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Abstract— The era of Big Data has brought with it a richer
understanding of user behavior through massive data sets,
which can help organizations optimize the quality of their
services. In the context of transportation research, mobility
data can provide Municipal Authorities (MA) with insights
on how to operate, regulate, or improve the transportation
network. Mobility data, however, may contain sensitive in-
formation about end users and trade secrets of Mobility
Providers (MP). Due to this data privacy concern, MPs may
be reluctant to contribute their datasets to MA. Using ideas
from cryptography, we propose an interactive protocol be-
tween a MA and a MP in which MA obtains insights from
mobility data without MP having to reveal its trade secrets
or sensitive data of its users. This is accomplished in
two steps: a commitment step, and a computation step. In
the first step, Merkle commitments and aggregated traffic
measurements are used to generate a cryptographic com-
mitment. In the second step, MP extracts insights from the
data and sends them to MA. Using the commitment and
zero-knowledge proofs, MA can certify that the information
received from MP is accurate, without needing to directly
inspect the mobility data. We also present a differentially
private version of the protocol that is suitable for the large
query regime. The protocol is verifiable for both MA and MP
in the sense that dishonesty from one party can be detected
by the other. The protocol can be readily extended to the
more general setting with multiple MPs via secure multi-
party computation.

Index Terms— Security and Privacy, Transportation Net-
works, Cyber-Physical systems, Networked Control Sys-
tems

[. INTRODUCTION

The rise of mobility as a service, smart vehicles and smart
cities is revolutionizing transportation industries all over the
world. Mobility management, which entails operation, regu-
lation, and innovation of transportation systems, can leverage
mobility data to improve the efficiency, safety, accessibility,
and adaptability of transportation systems far beyond what was
previously achievable. The analysis and sharing of mobility
data, however, introduces two key concerns. The first concern
is data privacy; sharing mobility data can introduce privacy
risks to end users that comprise the datasets. The second
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concern is credibility; in situations where data is not shared,
how can the correctness of numerical studies be verified?
These concerns motivate the need for data analysis tools for
transportation systems which are both privacy preserving and
verifiable.

The data privacy issue in transportation is a consequence of
the trade-off between data availability and data privacy. While
user data can be used to inform infrastructure improvement,
equity and green initiatives, the data may contain sensitive
user information and trade secrets of mobility providers. As
a result, end users and mobility providers may be reluctant
to share their data with city authorities. Cities have recently
begun mandating micromobility providers to share detailed
trajectory data of all trips, arguing that the data is needed
to enforce equity or environmental objectives. Some mobility
providers argued that while names and other directly identifi-
able information may not be included in the data, trajectory
data can still reveal schedules, routines and habits of the city’s
inhabitants. The mobility providers’ concern over the release
of anonymized data is justified. [1] showed that any attempt
to release anonymized data either fails to provide anonymity,
or there are low-sensitivity attributes of the original dataset
that cannot be determined from the published version. In
general, anonymization is increasingly easily defeated by the
very techniques that are being developed for many legitimate
applications of big data [2]. Such disputes highlight the need
for privacy-preserving data analysis tools in transportation.

A communication scheme between a sender and a receiver
is verifiable if it enables the receiver to determine whether
the message or report it receives is an accurate representation
of the truth. When the objectives of mobility providers and
policy makers are not aligned, one party may benefit from
misreporting data or other information, giving rise to verifia-
bility issues in transportation. An example of this is Greyball
software [3]. Mobility providers developed Greyball software
to deny service or display misleading information to targeted
users. It was originally developed to protect their drivers from
oppressive authorities in foreign countries, by misreporting
driver location to accounts that were believed to belong to
the oppressive authorities. However, mobility providers also
used Greyball to hide their activity from authorities in the
United States when their operations were scrutinized. Another
example of verifiability issues is third party wage calculation
apps [4]. Drivers, frustrated by instances of being underpaid,
created an app to confirm whether the pay was consistent with
the length and duration of each trip. Such incidents highlight



the need for verifiable data analysis tools in transportation.

A. Statement of Contributions

In this paper we propose a protocol between a Municipal
Authority and a Mobility Provider that enables the Mobility
Provider to send insights from its data to the Municipal
Authority in a privacy-preserving and verifiable manner. In
contrast to non-interactive data sharing mechanisms (which
are currently used by most municipalities) where a Municipal
Authority is provided an aggregated and anonymized version
of the data to analyze, our proposed protocol is an interactive
mechanism where a Municipal Authority sends queries and
Mobility Providers give responses. By sharing responses to
queries rather than the entire dataset, interactive mechanisms
circumvent the data anonymization challenges faced by non-
interactive approaches [1], [2].

Our proposed protocol, depicted in Figure 1, has three main
steps. In the first step, the Mobility Provider uses its data
to produce a data identifier which it sends to the Municipal
Authority. The Municipal Authority can then send its data
query to the Mobility Provider in the second step. In the third
step, the Mobility Provider sends its response along with a zero
knowledge proof. The Municipal Authority can use the zero
knowledge proof to check that the response is consistent with
the identifier, i.e., the response was computed from the same
data that was used to create the identifier. If the Municipal
Authority has multiple queries, steps 2 and 3 are repeated.

The protocol uses cryptographic commitments and aggre-
gated traffic measurements to ensure that the identifier is
properly computed from the true mobility data. In particular,
any deviation from the protocol by one party can be detected
by the other, making the protocol strategyproof for both
parties. Given that the identifier is properly computed, the
zero knowledge proof then enables the Municipal Authority
to verify the correctness of the response without needing
to directly inspect the mobility data. Since the Municipal
Authority never needs to inspect the mobility data, the protocol
is privacy-preserving.

The protocol can be extended to the more general case of
multiple Mobility Providers, each with a piece of the total
mobility data. This is done by including a secure multi-party
computation in step 3 of the protocol. Answering a large
number of queries with our protocol can lead to privacy issues
since it was shown in [5] that a dataset can be reconstructed
from many accurate statistical measurements. To address this
concern, we generalize the protocol to enable differentially
private responses from the Mobility Provider in large query
regimes.

B. Organization

This paper is organized as follows. The remainder of
the introduction discusses academic work related to privacy
and verifiability in transportation networks. In Section II we
introduce a mathematical model of transportation networks
and use it to formulate the data privacy problem for Mobility
Management. We provide a high level intuitive description of
our proposed protocol in Section III. In Section IV we provide
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Fig. 1. The Mobility Provider can answer the Municipal Authority’s data-
related mobility queries in a verifiable way without needing to share the
data. The absence of data sharing in the protocol reduces the chance
that a malicious third party intercepts and uses the data for nefarious
privacy-invasive purposes.

a full technical description of our protocol. We discuss some
of the technical nuances of the protocol and their implications
in Section V. We summarize our work and identify important
areas for future research in Section VI. In Appendix I we
present a differentially private extension of the protocol that
is suitable for the large query regime.

