the refund
received, which aligns with [18].

Definition 1 (User Travel Cost). Consider a CPRR scheme (z,r)
and a flow pattern f with edge flow x, and suppose that a user
belongs to a group g € G. Then, the total cost incurred by a user
when traversing a path P € Py is

ﬂ}%(fvtvr) = Z (Ugte(xe)"‘Te) —Trg. (1)

ecP

With slight abuse of notation, we will denote yf, (f,7,0)asapath
cost that does not include refund, and ylg, (f,0,0) as a path cost that
does not account for tolls or refunds, where 0 is a vector of zeros.
Throughout this paper we will consider in many cases equilibrium
flow patterns which emerge from the collective behavior of self-
interested users. Relevant to the discussion here is that equilibrium
flows equalize the user travel cost of all the users of a given group.
That is, if f is an equilibrium for a CPRR scheme then ,ug( f,t,r)=
pé (f. 7, r) for any group g € G and any two paths P, Q € P4 such
that fp 4, fo,g > 0. In such a case we drop the path dependence
in the notation and use pd(f, 7, r) to denote the travel cost of any
user within the group g.

3.3 System Efficiency and Wealth Inequality
Metrics

We evaluate the quality of a CPRR scheme using two metrics: (i)
system efficiency, which is measured through the total system cost,
and (ii) wealth inequality.

Total System Cost: We measure the efficiency of the system
through the total system cost, which, for any feasible path flow
f with corresponding edge flows x and group specific edge flows
x9, is the sum of travel times weighted by the users’ values-of-
time [8, 14, 18], i.e, C(f) := Xeer 2Zgeg nggte(xe). We denote by
C* := mingq C(f) the widely studied cost-based system optimum.

Wealth Inequality: We measure the impact of a CPPR scheme on

wealth inequality in the following manner. For a profile of incomes

q = {qg : g € G}, we let a function W : R>g0| — R0 measure

the level of wealth inequality of society. We say that an income
distribution q has a lower level of wealth inequality than q if and
only if W(q) < W(q).

In this work, we assume that the wealth-inequality measure W (-)
satisfies the following properties:

(1) Scale Independence: The wealth-inequality measure remains
unchanged after rescaling incomes by the same positive
constant, i.e., W(Aq) = W(q) for any A > 0.

(2) Regressive (Progressive) Taxes Increase (Decrease) Inequal-
ity: The wealth-inequality measure increases (decreases) if
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the incomes of users are scaled by constants that increase
(decrease) as the income increases (decreases).

We refer the readers to the extended version of this paper [22]
for a more detailed description of the above properties. The above
properties are well defined for any wealth inequality distribution
when the incomes of all users are strictly positive, which we assume
in this work. We note that the above properties are fairly natural
[10, 16] and hold for commonly used wealth-inequality measures,
such as the discrete Gini coefficient, which we elucidate in detail in
the online version of our paper [22]. Furthermore, we note that the
above properties jointly imply an important property of the wealth-
inequality measure W, which we elucidate in detail in Appendix A.1.

For the wealth inequality measure W we investigate the influ-
ence of a flow f for a given CPRR scheme (z,r) on the income
distribution of users. To this end, we define the income profile
of users before making their trip as the ex-ante income distribu-
tion ¢° > 0 and that after making their trip as the ex-post income
distribution, which is defined as follows.

Definition 2 (Ex-Post Income Distribution). For a given CPRR
scheme (z,r) and an equilibrium flow f, the induced ex-post in-
come distribution of users is denoted by q(f, 7, r) and defined as
follows. For a given group g, we have that q4(f,7,r) := qg -
Bud(f,t,r), where q° is the ex-ante income distribution and f is a
small constant representing the relative importance of the conges-
tion game to an individual’s well-being [16].

Since the trip made by users is one among a suite of factors
influencing the income of users, we assume that the constant
is small enough so that the ex-post income of all users is strictly
positive. The positive income assumption ensures that the above
defined wealth inequality properties (including scale independence)
hold.

To conclude this section, we note that in this paper we consider
time-invariant travel demand that is fixed for all user groups and
assume fractional flows, both of which are standard assumptions in
the traffic routing literature [25], as well as in game theory in the
context of non-atomic congestion games [28]. Furthermore, similar
to much of the prior literature in traffic routing with heterogeneous
groups of users [8, 14, 16], we assume that the different attributes
(i.e., the income, value-of-time and O-D pair) of the user groups are
known, and can be used in the design of CPRR schemes.

