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ABSTRACT: Daily and subdaily precipitation extremes in historical phase 6 of the Coupled Model Intercomparison
Project (CMIP6) simulations are evaluated against satellite-based observational estimates. Extremes are defined as the
precipitation amount exceeded every x years, ranging from 0.01 to 10, encompassing the rarest events that are detectable in
the observational record without noisy results. With increasing temporal resolution there is an increased discrepancy be-
tween models and observations: for daily extremes, the multimodel median underestimates the highest percentiles by
about a third, and for 3-hourly extremes by about 75% in the tropics. The novelty of the current study is that, to understand
the model spread, we evaluate the 3D structure of the atmosphere when extremes occur. In midlatitudes, where extremes
are simulated predominantly explicitly, the intuitive relationship exists whereby higher-resolution models produce larger
extremes (r = —0.49), via greater vertical velocity. In the tropics, the convective fraction (the fraction of precipitation
simulated directly from the convective scheme) is more relevant. For models below 60% convective fraction, precipitation
amount decreases with convective fraction (r = —0.63), but above 75% convective fraction, this relationship breaks down.
In the lower-convective-fraction models, there is more moisture in the lower troposphere, closer to saturation. In the higher-
convective-fraction models, there is deeper convection and higher cloud tops, which appears to be more physical. Thus, the
low-convective models are mostly closer to the observations of extreme precipitation in the tropics, but likely for the wrong
reasons. These intermodel differences in the environment in which extremes are simulated hold clues into how parame-
terizations could be modified in general circulation models to produce more credible twenty-first-century projections.
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climate change is the enhancement of extreme precipitation
around the world. Destructive precipitation events associated
with monsoons, tropical cyclones, and atmospheric rivers have
all received mainstream media coverage in recent years, for
example, in Queensland, Australia, in the austral summer of
2019; multiple North Atlantic hurricanes in the 2017 and 2018
seasons (Risser and Wehner 2017; Kunkel and Champion
2019); and over central England in the boreal summer of 2019.
Events of this magnitude, with precipitation amounts that
historically have been exceeded extremely rarely (e.g., the 10-
or 100-yr event), are projected to become increasingly frequent
in a warming climate (Kao and Ganguly 2011; Neelin et al.
2017; Swain et al. 2018; Norris et al. 2019a). However, detecting
such rare events in the observational record leads to highly
noisy results, that is, events beyond the “cutoff” in the prob-
ability distribution, beyond which the frequency of exceedance
decreases exponentially with precipitation amount (Peters
et al. 2010). Therefore, studies often focus on less rare, but still
highly impactful events, for example, Rx1lday, the 1-yr maxi-
mum of daily precipitation. We hereafter refer to events of this

Multiple studies have showcased the projected enhancement
of extreme precipitation around the globe, for example, Emori
and Brown (2005), Sun et al. (2007), O’Gorman and Schneider
(2009), Kharin et al. (2013), Pendergrass and Hartmann
(2014a,b), Donat et al. (2016), Chen et al. (2019), and Norris
et al. (2019b). The most basic assumption for the enhancement
of extremes is that the atmosphere can hold more moisture in a
warmer climate, so that the most extreme events scale with
warming according to the Clausius—Clapeyron relation, about
7% K~ ! warming (Allen and Ingram 2002; Trenberth et al.
2003), the so-called thermodynamic component. In addition,
changes to circulation may lead to enhancement/weakening of
ascent during the most extreme events, the so-called dynamic
component (Xie et al. 2010; Nie et al. 2018; O’Gorman et al.
2018; Tandon et al. 2018; Norris et al. 2020).