C. Related Work

Within the academic literature, this work is related to the
following four fields: misbehavior detection in cooperative in-
telligent transportation networks, data privacy in transportation
systems, differential privacy, and secure multi-party compu-
tation. We briefly discuss how this work complements ideas
from these fields.

Cooperative intelligent transportation networks (cITS) aim
to provide benefits to the safety, efficiency, and adaptability
of transportation networks by having individual vehicles share
their information. As with all decentralized systems, security
and robustness against malicious agents is essential for practi-
cal deployment. As such, misbehavior detection in cITS have
been studied extensively [6]. Misbehavior detection techniques
often rely on honest agents acting as referees, and are able to
detect misbehavior in the honest majority setting. Watchdog is
one such protocol [7], [8] which uses peer-to-peer refereeing.
The protocol uses a public key infrastructure (PKI) to assign a
persisting identity to each node in the network, and derives a
reputation for each node based on its historical behavior. Our
objective in this work is also detection of misbehavior, but in a
different setting. In our setting, while the mobility network is
comprised of many agents (customers and drivers), there is a
single entity (the Mobility Provider, e.g., a ridehailing service)
who is responsible for the storage and analysis of trip data.
As such, the concept of honest majority does not apply to our
setting. Furthermore, [8] does not address the issue of data
privacy; indeed, PKIs can often expose the users’ identities,
especially if an attacker cross-references the network traffic
with other traffic records.

Privacy in intelligent transportation systems is often im-
plemented by using non-interactive anonymization (e.g., data
aggregation), cryptographic tools or differential privacy. Pro-
viding anonymity in non-interactive data analysis mechanisms
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is challenging [1], [2] and thus data aggregation alone is often
not enough to provide privacy. From the cryptography side,
to address the lack of anonymity provided by blockchains
like Bitcoin and Ethereum, zero knowledge proofs [9] were
deployed in blockchains like Zcash [10] to provide fully
confidential transactions. In the context of transportation, zero
knowledge proofs have been proposed for privacy-preserving
vehicle authentication to EV charging services [11], and
privacy-preserving driver authentication to customers in ride-
hailing applications [12]. These privacy-preserving authenti-
cation systems rely on a trusted third party to distribute and
manage certificates.

Differential privacy is an interactive mechanism for data
privacy which uses randomized responses to hide user-specific
information [1]. For any query, the data collector provides a
randomized response, where two datasets which differ in only
one entry produce statistically indistinguishable outputs. Due
to this randomization, there is a trade-off between the accuracy
of the response and the level of privacy provided. Randomiza-
tion is necessary to preserve privacy in the large query regime
as demonstrated by [5] which showed that a dataset can be
reconstructed from many accurate statistical measurements.
The standard model of differential privacy, however, relies on
a trusted data collector to apply the appropriate randomized
response to queries. This is problematic in situations where
the data collector is not trusted. A local model of differential
privacy where users perturb their data before sending it to
the data collector has received significant attention due to
trust concerns [13]. However mobility providers often record
exact details about user trips, making local differential privacy
unsuitable for current mobility applications (See Remark 14).
Instead, we believe cryptographic techniques can be used to
address trust concerns. There are also more general concerns
about trust; downstream applications of data queries can lead
to conflicts of interest and encourage strategic behavior.

Secure Multi-Party Computation (MPC) is a technique
whereby several players, each possessing private data, can
jointly compute a function on their collective data without any
player having to reveal their data to other players [14]. MPC
achieves confidentiality by applying Shamir’s Secret Sharing
[15] to inputs and intermediate results. In its base form, MPC
is secure against honest-but-curious adversaries, which follow
the protocol, but may try to do additional calculations to
learn the private data of other players. In general, security
against active malicious adversaries, which deviate from the
protocol arbitrarily, requires a trusted third party to perform
verified secret sharing [16]. In verified secret sharing, the
trusted third party creates initial cryptographic commitments
for each player’s private data. The commitments do not leak
any information about the data, and allows honest players to
detect misbehavior using zero knowledge proofs. MPC is a
very promising tool for our problem, but a trusted third party
able to eliminate strategic behavior does not yet exist in the
transportation industry, therefore a key objective of this work
is to develop mechanisms to defend against strategic behavior.

In Summary - Our goal in this work is to develop a
protocol that enables a mobility provider to share insights
from its data to a municipal authority in a privacy-preserving

and verifiable manner. Existing work in accountability and
misbehavior detection focus on networks with many agents
and rely on honest majority. Such assumptions, however, are
not realistic for interactions between a municipal authority
and a few mobility providers. We thus turn our attention
to differential privacy and secure multi-party computation
which provide data privacy but require honesty of participating
parties. To address this, we develop mechanisms based on
cryptography and aggregated roadside measurements to detect
dishonest behavior.

Il. MODEL & PROBLEM DESCRIPTION

In this section we present a model for a city’s transportation
network and formulate a data Privacy for Mobility Manage-
ment (PMM) problem. Section II-A introduces a mathematical
representation of a city’s transportation network along with
the demand and mobility providers. In Section II-B we for-
malize the notion of data privacy using secure multi-party
computation, and introduce assumptions on user behavior
that we will need to construct verifiable protocols. We then
formally introduce the PMM problem and describe several
transportation problems that can be formulated in the PMM
framework.

A. Transportation Network Model

Transportation Network - Consider the transportation net-
work of a city, which we represent as a directed graph
G = (V,E, f) where vertices represent street intersections
and edges represent roads. For each road e € E we use an
increasing differentiable convex function f. : Ry — Ry to
denote the travel cost (which may depend on travel time,
distance, and emissions). of the road as a function of the
number of vehicles on the road. We will use n := |V| and
m := |E| to denote the total number of vertices and edges
in G respectively. Time is represented in discrete timesteps of
size At. The operation horizon is comprised of 7'+ 1 timesteps
as T := {0, At, 2At, ..., TAt}.

Mobility Provider - A Mobility Provider (MP) is responsible
for serving the transportation demand. It does so by choosing a
routing z of its vehicles within the transportation network. The
routing must satisfy multi-commodity network flow constraints
(see Supplementary Material B.1 and B.2 of the extended
version [17] for explicit descriptions of these constraints) and
the MP will choose a feasible flow that maximizes its utility
function Jyp. Some examples of MPs are ridehailing compa-
nies, bus companies, train companies, and micromobility (i.e.,
bikes & scooters) companies.

Transportation Demand Data - The MP’s demand data is
a list of completed trips A := {\q,..., A\¢}, where \; contains
the following basic metadata about the :th trip: Pickup and
dropoff locations, request time, match time (i.e., the time at
which the user is matched to a driver), pickup and dropoff
time, driver wage, trip fare, trip trajectory (i.e., the vehicle’s
trajectory from the time the vehicle is matched to the rider
until the time the rider is dropped off at their destination) and
properties of the service vehicle.



