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Abstract—Bitcoin is a decentralized cryptocurrency that en-
ables entities to transfer funds psuedo-anonymously. Investigative
services like the FBI, however, have been able to subvert this
using various techniques. To counter this, the Bitcoin community
uses several methods to obscure transactions, including shared
send transactions among others. We attempt to peer into these
transactions through a pairing of address clustering and shared
send untangling and test our experimental results through path
finding between addresses. We then implement our methodology
to test its effectiveness. Our findings show that while using
clustering can improve path-finding results and shared send
untangling, we recommend applying heuristics in combination
to increase effectiveness.

Index Terms—Blockchain; Bitcoin; Taint Analysis; CoinJoin

I. INTRODUCTION

Bitcoin is a decentralized, trust-less, and anonymous
peer-to-peer cryptocurrency first proposed by Satoshi
Nakamoto [1]. All transactions performed in Bitcoin are
stored in the blockchain, a secure public ledger. Payments
are made to addresses with no associated user-identifying
information. This system provides psuedonymity, allowing
particular users to be identified by their addresses, while not
providing enough information to link addresses to real world
actors.

Additionally, to further hide their activity, users may mix
their coins with others using a variety of methods. In Bitcoin,
these methods fall into two categories, defined by [2] as mixing
services and shared send transactions. Our paper focuses on
shared send transactions, which allow multiple users to send
coins through a single transaction with many inputs and
outputs.

These mixing services present a challenge for taint analysis
as they obfuscate coin flows, making associating different en-
tities difficult. The ability to untangle shared send transactions
would enable more sophisticated analysis of Bitcoin network
activity. In this paper, we seek to answer the question of
whether a shared-send aware taint analysis tool combined with
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clustering heuristics can be used to more accurately track flow
through the Bitcoin Network.

Our contributions include: Diffusion, a proposed novel
heuristic augmented approach for clustering many-to-many
Bitcoin transactions, methods for evaluating the accuracy
of this approach, and the results of our own experimental
evauluation of the approach.

II. RELATED WORK

Address clustering is a common topic of Bitcoin research.
The study done by [3] uses a probabilistic model to determine
the accuracy of their clustering. They also compare on-chain
data with off chain information to validate their results. More
studies, like the ones done by [4] show that it is possible to
link IP addresses to Bitcoin addresses. Potential uses for this
include risk scoring and address classification among others
[5] [6]. Our experiments will focus on applying clusters to
shared send transactions and will not analyze their validity or
accuracy in any context but their effectiveness of transaction
untangling.

Analysis has been done into mixing services as well.
Methods of connecting inputs to outputs in mixers using a
custom path-finding algorithm have been proven to be very
effective at tracing funds in the mixing service Helix [7]. In
addition, mixing services can be fingerprinted based on their
behavior, either through inference based on behavior [8] or
advanced machine learning algorithms like deep autoencoders
trained to detect assumed features of mixers [9].

To our knowledge, few studies have been done on un-
tangling shared send transactions. The most effective and
thorough one we found was [2]. A consumer report with a
less formalized and efficient algorithm called CoinJoinSudoku
[10] finds groups of inputs and outputs where the total input is
equal to the total output through a process of elimination. This
algorithm does not have a formalized method of untangling
transactions and took 30 hours to partially untangle a single
transaction. Our experiments will use [2] as our untangling
implementation for this reason.



Taint analysis methods for Bitcoin have also been re-
searched. Besides work done by [11] for tracking illicit trans-
action activity, taint analysis has also been used to measure
the anonymity of transactions and mixers [12].

III. BACKGROUND

Before we begin discussing the problem formulation, we
must give some background information to lay a groundwork
for understanding our problem.

A. Blockchain

The blockchain is a distributed ledger that stores all trans-
actions throughout Bitcoin’s history. These transactions are
stored on blocks which are generated from miners who solve
cryptographic hash puzzles. Once the next block is mined, all
of Bitcoin’s peers vote in a consensus system to add it to
the chain. If 51% of these peers vote to accept the block, it is
appended to the blockchain and becomes the next block. Once
added, the miner has complete control over what transactions
are processed in their blocks.