These projections of precipitation extremes are made from
coarse general circulation models (GCMs) with grid spacing
generally 1° or greater. The kinds of events delivering the
greatest precipitation amounts often have a large convective
influence, meaning that the large grid boxes of a GCM are
highly dependent on the convective scheme to generate the
extreme precipitation of interest. Differences between con-
vective schemes in GCMs can result in large differences in
simulated extremes (Wilcox and Donner 2007). In particular,
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on the order of 10% K~ ' warming, similar to the multimodel-
mean value (Pfahl et al. 2017). In general, the higher-resolution
GCMs produce the greatest enhancements of extremes
(Thackeray et al. 2018). This result raises the possibility that
even-higher-resolution global projections would simulate even
greater enhancement of extremes if that were computationally
feasible. This hypothesis gains credibility from regional simu-
lations, which produce a larger future increase in extreme
precipitation than the GCMs (Jacob et al. 2014).

Although GCMs are clearly less equipped to produce reli-
able projections of extremes than convection-permitting sim-
ulations, they remain our only option for providing the global
perspective on future hydrological intensification. Convection-
permitting climate-change projections are currently only
computationally affordable over small regions, and it is unclear
to what extent the results from such experiments apply glob-
ally. Hence, it is prudent to examine GCMs’ performances in
simulating extremes to give perspective on their future pro-
jections thereof. Moreover, it is well known that simulated
precipitation extremes are highly variable across GCMs
(Sheffield et al. 2013; Sillmann et al. 2013a; Jiang et al. 2015;
Kim et al. 2019), which raises questions regarding the drivers of
such uncertainty. Can we understand the intermodel differ-
ences in the atmospheric environment in which extremes are
simulated and, hence, tweak the GCMs to produce more
credible projections of extremes?

The new CMIP6 ensemble presents an opportunity to
compare a suite of state-of-the-art GCMs, both to one another
and to the observations. The previous CMIP5 ensemble was
analyzed in multiple studies of twenty-first-century precipita-
tion extremes (Sillmann et al. 2013b; Kharin et al. 2013;
Pendergrass and Hartmann 2014a.b; Donat et al. 2016; Pfahl
et al. 2017). These extremes were evaluated in the literature to
some extent. Sillmann et al. (2013a) evaluated days of >95th-
percentile precipitation, showing reasonable agreement for
most of the global land. These daily extremes have been ex-
amined in closer spatial detail, for example, over North
America (Sheffield et al. 2013; Wuebbles et al. 2014) and Asia
(Jiang et al. 2015; Kim et al. 2019). In general, certain models
more closely match the observations in some locations and
other models perform best in other locations, with the spatial
patterns of extremes dependent on model resolution (Kim
et al. 2019). Moreover, there are some areas where model
spread in extremes is larger than others (Jiang et al. 2015).

These studies evaluated extremes at daily or greater inter-
vals, but we are unaware of any studies evaluating subdaily
extremes. The motivation for studying subdaily intervals is that
daily data do not adequately represent transient eddies (Seager
and Henderson 2013). This issue implies that GCMs may fail to
capture the intensity of the most extreme precipitation, but
that averaged daily or over longer intervals, the errors may be
attenuated or disappear, leaving the impression that the
models are accurately simulating extremes. Such an effect is
plausible due to the overestimation of low precipitation rates
and underestimation of high precipitation rates in GCMs (Sun
et al. 2006). The changing intensity of precipitation almost
exclusively determines the future changes to precipitation ac-
cumulations, defined as the integral of precipitation over the
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duration of an event, with changes to duration being of sec-
ondary importance (Dwyer and O’Gorman 2017; Norris et al.
2019a). Therefore, an evaluation of the intensity of extreme
precipitation in CMIP6 models in the present climate is vital
for determining the reliability of their projections of future
extremes over various intervals (hourly, daily, monthly, etc.).

Because GCMs inevitably vary in their simulated magni-
tudes of extremes, we seck to understand what drives the
intermodel spread. The local moisture budget can be approx-
imately closed for precipitation extremes in GCMs (Seager
et al. 2014; Norris et al. 2019a,b, 2020), implying that errors in
precipitation can be attributed to different terms in the mois-
ture budget equation, and ultimately to thermodynamic/
dynamic factors, that is, moisture versus circulation. To
perform a 3D moisture budget at all locations for all events in
all models would be extremely computationally demanding.
Nevertheless, analyzing certain variables at selected vertical
levels can provide an indication of the atmospheric environ-
ment in which various precipitation intensities are generated
in a given model. Thus, the main novelty of the current study is
to calculate the vertical profiles of temperature, specific and
relative humidity, and vertical velocity, conditioned on ex-
treme precipitation, in the models for which they are archived.
However, if precipitation is generated by the convective
scheme then these variables may not be so relevant to the
magnitude of precipitation. Therefore, we also investigate the
breakdown into convective and nonconvective precipitation in
the GCMs, conditioned on total precipitation.