For locations 4, j € V and a timestep ¢, we use A(4,7,t) to
denote the number of users in the data set who request transit
from location ¢ to location j at time t.

Remark 1 (Multiple Mobility Providers). We can con-
sider settings where there are multiple mobility providers,
MP;,MPs, ..., MP,, where A; is the demand data of MP;.
The demand data set for the whole city is thus A = U§:1Aj.

Ridehailing Periods - For MPs that operate ridehailing ser-
vices, a ridehailing vehicle’s trajectory is often divided into
three different periods (with Period O often ignored):
Period 0: The vehicle is not online with a platform. The
driver may be using the vehicle personally.
Period 1: The vehicle is vacant and has not yet been
assigned to a rider.
Period 2: The vehicle is vacant, but it has been assigned
to a rider, and is en route to pickup.
Period 3: The vehicle is driving a rider from its pickup
location to its dropoff location.

B. Objective: Privacy for Mobility Management (PMM)

In the data Privacy for Mobility Management (PMM) prob-
lem, a Municipal Authority (MA) wants to compute a function
g(A) on the travel demand, where g(A) is some property of A
that can inform MA on how to improve public policies. There
are two main obstacles to address: privacy and verifiability.

Privacy issues arise since trip information may contain
sensitive customer information as well as trade secrets of
Mobility Providers (MP). For this reason MPs may be reluctant
to contribute their data for MA’s computation of g(A). This
motivates the following notion of privacy:

Definition 1 (Privacy in Multi-Party Computation). Suppose
MPy, ...MP; serve the demands Ay, ..., Ay respectively, and we
denote A = U{_,A;. We say a protocol for computing g(A)
between a MA and several MPs is privacy preserving if
1) MA learns nothing about A beyond the value of g(A).
2) For any pair ¢ # j, MP; learns nothing about A; beyond
the value of g(A).

Verifiability issues arise if there is incentive misalignment
between the players. In particular, if the MA or a MP can
increase their utility by deviating from the protocol, then
the computation of g(A) may be inaccurate. To address this
issue, we need the protocol to be verifiable, as described
by Definition 2. The following assumption is necessary to
ensure accurate reporting of demand (See Supplementary
Material B.5 of the extended version [17] for more details):

Assumption 1 (Strategic Behavior). We assume in this work
that drivers and customers of the transportation network will
behave honestly (by this we mean they will always follow the
protocol), but MA and MPs may act strategically to maximize
their own utility functions.

Definition 2 (Verifiable Protocol). A protocol for computing
g(A) is verifiable under Assumption 1 if:
1) Any deviation from the protocol by the MA can be
detected by the MPs provided that all riders and drivers
act honestly (i.e., follow the protocol).

2) Any deviation from the protocol by an MP can be
detected by the MA provided that all riders and drivers
act honestly.

Our objective in this paper is to present a PMM protocol,
which is defined below.

Definition 3 (PMM Protocol). A PMM protocol between a
MA and MP;, ...MP; can, given any function g, compute g(A)
for MA while ensuring privacy and verifiability as described
by Definitions 1 and 2 respectively.

Remark 2 (Admissible Queries and Differential Privacy).
While a PMM protocol hides all information about A beyond
the value of g(A), g(A) itself may contain sensitive informa-
tion about A. The extreme case would be if g is the identity
function, i.e., g(A) = A. In such a case, the MPs should
reject the request to protect the privacy of its customers. More
generally, MPs should reject functions g if g(A) is highly
correlated with sensitive information in A. The precise details
as to which functions g are deemed acceptable queries must
be decided upon beforehand by MA and the MPs together.
Differential privacy mechanisms provide a principled way
to address the sensitivity of g by having MPs include noise
in the computation of g(A). If the noise distribution is chosen
according to both the desired privacy level and the sensitivity
of g to its inputs, then the output is differentially private.
Note that this privacy is not for free; the noise reduces the
accuracy of the output. The precise choice of noise distribution
is important for both the privacy and accuracy of this method,
so ensuring that the randomization step is conducted properly
in the face of strategic MAs and MPs is essential. This can be
done with a combination of coinflipping protocols and secure
multi-party computation, which we describe in Appendix L.

We now present some important social decision making prob-
lems that can be formulated within the PMM framework. Note
that these applications are offline decision making problems
and thus do not impose strict requirements on computation
times of protocols. Regulation checks can be conducted daily
or weekly, and infrastructure improvement initiatives are sel-
dom more frequent than one per week. The low frequency of
such queries gives plenty of time to compute a solution. For
this reason, we do not expect the computational complexity of
the solution to be an issue.

1) Regulation Compliance for Mobility Providers: Suppose
MA wants to check whether a MP is operating within a
set of regulations p1, ..., pr. The metadata contained within
each trip includes request time, match time, pickup time,
dropoff time, and trip trajectory, which can be used to check
regulation compliance. If we define the function p;(A) to be
1 if and only if regulation 1 is satisfied, and O otherwise, then
regulation compliance can be determined from the function
g(A) = Hle pt(A). Below are some examples of regulations
that can be enforced using trip metadata.

Example 1 (Waiting Time Equity). MP is not discriminat-
ing against certain requests due to the pickup or droppoff
locations. Specifically, the difference in average waiting time
among different regions should not exceed a specified regula-
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tory threshold.

Example 2 (Congestion Contribution Limit). The contribution
of MP vehicles (in Period 2 or 3) to congestion should not
exceed a specified regulatory threshold.

Example 3 (Accurate Reporting of Period 2 Miles). A ride-
hailing driver’s pay per mile/minute depends on which period
they are in. In particular, the earning rate for period 2 is
often greater than that of period 1. For this reason, mobility
providers are incentivized to report period 2 activity as period
1 activity. To protect ridehailing drivers, accurate reporting of
period 2 activity should be enforced.

Example 4 (Emissions Limit). The collective emission rate of
MP vehicles in Phases 2 and 3. should not exceed a specified
regulatory threshold. MP emissions can be computed from the
metadata of served trips, in particular the trajectory and vehicle
make and model.

See Supplementary Material B.4 of the extended version [17]
for further details on formulating the above examples within
the PMM framework.

2) Transportation Infrastructure Development Projects:
Transportation Infrastructure Improvment Projects - A Mu-
nicipal Authority (MA) measures the efficiency of the current
transportation network via a concave social welfare function
Jma(z). The MA wants to make improvements to the network
G through infrastructure improvement projects. Below are
some examples of such projects.

Example 5 (Building new roads). The MA builds new roads
FEyew S0 the set of roads is now E U E.y, i.€., G now has
more edges.

Example 6 (Building Train tracks). The MA builds new train
routes. Train routes differ from roads in that the travel time
is independent of the number of passengers, i.e., there is no
congestion effect.