B. Transactions

Bitcoin transactions are publicly broadcast and stored in
blocks on the blockchain. These transactions consist of unspent
transaction outputs (UTXOs) which specify how much Bitcoin
is to be transferred and the conditions required for execution.
Once these transactions are created, they are broadcast to
Bitcoin’s network to be verified by miners. Once the trans-
action is put into a block, a script containing these conditions
executes. This script generates outputs and moves the coins
in the UTXOs to those outputs. Transactions may include a
transaction fee which is paid to miners who append these
transactions to their blocks.

Shared send transactions, shown 1, take advantage of multi-
input, multi-output transactions in Bitcoin by using a similar
numbers of input and output addresses and coin amounts. This
is done to obfuscate who owns which inputs and output ad-
dresses and how much each party sent. Due to the complexity
of these transactions, they are created and validated by third
party services. This service can either be run on a server or in
specialized software like Wasabi Wallet. Wasabi Wallet has
a decentralized feature that lets users create, validate, and
conduct a shared send transaction in Bitcoin [13].

IV. SOLUTION: Diffusion
A. Solution Overview

Our solution will use path finding, untangling, and heuris-
tic techniques. The path-finding will consist of building an
address graph and testing if any randomly selected addresses
can connect to each other. We will run our untangling code
on our data and see what many-to-many transactions we could
untangle. If we were unable to untangle a transaction, we will
remove it from the graph. After this, we will run a path-finding
algorithm on the address graph. These will produce a matrix
with the path lengths between each of our addresses and this
will be our experimental result. We will divide our dataset
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Figure 1: Example of a shared send transaction. The brackets
represent which party, in this case Alice and Bob, own which
input and output accounts.

into 7 day periods that are disjoint from each other to see the
differences between each week in our data.

This process will be our control trial. For each of the
heuristics we use, we will apply them to many-to-many
transactions before re-running our untangling and path-finding
system. Once these trials are done, we will compare the
resulting matrix with our baseline matrix and see if the average
path length improved. We will then graph the average path
length of each matrix, the number of path lengths, and the
average length and number of connections for a few specific
addresses of interest. We will also split this dataset into disjoint
7 day periods and compare results to the control trial for each
of those periods to keep our heuristic results consistent with
our baseline results.

B. Diffusion Components

The first component of Diffusion is transaction untangling.
If we detect a many-to-many transaction while parsing our
data, we will attempt to untangle it. If the transaction has
more than a specified number of inputs or outputs, our system
will automatically label that transaction as impractical to
unravel and move onto the next one. If our transaction can be
untangled, we will label it as either simple if no untanglings
are found, separable if a unique one is, and ambiguous if at
least two partitions are found.

Once all transactions are labelled, we will construct an
address graph with addresses as nodes and transactions as
edges for each disjoint 7 day period in our dataset. If the
transaction is ambiguous or impractical to untangle, we will
only insert the addresses and not any edges to make the graph
disjoint. Once our graph is constructed, we will then randomly
select addresses that are 1 transaction away from a many-to-
many transaction but not a part of one. We do not want to
select addresses inside of many-to-many transactions because
they will be overwritten when we apply our heuristics and
untangling. If the next transaction is also a many-to-many
transaction, we will remove it from our list as well.

Once we gather our possible addresses for each disjoint
week, we will randomly select 2000 of them to perform path-
finding. We will run Dijkstra’s Single Source Shortest Path
algorithm on all 2000 addresses to generate a 2000 x 2000



matrix containing the path lengths for all of our selected
addresses. These randomly selected addresses will also be
used to test the effectiveness of our clustering heuristics. This
operation will be done for each disjoint week, producing a
total of 4 2000 x 2000 matrices. This process will be our
control trial, and one that we repeat for each of our heuristics.

For each of our three address clustering heuristics, we will
run them on our dataset once for each disjoint week in our 1
month dataset. These three heuristics are as follows: multi-
input single output transactions, change address clustering,
and coinbase transaction clustering. These heuristics will be
applied separately to see how effective each one was and
enable comparisons of effectiveness between them.

In Bitcoin, multiple inputs flowing to a single output signals
that the owner of the key that produced all those addresses
signed all inputs and the output. This means that this transac-
tion was authorized by a single entity. However, this clustering
heuristic can be prone to error since shared send transactions
have multiple input. To avoid this, we will not cluster any
many-to-many transactions based on their inputs.