In this study, we calculate the tail of the PDF of precipita-
tion, both daily and subdaily, for the recent historical climate
(1979-2014) in CMIP6 models for which the relevant data are
available. We compare these results to those of available ob-
servational precipitation estimates. Furthermore, in the GCMs
we calculate convective versus nonconvective precipitation,
and the vertical profiles of temperature, specific and relative
humidity, and vertical velocity, all conditioned on recurrence
intervals of total precipitation. In doing so, we reveal differ-
ences among models in the atmospheric environment in which
the extremes are generated.

2. Data and methodology
a. Recurrence intervals of precipitation

Relevant data from all CMIP6 models that were archived on
https://esgf-node.llnl.gov/search/cmip6/ on 14 March 2020 and
could be downloaded without server errors (Table 1) are uti-
lized in this study. We bilinearly interpolate all output from the
models’ native grids (Table 1) onto a 1° latitude—longitude grid
before performing the analysis. For each model, the first real-
ization is analyzed over the last 36 years of the historical sim-
ulations (1979-2014). This period is short enough to be
considered a stationary climate, that is, any trends in precipi-
tation extremes are small compared to the magnitudes of the
extremes. However, following Norris et al. (2019a, 2020), the
time series at the 3 X 3 grid points surrounding each grid point
(after interpolation to 1°) are combined to form a 324-yr
dataset (36 years X 9 grid points). The purpose of this
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TABLE 1. Available data utilized from each CMIP6 model. The variables are precipitation (P), convective precipitation (P.), 3D temperature (7),
3D specific humidity (g), 3D relative humidity (RH), and 3D vertical pressure velocity (w). All data are the time mean over the given interval. Models
are listed in ascending order of native grid spacing (*‘Res.”), where native grid spacing is calculated as [(360/Nlon)(180/Nlat)]™> and Nlon and Nlat are
the number of grid points in the x and y directions (the values in the *Native grid” column). Note that the given native grid spacing is not precise
where the grids are uneven with latitude. For models whose native grid is reduced Gaussian, i.e., Nlon is greater at the equator than poles, the Nlon at

the equator is listed and used for the calculation. All models were bilinearly interpolated onto a 1° lat-lon grid before performing the analysis.

