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Abstract— The era of Big Data has brought with it a richer
understanding of user behavior through massive data sets,
which can help organizations optimize the quality of their
services. In the context of transportation research, mobility
data can provide Municipal Authorities (MA) with insights
on how to operate, regulate, or improve the transportation
network. Mobility data, however, may contain sensitive in-
formation about end users and trade secrets of Mobility
Providers (MP). Due to this data privacy concern, MPs may
be reluctant to contribute their datasets to MA. Using ideas
from cryptography, we propose an interactive protocol be-
tween a MA and a MP in which MA obtains insights from
mobility data without MP having to reveal its trade secrets
or sensitive data of its users. This is accomplished in
two steps: a commitment step, and a computation step. In
the first step, Merkle commitments and aggregated traffic
measurements are used to generate a cryptographic com-
mitment. In the second step, MP extracts insights from the
data and sends them to MA. Using the commitment and
zero-knowledge proofs, MA can certify that the information
received from MP is accurate, without needing to directly
inspect the mobility data. We also present a differentially
private version of the protocol that is suitable for the large
query regime. The protocol is verifiable for both MA and MP
in the sense that dishonesty from one party can be detected
by the other. The protocol can be readily extended to the
more general setting with multiple MPs via secure multi-
party computation.

Index Terms— Security and Privacy, Transportation Net-
works, Cyber-Physical systems, Networked Control Sys-
tems

I. INTRODUCTION

The rise of mobility as a service, smart vehicles and smart

cities is revolutionizing transportation industries all over the

world. Mobility management, which entails operation, regu-

lation, and innovation of transportation systems, can leverage

mobility data to improve the efficiency, safety, accessibility,

and adaptability of transportation systems far beyond what was

previously achievable. The analysis and sharing of mobility

data, however, introduces two key concerns. The first concern

is data privacy; sharing mobility data can introduce privacy

risks to end users that comprise the datasets. The second
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concern is credibility; in situations where data is not shared,

how can the correctness of numerical studies be verified?

These concerns motivate the need for data analysis tools for

transportation systems which are both privacy preserving and

verifiable.

The data privacy issue in transportation is a consequence of

the trade-off between data availability and data privacy. While

user data can be used to inform infrastructure improvement,

equity and green initiatives, the data may contain sensitive

user information and trade secrets of mobility providers. As

a result, end users and mobility providers may be reluctant

to share their data with city authorities. Cities have recently

begun mandating micromobility providers to share detailed

trajectory data of all trips, arguing that the data is needed

to enforce equity or environmental objectives. Some mobility

providers argued that while names and other directly identifi-

able information may not be included in the data, trajectory

data can still reveal schedules, routines and habits of the city’s

inhabitants. The mobility providers’ concern over the release

of anonymized data is justified. [1] showed that any attempt

to release anonymized data either fails to provide anonymity,

or there are low-sensitivity attributes of the original dataset

that cannot be determined from the published version. In

general, anonymization is increasingly easily defeated by the

very techniques that are being developed for many legitimate

applications of big data [2]. Such disputes highlight the need

for privacy-preserving data analysis tools in transportation.

A communication scheme between a sender and a receiver

is verifiable if it enables the receiver to determine whether

the message or report it receives is an accurate representation

of the truth. When the objectives of mobility providers and

policy makers are not aligned, one party may benefit from

misreporting data or other information, giving rise to verifia-

bility issues in transportation. An example of this is Greyball

software [3]. Mobility providers developed Greyball software

to deny service or display misleading information to targeted

users. It was originally developed to protect their drivers from

oppressive authorities in foreign countries, by misreporting

driver location to accounts that were believed to belong to

the oppressive authorities. However, mobility providers also

used Greyball to hide their activity from authorities in the

United States when their operations were scrutinized. Another

example of verifiability issues is third party wage calculation

apps [4]. Drivers, frustrated by instances of being underpaid,

created an app to confirm whether the pay was consistent with

the length and duration of each trip. Such incidents highlight
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the need for verifiable data analysis tools in transportation.

A. Statement of Contributions

In this paper we propose a protocol between a Municipal

Authority and a Mobility Provider that enables the Mobility

Provider to send insights from its data to the Municipal

Authority in a privacy-preserving and verifiable manner. In

contrast to non-interactive data sharing mechanisms (which

are currently used by most municipalities) where a Municipal

Authority is provided an aggregated and anonymized version

of the data to analyze, our proposed protocol is an interactive

mechanism where a Municipal Authority sends queries and

Mobility Providers give responses. By sharing responses to

queries rather than the entire dataset, interactive mechanisms

circumvent the data anonymization challenges faced by non-

interactive approaches [1], [2].

Our proposed protocol, depicted in Figure 1, has three main

steps. In the first step, the Mobility Provider uses its data

to produce a data identifier which it sends to the Municipal

Authority. The Municipal Authority can then send its data

query to the Mobility Provider in the second step. In the third

step, the Mobility Provider sends its response along with a zero

knowledge proof. The Municipal Authority can use the zero

knowledge proof to check that the response is consistent with

the identifier, i.e., the response was computed from the same

data that was used to create the identifier. If the Municipal

Authority has multiple queries, steps 2 and 3 are repeated.

The protocol uses cryptographic commitments and aggre-

gated traffic measurements to ensure that the identifier is

properly computed from the true mobility data. In particular,

any deviation from the protocol by one party can be detected

by the other, making the protocol strategyproof for both

parties. Given that the identifier is properly computed, the

zero knowledge proof then enables the Municipal Authority

to verify the correctness of the response without needing

to directly inspect the mobility data. Since the Municipal

Authority never needs to inspect the mobility data, the protocol

is privacy-preserving.

The protocol can be extended to the more general case of

multiple Mobility Providers, each with a piece of the total

mobility data. This is done by including a secure multi-party

computation in step 3 of the protocol. Answering a large

number of queries with our protocol can lead to privacy issues

since it was shown in [5] that a dataset can be reconstructed

from many accurate statistical measurements. To address this

concern, we generalize the protocol to enable differentially

private responses from the Mobility Provider in large query

regimes.