4 PARETO IMPROVING CPRR SCHEMES

The social inequity issue surrounding the regressive nature of con-
gestion pricing has been documented in several empirical and the-
oretical works, while also having spurred political opposition to
its implementation in practice. In this section, we show that if the
tolls collected from congestion pricing are refunded to users in an
appropriate way then the wealth inequality effects of congestion
pricing can be reversed. Throughout this section and the next we
assume that user behavior is characterized through the exogenous
equilibrium model wherein users minimize a linear function of their
travel time and tolls, without considering refunds.

After formally defining exogenous equilibrium below, we de-
velop a CPRR scheme that simultaneously decreases the total system
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cost of all users while not increasing the level of wealth inequal-
ity relative to the untolled outcome, a property which we refer to
as Pareto improving. Moreover, when designing the scheme, we
ensure that it is politically acceptable for implementation by guar-
anteeing that each individual user is at least as well off in terms of
the travel cost p9 under the CPRR scheme than that without the
implementation of congestion pricing or refunds.

In the extended version of this paper [22], we also consider the
important special case of travel demand when users travel between
the same O-D pair, and have values-of-time that are in proportion
to their income. In this setting, we establish the existence of a
Pareto improving CPRR scheme that results in an ex-post income
distribution that has a lower wealth inequality as compared to that
of the ex-ante income distribution, which is a stronger result than
the more general case with multiple O-D pairs considered above.

4.1 Exogenous Equilibrium

To capture the strategic behavior of users, we present below the
standard model of Nash equilibrium with heterogeneous users,
which we call exogenous equilibrium. The exogenous setting is
commonly studied in the context of non-atomic congestion games
without [8, 14] or with refunds [18]. As the name suggests, in ex-
ogenous equilibrium revenue refunds are assumed to be exogenous
and do not influence the behavior and route choice of users in the
transportation network. That is, users minimize a linear function
of their travel time and tolls, without considering refunds.

We note that such a model of user behavior can be quite realistic
in certain settings, especially since accounting for refunds when
making route choices may often be too complex and involve quite
sophisticated decision making on the part of users. Furthermore,
for users to reason about how their path choice will influence their
refund, they must know the refunding policy, which may typically
not be known in practice, thereby making the notion of an exoge-
nous equilibrium more appropriate in such settings. The following
definition formalizes the notion of an exogenous equilibrium, which
only depends on the congestion pricing component 7 of a CPRR
scheme (z,r).

Definition 3 (Exogenous Equilibrium). For a given congestion-
pricing scheme 7, a path flow pattern f is an exogenous equilibrium
if for each group g € G it holds that fp 4 > 0 for some path P € £y
if and only if

p?,(f, 7,0) < ,qu(f, 7,0), VQ € Py.
In such a case, we say in short that f is an exogenous 7-equilibrium.

We reiterate that the above notion of an exogenous equilibrium
is the standard Nash equilibrium concept used in non-atomic con-
gestion games. In this work, we refer to this equilibrium concept as
exogenous to explicitly distinguish it from the endogenous setting
when coalitions of users also account for refunds when making
travel decisions (see the extended version of this paper [22] for
more details on the endogenous setting). A key property of any
exogenous 7-equilibrium f is that all users within a given group
g € G incur the same travel cost without refunds, irrespective of
the path on which they travel. Hence, we drop the path dependence
in the notation and denote the user travel cost without refunds for
any user in group g at flow f as p9(f, 7, 0). Additionally, since the
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refund rg is the same for all users, the travel cost with refunds is
denoted as pI(f, 7, r).

Another useful property of exogenous equilibrium is that for
a given congestion-pricing scheme 7, the resulting total system
cost, user travel cost, and ex-post income distribution are invari-
ant under the different 7-equilibria (see Problem (2) and Appen-
dix A.5 for a discussion). That is for any two z-equilibria f, f” it
holds that C(f) = C(f’), p9(f,7,0) = p9(f’, 7,0), and q(f, z,r) =
q(f’,z,r). Thus, we will use the simplified notation C, := C(f),
w(zr,r) == p9(f,z,r), and q(z,r) := q(f,r,r) for some exoge-
nous 7-equilibrium f, when considering the exogenous equilibrium
model. In this context, note that Cy corresponds to the untolled
total system cost.