P P, T q RH o
Modeling center Model Native grid Res. Day 6h 3h Day Day Day Day Day
Centre National de Recherches CNRM-CM6-HR 720 X360 05 L v v v v
Meteorologiques, France
Met Office Hadley Centre, United HadGEM3-GC31-MM 432 x324 0.7° « — — v v v -
Kingdom
EC-Earth Consortium, Sweden EC-Earth3 512x2% 077 & F — & —
EC-Earth Consortium, Sweden EC-Earth3-Veg 512%x25%6 077 f F & v v v v
Alfred Wegener Institute, Germany AWI-CM 384 x192 09 « S S S - — — —
Max Planck Institute for Meteorology, MPI-ESM1-HR 384 %192 09 « S & v v v v
Germany
Geophysical Fluid Dynamics Laboratory, GFDL-CM4 360 x 180 1.0° « v v v v
United States
Geophysical Fluid Dynamics Laboratory, GFDL-ESM4 360 x180 100 & & S @ — @ — @ — — —
United States
National Center for Atmospheric CESM2 288 x192 1.1° @ — — v v v v
Research, United States
National Center for Atmospheric CESM2-WACCM 288 %192 1.1° « — — v v v v
Research, United States
Norwegian Climate Center, Norway NorESM2-MM 288 %192 1.1° « — — v v v v
Seoul National University, South Korea ~ SAMO-UNICON 288192 1.1° « f v v v v
Beijing Climate Center, China BCC-CSM2 320x160 1.1° « & & v v v v
Meteorological Research Institute, Japan MRI-ESM2 320x160 1.1° « & & v v v v
Centre National de Recherches CNRM-CM6 256 x128 14° & & & S v v
Meteorologiques, France
Centre National de Recherches CNRM-ESM2 256 x128 14° & & & S v v
Meteorologiques, France
Japan Agency for Marine-Earth Science  MIROC6 256 x128 14° & f v v v v
and Technology, Japan
Commonwealth Scientific and Industrial ~ACCESS-CM2 192x144 15  « « v v v v
Research Organization, Australia
Commonwealth Scientific and Industrial ~ACCESS-ESM1 192x144 15 & & & & v v
Research Organization, Australia
Met Office Hadley Centre, United HadGEM3-GC31-LL 192 x144 15 « — — v v v v
Kingdom
National Institute of Meteorological KACE 192 x144 15  — — & — — — —
Sciences, South Korea
Met Office Hadley Centre, United UKESM1 192 x144 15  — — v v v v
Kingdom
Institute for Numerical Mathematics, INM-CM4 180 x120 1.7° « — — v v v v
Russia
Institut Pierre Simon Laplace, France IPSL-CM6A 144x143 18 « v v v v
Max Planck Institute for Meteorology, MPI-ESM-HAM 192x96 19° « & & v v v v
Germany
Max Planck Institute for Meteorology, MPI-ESM1-LR 192x96 19° « & & v v v v
Germany
Nanjing University of Information NESM3 192x96 19° « & & v v v v
Science and Technology, China
Norwegian Climate Center, Norway NorCPM1 44 x96 2220  — — — — — — —
Norwegian Climate Center, Norway NorESM2-LM 144x96 22° « — — v v v v
Goddard Institute for Space Studies, GISS-E2 14490 22° « & & v v v -
United States
Beijing Climate Center, China BCC-ESM1 128x64 28 « — — v v v v
Canadian Centre for Climate Modeling ~ CanESM5 128x64 28 « — — v v v v
and Analysis, Canada
Japan Agency for Marine-Earth Science MIROC-ES2L 128x64 28 & & v v v v

and Technology, Japan
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TABLE 2. Observational datasets utilized in this study. All observational datasets were bilinearly interpolated onto a 1° lat-lon grid and
aggregated to 3-hourly before performing the analysis.

Domain Period Native grid spacing Output frequency Reference
TRMM 3B42 50°N-50°S 1998-2017 0.25° 3h Huffman et al. (2007)
PERSIANN-CCS 60°N-60°S 2003-18 0.04° 3h Mahrooghy et al. (2012)
CMORPH v0 60°N-60°S 2003-16 0.25° 3h Joyce et al. (2004)
GSMaP 60°N-60°S 2000-18 0.1° 1h Kubota et al. (2007)

method is to generate more robust statistics for rare events
over dynamically similar locations. To ensure that one reali-
zation is sufficient for robust statistics, we choose four models
archiving at least 10 realizations (CanESMS5, IPSL-CM6A,
MIROCS6, and MPI-ESM1-LR) to compare the results across
the first 10 realizations.

Percentiles of daily, 6-hourly, and 3-hourly precipitation are
calculated for each model based on this 324-yr time series in
terms of recurrence interval, that is, the average period be-
tween exceedances of a given magnitude, following Norris
et al. (2019a, 2020). The method of aggregating over 3 X 3 grid
points makes very little difference to the magnitudes of the
calculated recurrence intervals, but significantly smooths the
results for high recurrence intervals (Norris et al. 2019a), eas-
ing interpretation. The following formula is used to calculate
the sets of recurrence interval, ¢;, at each 1° grid point, where ¢
is the number of years for the ith recurrence interval:

e, =100 fori=0,1,2,....12. (1)