B. Organization

This paper is organized as follows. The remainder of

the introduction discusses academic work related to privacy

and verifiability in transportation networks. In Section II we

introduce a mathematical model of transportation networks

and use it to formulate the data privacy problem for Mobility

Management. We provide a high level intuitive description of

our proposed protocol in Section III. In Section IV we provide

Fig. 1. The Mobility Provider can answer the Municipal Authority’s data-
related mobility queries in a verifiable way without needing to share the
data. The absence of data sharing in the protocol reduces the chance
that a malicious third party intercepts and uses the data for nefarious
privacy-invasive purposes.

a full technical description of our protocol. We discuss some

of the technical nuances of the protocol and their implications

in Section V. We summarize our work and identify important

areas for future research in Section VI. In Appendix I we

present a differentially private extension of the protocol that

is suitable for the large query regime.

C. Related Work

Within the academic literature, this work is related to the

following four fields: misbehavior detection in cooperative in-

telligent transportation networks, data privacy in transportation

systems, differential privacy, and secure multi-party compu-

tation. We briefly discuss how this work complements ideas

from these fields.

Cooperative intelligent transportation networks (cITS) aim

to provide benefits to the safety, efficiency, and adaptability

of transportation networks by having individual vehicles share

their information. As with all decentralized systems, security

and robustness against malicious agents is essential for practi-

cal deployment. As such, misbehavior detection in cITS have

been studied extensively [6]. Misbehavior detection techniques

often rely on honest agents acting as referees, and are able to

detect misbehavior in the honest majority setting. Watchdog is

one such protocol [7], [8] which uses peer-to-peer refereeing.

The protocol uses a public key infrastructure (PKI) to assign a

persisting identity to each node in the network, and derives a

reputation for each node based on its historical behavior. Our

objective in this work is also detection of misbehavior, but in a

different setting. In our setting, while the mobility network is

comprised of many agents (customers and drivers), there is a

single entity (the Mobility Provider, e.g., a ridehailing service)

who is responsible for the storage and analysis of trip data.

As such, the concept of honest majority does not apply to our

setting. Furthermore, [8] does not address the issue of data

privacy; indeed, PKIs can often expose the users’ identities,

especially if an attacker cross-references the network traffic

with other traffic records.

Privacy in intelligent transportation systems is often im-

plemented by using non-interactive anonymization (e.g., data

aggregation), cryptographic tools or differential privacy. Pro-

viding anonymity in non-interactive data analysis mechanisms
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is challenging [1], [2] and thus data aggregation alone is often

not enough to provide privacy. From the cryptography side,

to address the lack of anonymity provided by blockchains

like Bitcoin and Ethereum, zero knowledge proofs [9] were

deployed in blockchains like Zcash [10] to provide fully

confidential transactions. In the context of transportation, zero

knowledge proofs have been proposed for privacy-preserving

vehicle authentication to EV charging services [11], and

privacy-preserving driver authentication to customers in ride-

hailing applications [12]. These privacy-preserving authenti-

cation systems rely on a trusted third party to distribute and

manage certificates.

Differential privacy is an interactive mechanism for data

privacy which uses randomized responses to hide user-specific

information [1]. For any query, the data collector provides a

randomized response, where two datasets which differ in only

one entry produce statistically indistinguishable outputs. Due

to this randomization, there is a trade-off between the accuracy

of the response and the level of privacy provided. Randomiza-

tion is necessary to preserve privacy in the large query regime

as demonstrated by [5] which showed that a dataset can be

reconstructed from many accurate statistical measurements.

The standard model of differential privacy, however, relies on

a trusted data collector to apply the appropriate randomized

response to queries. This is problematic in situations where

the data collector is not trusted. A local model of differential

privacy where users perturb their data before sending it to

the data collector has received significant attention due to

trust concerns [13]. However mobility providers often record

exact details about user trips, making local differential privacy

unsuitable for current mobility applications (See Remark 14).

Instead, we believe cryptographic techniques can be used to

address trust concerns. There are also more general concerns

about trust; downstream applications of data queries can lead

to conflicts of interest and encourage strategic behavior.

Secure Multi-Party Computation (MPC) is a technique

whereby several players, each possessing private data, can

jointly compute a function on their collective data without any

player having to reveal their data to other players [14]. MPC

achieves confidentiality by applying Shamir’s Secret Sharing

[15] to inputs and intermediate results. In its base form, MPC

is secure against honest-but-curious adversaries, which follow

the protocol, but may try to do additional calculations to

learn the private data of other players. In general, security

against active malicious adversaries, which deviate from the

protocol arbitrarily, requires a trusted third party to perform

verified secret sharing [16]. In verified secret sharing, the

trusted third party creates initial cryptographic commitments

for each player’s private data. The commitments do not leak

any information about the data, and allows honest players to

detect misbehavior using zero knowledge proofs. MPC is a

very promising tool for our problem, but a trusted third party

able to eliminate strategic behavior does not yet exist in the

transportation industry, therefore a key objective of this work

is to develop mechanisms to defend against strategic behavior.

In Summary - Our goal in this work is to develop a

protocol that enables a mobility provider to share insights

from its data to a municipal authority in a privacy-preserving

and verifiable manner. Existing work in accountability and

misbehavior detection focus on networks with many agents

and rely on honest majority. Such assumptions, however, are

not realistic for interactions between a municipal authority

and a few mobility providers. We thus turn our attention

to differential privacy and secure multi-party computation

which provide data privacy but require honesty of participating

parties. To address this, we develop mechanisms based on

cryptography and aggregated roadside measurements to detect

dishonest behavior.

II. MODEL & PROBLEM DESCRIPTION

In this section we present a model for a city’s transportation

network and formulate a data Privacy for Mobility Manage-

ment (PMM) problem. Section II-A introduces a mathematical

representation of a city’s transportation network along with

the demand and mobility providers. In Section II-B we for-

malize the notion of data privacy using secure multi-party

computation, and introduce assumptions on user behavior

that we will need to construct verifiable protocols. We then

formally introduce the PMM problem and describe several

transportation problems that can be formulated in the PMM

framework.

A. Transportation Network Model

Transportation Network - Consider the transportation net-

work of a city, which we represent as a directed graph

G = (V,E, f) where vertices represent street intersections

and edges represent roads. For each road e ∈ E we use an

increasing differentiable convex function fe : R+ → R+ to

denote the travel cost (which may depend on travel time,

distance, and emissions). of the road as a function of the

number of vehicles on the road. We will use n := |V | and

m := |E| to denote the total number of vertices and edges

in G respectively. Time is represented in discrete timesteps of

size ∆t. The operation horizon is comprised of T+1 timesteps

as T := {0,∆t, 2∆t, ..., T∆t}.
Mobility Provider - A Mobility Provider (MP) is responsible

for serving the transportation demand. It does so by choosing a

routing x of its vehicles within the transportation network. The

routing must satisfy multi-commodity network flow constraints

(see Supplementary Material B.1 and B.2 of the extended

version [17] for explicit descriptions of these constraints) and

the MP will choose a feasible flow that maximizes its utility

function JMP. Some examples of MPs are ridehailing compa-

nies, bus companies, train companies, and micromobility (i.e.,

bikes & scooters) companies.