4.2 User-Favorable Pareto Improving CPRR
Schemes

To ensure that the CPRR schemes we develop are politically ac-
ceptable, we consider schemes that result in equilibrium outcomes
wherein each user is at least as well off as compared to that under
the untolled user equilibrium outcome, a property we refer to as
user-favorable (see Figure 1).

Definition 4 (User-Favorable CPRR Schemes). A CPRR scheme
(z,r) is user-favorable if for any (exogenous) z-equilibrium the
travel cost of any user group g does not increase with respect to
any untolled 0-equilibrium f?, i.e., p9(z,r) < $9(0,0).

We note that the the above definition and the following result
(Proposition 1) can readily be extended to incorporate the notion
of a user-favorable CPRR scheme relative to any status-quo traffic
equilibrium pattern, which is not necessarily equal to the untolled
case, e.g., the traffic pattern in a city that has already implemented
some form of congestion pricing. Thus, considering the untolled
user equilibrium f° in the above definition is without loss of gen-
erality.

We now present the main result of this section. In particular,
we establish that any pricing scheme 7 that improves the system
efficiency compared to the untolled case, can be paired with a
revenue refunding scheme r such that the wealth inequality relative
to the ex-post income distribution under the untolled setting is not
increased, i.e., the CPRR scheme (7, r) is Pareto improving (see
Figure 1) and user-favorable. Note that designing CPRR schemes
with a lower wealth inequality and total system cost as compared
to the untolled user equilibrium outcome is desirable since the
CPRR scheme improves upon both the system efficiency and equity
metrics of the status-quo traffic equilibrium pattern.

PROPOSITION 1 (EXISTENCE OF PARETO IMPROVING CPRR SCHEME).
Let T be a congestion-pricing scheme such that C; < Co, where Cy is
the untolled total system cost. Then there exists a refund scheme r such
that (z,r) is user-favorable and does not increase wealth inequality,
ie, W(q(z,r)) < W(q(0,0)). That is, (7, r) is Pareto improving.

For a proof of Proposition 1, see Appendix A.2. Note that Propo-
sition 1 relies on the key observation that an exogenous equilibrium
is completely defined through the road tolls 7, and is thus oblivious
of the refund r.
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Proposition 1 establishes the existence of a user-favorable CPRR
scheme that simultaneously decreases the total system cost and re-
duces the wealth inequality relative to that of the untolled outcome.
We present an important consequence of this result for the setting
when all users travel between the same O-D pair and have values-of-
time that are proportional to their incomes in the extended version
of this paper [22]. In this setting, we establish the existence of a
revenue refunding scheme that decreases the wealth inequality rel-
ative to the ex-ante income distribution, which is a stronger result
than Proposition 1. However, this result does not hold in general for
users travelling between different O-D pairs. In particular, for the
multiple O-D pair setting, we show in Proposition 2 that there are
travel demand instances when no CPRR scheme can reduce income
inequality relative to that of the ex-ante income distribution.

PROPOSITION 2 (INCREASE IN INCOME INEQUALITY FOR MULTIPLE
O-D PaIrs). There exists a two O-D pair setting such that for any
user-favorable CPRR scheme (t,r) it holds that W(q(z,r)) = W(q°).

For a proof of Proposition 2, see Appendix A.3. Given that there
may be multiple O-D pair instances when it may not be possible
to achieve a lower wealth inequality relative to the ex-ante in-
come distribution, we devise CPRR schemes that reduce the wealth
inequality relative to the ex-post income distribution under the un-
tolled user equilibrium outcome. Note that doing so is reasonable
since we look to design CPRR schemes that improve on the status
quo traffic pattern, which is typically described by the untolled user
equilibrium setting.

5 OPTIMAL CPRR SCHEMES

In this section, we prove the existence of optimal CPRR schemes
that achieve a total system cost and wealth inequality that cannot be
improved by any other user-favorable CPRR scheme. In particular,
we establish that the optimal CPRR schemes are those that induce
exogenous equilibrium flows with the minimum total system cost
while also resulting in ex-post income distributions with the lowest
wealth inequality among all user-favorable CPRR schemes (see
Figure 1).

We first present the main result of this section, which character-
izes the set of optimal CPRR schemes.

THEOREM 1 (OPTIMAL CPRR ScHEME). There exists a user-favorable
CPRR scheme (t*,r*) such that for any user-favorable CPRR scheme
(z,r) it holds that Cy+ < Cy and W(q(z*,r*)) < W(q(z,r)).