The ¢ notation follows our previous studies in which we ana-
lyzed precipitation in the same framework (Norris et al.
2019a,b, 2020). This formula generates a set of recurrence in-
tervals increasing exponentially from 0.01 years (3.65 days,
equivalent to the 73rd percentile of daily precipitation, the
93rd percentile of 6-hourly precipitation, and the 97th per-
centile of 3-hourly precipitation) to 10 years (equivalent to the
99.973rd percentile of daily precipitation, the 99.993rd per-
centile of 6-hourly precipitation, and the 99.997th percentile of
3-hourly precipitation). The precipitation magnitude corre-
sponding to the e-yr recurrence interval is calculated at each
grid point by first sorting all precipitation ” magnitudes from
the given model over the nine surrounding grid points in as-
cending order. Given that there is a 324-yr dataset at each grid
point, the precipitation magnitude corresponding to the ¢, re-
currence interval is given by the 324/e;th greatest (rounding to
the nearest integer) P magnitude in the dataset. For example,
the 0.01-, 0.1-, 1-, and 10-yr events are given by the 32 400th,
3240th, 324th, and 32nd greatest P magnitudes.

These statistics are not equivalent to those derived from
extreme value theory (EVT: Coles 2001). For example, our
1-yr event is the magnitude that is exceeded on average once
per year, whereas Rx1day from EVT takes the maximum from
each year of data and then calculates the average annual
maximum over the full period. The reason for using the
recurrence-interval method as described above is that in this
study we also condition other atmospheric variables on the
given recurrence intervals of precipitation (see section 2c).
Hence, we require a large sample size for each recurrence
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interval (e.g., calculating some atmospheric variable based
only on days of Rxlday precipitation would lead to noisy re-
sults), which is achieved as follows.

To increase the sample size for each recurrence interval, the
ith recurrence interval is calculated by averaging over the
probability distribution between the [i — (1/2)]th and [i + (1/2)]th
recurrence intervals. In particular, the precipitation magnitude
corresponding to the ¢;-yr recurrence interval is calculated by
averaging between the 324/e; (1/2)th and 324/e; | (12)th great-
est P magnitudes in the dataset, where e;_(12) and €;,(12) are
calculated by replacing i by i — (1/2) and i + (1/2) in (1). This
method ensures that all values in the probability distribution of P
between the ith and (i + 1)th recurrence intervals are entered
into either the ith or (i + 1)th set. The term P° denotes the
precipitation amount that is exceeded on average every e; years,
calculated by averaging between the [{ — (1/2)]th and [{ + (1/2)]th
recurrence intervals. Because of the imprecision of this method,
we compare our results of precipitation recurrence intervals to
those calculated based on block maxima (e.g., Rxlday and
similarly for other recurrence intervals).

b. Observational precipitation estimates

The same analysis is applied to available near-global, grid-
ded datasets of precipitation with a data period of at least
10 years. Just observational products that provide precip-
itation estimates at 3-h or shorter intervals are utilized, so
that the subdaily extremes in the models can be evaluated.
These criteria restrict the analysis to the Tropical Rainfall
Measuring Mission (TRMM) 3B42, Precipitation Estimation
from Remotely Sensed Information using Artificial Neural
Networks—Cloud Classification System (PERSIANN-CCS),
NOAA CPC Morphing Technique (CMORPH), and Global
Satellite Mapping of Precipitation (GSMap), which are all
satellite-based products. Givenits two decades of data and high
temporal resolution, TRMM is widely used to evaluate rainfall
statistics (e.g., Liu and Allan 2012; Behrangi et al. 2012; Tan
et al. 2015; Kooperman et al. 2018). However, given the large
discrepancies often seen between precipitation datasets (Sun
et al. 2018), we include the additional products to better sample
observational uncertainty. The highest available resolution
dataset is used in each case, but bilinearly interpolating onto a
1° grid, as with the models. For each product, the same ag-
gregation of the full data period over 3 X 3 grid points is per-
formed to generate a dataset of 9Y years, where Y is the total
number of years analyzed; ¥ varies between products (14-20
years; Table 2).

