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Abstract— Automated vehicles (AVs) are expected to be ben-
eficial for Mobility-on-Demand (MoD), thanks to their ability
of being globally coordinated. To facilitate the steady transition
towards full autonomy, we consider the transition period of AV
deployment, whereby an MoD system operates a mixed fleet of
AVs and human-driven vehicles (HVs). In such systems, AVs
are centrally coordinated by the operator, and the HVs might
strategically respond to the coordination of AVs. We devise
computationally tractable strategies to coordinate mixed fleets
in MoD systems. Specifically, we model an MoD system with
a mixed fleet using a Stackelberg framework where the MoD
operator serves as the leader and HVs serve as the followers. We
further develop a real-time coordination algorithm for AVs. The
proposed approach is validated using a case study inspired by
real operational data of an MoD service in Singapore. Results
show that the proposed approach can significantly improve
system performance.

I. INTRODUCTION

The past decade has witnessed the widespread deployment
of Mobility-on-Demand (MoD) services, thanks to the rapid
adoption of smartphones, developments in wireless commu-
nication, and the boom of shared economies. These services,
e.g., the ride-hailing services provided by Uber, present im-
mense potential to enhance mobility and accessibility while
reducing resource usage. One key operational challenge
associated with these services is represented by the vehicle

imbalances due to asymmetric transportation demand: ve-
hicles tend to accumulate in some regions while becoming
depleted in others, giving rise to inefficient operations of the
MoD system. Currently, MoD systems typically address this
challenge by combining dynamic pricing [1] with a real-time
heat-map of the passenger demand to rebalance their fleets.
However, the rebalancing actions are still performed in a
decentralized manner by human drivers who are interested
in their own earnings, which may not yield optimal system
performance.

The emergence of automated vehicles (AVs) provides op-
portunities for sophisticated and centralized vehicle control,
and thus can be beneficial to MoD systems. By integrating
AVs into MoD systems, Autonomous Mobility-on-Demand
(AMoD) is expected to be a promising paradigm for future
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mobility systems, whereby a fleet of autonomous taxi-like
vehicles is coordinated by a central operator to provide on-
demand mobility services. Compared to traditional MoD
services, AMoD offers several advantages. First, by elim-
inating the driver costs, AMoD can reduce the cost of
trips and thus improve the operator’s profit. Second, since
AVs can always be operational in the system, AMoD can
provide continuous and reliable services regardless of the
time of day. Third, unlike human drivers who can be ill-
informed or self-interested, AVs can be coordinated in a
centralized manner to provide better services which enable
higher vehicle utilization and operational efficiency. Thanks
to these advantages, AMoD has attracted increasing attention
in the research fields of transportation and robotics, including
demand analysis [2], real-time coordination [3], interactions
with public transport [4] and power networks [5], transporta-
tion network design [6], and system evaluation [7].

Despite the benefits of AMoD systems, it is evident
that AVs will only gradually be technologically mature
and adopted in the market. During the transition period,
MoD systems will conceivably be operating a mixed fleet
of AVs and human-driven vehicles (HVs), whereby HVs
might respond to the coordination of AVs strategically,
making global optimization challenging. To facilitate the
steady transition towards full autonomy, this paper aims
to devise computationally tractable strategies to design and
coordinate mixed fleets in MoD systems, considering the
interactions between AVs and HVs. Specifically, we frame a
fleet coordination problem with a mixed equilibrium of AVs
that are centrally coordinated and HVs that act according to
their own interests. From an operational perspective, such
a system could also be interpreted as a mixed system of
compliant drivers (e.g., contractor drivers who are paid to
strictly follow the instructions given by the operator) and
self-interested drivers – thus, the tools and insights derived in
this paper could be applied to existing systems (i.e., without
AVs) as well.