The proof of this theorem relies on two intermediate results that
are of independent interest. First, the under any user-favorable
CPRR scheme, each user’s ex-post income is at least that of the user
under the untolled case.

LEMmMA 1 (Ex-POST INCOME DISTRIBUTION). Let T be tolls such
that C; < Co. Then, under any set of refunds r such that the CPRR
scheme (t, r) is user-favorable, the ex-post income of any user belong-
ing to group g is q4(7,r) = q4(0,0) + Bcy, where the transfer value
cg is non-negative and satisfies the relation 3, yc g cgdg = Co — Cr.

For a proof of Lemma 1, see Appendix A.4. The second result
required to prove Theorem 1 relies on the observation that there is
a monotonic relationship between the minimum achievable wealth-
inequality and the total system cost.
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LEMMA 2 (MONOTONICITY OF REFUNDS). Suppose that there are
two congestion-pricing schemes T4 and Tg with total system costs
satisfying C;, < Cgz < Co. Then there exists a revenue refund-
ing scheme rp such that (ta,ra) is user-favorable and achieves
a lower wealth inequality measure than any user-favorable CPRR
scheme (tg,rg) for any revenue refunds rg, i.e., W(q(za,ra)) <
W(q(zB,rB)).

For a proof of Lemma 2, see Appendix A.6. The above result
establishes that a smaller total system cost yields a larger amount
of remaining refund Co — C; after satisfying the user-favorable
condition, which, in turn, results in a greater degree of freedom
in distributing these refunds to achieve an overall lower level of
wealth inequality.

Finally, Theorem 1 follows directly by the monotonicity relation
established in Lemma 2, and prescribes a two-step procedure to find
a optimal CPRR scheme that is also user-favorable. In particular,
choose a congestion pricing scheme 7* such that the total travel
cost is minimized, i.e., Cz= = C*. Next, select the revenue refunding
scheme r* to be such that the expression W(q(z*, r*)) is minimized
and (7%, r*) is user-favorable through an appropriate selection of
transfers c4. Now, let (7, r) be some user-favorable CPRR scheme.
By definition of 7*, it holds that C,« < C,. Moreover, Lemma 2
ensures that W(q(z*,r*)) < W(q(z,r)) is satisfied.

Significance of Theorem 1. The result of Theorem 1 establishes
that the optimal CPRR scheme simultaneously achieves the high-
est efficiency whilst also reducing wealth inequality to the maxi-
mum degree possible among the class of all user-favourable CPRR
schemes. This finding is counter-intuitive since equity and effi-
ciency are typically at odds but Theorem 1 establishes that no such
tradeoff between system efficiency and wealth inequality exists.
The reason for this is that the remaining refund after satisfying
the user-favourable condition increases as the total system cost
decreases (Lemma 2), thereby giving greater leverage in the design
of the refunding scheme to achieve a lower wealth inequality.

6 DISCUSSION

A core tenet of sustainable transportation entails achieving a bal-
ance between economic, equity and environmental goals [19]. The
results demonstrated in this paper challenge the traditional notion
that these goals are in tension with each other by making progress
towards achieving each of these goals simultaneously. In particular,
our work directly addresses the economic and equity goals through
the development of CPRR schemes that both minimize the total
system cost and reverse the wealth inequality effects of congestion
pricing. Furthermore, the schemes we develop achieve another eco-
nomic goal—all users are left at least as well off under the CPRR
schemes as compared to that prior to any implementation of con-
gestion pricing or refunds. This property suggests that users would
favor this pricing and refunding scheme. Finally, as the environ-
mental impact of a scheme is often proportional to the total travel
time of all users, the total system cost objective, which we seek to
minimize within optimal CPRR schemes (Theorem 1), can be treated
as an imperfect proxy for the total environmental pollution in the
system. Environmental goals can be more directly incorporated
within a CPRR scheme through appropriate congestion pricing



When Efficiency meets Equity in Congestion Pricing and Revenue Refunding Schemes

schemes, e.g., aiming to minimize air pollution, while potentially
improving total system cost and wealth inequality (Proposition 1).