For each dataset, the same recurrence intervals of P are cal-
culated at each 1° grid point as in (1), where P is calculated by
averaging between the 9Y/e;_;5th and 9Y/e;(12)th greatest
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P magnitudes (daily, 6-hourly, and 3-hourly) in the dataset.
Missing data in the observations are treated as zeros. As such, a
significant fraction of missing data would impact the calculated
recurrence intervals. However, in all the observational datasets
the fraction of missing data is very small, with all datasets
containing <0.5% missing data over almost the entire over-
lapping domain (50°N-50°S; Fig. §1 in the online supplemental
material). For example, with 0.5% missing data at some grid
point, our identified 1-yrevent is really the 0.995-yr event. Hence
the missing data have a negligible impact on our results.

The data periods for the observational products are much
shorter than that analyzed for the model data (36 years). The
comparison between models and observations could be un-
representative, for example, because the observational period
may belong to a specific phase of a low-frequency mode of
variability. Therefore, we also calculate recurrence intervals of
all models and observational datasets based on the period over
which all datasets overlap (2003-14) for verification. Because
the models are coupled, evaluating the same period of time
between models and observations does not imply a fair com-
parison. We acknowledge the caveat that AMIP models with
torced SSTs would allow for a more direct comparison with
observations. However, AMIP models also contain some ma-
jor precipitation biases associated with CMIP models, such as
the double ITCZ bias and equatorial Pacific cold tongue bias
(e.g., Zhang et al. 2007; Chikira 2010; Li and Xie 2014). This
study evaluates precipitation extremes in CMIP models only
because these are the models that are required to make future
projections thereof.

c. Additional variables conditioned on daily precipitation
recurrence intervals

Additional variables are analyzed to investigate the state of
the atmosphere associated with the recurrence intervals of
precipitation identified by Eq. (1). To ease computational de-
mands, this is done just for daily model data. The following
variables are analyzed: the convective component of precipi-
tation P., 3D temperature T, 3D specific humidity g, 3D rela-
tive humidity RH, and 3D vertical velocity in pressure
coordinates w. All data are included where both the relevant
daily variable and daily precipitation were archived for the
same model and realization (Table 1). The 3D variables are
archived for daily data at 1000, 850, 700, 500, 250, 100, 50, and
10 hPa, but we discard the 50- and 10-hPa levels to focus on
tropospheric processes. Each of these variables are condi-
tioned on the same recurrence intervals of daily precipitation,
and subject to the same averaging over the probability distri-
bution between the [ — (1/2)]th and [i + (1/2)]th recurrence
intervals described in section 2a. The term X“ denotes some
variable, X, conditioned on the ejth recurrence interval of
P, calculated by averaging X over the probability distribution
of P between the [i — (1/2)]th and [i + (1/2)]th recurrence in-
tervals. For example, P! does not denote recurrence intervals
of convective precipitation, but convective precipitation con-
ditioned on the e-yr recurrence interval of total precipitation.
For 3D variables, each pressure level is analyzed individually,
for example, T, denotes 850-hPa temperature conditioned on
the e-yr recurrence interval of precipitation.
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The same 3D variables are also analyzed in the European
Centre for Medium-Range Weather Forecasts (ECMWF)
ERAS reanalysis (ECMWF 2017). ERAS replaces ECMWEF’s
ERA-Interim reanalysis, with a greater diversity of assimilated
observations and updated data-assimilation techniques. ERAS
is archived hourly at 0.25° grid spacing globally, but we inter-
polate to 1° and calculate daily means to match the models
before performing the analysis. The same period is analyzed as
for the models (1979-2014) at the same six pressure levels. The
3D variables in ERAS5 are conditioned on ERAS daily pre-
cipitation at the same recurrence intervals identified by Eq. (1)
with the exact same methodology as described for the models.
Because ERAS is itself primarily model output, we compare it
to the models not as an absolute truth, but as a frame of ref-
erence. Because of its higher resolution than the GCMs and
use of data assimilation, it is likely to be closer to reality.