Related work. To the best of our knowledge, such a mixed
fleet system has been rarely studied in the context of MoD
services [8]–[10]. Lokhandwala et al. [8] analyzed the ride-
sharing serviced provided by autonomous taxis and human-
driven taxis based on an agent-based simulation of New York
City. Afeche et al. [9] focused on a two-location, four-route
loss network and investigated the impact of demand-side
admission and supply-side rebalancing control on the spatial
vehicle imbalances and the strategical behavior of drivers.
Wei et al. [10] explicitly considered the interactions between
AVs and HVs and analyzed the steady-state behavior of the
mixed fleet system in a transportation network with equi-
distant nodes. Both [9] and [10] focused on the steady-state
analysis of special types of transportation networks. To sum
up, it remains unclear how mixed fleet systems with realistic
road networks can be controlled, especially in real time.
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Several works analyze the behavior of HVs in the MoD
context. Most works focus on the route choice of HVs
delivering passengers without considering the rebalancing
behavior or the willingness of HVs to accept passengers (e.g.,
[11]), or analyze the response of HVs to incentives such as
surge or dynamic pricing at a single or at a few locations
(e.g., [12]). Buchholz [13], on the other hand, empirically an-
alyzed the dynamic spatial equilibrium of taxicabs based on
the New York City taxi data. Bimpikis et al. [14] studied the
rebalancing behavior of HVs by formulating the equilibria
as the solutions to a set of non-linear equations. However, it
is assumed that HVs always accept the passengers assigned
to them by the operator, which may not be the case in real-
world systems. Moreover, it is challenging to leverage the
model proposed in [14] for real-time control due to its non-
linear structure.

Related works on such mixed fleet systems also exist in
the context of traffic assignment (i.e., without dispatch or
rebalancing), which typically search for the optimal equilib-
rium in a Stackelberg game where the leader is the group of
compliant drivers, and the followers are the self-interested
drivers (e.g., [15], [16]). These works, however, focus on
congestion games between the two types of vehicles. It is
nevertheless unclear how the proposed algorithms in these
works can be adapted to the MoD services where rebalancing
and passenger assignment are important features.

Statement of contribution. The contribution of this paper is
three-fold. First, we initiate research on mixed fleet systems
with realistic road networks in an MoD context. We account
for the interactions between AVs and HVs using a Stackel-
berg framework where the MoD operator with its AV fleet
serves as the leader and HVs serve as the followers. Sec-
ond, we develop a Model Predictive Control (MPC)-based
approach for the real-time coordination of such mixed fleet
systems. Third, we conduct real-world case studies using real
data in Singapore to validate the proposed algorithms and
provide a guideline to deploy AVs in scenarios with various
AV penetration rates.

This paper is organized as follows. Section II presents an
overview of MoD systems with a mixed fleet and introduces
general notions. Section III develops a Stackelberg game-
based MPC formulation for real-time control. Section IV
presents simulation results to illustrate the benefits of em-
ploying AVs in the system. Section V concludes the paper
and proposes future directions.

II. SYSTEM DESCRIPTION

We consider a city where an operator provides MoD
services with a mixed fleet of AVs (denoted as a) and HVs
(denoted as h), illustrated in Figure 1. Mathematically, we
describe the urban transportation network as a weighted
graph G = (N , E), where N is the set of stations (i.e., pick-
up or drop-off locations) and E is a set of directed edges, i.e.,
shortest paths between pairs of stations. For a typical city,
we consider G to be fully connected such that a directed edge
exists for each pair of stations. Let Ni = N\{i} be the set of
stations connected to station i. We discretize the time horizon
into a set of discrete intervals T = {1, 2, · · · , T} of a given
length ∆T . Without loss of generality, we assume both types
of vehicles can operate on each station of the network. The
proposed methodological framework can be readily adapted

Fig. 1: Illustration of the MoD system, where blue vehicles
represent automated vehicles (AVs) and yellow vehicles
represent human-driven vehicles (HVs). An operator is able
to set prices for request and compensations for HVs, assign
passengers, and coordinate the routes of AVs.

to account for the limited driving capacity of AVs during
the transition period, whereby AVs can only operate within
certain regions or take certain paths.