Our work demonstrated that if we look at congestion pricing
from the lens of refunding the collected tolls then we can not only
achieve system efficiency but also reduce wealth inequality. As
a result, we view our work as a significant step in shifting the
discussion around congestion pricing from one that has focused
on the inequity impacts of road tolls to one that centers around
how to best distribute the revenues collected to different sections
of society. While refunding toll revenues is not novel, our work
provided a characterization of how such schemes can be designed
to simultaneously achieve system efficiency and equity objectives.
Furthermore, in doing so, we ensured that all users are at least as
well off as compared to before the introduction of the CPRR scheme,
thereby making it publicly acceptable to all users.

We believe that the results of our work pave the way for the de-
sign of sustainable, publicly-acceptable congestion-pricing schemes,
but significant practical challenges remain. For instance, we assume
centralized knowledge of the values-of-time of each user group. In
practice these may not be known, and could confound successful
implementation of an optimal CPRR scheme. Furthermore, we con-
sider CPRR schemes involving direct refunds to users while not
accounting for system designs with cross subsidies across multiple
forms of transport, e.g., subsidies to improve the transit infrastruc-
ture. It is also important to note the degree to which the CPRR
scheme is successful relies on the full implementation of the tolls
and refunds. If policymakers implement the congestion pricing
scheme but fail to deliver refunds, low-income users of the system
will be made worse off, facing higher costs, worse travel times,
or both. Underprivileged residents would have legitimate claims
that the system was not working, undermining public trust in the
system. Thus the onus is on policy makers to manage the entire life
cycle of the CPRR scheme and ensure its successful and sustainable
implementation. The difference between an equitable, optimal con-
gestion pricing scheme and one that disproportionately burdens
the poor depends significantly on how the toll revenue is spent.

7 CONCLUSION AND FUTURE WORK

In this paper, we studied and designed user-favorable congestion
pricing and revenue refunding (CPRR) schemes that mitigate the
regressive wealth inequality effects of congestion pricing. In par-
ticular, we developed CPRR schemes that improved both system
efficiency and wealth inequality, while being favorable for all users,
as compared to the untolled outcome. We further characterized the
set of optimal CPRR schemes.

There are several interesting directions for further research. The
first would be to relax some of the commonly-used assumptions in
transportation research and game theory, to improve the applicabil-
ity to practice. One example is to consider nonlinear user travel cost
functions. In addition, we currently assume time-invariant travel de-
mand and traffic flows, which motivates the possible generalization
to dynamic settings, e.g., through the incorporation of the cell trans-
mission model [11]. We have also assumed that the only decisions
made by users are route choices, whereas in reality there are other
options, such as changing departure time or travel mode. A possible
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way to overcome this limitation is by incorporating elastic-demand
models into our traffic-assignment formulations [15, 25].

It would also be interesting to extend these results to the setting
of anonymous revenue refunding schemes that do not rely on any
knowledge of user’s value-of-time. It would also be worthwhile to
investigate a broader class of group specific differential congestion
pricing mechanisms, e.g., path specific prices which may differ
by user group, beyond those involving lump-sum transfers of the
collected revenues to users. Finally, an even more general class of
refunding mechanisms can be explored wherein some portion of
the collected revenues is used to cover operational costs or improve
transportation infrastructure, e.g., cross subsidies to improve public
transit.
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A PROOFS

A.1 Constant Income Transfer Property

In this section, we present the constant income transfer property
and show that it follows directly from the regressive and progressive
tax properties of the wealth inequality measure W.

Constant Income Transfer Property: If the initial income distribu-
tion is q and each user is transferred a non-negative (non-positive)
amount of money A (—4) where 0 < A < mingeg qg, then the wealth
inequality cannot increase (decrease). That is, W(q + A1) < W(q)
and W(q — A1) > W(q), where 1 is a vector of ones.

We now prove how the above property follows from the regres-
sive and progressive tax properties of the wealth inequality measure
W. In particular, we show that if the initial income distribution is
q and each person is transferred a non-positive amount of money
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—A, where 0 < A < mingeg qg, then the wealth inequality cannot
decrease, i.e., W(q — A1) > W(q).

We note that at the new income distribution ¢ = q — A1, each
user in group g has the following income:

_ A
‘Ig:qg_/l:qg(l__)-
49

Note that if g5 < g, for any two groups g, g’, then 1— q)‘—g <1- qig"
Thus, by the regressive tax property, we observe that W(q — A1) >
W(q). We finally note that the claim that W(q + A1) < W(q) for
any 0 < A < mingeg qq follows by a similar analysis wherein we
use the progressive tax property. This proves our claim that the
wealth inequality measure W satisfies the constant income transfer
property.