Example 7 (Adding lanes to existing roads). The MA adds
more lanes to some roads E’ C E. As a consequence, the
shape of f. will change for each e € E’.

Example 8 (Adjusting Speed limits). Similar to adding more
lanes, adjusting the speed limit of a road will change its delay
function.

Evaluation of Projects - We measure the utility of a project
using a Social Optimization Problem (SOP). An infrastructure
improvement project 6 makes changes to the transit network,
so let G denote the transit network obtained by implementing
6. The routing problem ROUTE(f, A) associated with 6 is
the optimal way to serve requests in Gy as measured by
MP’s objective function Jyp. Letting Sp o be the set of
flows satisfying multi-commodity network flow constraints
(See Supplementary Material B.1 and B.2 of the extended
version [17] for time-varying and steady state formulations
respectively). for the graph Gy and demand A, ROUTE(6, A)

is given by

max Jyp(z)
s.t. x € SQ,A.

(ROUTE(, A))

Definition 4 (The Infrastructure Development Selection Prob-
lem). Suppose there are k infrastructure improvement projects
O := {0,0o,...,0;} available, but the city only has the
budget for one project. The city will want to implement the
project that yields the most utility, which is determined by the
following optimization problem.

argmax Jya <argmax JMp(x)> . (SOP(O,A))

1<i<k QUESQMA

In the context of PMM, the function g associated with
the infrastructure development selection problem is g(A) :=
SOP(©, A).

3) Congestion Pricing: Some ridehailing services allow
drivers to choose the route they take when delivering cus-
tomers. When individual drivers prioritize minimizing their
own travel time and disregard the negative externalities they
place on other travelers, the resulting user equilibrium can
experience significantly more congestion than the social op-
timum. In these cases, the total travel time of the user
equilibrium is larger than that of the social optimum. This
gap, known as the price of anarchy, is well studied in the
congestion games literature.

Congestion pricing addresses this issue by using road tolls
to incentivize self-interested drivers to choose routes so that
the total travel time of all users is minimized. The desired
road tolls depend on the demand A, so MA would need help
from MPs to compute the prices. Congestion pricing can be
formulated in the PMM framework through the query function
gep described in (2).

When the travel cost is the same as travel time, the prices
can be obtained from the Traffic Assignment Problem [18]:

Hllil’l Z l'efe(me) (1)

eck

stox = Z Z 2°¢

o€V deV
2°d = 0VoeV,deV
S wfi ) =2l = Ao, d) (]l[u:o] - ]l[u:d]) VueV
(u,v)EE

where 2°¢ denotes the traffic flow from o to d that uses
edge e. The objective measures the sum of the travel times of
all requests in A. The desired prices are then given by:

Jep(N) == {2} fl(x})}.cp Where 2" solves (1).  (2)

See Supplementary Material B.8 of the extended version [17]
for more details on congestion pricing.

[1l. A HIGH LEVEL DESCRIPTION OF THE PROTOCOL

We focus our discussion on the case where there is one
MP. The protocol we will present can be generalized to the



multiple MP setting through secure Multi-party Computation
[14].

In this paper we present a verifiable interactive protocol,
which allows MA to check whether or not the message it
receives from MP is in fact g(A). This will result in a protocol
where MA is able to obtain g(A) without requiring MP to
reveal any information about A beyond the value of g(A).

First, we describe a non-confidential way to compute g(A).
We will discuss how to make it confidential in the next
paragraph. MP will send a commitment o = MCommit(A, r)
of A to MA. This commitment will enable MA to certify that
the result given to it by MP is computed using the true demand
A. The commitment is confidential, meaning it reveals nothing
about A, and is binding, meaning that it will be inconsistent
with any other demand A’ # A. Now suppose MP computes
a message z = g(A). To convince MA that the calculation
is correct, MP will construct a witness w := (A,r). When
MA receives the message z and witness w, it will compute
C(o, z,w), where C is an evaluation algorithm. C(o, z, w)
evaluates to True if

1) Rider Witness and Aggregated Roadside Audit checks

are satisfied. (o was reported honestly)

2) MCommit(A,r) = o. (A is the demand that was used

to compute o).

3) g(A) = z (g was evaluated properly.)

If any of these conditions are not met, C(o, z,w) will evaluate
to False. Finally, MA will accept the message z only if
C(o,z,w) = True.

The approach presented in the previous paragraph is not
privacy-preserving because the witness w being sent from
MP to MA includes the demand A. Fortunately, we can use
zero knowledge proofs to obtain privacy. Given an arithmetic
circuit C' (which in our case is the evaluation algorithm
(), it is possible for one entity (the prover) to convince
another entity (the verifier) that it knows an input z, w so that
C(o, z,w) = True without revealing what w is. This is done
by constructing a zero knowledge proof 7 from (z,w) and
sending (z,7) to the verifier instead of sending (z,w). MA
can then check whether 7 is a valid proof for z. The proof
7 is zero knowledge in the sense that it is computationally
intractable to deduce anything about w from 7, aside from the
fact C(c, z,w) = True. For our application, the prover will
be MP who is trying to convince the verifier, which is MA,
that it computed g(A) correctly.

This protocol requires MP to send a commitment of the true
demand data to MA. This is problematic if MP has incentive
to be dishonest, i.e., provide a commitment corresponding
to a different dataset. To ensure this does not happen, our
protocol uses a Rider Witness incentive to prevent MP from
underreporting demand, and Aggregated Roadside Audits to
prevent MP from overreporting demand. These two mecha-
nisms establish the verifiability of the protocol, since, as seen
in first requirement of C', MA will reject the message if either
of these mechanisms detect dishonesty.

In Summary - We present a verifiable interactive protocol.
First, MP sends a commitment of the demand to MA, which
ensures that the report is computed using the true demand. The
correctness of this commitment is enforced by Rider Witness

and Aggregated Roadside Audits. MA then announces the
function ¢ that it wants to evaluate. MP computes a message
z < g(A) and constructs a witness w to the correctness of z.
Since w in general contains sensitive information, it cannot be
used directly to convince MA to accept the message z. MP
computes a zero knowledge proof m of the correctness of z
from w, and sends the message z and proof m to MA. MA
accepts z if 7 is a valid zero knowledge proof for z.

Implementation - To implement our protocol we will use
several tools from cryptography. The commitment o is im-
plemented as a Merkle commitment. For computing zero
knowledge proofs, we will need a zk-SNARK that doesn’t
require a trusted setup. PLONK [19], Sonic [20], and Marlin
[21] using a DARK based polynomial commitment schemes
described in [22], [23]. Other options include Bulletproofs [24]
and Spartan [25]. The cryptographic tools used in the protocol
are reviewed in Supplementary Material B.3 of the extended
version [17].