The travel time for edge (i, j) ∈ E is defined as the
number of time steps it takes a vehicle to travel along the
shortest path between station i and station j, denoted as an
integer τij ∈ Z+. We make the following remarks for the
travel times. First, we assume that the travel times are given
and independent of the coordination of the MoD fleet. This
assumption applies to cities where the MoD fleet constitutes
a relatively small proportion of the entire vehicle population
on the transportation network, and thus the impact of the
MoD fleet on traffic is marginal. Second, we observe that the
travel times typically change slowly with time, and hence
for simplicity of notation, we assume τij to be constant
in time. The proposed modeling framework can be easily
adapted to consider time-varying exogenous travel times.
Third, we assume the travel times to be independent of the
vehicle classes, since vehicles of both classes have similar
speeds and will follow the same shortest paths between two
stations. The modeling framework can also be easily adapted
to incorporate class-dependent travel times. Similar to travel
times, we also define the travel distance for edge (i, j) ∈ E
as the length of the shortest path between station i and station
j, denoted as δij .

Passengers make transportation requests at each time
step. We denote the origin-destination (OD) pairs as tuples
(i, j), i, j ∈ N , and the demand and price for OD pair
(i, j) starting at time step t ∈ T as qijt ≥ 0 and pijt ≥ 0,
respectively. Clearly, passengers that depart at time step t
arrive at their destinations at time step t + τij . We make
four assumptions for passenger requests. First, we assume
the prices are given endogenously, since they are typically
derived in many existing MoD systems as the product of
a fixed base price and a surge factor defined in another
module. Second, we assume that trip prices are the same
for AVs and HVs, and we further assume that passengers do
not have preference over vehicle classes. These assumptions
apply to common scenarios where the goal of passengers is
to get transportation services as soon as possible and would
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accept whichever class of vehicles assigned to them. The
relaxation of these assumptions will be investigated in future
work. Third, for simplicity of presentation, we consider the
assumption as in the existing literature [10] that passengers
can only be matched to vehicles located at the same station
as their origins. Nevertheless, we can straightforwardly adapt
the proposed models to relax this assumption (see Section
III-D). Fourth, we assume that the operator can estimate the
demand within a time horizon [17]. Discussions of specific
estimation algorithms are beyond the scope of the paper.

With the passenger requests, the MoD operator deter-
mines its strategies to optimize system performance (e.g., its
profits, system-level earnings, social welfare, etc.). Similar
to existing ride-sharing systems, the operator dynamically
assigns passengers to vehicles (both AVs and HVs). AVs
will always accept the assigned passengers, whereas HVs
can strategically choose whether to accept the assigned pas-
sengers to optimize their own interests. This setting applies to
systems where the operator broadcasts the passenger requests
to drivers (e.g., in many taxi systems) or systems where the
operator makes recommendations, but HVs can reject the
assigned requests with minimal penalties. The models pro-
posed in this paper, nevertheless, can be tailored to analyze
the scenarios where HVs always accept the assigned requests,
or be extended to consider scenarios with heterogeneous HV
fleets where different types of HVs (compliant or strategic
in passenger assignment) co-exist. After a vehicle (AV or
HV) is successfully matched with a request, the vehicle will
pick up the matched passengers, and then deliver them to
their destinations. HVs will receive a compensation cijt for
serving a trip with OD pair (i, j) from the operator. We
assume that compensations are given endogenously, since
they are typically calculated in existing MoD systems as a
fixed percentage of prices.

Vehicles not matched with any passengers may either
stay at the same station or rebalance to other stations. The
rebalancing decisions for AVs are made by the operator,
whereas HVs make such decisions on their own. For both
vehicle classes, there is an operational cost (e.g., the energy
cost, vehicle depreciation, and vehicle maintenance) σ per
vehicle per unit distance driving. To mathematically describe
the system, let us define the passenger flow xmijt ≥ 0 and
rebalancing flow ymijt ≥ 0 as the number of vehicles of class

m ∈ M that start moving along edge (i, j) in time step t
with and without passengers, respectively.