The second heuristic, change address detection, clusters
addresses based on certain conditions. An OTC (one-time-
change) address is an address created by a wallet to hold
spare change after a transaction, usually spent in the next
transaction it is used in. They are not meant to be used as
a primary address, so this heuristic will not cluster an address
if it appears in more than two transactions. Our conditions for
change address detection are as follows:

o The transaction does not have the same number of inputs
and outputs (so it is not a shared send transaction)
o Case 1: Transaction has two outputs

— The change address must have 3 more decimal places
than the main address

— Address appears at most twice in our dataset, and is
an output only once inside our data.

o Case 2: Transaction has more than two outputs:

— The address is unique in the inputs (L.E. not a self-
change transaction)

— The address is unique in the outputs

— This output appears at most twice in our dataset, this
is its first appearance, and is an output once and at
most an input once

— The transaction address is in is not a coinbase
transaction

This heuristic is more prone to error than any other we are
testing since it is based on empirical observations and assump-
tions rather than how Bitcoin’s system works. To account for
this, we are adding conditions proposed by [14] to improve the
accuracy and reduce the false negative rate of change address
detection. This will reduce cluster size, but improve accuracy
and enable us to have more confidence in our results.
Heuristic 3 groups the outputs of addresses if they are in
a coinbase transaction. Coinbase transactions are rewarded to
miners for finding the next block, and because they are a coin
generation transaction, have no inputs. Mining is always done

by entities with a shared goal in either single user mining or
mining pools. Because of this, we can assume that all outputs
of a coinbase transaction belong to the same entity and cluster
them accordingly.

For heuristics 1 and 2, if we see that an input of the given
transaction is already in a cluster and we have addresses that
satisfy our conditions, those addresses will go to the same
cluster. If not, we will create a new cluster for the given
addresses. This same process will be done for heuristic 3 for
the outputs of that coinbase transaction. If any of the outputs
are found to belong to a cluster, the outputs will go to that
cluster as well. This will enable us to aggregate clusters and
build larger ones while still retaining accurate results.

C. Methodology

With our solution described, we can now explain our
methodology in detail, as shown in Figure 2. We start our
method on step 1 through downloading block JSON files from
Blockchain.com’s Bitcoin data API. We downloaded 28 days
worth of blocks from their API and saved them for parsing.
In step 2, we parsed each of these JSON files and created
a CSV file containing transaction data. Each CSV file has
the transaction hash, input addresses, input amounts, output
addresses and amounts, and the fee attached to that transaction.
We created a CSV file for each day’s worth of transactions
to enable us to break apart our data by 7 day intervals.
These CSV files form T, our primary data source for all of
our experiments. We then split up T into four disjoint 7-day
periods to perform analysis on individually.

Once we have created T, in step 3, we run our untangling
code on each disjoint 7 day period to classify and untangle
all of our transactions. In step 4, we discard our ambiguous
and intractable transactions and keep the simple and separable
ones. In step 5, we construct our address graph from our
simple and separable transactions, drawing edges if the given
addresses have contacted each other. If the transaction the
addresses were involved in was impractical or ambiguous to
solve, then we do not draw edges between those addresses.
This will create our graph for path finding, Sp.

In step 6, we will randomly select addresses 1 jump away
from addresses in many to many transactions, then filter out
any from our selection that are also involved in many-to-many
transactions. Once that is complete, we will randomly select
2000 addresses from that list, forming the address set A. This
set is what we will use to perform path finding. In step 7,
we will take our addresses A and our graph Sy and perform
Dijkstra’s Single Source Shortest Path algorithm to get each
path length between all 2000 of our addresses. This, in step
8, will produce our matrix M to perform analysis on. We will
apply this process for each of our disjoint 7 day periods from
our 28 days worth of transactions.

In step 9, we will run a selected heuristic on each disjoint
week in T, H, to produce our resulting transaction data, T .
In step 10, T” will then be run through our untangler where
we repeat steps 4 through 8 to get a different matrix, M’.
We will compare this matrix to M and see if there are
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Figure 2: Our methodology

differences between the average path lengths, number of paths,
and changes between specific addresses of interest. This will
be repeated for each disjoint week and compared with other
week’s results to see the differences and similarities. Figure
12 (Appendix A) shows a flowchart of this methodology and
the order of operations.