Transportation Demand Data - The MP’s demand data is

a list of completed trips Λ := {λ1, ..., λq}, where λi contains

the following basic metadata about the ith trip: Pickup and

dropoff locations, request time, match time (i.e., the time at

which the user is matched to a driver), pickup and dropoff

time, driver wage, trip fare, trip trajectory (i.e., the vehicle’s

trajectory from the time the vehicle is matched to the rider

until the time the rider is dropped off at their destination) and

properties of the service vehicle.
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For locations i, j ∈ V and a timestep t, we use Λ(i, j, t) to

denote the number of users in the data set who request transit

from location i to location j at time t.

Remark 1 (Multiple Mobility Providers). We can con-

sider settings where there are multiple mobility providers,

MP1,MP2, ...,MP`, where Λj is the demand data of MPj .

The demand data set for the whole city is thus Λ = ∪`j=1Λj .

Ridehailing Periods - For MPs that operate ridehailing ser-

vices, a ridehailing vehicle’s trajectory is often divided into

three different periods (with Period 0 often ignored):

Period 0: The vehicle is not online with a platform. The

driver may be using the vehicle personally.

Period 1: The vehicle is vacant and has not yet been

assigned to a rider.

Period 2: The vehicle is vacant, but it has been assigned

to a rider, and is en route to pickup.

Period 3: The vehicle is driving a rider from its pickup

location to its dropoff location.

B. Objective: Privacy for Mobility Management (PMM)

In the data Privacy for Mobility Management (PMM) prob-

lem, a Municipal Authority (MA) wants to compute a function

g(Λ) on the travel demand, where g(Λ) is some property of Λ
that can inform MA on how to improve public policies. There

are two main obstacles to address: privacy and verifiability.

Privacy issues arise since trip information may contain

sensitive customer information as well as trade secrets of

Mobility Providers (MP). For this reason MPs may be reluctant

to contribute their data for MA’s computation of g(Λ). This

motivates the following notion of privacy:

Definition 1 (Privacy in Multi-Party Computation). Suppose

MP1, ...MP` serve the demands Λ1, ...,Λ` respectively, and we

denote Λ = ∪`i=1Λi. We say a protocol for computing g(Λ)
between a MA and several MPs is privacy preserving if

1) MA learns nothing about Λ beyond the value of g(Λ).
2) For any pair i 6= j, MPi learns nothing about Λj beyond

the value of g(Λ).

Verifiability issues arise if there is incentive misalignment

between the players. In particular, if the MA or a MP can

increase their utility by deviating from the protocol, then

the computation of g(Λ) may be inaccurate. To address this

issue, we need the protocol to be verifiable, as described

by Definition 2. The following assumption is necessary to

ensure accurate reporting of demand (See Supplementary

Material B.5 of the extended version [17] for more details):

Assumption 1 (Strategic Behavior). We assume in this work

that drivers and customers of the transportation network will

behave honestly (by this we mean they will always follow the

protocol), but MA and MPs may act strategically to maximize

their own utility functions.

Definition 2 (Verifiable Protocol). A protocol for computing

g(Λ) is verifiable under Assumption 1 if:

1) Any deviation from the protocol by the MA can be

detected by the MPs provided that all riders and drivers

act honestly (i.e., follow the protocol).

2) Any deviation from the protocol by an MP can be

detected by the MA provided that all riders and drivers

act honestly.

Our objective in this paper is to present a PMM protocol,

which is defined below.

Definition 3 (PMM Protocol). A PMM protocol between a

MA and MP1, ...MP` can, given any function g, compute g(Λ)
for MA while ensuring privacy and verifiability as described

by Definitions 1 and 2 respectively.

Remark 2 (Admissible Queries and Differential Privacy).

While a PMM protocol hides all information about Λ beyond

the value of g(Λ), g(Λ) itself may contain sensitive informa-

tion about Λ. The extreme case would be if g is the identity

function, i.e., g(Λ) = Λ. In such a case, the MPs should

reject the request to protect the privacy of its customers. More

generally, MPs should reject functions g if g(Λ) is highly

correlated with sensitive information in Λ. The precise details

as to which functions g are deemed acceptable queries must

be decided upon beforehand by MA and the MPs together.

Differential privacy mechanisms provide a principled way

to address the sensitivity of g by having MPs include noise

in the computation of g(Λ). If the noise distribution is chosen

according to both the desired privacy level and the sensitivity

of g to its inputs, then the output is differentially private.

Note that this privacy is not for free; the noise reduces the

accuracy of the output. The precise choice of noise distribution

is important for both the privacy and accuracy of this method,

so ensuring that the randomization step is conducted properly

in the face of strategic MAs and MPs is essential. This can be

done with a combination of coinflipping protocols and secure

multi-party computation, which we describe in Appendix I.

We now present some important social decision making prob-

lems that can be formulated within the PMM framework. Note

that these applications are offline decision making problems

and thus do not impose strict requirements on computation

times of protocols. Regulation checks can be conducted daily

or weekly, and infrastructure improvement initiatives are sel-

dom more frequent than one per week. The low frequency of

such queries gives plenty of time to compute a solution. For

this reason, we do not expect the computational complexity of

the solution to be an issue.

1) Regulation Compliance for Mobility Providers: Suppose

MA wants to check whether a MP is operating within a

set of regulations ρ1, ..., ρk. The metadata contained within

each trip includes request time, match time, pickup time,

dropoff time, and trip trajectory, which can be used to check

regulation compliance. If we define the function ρi(Λ) to be

1 if and only if regulation i is satisfied, and 0 otherwise, then

regulation compliance can be determined from the function

g(Λ) :=
∏k

t=1 ρt(Λ). Below are some examples of regulations

that can be enforced using trip metadata.

Example 1 (Waiting Time Equity). MP is not discriminat-

ing against certain requests due to the pickup or droppoff

locations. Specifically, the difference in average waiting time

among different regions should not exceed a specified regula-
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tory threshold.