Passengers that are not matched can either stay in the
system and enter the next round of assignment or leave. Let
wijt be the number of passengers with OD pair (i, j) ∈ E
waiting to be assigned at the beginning of time step t ∈ T .
Let ε ∈ [0, 1] be the per time step probability that unserved
passengers choose to stay in the system, which characterizes
the impatience of passengers. We assume that the proba-
bility ε is determined exogenously and does not depend on
the real-time operation of the service (or equivalently, the
coordination algorithms).

To summarize, the operator aims to optimize system
performance by (1) assigning passengers to AVs and HVs
and (2) designing routes for AVs. AVs will strictly follow
instructions, whereas HVs will strategically determine (1)
whether to accept passengers and (2) their routes. Following

the sequential property of such systems, we model the
operations of mixed fleet systems using a Stackelberg game
framework, where the leader is the MoD operator, and the
followers are the HVs, and devise an MPC-based approach to
control such systems in real time. We will present the details
of the proposed Stackelberg game-based MPC approach in
the rest of the paper.

III. REAL-TIME CONTROL OF MOD SYSTEMS WITH

MIXED FLEETS

In this section, we present a Stackelberg game-based
Model Predictive Control (MPC) approach to coordinate
MoD systems with mixed fleets in real-time. The proposed
MPC approach relies on an embedded optimization model
based on a Stackelberg game, where the leader is the MoD
operator which optimizes passenger and rebalancing routes
for the AVs in order to improve system-level earnings, while
the followers are the HVs which strategically respond to
the operator’s decisions. At each time step, the controller
takes as an input the predicted passenger demand and the
vehicle states (i.e., the number of idle vehicles or the vehicles
en-route for passenger pickup or delivery), and solve an
optimization problem to compute passenger and rebalancing
routes for the AVs that maximize system-level earnings over
a receding time horizon. Notice that HVs then make their
decisions based on the assignment of the AVs accordingly.
As is typical for MPC-style algorithms, only the passenger
and rebalancing routes of AVs at the current time step
are executed, and the process is repeated. This mechanism
has the advantage of taking future system performance into
account when optimizing current actions.

We characterize the rebalancing strategy of HVs as re-
balancing probabilities Pijt for HVs to move from station
i ∈ N to station j ∈ Ni at time t ∈ T . We consider
such probabilities to be determined externally in the MPC
formulation, i.e., they are predicted from experience (e.g.,
from historical data). The reasons for this modeling choice
are as follows. First, we expect HVs not to have real-
time global information about passenger demand at other
stations or positions of other vehicles, and thus they can only
slowly adapt their rebalancing strategy after experiencing
difficulty in getting passengers at some stations. As the MPC
considers a relatively short time horizon (e.g., 20 min), it
appears reasonable to assume that HVs stick to the planned
rebalancing strategies over such a horizon. Second, we expect
the MPC algorithm, due to its repeated optimizations, to be
robust to small errors in the prediction–robustness will be
experimentally evaluated in Section IV-C. Third, from a com-
putational standpoint, this choice significantly reduces the
number of decision variables, and thus makes the algorithm
much more scalable.

We now present the MPC formulation. Denote by rmit the
number of vacant vehicles of class m ∈ M located at station
i ∈ N at time step t. Let K be the length of the planning
horizon, T0 = {t0, t0+1, t0+K−1} be the set of time steps
in the planning horizon from time step t0, and T− be the set
of time steps prior to time step t0. We use bolded variables
to represent vectors, i.e., (qt,pt, ct,wt,x

a
t ,x

h
t ,y

a
t ,y

h
t ) =

{qijt, pijt, cijt, wijt, x
a
ijt, x

h
ijt, y

a
ijt, y

h
ijt}(i,j)∈E , (rat , r

h
t ) =

{rait, r
h
it}i∈N , ∀t ∈ T , and (w,xa,xh,ya,yh, ra, rh) =

{wt,x
a
t ,x

h
t ,y

a
t ,y

h
t , r

a
t , r

h
t }t∈T .
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We next establish the leader model and follower model
in the MPC formulation as Section III-A and Section III-
B, respectively. We further propose a relaxation model to
efficiently solve the MPC formulation in Section III-C.
Section III-D refines the proposed MPC formulation to more
explicitly consider the pickup process.