A.2 Proof of Proposition 1

We now prove Proposition 1 by leveraging a class of user-favorable
CPRR schemes that were developed recently [18, Theorem 1].

LEMMA 3 (EXISTENCE OF USER-FAVORABLE CPRR ScHEME [18]).
Let t be a congestion pricing scheme such that C; < Cy. Then, for
any ag > 0 with deg ag = 1, the CPRR scheme (t, r) with refunds
is given by

o4
rg = 9(z,0) - p9(0,0) + d—g(Co - Cy),
g

for each group g, is user-favorable.

The above lemma states that as long as the edge tolls 7 reduce
the total system cost there exists a method to refund revenues that
makes every user at least as well off as compared to that under the
untolled case. We now leverage Lemma 3 to prove Proposition 1.

Proor oF ProposITION 1. For the collected toll revenues, we
construct a special case of the revenue refunding scheme from
Lemma 3. In particular, consider the refunding scheme where oy =

d . .
ngg’ which gives the refund

rg = p9(r,0) — p9(0,0) + (Co —Cy)

1
Lgeg dg
to each user in group g. We now show that under this refunding
scheme, the ex-post income distribution ¢ = ¢(z,r) has a lower
wealth inequality than that of the untolled user equilibrium ex-post
income distribution ¢ = ¢(0, 0), i.e., we show that W(q) < W(q).

To see this, we begin by considering the ex-ante income distribu-
tion g°. Under the untolled user equilibrium, users in group g incur
a travel cost p9(0,0), and thus the ex-post income distribution of
users in group g is given by g4 = qg — pp9(0,0), where f is the
scaling factor as in Definition 2. On the other hand, under the CPRR
scheme (7, r), the ex-post income distribution of users in group g is

dg = qg = B (19(z.0) — 1g)

= qy — | 19(0,0) - (Co - Cxr)

1
2geg dg

=g+ f=——(Co - Cy),
dg ﬁdegdg(O 1:)
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where we used that G4 = qg — pu9(0,0) to derive the last equality.
Since the above relation is true for all groups g, we observe that

4 =G+, where = «<£—(Co—Cy) > 0. Finally, the result that
deg dq

W(q) < W(q) follows by the constant income transfer property
(Appendix A.1), establishing our claim. O

A.3 Proof of Proposition 2

We show that there exists a two O-D pair setting such that for
any user-favorable CPRR scheme (z, r) it holds that W(q(z,r)) >
w(q°).

We begin by formally defining the instance depicted in Figure 2.
Consider a graph with four nodes, v1,vg, v3,v4 and three edges
e1 = (v1,02), e2 = (v3,vs) and e3 = (vs3, v4), where there are two
possible ways to get from v3 to v4. We define the travel time on
edge e as t1(x1) = % that on edge ey as ta(x2) = x2 and that on
edge e3 as t3(x3) = 1. Further consider two user types, one with a
high income gy and value-of-time wqp that make trips between
O-D pair wy = (v1, v2), and the other with a low income gy and
value-of-time wqy, that make trips between O-D pair w, = (v3, v4).
Let the demand of the high income users be di = 1 and that of the
low income users be di = 1. Then at the untolled user equilibrium
outcome it follows that all high income users traverse their only
edge eq, while all the low income users traverse the edge es. At this
equilibrium flow, the cost to the high income users is qu%, since
the travel time of the edge e; is %, and that to the low income users
is wqr, since the travel time on edge ez is one.

Next, we note that under any CPRR scheme (7, r) users in the
high income group will continue to use edge e; since this is the
only available edge on which they can travel. Thus, for this scheme
to be user-favorable it must be that any tolls collected from the
high income users is directly refunded back within the groups.
To see this, if there were tolls collected from high-income users
that were given to low income users then some high income users
would incur strictly higher costs than at the untolled 0-equilibrium
outcome. We similarly observe that all collected refunds from the
low income groups must be completely refunded to users within the
low income group to ensure that the CPRR scheme is user-favorable.
Note that the above argument stems from the fact that the travel
paths of the two user groups are completely disjoint, and so any
CPRR scheme (z,r) must refund all the collected revenues from
each user group directly back to that user group to ensure that the
scheme is user-favorable.