IV. THE PROTOCOL

In this section we present our protocol for the PMM
problem described in Section II-B. For clarity and simplicity
of exposition we will focus on the case where there is one
Mobility Provider. The single MP case can be extended to
the multiple MP case via secure multi-party computation [14].
We present the protocol, which is illustrated in Figure 2, in
Section IV-A. In Section IV-B we discuss mechanisms used
to ensure verifiability of the protocol.

The protocol uses the following cryptographic primitives:
hash functions, commitment schemes, Merkle trees, public
key encryption and zero knowledge proofs. Hash functions
map data of arbitrary size to fixed size messages, often used
to provide succinct identifiers for large datasets. Commitment
schemes are a form of verifiable data sharing where a receiver
can reserve data from a sender, obtain the data at a later
point, and verify that the data was not changed between the
reservation and reception times. A Merkle tree is a particular
commitment scheme we will use. In public key encryption,
every member of a communication network is endowed with
a public key and a private key. The public key is like a mailbox
which tells senders how to reach the member, and the secret
key is the key to the mailbox, so messages can be viewed
only by their intended recipients. Zero knowledge proofs, as
discussed in Section III, enable a prover to convince a verifier
that it knows a solution to a mathematical puzzle without
directly revealing its solution. For a more detailed description
of these concepts, we refer the reader to the Supplementary
Material B.3 of the extended version [17], where we provide
a self-contained introduction of the cryptographic tools used
in this work.

A. Protocol Description

The protocol entails 6 stages:

Stage 0: (Data Collection) MP serves the demand A and
builds a Merkle Tree T\ of the demand it serves. MP publishes
the root of T, which is denoted as o := MCommit(A,r) so
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Mobility Provider
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! ¢ < RunARA
Stage 1 : X X
Run Rider Witness
i C <« Circuit(g,¢)
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Stage 3 9, P
Stage 4 2 g(A)
we (A7)
Stage 5 T P~((7 Z,w)
Stage 6 Accept if

V(o,z, )= True

Fig. 2. A block diagram of the communication between MA and MP.

that MA, all riders and all drivers have access to o. Here r is
the set of nonces used to make the commitment confidential.
Stage 1: (Integrity Checks) MA instantiates Rider Witness
and Aggregated Roadside Audits to ensure that ¢ was com-
puted using the true demand A. The description of these
mechanisms can be found in Section IV-B.

Stage 2: (Message Specifications) MA specifies to MP the
function ¢ it wants to compute.
Stage 3: (zk-SNARK Construction) MA constructs an evalua-
tion algorithm C for the function g. o, z are public parameters
of C, and the input to C' is a witness of the form w =
(Aw, 7w, Cw), Where 1, is a set of nonces, A, is a demand
matrix, and ¢,, is an optional input that may depend on g (See
Remark 4). C' does the following:

1) Checks whether the Rider Witness and Aggregated
Roadside Audit tests are satisfied (This checks that o
was reported honestly),

2) Checks whether MCommit(A,,,r,) = o (This deter-
mines whether the provided demand A,, is the same as
the demand that created o),

3) Checks whether g(A,) = =z (This checks that the
message z is computed properly from A,,).

C will evaluate to True if and only if all of those checks
pass. Now, using one of the schemes from [19]-[21], [24],
[25], MA will create a zk-SNARK (S,V, P) for C. S is a
set of public parameters that describes the circuit C, P is a
prover function which MP will use to construct a proof, and
V is a verification function which MA will use to verify the
correctness the MP’s proof. It sends C, (S, V, P), g to MP.

Stage 4: (Function Evaluation) If the request g is not a

privacy-invasive function (see Remark 2), MP will compute a
message z = g(A) and construct a witness w := (A, r,¢,) to
the correctness of z.

Stage 5: (Creating a Zero Knowledge Proof) MP uses the
zk-SNARK’s prover function P to construct a proof 7 :=
P(o, z,w) that certifies the calculation of z. MP sends z, 7 to
MA.

Stage 6: (zk-SNARK Verification) MA uses the zk-SNARK’s
verification function V' (o, z, ) to check whether MP is giving
a properly computed message. If this is the case, MA accepts
the message z.

Remark 3 (Computational Gains via Commit-then-Prove).
Steps 2) and 3) of the evaluation circuit C' involve differ-
ent types of computation. This heterogeneity can introduce
computational overhead in the zk-SNARK. Commit-and-Prove
zk-SNARKSs [26], [27] are designed to handle computational
heterogeneities, however existing implementations require a
trusted setup.

Remark 4 (Verifying solutions to convex optimization prob-
lems). If g(A,) is the solution to a convex optimization
problem parameterized by A, (e.g., g(A,) = SOP(6,A,,)
or congestion pricing gep(Ay)), then computing g(A,,) within
the evaluation algorithm C' may cause C' to be a large cir-
cuit, thus making evaluation of C' computationally expensive.
Fortunately, this can be avoided by leveraging the structure of
convex problems. If z = g(A,,), we can include the optimal
primal and dual variables associated with 2z in the optional
input ¢,,. This way, checking the optimality of z can be done
by checking that ¢, satisfy the KKT conditions rather than
needing to re-solve the problem.

B. Ensuring accuracy of o

The protocol presented in the previous section requires MP
to share a commitment to the true demand A. However, scenar-
ios exist where the MP may face direct or indirect incentives to
misreport demand, such as per-ride fees, congestion charges,
or other regulations that may constrain MP operations. In this
section we present mechanisms to ensure that MP submits a
commitment ¢ = MCommit(A, ) corresponding to the true
demand A rather than a commitment ¢/ = MCommit(A’, r)
corresponding to some other demand A’. Specifically, we
present Rider Witness and Aggregated Roadside Audits which
detect underreporting and overreporting of demand respec-
tively.

1) Rider Witness: Detecting underreported demand: In this
section, we present a Rider Witness mechanism to detect
omission or tampering of the demand A. Concretely, if a MP
sends to MA a Merkle commitment ¢/ = MCommit(A’,r)
which underreports demand, i.e., A \ A’ is non-empty, then
Rider Witness will enable MA to detect this. MA can impose
fines or other penalties when such detection occurs to deter
MP from underreporting the demand.

Rider Witness Incentive Mechanism - At the beginning of
Stage 0 (Data Collection) of the protocol, MP constructs a
public key and private key pair (pK,,, Skmp) to use for digital
signatures. The payment process is as follows: When the ith
customer is delivered to their destination, the customer will
send a random nonce r; to MP. MP will respond with a receipt
(H(rs||A\s), 0:), where o; := sign(SKmp, H (7;]|X;)) is a digital



signature certifying that MP recognizes A; as an official ride
(here || represents concatenation of binary strings). Here H
is SHA256, so that H (r;||A;) is a cryptographic commitment
to the trip \;. The customer is required to pay the trip fare
only if verify(pk,,,, H(ri|[\i), 0:) = True, i.e., they received
a valid receipt.