A. Leader model in the MPC formulation

Given a tuple {qt,pt}t∈T0
of predicted demand and prices,

as well as the initial conditions (ra0 , {r
h
t ,x

h
t ,x

a
t ,y

a
t }t∈T

−

)
representing the number of idle vehicles and the vehicles en-
route for passenger delivery and rebalancing, respectively,
the operator determines the passenger and rebalancing flow
of AVs {xa

t ,y
a
t }t∈T0

by solving the optimization problem:

max
x

a,xh,ya,

w,ra,rh

JTV
L =

∑

t∈T0

∑

(i,j)∈E

(

pijt
∑

m∈M

xmijt − σδij
∑

m∈M

xmijt

− σδij(y
a
ijt + Pijtr

h
it)− ψwt

ij

)

(1a)

s.t. rai,t+1 = rait +
∑

j∈Ni

(yaji,t−τji
− yaijt)

+
∑

j∈Ni

(xaji,t−τji
− xaijt), i ∈ N , t ∈ T0 (1b)

rhi,t+1 = rhit +
∑

j∈Ni

(Pji,t−τjir
h
j,t−τji

− Pijtr
h
it)

+
∑

j∈Ni

(xhji,t−τji
− xhijt), i ∈ N , t ∈ T0 (1c)

wij,t+1 = ε(wijt + qijt − xaijt − xhijt),

(i, j) ∈ E , t ∈ T0 (1d)

xh = Φ
(

w + q − xa, rh
)

(1e)

xa,ya,w, ra, rh ≥ 0 (1f)

where the objective function Eq.(1a) is the system-level
earnings, which is defined as the difference between the earn-
ings of the operator from both HVs and AVs (the first term)
and costs, including the operational cost for the passenger
routes of HVs and AVs (the second term), the operational
cost for the rebalancing routes of HVs and AVs (the third
term), and the cost associated with passengers waiting to be
matched with a driver (the fourth term), where ψ represents
a penalty for passenger waiting, which can be chosen, for
example, as the VOT of passengers. Here, we consider
system-level earnings because the operator can be interested
in attracting human drivers to the system, and hence may
not want to sacrifice the earnings of HVs. The objective
function can also be adapted to consider other criteria (e.g.,
operator’s profit). Constraints Eq.(1b) and Eq.(1c) represent
the evolution of vehicle accumulation of AVs and HVs,
respectively, at each station. Constraints Eq.(1d) represent
the evolution of waiting passengers with respect to each
origin-destination pair, where ε ∈ [0, 1] represents the per
time step probability that unserved passengers choose to stay
in the system. Constraints Eq.(1e) model the behaviors of
HVs, where the specific form of function Φ(·) is specified
by the follower model as detailed below in Section III-B.
Constraints Eq.(1f) ensure that all variables are nonnegative.

B. Follower model in the MPC formulation

We next specify the follower model. Let us denote v as
the system-wide average earnings rate of HVs, and φi as
an estimate of expected earnings for HVs located at station
i ∈ N . Parameters v, {φi}i∈N can be learned from historical
data. Then for any t ∈ T0, given parameters φ = {φi}i∈N