V. EXPERIMENTS

A. Implementation and Setup

All of our code was written in Python version 3.8.5. Our
graph implementations were completed using networkx, a
graph analysis library available on Python. For our systems, we
used compute nodes provided to us by Boise State University
on their R2 High Performance Cluster. These nodes have
192 gigabytes of RAM and 2 Intel Xeon E5-2680 CPUs,
each with 14 cores that can run up to 2.4 GHz. We ran
our experiments on 28 days of transactions downloaded from
Blockchain.info, totalling 4 7-day periods. Each of these was
analyzed independently of each other to enable quick parallel
computation and inter-week comparisons of results. For our
experiments, we set the maximum number of inputs or outputs
a transaction could have to 8. If the transaction was many-
to-many and had more than 8 inputs or outputs, our code
automatically labelled it impractical and moved into the next
transaction. The source code for our implementation and
experiments can be found here '

ISource Code: https://drive.google.com/drive/folders/
1vjoWwkmeEPFDEH4xIzwxpIKCvmr4iO0P?usp=sharing

B. Heuristics Results

We also performed scalability testing on our heuristics. We
normalized our data into 1 million transaction intervals, from
1 million to 5 million transactions. We ran each heuristic on
these normalized intervals to determine their scalability. The
results from this experiment are shown in Figure 3 below.
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Figure 3: Heuristics Scalability Results

The runtimes above are due to the nature of each heuristic.
Coinbase transactions only have to satisfy one condition
before being grouped, making our clustering simple. Change
addresses have to satisfy multiple conditions, making their
clustering more computationally difficult, but they also pro-
duce smaller cluster sizes, making cluster aggregation easier
for this heuristic than for multi-input clustering. Multi-input
clustering takes the longest time to run and scales quadratically
because of the large cluster sizes it generates, which are
multiple times the size of the largest addresses for change
address (H2) clustering. The supporting evidence for this can
be found below in Table I. For example, on week 3, the max
cluster size of H1 is 121139 addresses, approximately 12.58
times bigger than H2’s largest cluster, which is 9633 addresses.

Table I: The average and max. cluster size for each heuristic
with each week

[ Heuristic | Type [ W1 [ W2 [ w3 [ W4 |
H1 Average | 13.0740 | 13.0610 | 12.3090 | 10.8514
Max 48315 102154 121139 47027
H2 Average | 9.9597 10.6543 | 9.6055 10.0126
Max 16521 4075 9633 5239
H3 Average | 1.0 1.0 1.0 1.0
Max 1 1 1 1

C. Untangling Scalability

To test the scalability of the untangling algorithms, our sys-
tem was executed on inputs of linearly increasing sizes from
one million to five million transactions. These experiments
were run ten times and averaged to produce our scalability
graph. For each test, we recorded the time it took to untangle
transactions, perform address selection, and do pathfinding.
The legend above the graph in Figure 5 shows the color and
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Figure 4: Untangling Scalability Results

shape codes for each statistic. We also include the total runtime
to show how the whole system scales.

Diffusion’s untangling system scales linearly since it pro-
cesses on a transaction-wise basis. Because we multithreaded
our solution and limited the number of inputs and outputs our
untangling code attempts to process, it is able to grow linearly
rather than super-linearly with our data. A slight dip can be
seen on the 3 million transaction interval. This is due to the
pathfinding step taking a only a marginally longer time to
process transactions than it did on the 2 million transaction
mark.

As expected, pathfinding takes the longest period of time
because it finds a path in our address graph for each of the
addresses in the 2000 x 2000 matrix. The untangling step
takes the second-longest amount of time because it untangles,
simplifies, and classifies all transactions it processes, which
is less work than the pathfinding, but more than the address
selection. Our fastest step is also the simplest one, only
randomly selecting addresses from a weakly connected graph.

D. Pathfinding Results

W control [ heuristic 1 heuristic 2 M heursitic 3

weekl week2 week3 weekd

Figure 5: Average path length for each week.

Figure 5 above shows the average path length for each of
the heuristics for each disjoint week we tested. The weeks
are grouped next to each other to make the differences in

the average path length between the control and each of the
heuristic experiments. Figure 1 clearly shows that heuristic 1,
multi-input clustering, had the greatest impact on shortening
the average path length between connectable nodes. Heuristic
2, change address clustering, was significantly less effective
than multi-input clustering, but still had a minor impact on
the average path length. Heuristic 3, coinbase clustering, had
no impact on the average path length compared to the control
because it created small clusters that had no impact whatsoever
on the final result.