Definition 5 (Rider Witness Test). Given a commitment o’
reported by MP to MA, each rider who was served by MP re-
quests a Merkle proof that their ride is included in the compu-
tation of o’. If there exists a valid' ride receipt (H (7;||\;), o)
for which MP cannot provide a Merkle proof, then the
customer associated with A; will report (H (r;]|\;), 0;) to MA.
MA checks if o; is a valid signature for H (r;||);), and if so,
directly asks MP for a Merkle Proof that ); is included in the
computation of ¢’. If MP is unable to provide the proof, then
o' fails the Rider Witness Test.

Observation 1 (Efficacy of Rider Witness). Under Assump-
tion 1, if MP submits a commitment o' = MCommit(A’,r)
which omits a ride, i.e., A\ N’ is non-empty, then o’ will fail
the Rider Witness Test.

Proof of Observation 1. If A € A’, then there exists some \;
which is in A but not A’. Suppose Alice was the rider served
by ride ;. Forging a proof that \; € A’ requires finding a hash
collision for the hash function used in the Merkle commitment.
Since MCommit is implemented using a cryptographic hash
function (e.g., SHA256), it is computationally intractable to
find a hash collision, and thus MP will be unable to forge a
valid proof that A\; € A’.

If MP does not provide Alice a valid proof within a
reasonable amount of time (e.g., several hours), Alice can
then report (H(r;||\;),0;) to MA. This reporting does
not compromise Alice’s privacy due to the hiding property
of cryptographic hash functions. MA will check whether
verify (pK,,,, H (7;]|Ai), o) = True, and if so, means that A,
is recognized as a genuine trip by MP. MA will directly ask
MP for a Merkle proof that H (r;||\;) € Tx. Since MP cannot
provide a valid proof, this is evidence that a genuine trip was
omitted in the computation of ¢’, and hence o’ will fail the
Rider Witness test. O

Remark 5 (Tamperproof Property). We note that Rider Wit-
ness also prevents the MP from altering the data associated
with genuine rides. If MP makes changes to A\; € A re-
sulting in some A}, then by collision resistance of H, it is
computationally infeasible to find ' so that H(r;||\;) =
H(r}||\}). If such a change is made, then H (|| \}) is included
into the computation of ¢’ instead of H(r;||);). This means
(H(r;||\i),0;) becomes a valid witness that data tampering
has occurred.

Remark 6 (Receipts are Unforgeable). Note that it is not
possible for a rider to report a fake ride A’ & A to MA. This
is because the corresponding signature ¢’ cannot be forged
without knowing MP’s secret key SKp,. Therefore, assuming
SKpp is only known to MP, only genuine trips can be reported.

UIn the sense that verify(pk, ., H(r;||\i),0;) = True.

mp’

Remark 7 (Honesty of riders). The Rider Witness mechanism
assumes that riders are honest, i.e., they will not collude with
MP by accepting invalid receipts.

2) Aggregated Roadside Audits: Detecting overreported
demand: In this section we present an Aggregated Roadside
Audit (ARA) mechanism to detect overreporting of
demand. Concretely, if MP announces a commitment
o' = MCommit(A’,r), where A’ is a strict superset of A
(i.e., A\ A is non-empty), then ARA will enable MA to
detect this. Thus between ARA and Rider Witness, MA can
detect if MP commits to a demand that is not A.

Aggregated Roadside Audits - Due to the Rider Witness
mechanism, we can assume that MP submits a commitment
o’ computed from A’ satisfying A C A’ i.e., A’ is a superset
of A. For an edge e € E and a demand A, define

30(67 A) = Z ]1[)\ traverses e] 3

AEA

to be the number of trips that traversed e during passenger
pickup (Period 2) or passenger delivery (Period 3). Since trip
route is provided in the trip metadata, ¢(e, A) can be computed
from A.

Definition 6 (ARA Test). The Aggregated Roadside Audit
places a sensor on every road to conduct an audit on each road
e € E to measure (e, A). These values are then aggregated
as ¢ = )Y cpple,A). A witness w = (Ay, 7w, Cy) passes
the ARA test if and only if

Z (p(e, Ay) = ¢.

ecE

(ARA)

Observation 2 (Efficacy of Aggregated Roadside Audits).
Under Assumption 1, if MP submits a commitment o' =
MCommit(A',r) to a strict superset of the demand, i.e.,
A C N, then any proof submitted by MP will either be
inconsistent with o’ or will fail the ARA test. Hence MP cannot
overreport demand.

Proof of Observation 2. Suppose A’ is a strict superset of A,
which means that there exists some A\’ € A’ \ A. Then there
must exist some ¢ € E for which p(e/,A") > (e, A). In
particular, any edge in the trip route of )\ will satisfy this
condition. With the inclusion of the ARA test, MP is unable
to provide a valid witness for MA’s evaluation algorithm C
(and as a consequence, will be unable to produce a valid zero
knowledge proof) for the following reason:

1) MCommit is a collision-resistant function (since it is
built using a cryptographic hash function H'), so because
o’ = MCommit(A’,r), it is computationally intractable
for MP to find A” # A’ and nonce values r” so that
MCommit(A”,r"") = o’. Therefore, in order to satisfy
condition 2 of C (see Stage 3 of Section IV-A), MP’s
witness must choose A,, to be A’.

2) However, A’ will not pass the ARA test. To see this,
note that (a) A C A’ implies that (e, A) < ¢(e, A’)
for all e € E. Furthermore, (b) there exists an edge e’
where the inequality is strict, i.e., p(e’,A) < @(e’, A).
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plea, A)

@less; A)

Fig. 3.  An example of ARA. The true demand is A, which results in
traffic shown on the left. Here ¢(e;;, A) is the total number of trips in
A that use the edge from < to j. Suppose MP submits a commitment
to A’ = AU {\'}, ie, inserts a fake trip A’ into the commitment. In
this example, A’ is a fake trip from 5 to 2 that MP claims was served via
the route {es6, €63, €31, €12} (shownin red on the right). A’ increases
the total traffic on the roads ese, e63, €31, €12 and as a result, we have

ZeeE ple,A') =+ 4.

From this, we see that

¢= Z ple, A) = 90(6/7 A) + Z o(e, A)

eck e€\efe’

(@)
<o, )+ Y ele,A)
e€\ e#e!

(b)
<@ N+ Y (e )
e€N e#e’

= Z @(ea A,)a

eck

i.e., if the witness passes condition 2 of C, then it will
fail the ARA test.

O

Therefore the value of ¢ can be used to detect fictitious
rides. See Figure 3 for a visualization of ARA. In the fol-
lowing remark, we present a variant of ARA that is robust to
measurement errors.