(modeling expected earnings), the expected earning rate v,
compensations ct, remaining demand q̄t = wt + qt − xa

t ,
vehicle availability r̄it = rhit +

∑

j∈Ni
(Pji,t−τjir

h
j,t−τji

−

Pijtr
h
it)+

∑

j∈Ni
xhji,t−τji

, ∀i ∈ N , we derive the passenger

flow of HVs at time step t by solving the optimization
problem:

max
x

h
t

JTV
F,t =

∑

(i,j)∈E

(cijt − vτij − σδij + φj − φi)x
h
ijt

(2a)

s.t. 0 ≤ xhijt ≤ q̄ij , (i, j) ∈ E , (2b)
∑

j∈Ni

xhijt ≤ r̄it, i ∈ N , (2c)

where the objective function Eq.(2a) represents the earning
gains for HVs, which is defined as the difference between the
expected earnings by taking the trip (i.e., cijt−vτij−σδij+
φj) and the expected earning of staying at the current station
(i.e., φi). Constraints Eq.(2b) ensure that the passenger flow
is always nonnegative, and reflect the fact that HVs might
decline a subset of assigned passenger requests. Constraints
(2c) ensure that the resulting passenger flow does not violate
the availability of HVs. For details of the modeling of HVs,
please refer to an extended version of this paper [18].

C. Relaxation to the MPC formulation

Since the follower model as stated in Problem (2) is a
linear programming problem, the leader and follower models
can be combined to yield a mixed integer linear programming
(MILP). However, this approach is computationally expen-
sive, especially for a large-scale city-level transportation
network. To improve scalability, we propose the following
relaxation to the MPC model:

max
x

a,xh,ya,

w,ra,rh

JTV
L (xa,xh,ya,w, ra, rh) + λ

∑

t∈T0

JTV
F,t (x

h
t )

(3a)

s.t. Eq.(1b)− Eq.(1f),Eq.(2b)− Eq(2c).

In Problem (3), the objective function Eq.(3a) combines
the objective function of the leader model as stated in
Problem (1) and the objective function of the follower model
as stated in Problem (2) via a weight parameter λ ≥ 0. Such
a parameter can be determined by the operator by using a
sensitivity analysis. We will indeed analyze the sensitivity
to parameter λ in Section IV. We also performed numerical
experiments to evaluate the quality of the relaxation on small-
scale case studies (e.g., with 8 stations) with realistic problem
data (e.g., in terms of system-level earnings, passenger
acceptance rate, etc.). Results showed that the relaxation is on
average able to find a solution with an optimality gap within
2%–this motivates the use of Problem (3) in our large-scale
case studies.
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and the rebalancing probabilities (Section IV-B), and then
test the robustness of the MPC approach against the predic-
tion errors in these variables (Section IV-C and Section IV-
D). Simulations are run in Python on a desktop computer
with AMD Ryzen 5 3600XT 6-Core Processor and 32 GB
memory. The optimization models are solved using CPLEX.
The average computation time for each time step is around
5 seconds.

B. Performance of the proposed Stackelberg game-based

MPC approach

We evaluate the proposed Stackelberg game-based MPC
approach by comparing the following two approaches.

• Baseline approach, defined as an MPC approach that
coordinates AVs assuming fully compliant HVs, i.e.,
without accounting for the strategic interactions with
the HVs (Problem (4) with λ = 0).

• Stackelberg game-based MPC. The control actions are
obtained by solving Problem (4) with the λ = 6
that provides the optimal system-level earnings in the
sensitivity analysis.

These approaches are evaluated in scenarios with different
fleet sizes of AVs to illustrate the value of introducing
AVs in the MoD system. The comparison between these
two approaches sheds light on the value of considering
the interactions between AVs and HVs. We evaluate the
system-level earnings in general, but also look into more
detailed performance criteria, e.g., operator’s profit, average
passenger waiting time, passenger acceptance rate, vehicle
utilization, and the empty vehicle kilometers traveled. Here,
since we assume passengers do not wait to be assigned, the
passenger waiting time refers specifically to the time that
a passenger waits to be picked up by the matched vehicle.
The passenger acceptance rate refers to the percentage of
passengers that are successfully matched with a vehicle, the
vehicle utilization represents the percentage of time a vehicle
is occupied by a passenger, and the empty vehicle kilometers
traveled are defined as the total distance traveled by vehicles
to pick up passengers or rebalance themselves. The results
are summarized in Figure 3.