Table II: The number of paths found for each week per each
heuristic

Control H1 H2 H3
week 1 1,564,788 1,564,788 1,564,788 1,564,788
week 2 | 1,661,526 | 1,661,526 | 1,661,526 | 1,661,526
week 3 1,587,255 1,587,255 1,587,255 1,587,255
week 4 | 1,633,426 | 1,633,426 | 1,633,426 | 1,633,426

We must note that the number of paths found and the
percentage of connectable pairs did not change between trials
and the control. This is because there are transactions in our
data that were completely disjoint and did not interact with
each other within our disjoint weeks. Clustering will not bring
sets of transactions together that never interacted. Table II
shows the number of paths found for each week for each
heuristic, demonstrating that the heuristics had no effect the
number of paths found in each week.

E. Heuristics Interaction Visualizations

To show how the clusters we created connect to each other
and differ between each heuristic, we made a visualization
tool that shows transactions that happened between clusters
from our data. This tool was built using D3.js force-graph and
deployed on a web server for live viewing. The link can be
found here !. Figures 6,7 below shows these visualizations for
week 3 in our data between June 17th and June 23rd. Note
that the closer the nodes are in the visualization, the more
connections they have with each other and the more central
they are. We also did not create visualizations for coinbase
clustering because of how few connections it made.

Figure 6 shows why the multi-input address clustering was
the most effective in shortening path lengths. This heuristic
created only a few very central clusters that interacted with
dozens of others, allowing for central points to form, shorten-
ing the paths between addresses, creating shorter average path
lengths. These central clusters form a tight-knit community,
with long trailing paths extending outward from them. The
following visualization also shows disjoint communities where
clusters did not transact with each other outside of that
community.

Figure 7 shows the communities formed between clusters
in change address clustering. This heuristic produced fewer
important clusters, resulting in a larger, less centralized mass
in the middle. This explains why the average path lengths

Thttp://mec402.boisestate.edu/blockchain/blockgraph.html
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Figure 7: Interactions between change address clusters

were only marginally better than the control’s, as few central
communities formed in our address graph. Long chains of
clusters that interacted with each other also extend out from the
larger central mass similar to multi-input address clustering.
Many smaller disjoint communities outside of the large central
mass also exist, similar to multi-input clusters.

VI. CONCLUSION AND FUTURE WORK

Shared send transactions are one of the methods for increas-
ing anonymity in Bitcoin’s network and enabling criminals
to evade detection, mixing their dirty coins with others’
clean coins. This presents a problem for taint analysis and
pathfinding in Bitcoin since shared send transactions obfuscate
who owns which coins, presenting a clear need for a method
of using shared send untangling along with connecting ad-
dresses. We demonstrated that this is possible by performing
shared send untangling, discarding ambiguous and impractical
transactions, and building address graphs to perform taint
analysis. To test our methodology, we implemented our system
in Python and downloaded 1 months worth of transaction data,
T, from Blockchain.info’s API to perform analysis, separating
it into four disjoint weeks.

To increase the effectiveness of shared send untangling, we
applied clustering heuristics to our data set T. We found the
multi-input, single-output clustering heuristics to increase the

effectiveness of untangling. We also found that applying the
coinbase clustering heuristic by itself to be ineffective and
produce no clear results, so we recommend using it in tandem
with multi-input clustering to make a larger and clearer picture
of entities in Bitcoin. We have also shown that it is possible
to apply these clusters on a weekly basis rather than against
the whole blockchain.

Our work, Diffusion, could provide a foundation and
methodology to perform shared send untangling, Bitcoin ad-
dress graph construction, and address clustering to give more
insights into shared send transactions and how to untangle
them. Future systems could expand upon this foundation and
build a comprehensive system for untangling shared send
transactions in Bitcoin.

Potential future work could include: investigation into the
identifying characteristics of the different classifications of
transactions to aid in the creation of better informed trans-
action anlysis methods, and more in depth research into
methods of visualizing shared send transactions and other
mixing services to gain better insight into the intricacies of
these transactions.
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