Remark 8 (Error Tolerance in ARA). Trip trajectories are
often recorded via GPS, so GPS errors can lead to incon-
sistencies between ARA sensor measurements and reported
trajectories. To prevent an honest MP from failing the ARA
test due to GPS errors, one can use an error tolerant version
of the ARA test defined below

(ZS* Z@(B,Aw) < Ed)

eckl

where € € [0,1] is a tuneable tolerance parameter to account
for GPS errors while still detecting non-negligible overreport-
ing of demand.

Remark 9 (Honesty of Drivers). The correctness of ARA
presented in Observation 2 assumes that drivers are honest
when declaring their current period to ARA sensors, e.g., a
driver who is in period 3 will not report themselves as period
1 or 2.

Two challenges that arise in the computation of ¢ are
privacy and honesty, which are described below.

Remark 10 (Privacy-Preserving computation of ¢). The naive
way to compute ¢ is for MA to collect the values (e, A)
from each road. This, however, can compromise data privacy.
Indeed, if there is only 1 request in A, then measuring the
number of customer carrying vehicles that traverse each link
exposes the trip route of that request: Edges that are traversed
1 time are in the route, and edges that are traversed O times
are not. More generally, observing (e, A) on all roads e € E
exposes trip routes to or from very unpopular locations.

Remark 11 (Honest computation of ¢). It is essential that MA
acts truthfully when taking measurement and computing ¢ in
ARA, otherwise MP will be wrongfully accused of dishonesty.

Fortunately, the ARA sensors can use public key encryption
to share their data with each other to compute ¢ in a privacy-
preserving and honest way so that MA cannot learn (e, A) for
any e € E even if it tries to eavesdrop on the communication
between the sensors. After ¢ has been sent to MA and the
protocol has finished, the data on the sensors should be erased.
We describe the process of ensuring honest computation of ¢
in detail in Section 4.2.3 of the extended version [17] .

V. DISCUSSION

The protocol requires minimal computational resources
from the MA. Indeed, the computation of g(A), and all data
analysis therein, is conducted by the MPs. The MA only needs
to construct an evaluation circuit C' and zk-SNARK (S, V, P)
for each of their queries g. In terms of data storage, the MA
only needs to store the commitments o to the demand and the
total recorded volume of MP traffic ¢ for each data collecting
period. If the Merkle Trees are built using the SHA256 hash
function, then o is only 256 bits, and is thus easy to store. ¢
is a single integer, which is also easy to store.

On the other hand, the hardware requirements for the
Aggregated Roadside Audits may be difficult for cities to
implement, as placing a sensor on every road in the city will be
expensive. To address this concern, we present an alternative
mechanism known as Randomized Roadside Audits (RRA) in
Supplementary Material B.6 of the extended version [17] .
RRA is able to use fewer sensors by randomly sampling the
roads to be audited, however as a tradeoff for using fewer
sensors, overreported demand will only be detected proba-
bilistically. See Supplementary Material B.6 of the extended
version [17] for more details.

There is a trade-off between privacy and diagnosis when us-
ing zero knowledge proofs. In the event that the zk-SNARK’s
verification function fails, i.e., V (o, z,7) = False, we know
that z is not a valid message, but we do not know why it is
invalid. Specifically, V (o, z,7) does not specify which step
of the evaluation algorithm C failed (See Stage 3 of Section
IV-A). Thus in order to determine whether the failure was
due to integrity checks, inconsistency between A and o, or a
mistake in the computation of g, further investigation would
be required. Thus, while the zero knowledge proof enables us
to check the correctness of z without directly inspecting the



data, it does not provide any diagnosis in the event that z is
invalid.

VI. CONCLUSION

In this paper we presented an interactive protocol that en-
ables a Municipal Authority to obtain insights from the data of
Mobility Providers in a verifiable and privacy-preserving way.
During the protocol, a Municipal Authority submits queries
and a Mobility Provider computes responses based on its
mobility data. The protocol is privacy-preserving in the sense
that the Municipal Authority learns nothing about the dataset
beyond the answer to its query. The protocol is verifiable in
the sense that any deviation from the protocol’s instructions
by one party can be detected by the other. Verifiability is
achieved by using cryptographic commitments and aggregated
roadside measurements, and data privacy is achieved using
zero knowledge proofs. We showed that the protocol can be
generalized to a setting with multiple Mobility Providers using
secure multi-party computation. We present a differentially
private version of the protocol in Appendix I to address
situations where the Municipal Authority has many queries.

There are several interesting and important directions for
future work. First, while this work accounts for strategic
behavior of the Municipal Authority and Mobility Providers,
it assumes that drivers and customers will act honestly. A
more general model which also accounts for potential strategic
behavior of drivers and customers would be of great value and
interest. Second, while secure multi-party computation can be
used to generalize the protocol to settings with multiple Mobil-
ity Providers, generic tools for secure multi-party computation
introduce computational and communication overhead. Devel-
oping specialized multi-party computation tools for mobility-
related queries is thus of significant practical interest. Quan-
tum computation is another promising method for developing
faster cryptographic tools [28]. Finally, we suspect there are
other applications for this protocol in transportation research
beyond city planning and regulation enforcement that could
be investigated.
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APPENDIX |
INCORPORATING DIFFERENTIAL PRIVACY FOR THE
LARGE QUERY REGIME

One potential concern with the protocol described in Sec-
tion IV arises in the large query regime. It was shown in
[5] that a dataset can be reconstructed from many accurate
statistical measurements. One way to address this is to set a
limit on the number of times the MA can query the data for
a given time period. Such a restriction would not lead to data
scarcity since the MP is collecting new data daily. Differential
privacy offers a principled way to determine how many times
MA should query a dataset (see Remark 12). Differentially
private mechanisms address the result of [5] by reducing the
accuracy of the responses to queries, i.e., responding to a query
¢ with a noisy version of g(A). In this section we describe how
the protocol from section IV can be generalized to facilitate
verifiable and differentially private responses from MP. To this
end we first define differential privacy.

Definition 7 (Datasets and Adjacency). A dataset A is a set of
datapoints. In the context of transportation demand, a datapoint
is the metadata corresponding to a single trip. We say two
datasets A, A’ are adjacent if either (a) A C A’ with A’
containing exactly 1 more datapoint than A, or (b) A" C A
with A containing exactly 1 more datapoint than A’.

Definition 8 (Differential Privacy). Let F be a o-algebra on
a space . A mechanism M : D — Q is (e, d)-differentially
private if for any two adjacent datasets A, A’ € D and any
JF-measurable event S,

P(M(A) € S) < eP(M(A') € S) + 6.

In words, the output of a (e, §)-differentially private mecha-
nism on A is statistically indistinguishable from the output
of the mechanism on A U {A\} for any single datapoint
A & A. Since A does not contain A, M(A) does not reveal
any information about A. Since M (A U {\}) is statistically
indistinguishable from M (A), M (A U {\}) does not reveal
much about A.