Example 2 (Congestion Contribution Limit). The contribution

of MP vehicles (in Period 2 or 3) to congestion should not

exceed a specified regulatory threshold.

Example 3 (Accurate Reporting of Period 2 Miles). A ride-

hailing driver’s pay per mile/minute depends on which period

they are in. In particular, the earning rate for period 2 is

often greater than that of period 1. For this reason, mobility

providers are incentivized to report period 2 activity as period

1 activity. To protect ridehailing drivers, accurate reporting of

period 2 activity should be enforced.

Example 4 (Emissions Limit). The collective emission rate of

MP vehicles in Phases 2 and 3. should not exceed a specified

regulatory threshold. MP emissions can be computed from the

metadata of served trips, in particular the trajectory and vehicle

make and model.

See Supplementary Material B.4 of the extended version [17]

for further details on formulating the above examples within

the PMM framework.

2) Transportation Infrastructure Development Projects:

Transportation Infrastructure Improvment Projects - A Mu-

nicipal Authority (MA) measures the efficiency of the current

transportation network via a concave social welfare function

JMA(x). The MA wants to make improvements to the network

G through infrastructure improvement projects. Below are

some examples of such projects.

Example 5 (Building new roads). The MA builds new roads

Enew so the set of roads is now E ∪ Enew, i.e., G now has

more edges.

Example 6 (Building Train tracks). The MA builds new train

routes. Train routes differ from roads in that the travel time

is independent of the number of passengers, i.e., there is no

congestion effect.

Example 7 (Adding lanes to existing roads). The MA adds

more lanes to some roads E′ ⊂ E. As a consequence, the

shape of fe will change for each e ∈ E′.

Example 8 (Adjusting Speed limits). Similar to adding more

lanes, adjusting the speed limit of a road will change its delay

function.

Evaluation of Projects - We measure the utility of a project

using a Social Optimization Problem (SOP). An infrastructure

improvement project θ makes changes to the transit network,

so let Gθ denote the transit network obtained by implementing

θ. The routing problem ROUTE(θ,Λ) associated with θ is

the optimal way to serve requests in Gθ as measured by

MP’s objective function JMP. Letting Sθ,Λ be the set of

flows satisfying multi-commodity network flow constraints

(See Supplementary Material B.1 and B.2 of the extended

version [17] for time-varying and steady state formulations

respectively). for the graph Gθ and demand Λ, ROUTE(θ,Λ)

is given by

max JMP(x) (ROUTE(θ,Λ))

s.t. x ∈ Sθ,Λ.

Definition 4 (The Infrastructure Development Selection Prob-

lem). Suppose there are k infrastructure improvement projects

Θ := {θ1, θ2, ..., θk} available, but the city only has the

budget for one project. The city will want to implement the

project that yields the most utility, which is determined by the

following optimization problem.

argmax
1≤i≤k

JMA

(
argmax
x∈Sθi,Λ

JMP(x)

)
. (SOP(Θ,Λ))

In the context of PMM, the function g associated with

the infrastructure development selection problem is g(Λ) :=
SOP(Θ,Λ).

3) Congestion Pricing: Some ridehailing services allow

drivers to choose the route they take when delivering cus-

tomers. When individual drivers prioritize minimizing their

own travel time and disregard the negative externalities they

place on other travelers, the resulting user equilibrium can

experience significantly more congestion than the social op-

timum. In these cases, the total travel time of the user

equilibrium is larger than that of the social optimum. This

gap, known as the price of anarchy, is well studied in the

congestion games literature.

Congestion pricing addresses this issue by using road tolls

to incentivize self-interested drivers to choose routes so that

the total travel time of all users is minimized. The desired

road tolls depend on the demand Λ, so MA would need help

from MPs to compute the prices. Congestion pricing can be

formulated in the PMM framework through the query function

gcp described in (2).

When the travel cost is the same as travel time, the prices

can be obtained from the Traffic Assignment Problem [18]:

min
x

∑

e∈E

xefe(xe) (1)

s.t. x =
∑

o∈V

∑

d∈V

x
od

x
od

� 0 ∀o ∈ V, d ∈ V
∑

(u,v)∈E

x
od
(u,v) − x

od
(v,u) = Λ(o, d)

(

1[u=o] − 1[u=d]

)

∀u ∈ V

where xod
e denotes the traffic flow from o to d that uses

edge e. The objective measures the sum of the travel times of

all requests in Λ. The desired prices are then given by:

gcp(Λ) := {x
∗
ef

′
e(x

∗
e)}e∈E where x∗ solves (1). (2)

See Supplementary Material B.8 of the extended version [17]

for more details on congestion pricing.

III. A HIGH LEVEL DESCRIPTION OF THE PROTOCOL

We focus our discussion on the case where there is one

MP. The protocol we will present can be generalized to the
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multiple MP setting through secure Multi-party Computation

[14].

In this paper we present a verifiable interactive protocol,

which allows MA to check whether or not the message it

receives from MP is in fact g(Λ). This will result in a protocol

where MA is able to obtain g(Λ) without requiring MP to

reveal any information about Λ beyond the value of g(Λ).
First, we describe a non-confidential way to compute g(Λ).

We will discuss how to make it confidential in the next

paragraph. MP will send a commitment σ = MCommit(Λ, r)
of Λ to MA. This commitment will enable MA to certify that

the result given to it by MP is computed using the true demand

Λ. The commitment is confidential, meaning it reveals nothing

about Λ, and is binding, meaning that it will be inconsistent

with any other demand Λ′ 6= Λ. Now suppose MP computes

a message z = g(Λ). To convince MA that the calculation

is correct, MP will construct a witness w := (Λ, r). When

MA receives the message z and witness w, it will compute

C(σ, z, w), where C is an evaluation algorithm. C(σ, z, w)
evaluates to True if

1) Rider Witness and Aggregated Roadside Audit checks

are satisfied. (σ was reported honestly)

2) MCommit(Λ, r) = σ. (Λ is the demand that was used

to compute σ).

3) g(Λ) = z (g was evaluated properly.)

If any of these conditions are not met, C(σ, z, w) will evaluate

to False. Finally, MA will accept the message z only if

C(σ, z, w) = True.