Thus, we have for any user-favorable CPRR scheme (7, r) that
all the users incur the same costs as that under the 0-equilibrium
outcome. Now, under the untolled user equilibrium, we observe that
the ex-post income of the high income group is gqg = gy — f # =
gH(1 — B%) and the ex-post income of the low income group is
qL = q1 — pwqr = qr(1 — Pw). The above analysis implies that
the untolled user equilibrium outcome results in a regressive tax,
i.e., lower income users are charged a greater fraction of their
incomes than higher income users. Since the function W satisfies
the property that regressive taxes increase inequality, we have that
the wealth inequality of the ex-post income distribution is greater
than that of the ex-ante income distribution. O

EAAMO 21, October 5-9, 2021, -, NY, USA

Group H z
[

0-D Pair: (vy,v2)
Income: qiz ey
Value-of-time: wqsr

Demand: dg = 1

ta(z2) =22

Group L
[ ]

0-D Pair: (v3,4)
Income: gz

Value-of-time: wqz
Demand: dy =1 €3

ta(zs) =1

Figure 2: A two O-D pair and two user group instance for
which the wealth inequality of the ex-post income distribu-
tion under any congestion pricing and revenue refunding
(CPRR) scheme is at least the wealth inequality of the ex-
ante income distribution. In particular, the first user group,
i.e., user group H, has an income level of gf, value-of-time
of wqy for some w > 0, demand dy = 1 and O-D pair (vy, vg).
Here the origin and destination vertices v; and vy, respec-
tively, are connected by a single edge e; with a travel time of
t1(x1) = Z. The second user group, i.e., user group L, has an
income level of q; , value-of-time of wq; for the same v > 0 as
for user group H, demand d; = 1 and O-D pair (vs3, v4). Here
the origin and destination vertices v3 and v4, respectively,
are connected by a two edges ez and e3 with a travel time
of t2(x2) = x2 and t3(x3) = 1. Under these defined attributes
for the different user groups, the user group H with a higher
income and value-of-time incurs a strictly lower cost as a
proportion of their income as compared to user group L, in-
dicating the regressive nature of any valid CPRR scheme.

A.4 Proof of Lemma 1

Denote the ex-post income of group g as §g = qq4(7, r). We now
prove the ex-post income relation using the definition of a user-
favorable CPRR scheme. In particular, for any user-favorable CPRR
scheme (7, r) the user travel cost does not increase from the untolled
case, i.e., pI(z,r) < p9(0,0). As it holds that p9(z,r) = p9(z, 0)~ry,
we observe that for some c; > 0 the following relation must hold
for each user in group g: p9(z,0) — 4 + ¢4 = 19(0, 0). Then, for an
ex-ante income distribution q°, the ex-post income of each user
belonging to group g is given by

dg = qy — B (19(r,0) = rg) = g5 — Bu?(0,0) + feg = q4(0,0) + ey,

where the second equality follows since p9(z, 0)~rg = 119(0,0)—cq4
and the last equality follows from the observation that the ex-post
income of users in group g for the untolled setting is given by
q4(0,0) = g5 — fu9(0,0).

Next, to show that 3} geG cgdg = Co — C; we characterize the
quantities Co and Cr. In particular, observe that by definition Co =
C(f% and C, = C(f), where f° is the untolled 0-equilibrium and
f is an exogenous 7-equilibrium. Now, note that both flows f° and
f can be expressed in closed form. In particular, for a given pricing
scheme 7’ the exogenous z’-equilibrium h(z’) can be written as

*(H)e
h(t') = argmin /0 te@do+ Y Y le(h')ZTe, @)

WeQ (cE ecEgeg 9
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where x(f”) denotes the edge representation of a path flow f”.
We note that this program corresponds to the multi-class user-
equilibrium optimization problem [37].

Given this representation of the flow h(z’), we derive the fol-
lowing relation that relates the total system cost C;+ to the amount
of collected revenues, by analyzing the KKT conditions of this
minimization problem. In particular, it holds that

Co= ), w00y = " rix(h(z)). 3

geg ecE

Note that the edge flow x(h(z’)) is unique by the strict convexity
of the travel-time function. We defer the proof of Equation (3) to
Appendix A.5.

We now leverage Equation (3) to obtain Cr = X 4cg pI(z,0)dg—
YecE Tex(f)e, where x(f) = x(h(r)). Furthermore, from Equa-

tion (3) for the untolled setting, we obtain that Co = 3} geG 19(0,0)dy.