a) Value of introducing AVs: We show the value of
introducing AVs by comparing the system performance in
scenarios with various penetration rates of AVs. We can
see from Figure 3 that the MoD system can be improved
significantly by replacing HVs with AVs by using both
approaches. Specifically, we can improve the system-level
earnings by up to 32%, reduce the passenger waiting time
by up to 30%, increase the passenger acceptance rate by
up to 20%, improve the vehicle utilization by up to 21%,
and reduce the empty kilometers traveled by up to 67%.
Moreover, the benefits of AVs is more significant at the early
stage of deployment. In fact, the system-level earnings can
be improved by 13% by replacing 10% of vehicles with AVs.
This shows that promising value of AVs in improving MoD
services.

b) Value of considering the interactions between AVs

and HVs: We show the value of considering the interactions
between AVs and HVs by comparing the baseline approach
(blue solid lines) with the Stackelberg game-based MPC
approach (green dashed lines). We can see from Figure 3

that the proposed Stackelberg game-based MPC can improve
system-level earnings by up to 12% (Figure 3a), operator’s
profit by up to 400% (Figure 3b), passenger acceptance rate
by up to 12% (Figure 3c)., and vehicle utilization by up
to 20% (Figure 3f) by considering the interactions between
HVs and AVs. The reason is two-fold. First, the Stackelberg
game-based MPC can predict the behaviors of HVs more
accurately, and can match AVs to the passengers that HVs
are not willing to serve. Second, by modeling the system
more accurately, the Stackelberg game-based MPC is able
to coordinate AVs in a more efficient manner, and thus
serve more passengers. We further notice that the benefit
of considering such interactions is especially evident in
scenarios with moderate penetration rates of AVs (i.e., 20%
– 60%). This is because the interactions between AVs and
HVs are more intense in these scenarios. The passenger
waiting time and empty kilometers traveled, however, may
not be necessarily improved (Figure3d and Figure 3f). This
is expected because the Stackelberg game-based MPC can
coordinate AVs to take the passengers with relatively low
values and long pickup times that would otherwise not be
taken by the HVs. Accepting these passengers may increase
the average passenger waiting time and the total empty
kilometers traveled. One can increase the weight parameter
ψ penalizing passenger waiting times, if passenger waiting
times are especially important for the operator.

C. Robustness to prediction errors

The proposed MPC approach relies on the prediction of
several variables: the future travel demand, the rebalancing
flow of HVs, and the travel times. We analyze how the pre-
diction errors in these variables would affect the performance
of the proposed MPC approach. To this end, we allow these
variables to be stochastic in the simulation, but use the mean
values in the proposed MPC to calculate the actions for
AVs. Specifically, the travel demand is assumed to follow a
Poisson distribution. The number of rebalancing HVs from
each station is assumed to follow a multinomial distribution
with the given rebalancing probabilities as the parameters.
The prediction error in the travel times is assumed to follow
a Gaussian distribution with mean 0 and a standard deviation
of 10% and 20% of the value, respectively, to simulate
scenarios with moderate and large noises in travel times.
Notice that the MPC can obtain the true travel demand at the
current time step from passenger requests, but uses the mean
value of the Poisson distribution to predict the future demand.
We derive the resulting system-level earnings in scenarios
with different levels of prediction errors and different fleet
sizes of AVs, each with 5 random seeds. The results are as
shown in Figure 4.

Figure 4 shows that the proposed Stackelberg game-based
approach is quite robust to these prediction errors. This is
expected for three reasons. First, we expect MPC to be robust
against a certain level of prediction errors, due to its built-in
feedback mechanism. Second, transportation requests at the
current time step are submitted by the passengers and are
accessible to the operator. Hence, the controller has perfect
knowledge of the demand at the current time step, which
is used to effectively match passengers with drivers. Third,
the knowledge of transportation demand and rebalancing
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