The approach presented in the previous paragraph is not

privacy-preserving because the witness w being sent from

MP to MA includes the demand Λ. Fortunately, we can use

zero knowledge proofs to obtain privacy. Given an arithmetic

circuit C (which in our case is the evaluation algorithm

C), it is possible for one entity (the prover) to convince

another entity (the verifier) that it knows an input z, w so that

C(σ, z, w) = True without revealing what w is. This is done

by constructing a zero knowledge proof π from (z, w) and

sending (z, π) to the verifier instead of sending (z, w). MA

can then check whether π is a valid proof for z. The proof

π is zero knowledge in the sense that it is computationally

intractable to deduce anything about w from π, aside from the

fact C(σ, z, w) = True. For our application, the prover will

be MP who is trying to convince the verifier, which is MA,

that it computed g(Λ) correctly.

This protocol requires MP to send a commitment of the true

demand data to MA. This is problematic if MP has incentive

to be dishonest, i.e., provide a commitment corresponding

to a different dataset. To ensure this does not happen, our

protocol uses a Rider Witness incentive to prevent MP from

underreporting demand, and Aggregated Roadside Audits to

prevent MP from overreporting demand. These two mecha-

nisms establish the verifiability of the protocol, since, as seen

in first requirement of C, MA will reject the message if either

of these mechanisms detect dishonesty.

In Summary - We present a verifiable interactive protocol.

First, MP sends a commitment of the demand to MA, which

ensures that the report is computed using the true demand. The

correctness of this commitment is enforced by Rider Witness

and Aggregated Roadside Audits. MA then announces the

function g that it wants to evaluate. MP computes a message

z ← g(Λ) and constructs a witness w to the correctness of z.

Since w in general contains sensitive information, it cannot be

used directly to convince MA to accept the message z. MP

computes a zero knowledge proof π of the correctness of z
from w, and sends the message z and proof π to MA. MA

accepts z if π is a valid zero knowledge proof for z.

Implementation - To implement our protocol we will use

several tools from cryptography. The commitment σ is im-

plemented as a Merkle commitment. For computing zero

knowledge proofs, we will need a zk-SNARK that doesn’t

require a trusted setup. PLONK [19], Sonic [20], and Marlin

[21] using a DARK based polynomial commitment schemes

described in [22], [23]. Other options include Bulletproofs [24]

and Spartan [25]. The cryptographic tools used in the protocol

are reviewed in Supplementary Material B.3 of the extended

version [17].

IV. THE PROTOCOL

In this section we present our protocol for the PMM

problem described in Section II-B. For clarity and simplicity

of exposition we will focus on the case where there is one

Mobility Provider. The single MP case can be extended to

the multiple MP case via secure multi-party computation [14].

We present the protocol, which is illustrated in Figure 2, in

Section IV-A. In Section IV-B we discuss mechanisms used

to ensure verifiability of the protocol.

The protocol uses the following cryptographic primitives:

hash functions, commitment schemes, Merkle trees, public

key encryption and zero knowledge proofs. Hash functions

map data of arbitrary size to fixed size messages, often used

to provide succinct identifiers for large datasets. Commitment

schemes are a form of verifiable data sharing where a receiver

can reserve data from a sender, obtain the data at a later

point, and verify that the data was not changed between the

reservation and reception times. A Merkle tree is a particular

commitment scheme we will use. In public key encryption,

every member of a communication network is endowed with

a public key and a private key. The public key is like a mailbox

which tells senders how to reach the member, and the secret

key is the key to the mailbox, so messages can be viewed

only by their intended recipients. Zero knowledge proofs, as

discussed in Section III, enable a prover to convince a verifier

that it knows a solution to a mathematical puzzle without

directly revealing its solution. For a more detailed description

of these concepts, we refer the reader to the Supplementary

Material B.3 of the extended version [17], where we provide

a self-contained introduction of the cryptographic tools used

in this work.

A. Protocol Description

The protocol entails 6 stages:

Stage 0: (Data Collection) MP serves the demand Λ and

builds a Merkle Tree TΛ of the demand it serves. MP publishes

the root of TΛ, which is denoted as σ := MCommit(Λ, r) so
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Fig. 2. A block diagram of the communication between MA and MP.

that MA, all riders and all drivers have access to σ. Here r is

the set of nonces used to make the commitment confidential.

Stage 1: (Integrity Checks) MA instantiates Rider Witness

and Aggregated Roadside Audits to ensure that σ was com-

puted using the true demand Λ. The description of these

mechanisms can be found in Section IV-B.

Stage 2: (Message Specifications) MA specifies to MP the

function g it wants to compute.

Stage 3: (zk-SNARK Construction) MA constructs an evalua-

tion algorithm C for the function g. σ, z are public parameters

of C, and the input to C is a witness of the form w =
(Λw, rw, cw), where rw is a set of nonces, Λw is a demand

matrix, and cw is an optional input that may depend on g (See

Remark 4). C does the following:

1) Checks whether the Rider Witness and Aggregated

Roadside Audit tests are satisfied (This checks that σ
was reported honestly),

2) Checks whether MCommit(Λw, rw) = σ (This deter-

mines whether the provided demand Λw is the same as

the demand that created σ),

3) Checks whether g(Λw) = z (This checks that the

message z is computed properly from Λw).

C will evaluate to True if and only if all of those checks

pass. Now, using one of the schemes from [19]–[21], [24],

[25], MA will create a zk-SNARK (S, V, P ) for C. S is a

set of public parameters that describes the circuit C, P is a

prover function which MP will use to construct a proof, and

V is a verification function which MA will use to verify the

correctness the MP’s proof. It sends C, (S, V, P ), g to MP.

Stage 4: (Function Evaluation) If the request g is not a

privacy-invasive function (see Remark 2), MP will compute a

message z = g(Λ) and construct a witness w := (Λ, r, cw) to

the correctness of z.

Stage 5: (Creating a Zero Knowledge Proof) MP uses the

zk-SNARK’s prover function P to construct a proof π :=
P (σ, z, w) that certifies the calculation of z. MP sends z, π to

MA.

Stage 6: (zk-SNARK Verification) MA uses the zk-SNARK’s

verification function V (σ, z, π) to check whether MP is giving

a properly computed message. If this is the case, MA accepts

the message z.

Remark 3 (Computational Gains via Commit-then-Prove).

Steps 2) and 3) of the evaluation circuit C involve differ-

ent types of computation. This heterogeneity can introduce

computational overhead in the zk-SNARK. Commit-and-Prove

zk-SNARKs [26], [27] are designed to handle computational

heterogeneities, however existing implementations require a

trusted setup.