Example 9 (Laplace Mechanism for Vote Tallying). Suppose
a city is trying to decide whether to expand its railways or
expand its roads based on a majority vote from its citizens.
The dataset is A := {A1, ..., A, } where ); is a boolean which
is 0 if the sth citizen prefers the railway and 1 if the ¢th citizen
prefers the roads. To implement majority vote, the city needs to
compute g(A) := > ; \;. The Laplace Mechanism achieves
(e, 0)-differential privacy for this computation via

Mlaplace(A) =Y + Z i
=1

where Y has the discrete Laplace distribution: for any k € Z,
P[Y = k] oc e~I¥I. To see why this achieves (e, 0)-differential
privacy, for any 1 < j < n, note that
PMA) =K _ e
= <e <e.
BIGAN\ (M) =K o elr i
Note that the noise distribution for Y depends only on €, and
is independent of n, the size of the dataset.

Remark 12 (Privacy Budget). By composition rules, the result
of k queries to a (e, 0)-differentially private mechanism is
(ke, 0)-differentially private. Thus a dataset should only be
used to answer k separate (¢, 0)-differentially private queries
if e*¢ is sufficiently close to 1.

A. Goal: Differential Privacy without Trust

Given a query function g from MA, let M be an polynomial-
time computable (e, d)-differentially private mechanism for
computing g. For a given dataset A we can represent the
random variable M (A) with a function g(A, Z) where Z €
{0,1}" represents the random bits used by M. Here v is
an upper bound on the number of random bits needed for
the computation of M. By its construction, g(A, Z) is (¢,0)-
differentially private if Z is drawn uniformly at random over
{0,1}". Therefore differential privacy is achieved if MP draws
Z uniformly at random over {0, 1}" and sends g(A, Z) to MA.
However, as mentioned in Assumption 1, we are studying
a model where MP can act strategically. Thus we cannot
assume that MP will sample Z uniformly at random if there is
some other distribution over Z that leads to a more favorable
outcome for MP. We revisit Example 9 to illustrate this
concern.

Example 10 (Dishonest Vote Tallying). Consider the setting
from Example 9. The Laplace mechanism can be represented

as
int(Z
where Y = Ea_l)}ace <1n2(v )> )

G Z) =Y+ N,
=1

where int(Z) is the integer whose binary representation is the
bits of Z. Here Fla*p}ace is the inverse cumulative distribution
for the discrete Laplace distribution. Thus Fla’p}ace(int(Z )/27)
is an application of inverse transform sampling that converts
a uniform random variable Z into a random variable Y with a
discrete Laplace distribution. Suppose the MP has a ridehailing
service and would thus prefer an upgrade to city roads over an
upgrade to the railway system. If this is the case, choosing Z
so that g(A, Z) > n/2 (as opposed to choosing Z randomly)
is a weakly dominant strategy for MP, even if g(A) < n/2
and a majority of the citizens prefer railway upgrades.

Thus we need a way to verify that the randomness Z used
in MP’s evaluation of g(A,Z) has the correct distribution.
We will now show how the protocol can be adjusted to
accommodate this, and as a consequence, enable verifiable
differentially private data queries for MA.

Remark 13 (MA provided randomness). One natural attempt
to ensure that Z is uniformly random is to have MA specify Z.
However, this destroys the differential privacy, since for some
mechanisms (including the Laplace mechanism) g(A) can be
computed from g(A, Z) and Z. Also, it is not clear a priori
whether such a setup is strategyproof for MA.

B. A Differentially Private version of the protocol

In this section, we present modifications to the protocol
from Section IV-A that enables verifiable differentially private



responses from MP. At a high level, the MA and MP jointly
determine the random bits Z via a coin flipping protocol
[29]. The zk-SNARK can then be modified to ensure that
g(A, Z) is computed correctly. The protocol has a total of 6
stages which are described below.

Stage 0: (Data Collection) MP builds a Merkle Tree T\
of the demand A that it serves. It computes a commitment
MCommit(A,r) to this demand. Additionally, MP
samples Zy, uniformly at random from {0, 1}" and computes
a Pedersen commitment [30] zpp := Commit(Zmp, rmp). The
Pederson commitment scheme is a secure commitment scheme
which is perfectly hiding and computationally binding. MP
sends both o, zyp to MA.,

Stage 1: (Integrity Checks) Same as in Section IV-A.

Stage 2: (Message Specifications) MA specifies the function
g it wants to compute. Additionally, MA samples Z;, uni-
formly at random from {0,1}" and specifies a differentially
private mechanism ¢ for the computation of g.

Stage 3: (zk-SNARK Construction) MA constructs an evalu-
ation circuit C for the function g. The public parameters of C
are o, Zmp, Zma, # and the input to C' is a witness of the form
w = (A, Tws Cwr Zmp,w, "mp,w)- C does the following:

1) Checks whether the Rider Witness and Aggregated

Roadside Audit tests are satisfied,

2) Checks whether MCommit(A,,, ) = o,

3) Checks whether Commit(Zmp,w, "mp,w) = Zmp

4) Checks whether g(Ay, Zma ® Zmp,w) = 2. (Here @ is

bit-wise XOR.)
C will return True if and only if all of these checks
pass. MA constructs a zk-SNARK (S, V, P) for C and sends
9595 Zma, C, (S, V, P) to MP.

Stage 4: (Function Evaluation) If g is a differentially private
mechanism for computing g, then MP computes a message
2= g(A, Zna ® Znp) and a witness w := (A, 7, cw, Zmp, 'mp)
to the correctness of z.

Stage 5: (Creating a Zero Knowledge Proof) Same as in
Section IV-A.

Stage 6: (zk-SNARK Verification) Same as in Section IV-A.

g =

In Supplementary Material B.7 of the extended version [17] we
show that this protocol has the following two desirable features
that enable verifiable and differentially private responses from
MP to MA queries.

1) Verifiability - If the MA receives a valid proof from
MP, then it can be sure that the corresponding message
is indeed G(A, Zmna ® Zmp)-

2) Differential Privacy - The MP’s output is differentially
private with respect to the dataset A if at least one of
Zma, Zmp 1s sampled uniformly at random.

Remark 14 (A note on Local Differential Privacy). Local
Differential Privacy [13] addresses the setting where the data
collector is untrusted. Differential privacy is achieved by
users adding noise to their data before sending it to the data
collector. This is in contrast to the setting we study here
where an untrusted data collector has the clean data of many
users. We chose to study the latter model due to the way

current mobility companies collect high resolution data on
the trips they serve. Additionally, local differential privacy
requires users to add noise to their data so they become
statistically indistinguishable from one another. In the context
of transportation, this means the noisy data of users will be
statistically indistinguishable from one another, even if they
have very different travel preferences. This level of noise
significantly reduces the accuracy of any computation done
on the data.
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