Finally, using these two relations and leveraging the fact that
cg = 119(0,0) — p9(z,0) + rg we get

3 eqdg = 3 (19(0.0) — p9(2.0) + ry)d.

9eg 9eG
= > 190,00y = > p9(x,00dy + ) rgdy,
geg geg 9eg
=Co— ) 1(r,00dg + D rex(f)e,
geg e€E
=Co-Cy.

Here we used the properties Co = Y eg 1#9(0,0), Xyeg rgdg =
Zecp Tex(fle, and Cr = Ygeg p9(7,0)dg — Yecg Tex(f)e. This

proves our claim. O

A.5 Proof of Equation 3

In this section, we use the first order necessary and sufficient KKT
conditions of the well studied multi-class user equilibrium opti-
mization problem [37]

= argmmZ/ te(w)dw + Z Z —x re,

f'€Q ecE eeEgEQ
to prove that the following holds:
Cr = Z p9(z,0)dy - Z TeXe. (4)
geG ecE

Here 7 is congestion-pricing scheme and f is an exogenous z-
equilibrium with edge flow representation x. Note that the edge
flows x are unique by the strict convexity of the travel time function.
The following exogenous-equilibrium conditions follow directly
from the KKT conditions of the above optimization problem:

Z (vgte(xe) + te) = pd(z,0),

eeP

Z (vgte(xe) + 7e) = p9(z,0),

ecP

iffp,g >0,Pe Pg,g g,
iffp’g =0,PePy,gcgG.

From the above equilibrium conditions and the fact that the sum of
the path flows for any group adds up to dg, i.e., Zpepg fp,.g =dg,

Jalota, et al.
we obtain that:
D0y = > Y fo gud(z,0)
geg geG PePy
= Z Z fP,g Z (Ugte(xe) + Te) ée,P
geG PePy ecE
= Z Z Z fp, g Ugte(xe) + Te) e, P»
e€E geG PePy

= Z Z Z fp.g (vgte(xe) + 7e)

ecE geG PePyiecP
Z fP,gs

Z Z (vgte(xe) + 7e)
ecE geG PePy:ecP
Z Z xZ (vgte(xe) + Te)

ecE geG

= Z Z xgvgte(xe) + Z XeTe

ecE geG ecE

where §, p = 1if edge e € P and otherwise it is 0. Note that the
above analysis implies Equation (3) since

Com 3 3 sttt = Y a0k - 3w

e€E geG geg e€E

This proves our claim.

Remark 1. We note that since the total tolls collected and user
travel costs p9(z, 0) are unique at any equilibrium flow [18], the
total travel cost Cy is also unique for any equilibrium induced by
the edge tolls 7. Furthermore, the ex-post income of each user group
g is also the same under any equilibrium induced by the edge tolls
t since the user travel cost p9(t, 0) is unique at any equilibrium
flow [18].

A.6 Proof of Lemma 2

We prove this claim by constructing for each revenue refunding
scheme rp under the tolling scheme 7g, a revenue refunding scheme
r4 under the tolling scheme 74 that achieves a lower wealth in-
equality measure. To this end, we first introduce some notation. Let
c’g‘\ and cg be non-negative transfers for each group g as in Lemma 1,
where deg cfg‘\d = Cp — Cq, and deg cgdg =Cy
hold for the feasibility of the scheme.

Then, by Lemma 1 we have that the ex-post income of users
in group g can be expressed as: q4(t4,74) = q4(0,0) + ﬂch and

q4(tB.rB) = q4(0, 0)+ﬂc£. Let c;;‘ =cB4 m(cm —Cq,). We

— Cr must

g
now show that the refunding r4 is feasible.

S ety = S By + 2 (o - o)

9€G 9egG Lgeg dg
= ) chdy+Cey - Co,
9€G

=Co—Cqg +Cqz —Cgy =Co—Cqy,

Here we leveraged the fact that 3 c g cgd =Cp — Crp.

Under the above defined non-negative transfer c‘g“, the ex-post
income distribution under the CPRR scheme (z4, r4) is the same
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as the ex-post income distribution under the CPRR scheme (7g, rp) Cz,) = 0. Finally, by the constant income transfer property (Ap-
plus a constant non-negative transfer, which is equal for all users. pendix A.1) it follows that W(q(za,r4)) < W(q(zB,rp)). o
That is, we have q(ta,r4) = q(tg,rg) + Al for A = L(C,B -

2geg dg
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