Remark 4 (Verifying solutions to convex optimization prob-

lems). If g(Λw) is the solution to a convex optimization

problem parameterized by Λw, (e.g., g(Λw) = SOP(Θ,Λw)
or congestion pricing gcp(Λw)), then computing g(Λw) within

the evaluation algorithm C may cause C to be a large cir-

cuit, thus making evaluation of C computationally expensive.

Fortunately, this can be avoided by leveraging the structure of

convex problems. If z = g(Λw), we can include the optimal

primal and dual variables associated with z in the optional

input cw. This way, checking the optimality of z can be done

by checking that cw satisfy the KKT conditions rather than

needing to re-solve the problem.

B. Ensuring accuracy of σ

The protocol presented in the previous section requires MP

to share a commitment to the true demand Λ. However, scenar-

ios exist where the MP may face direct or indirect incentives to

misreport demand, such as per-ride fees, congestion charges,

or other regulations that may constrain MP operations. In this

section we present mechanisms to ensure that MP submits a

commitment σ = MCommit(Λ, r) corresponding to the true

demand Λ rather than a commitment σ′ = MCommit(Λ′, r)
corresponding to some other demand Λ′. Specifically, we

present Rider Witness and Aggregated Roadside Audits which

detect underreporting and overreporting of demand respec-

tively.

1) Rider Witness: Detecting underreported demand: In this

section, we present a Rider Witness mechanism to detect

omission or tampering of the demand Λ. Concretely, if a MP

sends to MA a Merkle commitment σ′ = MCommit(Λ′, r)
which underreports demand, i.e., Λ \ Λ′ is non-empty, then

Rider Witness will enable MA to detect this. MA can impose

fines or other penalties when such detection occurs to deter

MP from underreporting the demand.

Rider Witness Incentive Mechanism - At the beginning of

Stage 0 (Data Collection) of the protocol, MP constructs a

public key and private key pair (pkmp, skmp) to use for digital

signatures. The payment process is as follows: When the ith
customer is delivered to their destination, the customer will

send a random nonce ri to MP. MP will respond with a receipt

(H(ri||λi), σi), where σi := sign(skmp, H(ri||λi)) is a digital
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signature certifying that MP recognizes λi as an official ride

(here || represents concatenation of binary strings). Here H
is SHA256, so that H(ri||λi) is a cryptographic commitment

to the trip λi. The customer is required to pay the trip fare

only if verify(pkmp, H(ri||λi), σi) = True, i.e., they received

a valid receipt.

Definition 5 (Rider Witness Test). Given a commitment σ′

reported by MP to MA, each rider who was served by MP re-

quests a Merkle proof that their ride is included in the compu-

tation of σ′. If there exists a valid1 ride receipt (H(ri||λi), σi)
for which MP cannot provide a Merkle proof, then the

customer associated with λi will report (H(ri||λi), σi) to MA.

MA checks if σi is a valid signature for H(ri||λi), and if so,

directly asks MP for a Merkle Proof that λi is included in the

computation of σ′. If MP is unable to provide the proof, then

σ′ fails the Rider Witness Test.

Observation 1 (Efficacy of Rider Witness). Under Assump-

tion 1, if MP submits a commitment σ′ = MCommit(Λ′, r)
which omits a ride, i.e., Λ \Λ′ is non-empty, then σ′ will fail

the Rider Witness Test.

Proof of Observation 1. If Λ 6⊆ Λ′, then there exists some λi

which is in Λ but not Λ′. Suppose Alice was the rider served

by ride λi. Forging a proof that λi ∈ Λ′ requires finding a hash

collision for the hash function used in the Merkle commitment.

Since MCommit is implemented using a cryptographic hash

function (e.g., SHA256), it is computationally intractable to

find a hash collision, and thus MP will be unable to forge a

valid proof that λi ∈ Λ′.

If MP does not provide Alice a valid proof within a

reasonable amount of time (e.g., several hours), Alice can

then report (H(ri||λi), σi) to MA. This reporting does

not compromise Alice’s privacy due to the hiding property

of cryptographic hash functions. MA will check whether

verify(pkmp, H(ri||λi), σi) = True, and if so, means that λi

is recognized as a genuine trip by MP. MA will directly ask

MP for a Merkle proof that H(ri||λi) ∈ TΛ. Since MP cannot

provide a valid proof, this is evidence that a genuine trip was

omitted in the computation of σ′, and hence σ′ will fail the

Rider Witness test.

Remark 5 (Tamperproof Property). We note that Rider Wit-

ness also prevents the MP from altering the data associated

with genuine rides. If MP makes changes to λi ∈ Λ re-

sulting in some λ′
i, then by collision resistance of H , it is

computationally infeasible to find r′ so that H(ri||λi) =
H(r′i||λ

′
i). If such a change is made, then H(r′i||λ

′
i) is included

into the computation of σ′ instead of H(ri||λi). This means

(H(ri||λi), σi) becomes a valid witness that data tampering

has occurred.

Remark 6 (Receipts are Unforgeable). Note that it is not

possible for a rider to report a fake ride λ′ 6∈ Λ to MA. This

is because the corresponding signature σ′ cannot be forged

without knowing MP’s secret key skmp. Therefore, assuming

skmp is only known to MP, only genuine trips can be reported.

1In the sense that verify(pkmp, H(ri||λi), σi) = True.

Remark 7 (Honesty of riders). The Rider Witness mechanism

assumes that riders are honest, i.e., they will not collude with

MP by accepting invalid receipts.

2) Aggregated Roadside Audits: Detecting overreported

demand: In this section we present an Aggregated Roadside

Audit (ARA) mechanism to detect overreporting of

demand. Concretely, if MP announces a commitment

σ′ = MCommit(Λ′, r), where Λ′ is a strict superset of Λ
(i.e., Λ′ \ Λ is non-empty), then ARA will enable MA to

detect this. Thus between ARA and Rider Witness, MA can

detect if MP commits to a demand that is not Λ.

Aggregated Roadside Audits - Due to the Rider Witness

mechanism, we can assume that MP submits a commitment

σ′ computed from Λ′ satisfying Λ ⊆ Λ′, i.e., Λ′ is a superset

of Λ. For an edge e ∈ E and a demand Λ, define

ϕ(e,Λ) :=
∑

λ∈Λ

1[λ traverses e] (3)

to be the number of trips that traversed e during passenger

pickup (Period 2) or passenger delivery (Period 3). Since trip

route is provided in the trip metadata, ϕ(e,Λ) can be computed

from Λ.

Definition 6 (ARA Test). The Aggregated Roadside Audit

places a sensor on every road to conduct an audit on each road

e ∈ E to measure ϕ(e,Λ). These values are then aggregated

as φ :=
∑

e∈E ϕ(e,Λ). A witness w = (Λw, rw, cw) passes

the ARA test if and only if
∑

e∈E

ϕ(e,Λw) = φ. (ARA)

Observation 2 (Efficacy of Aggregated Roadside Audits).

Under Assumption 1, if MP submits a commitment σ′ =
MCommit(Λ′, r) to a strict superset of the demand, i.e.,

Λ ⊂ Λ′, then any proof submitted by MP will either be

inconsistent with σ′ or will fail the ARA test. Hence MP cannot

overreport demand.

Proof of Observation 2. Suppose Λ′ is a strict superset of Λ,

which means that there exists some λ′ ∈ Λ′ \ Λ. Then there

must exist some e′ ∈ E for which ϕ(e′,Λ′) > ϕ(e′,Λ). In

particular, any edge in the trip route of λ′ will satisfy this

condition. With the inclusion of the ARA test, MP is unable

to provide a valid witness for MA’s evaluation algorithm C
(and as a consequence, will be unable to produce a valid zero

knowledge proof) for the following reason:

1) MCommit is a collision-resistant function (since it is

built using a cryptographic hash function H), so because

σ′ = MCommit(Λ′, r), it is computationally intractable

for MP to find Λ′′ 6= Λ′ and nonce values r′′ so that

MCommit(Λ′′, r′′) = σ′. Therefore, in order to satisfy

condition 2 of C (see Stage 3 of Section IV-A), MP’s

witness must choose Λw to be Λ′.

2) However, Λ′ will not pass the ARA test. To see this,

note that (a) Λ ⊆ Λ′ implies that ϕ(e,Λ) ≤ ϕ(e,Λ′)
for all e ∈ E. Furthermore, (b) there exists an edge e′

where the inequality is strict, i.e., ϕ(e′,Λ) < ϕ(e′,Λ′).
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data, it does not provide any diagnosis in the event that z is

invalid.

VI. CONCLUSION

In this paper we presented an interactive protocol that en-

ables a Municipal Authority to obtain insights from the data of

Mobility Providers in a verifiable and privacy-preserving way.

During the protocol, a Municipal Authority submits queries

and a Mobility Provider computes responses based on its

mobility data. The protocol is privacy-preserving in the sense

that the Municipal Authority learns nothing about the dataset

beyond the answer to its query. The protocol is verifiable in

the sense that any deviation from the protocol’s instructions

by one party can be detected by the other. Verifiability is

achieved by using cryptographic commitments and aggregated

roadside measurements, and data privacy is achieved using

zero knowledge proofs. We showed that the protocol can be

generalized to a setting with multiple Mobility Providers using

secure multi-party computation. We present a differentially

private version of the protocol in Appendix I to address

situations where the Municipal Authority has many queries.

There are several interesting and important directions for

future work. First, while this work accounts for strategic

behavior of the Municipal Authority and Mobility Providers,

it assumes that drivers and customers will act honestly. A

more general model which also accounts for potential strategic

behavior of drivers and customers would be of great value and

interest. Second, while secure multi-party computation can be

used to generalize the protocol to settings with multiple Mobil-

ity Providers, generic tools for secure multi-party computation

introduce computational and communication overhead. Devel-

oping specialized multi-party computation tools for mobility-

related queries is thus of significant practical interest. Quan-

tum computation is another promising method for developing

faster cryptographic tools [28]. Finally, we suspect there are

other applications for this protocol in transportation research

beyond city planning and regulation enforcement that could

be investigated.
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APPENDIX I

INCORPORATING DIFFERENTIAL PRIVACY FOR THE

LARGE QUERY REGIME

One potential concern with the protocol described in Sec-

tion IV arises in the large query regime. It was shown in

[5] that a dataset can be reconstructed from many accurate

statistical measurements. One way to address this is to set a

limit on the number of times the MA can query the data for

a given time period. Such a restriction would not lead to data

scarcity since the MP is collecting new data daily. Differential

privacy offers a principled way to determine how many times

MA should query a dataset (see Remark 12). Differentially

private mechanisms address the result of [5] by reducing the

accuracy of the responses to queries, i.e., responding to a query

g with a noisy version of g(Λ). In this section we describe how

the protocol from section IV can be generalized to facilitate

verifiable and differentially private responses from MP. To this

end we first define differential privacy.

Definition 7 (Datasets and Adjacency). A dataset Λ is a set of

datapoints. In the context of transportation demand, a datapoint

is the metadata corresponding to a single trip. We say two

datasets Λ,Λ′ are adjacent if either (a) Λ ⊂ Λ′ with Λ′

containing exactly 1 more datapoint than Λ, or (b) Λ′ ⊂ Λ
with Λ containing exactly 1 more datapoint than Λ′.

Definition 8 (Differential Privacy). Let F be a σ-algebra on

a space Ω. A mechanism M : D → Ω is (ε, δ)-differentially

private if for any two adjacent datasets Λ,Λ′ ∈ D and any

F-measurable event S,

P (M(Λ) ∈ S) ≤ eεP (M(Λ′) ∈ S) + δ.

In words, the output of a (ε, δ)-differentially private mecha-

nism on Λ is statistically indistinguishable from the output

of the mechanism on Λ ∪ {λ} for any single datapoint

λ 6∈ Λ. Since Λ does not contain λ, M(Λ) does not reveal

any information about λ. Since M(Λ ∪ {λ}) is statistically

indistinguishable from M(Λ), M(Λ ∪ {λ}) does not reveal

much about λ.

Example 9 (Laplace Mechanism for Vote Tallying). Suppose

a city is trying to decide whether to expand its railways or

expand its roads based on a majority vote from its citizens.

The dataset is Λ := {λ1, ..., λn} where λi is a boolean which

is 0 if the ith citizen prefers the railway and 1 if the ith citizen

prefers the roads. To implement majority vote, the city needs to

compute g(Λ) :=
∑n

i=1 λi. The Laplace Mechanism achieves

(ε, 0)-differential privacy for this computation via

Mlaplace(Λ) := Y +

n∑

i=1

λi,

where Y has the discrete Laplace distribution: for any k ∈ Z,

P[Y = k] ∝ e−ε|k|. To see why this achieves (ε, 0)-differential

privacy, for any 1 ≤ j ≤ n, note that

P[M(Λ) = k]

P[M(Λ \ {λj}) = k]
=

e−ε|k−
∑n

i=1
λi|

e−ε|k−
∑

i 6=j λi|
≤ eελj ≤ eε.

Note that the noise distribution for Y depends only on ε, and

is independent of n, the size of the dataset.

Remark 12 (Privacy Budget). By composition rules, the result

of k queries to a (ε, 0)-differentially private mechanism is

(kε, 0)-differentially private. Thus a dataset should only be

used to answer k separate (ε, 0)-differentially private queries

if ekε is sufficiently close to 1.

A. Goal: Differential Privacy without Trust

Given a query function g from MA, let M be an polynomial-

time computable (ε, δ)-differentially private mechanism for

computing g. For a given dataset Λ we can represent the

random variable M(Λ) with a function g̃(Λ, Z) where Z ∈
{0, 1}

v
represents the random bits used by M . Here v is

an upper bound on the number of random bits needed for

the computation of M . By its construction, g̃(Λ, Z) is (ε, δ)-
differentially private if Z is drawn uniformly at random over

{0, 1}
v
. Therefore differential privacy is achieved if MP draws

Z uniformly at random over {0, 1}
v

and sends g̃(Λ, Z) to MA.

However, as mentioned in Assumption 1, we are studying

a model where MP can act strategically. Thus we cannot

assume that MP will sample Z uniformly at random if there is

some other distribution over Z that leads to a more favorable

outcome for MP. We revisit Example 9 to illustrate this

concern.

Example 10 (Dishonest Vote Tallying). Consider the setting

from Example 9. The Laplace mechanism can be represented

as

g̃(Λ, Z) := Y +
n∑

i=1

λi, where Y = F−1
laplace

(
int(Z)

2v

)
,

where int(Z) is the integer whose binary representation is the

bits of Z. Here F−1
laplace is the inverse cumulative distribution

for the discrete Laplace distribution. Thus F−1
laplace(int(Z)/2v)

is an application of inverse transform sampling that converts

a uniform random variable Z into a random variable Y with a

discrete Laplace distribution. Suppose the MP has a ridehailing

service and would thus prefer an upgrade to city roads over an

upgrade to the railway system. If this is the case, choosing Z
so that g̃(Λ, Z) > n/2 (as opposed to choosing Z randomly)

is a weakly dominant strategy for MP, even if g(Λ) < n/2
and a majority of the citizens prefer railway upgrades.

Thus we need a way to verify that the randomness Z used

in MP’s evaluation of g(Λ, Z) has the correct distribution.

We will now show how the protocol can be adjusted to

accommodate this, and as a consequence, enable verifiable

differentially private data queries for MA.

Remark 13 (MA provided randomness). One natural attempt

to ensure that Z is uniformly random is to have MA specify Z.

However, this destroys the differential privacy, since for some

mechanisms (including the Laplace mechanism) g(Λ) can be

computed from g̃(Λ, Z) and Z. Also, it is not clear a priori

whether such a setup is strategyproof for MA.

B. A Differentially Private version of the protocol

In this section, we present modifications to the protocol

from Section IV-A that enables verifiable differentially private
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responses from MP. At a high level, the MA and MP jointly

determine the random bits Z via a coin flipping protocol

[29]. The zk-SNARK can then be modified to ensure that

g̃(Λ, Z) is computed correctly. The protocol has a total of 6

stages which are described below.

Stage 0: (Data Collection) MP builds a Merkle Tree TΛ

of the demand Λ that it serves. It computes a commitment

σ := MCommit(Λ, r) to this demand. Additionally, MP

samples Zmp uniformly at random from {0, 1}
v

and computes

a Pedersen commitment [30] zmp := Commit(Zmp, rmp). The

Pederson commitment scheme is a secure commitment scheme

which is perfectly hiding and computationally binding. MP

sends both σ, zmp to MA.

Stage 1: (Integrity Checks) Same as in Section IV-A.

Stage 2: (Message Specifications) MA specifies the function

g it wants to compute. Additionally, MA samples Zma uni-

formly at random from {0, 1}
v

and specifies a differentially

private mechanism g̃ for the computation of g.

Stage 3: (zk-SNARK Construction) MA constructs an evalu-

ation circuit C for the function g̃. The public parameters of C
are σ, zmp, Zma, z and the input to C is a witness of the form

w = (Λw, rw, cw, Zmp,w, rmp,w). C does the following:

1) Checks whether the Rider Witness and Aggregated

Roadside Audit tests are satisfied,

2) Checks whether MCommit(Λw, rw) = σ,

3) Checks whether Commit(Zmp,w, rmp,w) = zmp,

4) Checks whether g̃(Λw, Zma ⊕ Zmp,w) = z. (Here ⊕ is

bit-wise XOR.)

C will return True if and only if all of these checks

pass. MA constructs a zk-SNARK (S, V, P ) for C and sends

g, g̃, Zma, C, (S, V, P ) to MP.

Stage 4: (Function Evaluation) If g̃ is a differentially private

mechanism for computing g, then MP computes a message

z = g̃(Λ, Zma ⊕ Zmp) and a witness w := (Λ, r, cw, Zmp, rmp)
to the correctness of z.

Stage 5: (Creating a Zero Knowledge Proof) Same as in

Section IV-A.

Stage 6: (zk-SNARK Verification) Same as in Section IV-A.

In Supplementary Material B.7 of the extended version [17] we

show that this protocol has the following two desirable features

that enable verifiable and differentially private responses from

MP to MA queries.

1) Verifiability - If the MA receives a valid proof from

MP, then it can be sure that the corresponding message

is indeed g̃(Λ, Zma ⊕ Zmp).
2) Differential Privacy - The MP’s output is differentially

private with respect to the dataset Λ if at least one of

Zma, Zmp is sampled uniformly at random.

Remark 14 (A note on Local Differential Privacy). Local

Differential Privacy [13] addresses the setting where the data

collector is untrusted. Differential privacy is achieved by

users adding noise to their data before sending it to the data

collector. This is in contrast to the setting we study here

where an untrusted data collector has the clean data of many

users. We chose to study the latter model due to the way

current mobility companies collect high resolution data on

the trips they serve. Additionally, local differential privacy

requires users to add noise to their data so they become

statistically indistinguishable from one another. In the context

of transportation, this means the noisy data of users will be

statistically indistinguishable from one another, even if they

have very different travel preferences. This level of noise

significantly reduces the accuracy of any computation done

on the data.
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