3. Evaluation of precipitation recurrence intervals
a. Daily extremes

Extremes of daily precipitation in CMIP6 models are eval-
uated in Figs. 1a and 1b, averaged over the tropics (Fig. 1la) and
midlatitudes (Fig. 1b). There is a large spread across models,
particularly with increasing recurrence interval, with the 10-yr
event varying from 45 to 207 mm day ' in the tropics and from
35 to 74 mm day ! in the midlatitudes. In the tropics, the large
span of this range is largely attributable to a single model,
BCC-CSM2, whose extremes above the 1-yr event are nearly
double those of any other model. The multimodel median
(MMM) is consistently lower than the observational estimates,
with the discrepancy increasing with recurrence interval. [In
the tropics, the MMM is 22% less than the observational me-
dian (OM) for the 0.1-yr event and 46 % less for the 10-yr event,
and in the midlatitudes the MMM is 4% less than the OM for
the 0.1-yr event and 35% less for the 10-yr event.] The obser-
vational spread is small compared to the model spread, but like
the model spread it increases with recurrence interval (for the
10-yr event, the observational spread is 125-164mm day '
the tropics and 68-87mm day ™' in the midlatitudes). Because
of this relatively small observational spread, even at high re-
currence intervals, the comparison between the models and
observations reveals a systematic difference between them:
only the wettest models, excluding the BCC-CSM2 in the
tropics, are comparable to the observations for high recurrence
intervals of daily precipitation. Note that these statistics com-
bine land and ocean. But similar results are found comparing
global land and ocean, albeit with slightly higher magnitudes
for ocean than land (Fig. 82, top row).

The global distribution of daily extremes is compared be-
tween the models and observations in Figs. 2a and 2b. The 1-yr
event is shown, which is qualitatively representative of the
model/observational differences in the rest of the PDF, ac-
cording to Figs. la and 1b. Despite the underestimate in
magnitude (note the halved color scale for the models com-
pared to observations), the global distribution of the MMM
matches the observations well, with a spatial correlation of
r = 0.97 between the MMM and the OM. According to the

in
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FI1G. 1. Precipitation as a function of recurrence interval compared between models and observations. Shown
for recurrence intervals of (a),(b) daily, (c),(d) 6-hourly, and (e),(f) 3-hourly precipitation, averaged over the (left)
tropics (all grid pointsin the range of 15°S-15°N) and (right) midlatitudes (all grid points in the range of 35°-50°in
each hemisphere). Each individual model is shown in gray and the multimodel median is in black (based on the
values of the gray curves at each recurrence interval). Each individual observational product is shown in pink, and
the observational median is in red (based on the values of the pink curves at each recurrence interval). Note the
smaller number of models for subdaily (21) than daily (33) precipitation (Table 1).
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F1G. 2. The 1-yr precipitation amount, comparing the (left) multimodel median (the median of all models at each
grid point) and (right) observational median (the median of the four observational products). Shown are the 1-yr
(a),(b) daily precipitation, (c),(d) 6-hourly amount, and (e),(f) 3-hourly amount. Note the smaller number of models
for subdaily (21) than daily (33) precipitation (Table 1). Note the halved color scales for models compared to

observations.

observations, the MMM is accurate in capturing the observed
maxima over the ITCZ, SPCZ, North Atlantic storm track, and
various monsoon regions (Asian, West African, and South
American). The spatial distribution of extremes is consistent
among observations for the 1-yr event (Fig. §3; albeit with a
slightly lower spatial correlation between PERSIANN-CCS
and the OM than for the other observations, due to a discon-
tinuity over the South Pacific, likely related to satellite cover-
age). The models generally capture similar spatial patterns to
one another (Fig. S3), where the spatial correlations with the
OM are between 0.92 and 0.97. This range reflects that some
models are better than others at capturing certain regional
features, compared to the observations. Note that the obser-
vations cover a shorter period than the models. However, the
spatial distributions for the 1-yr event based on the overlapping
data period for all datasets (2003-14) are indistinguishable
from those based on the differing data periods (cf. Figs. S3 and
S4). We also note that the model results are based on a single
realization for each model. But for four models archiving at
least 10 realizations, the results for the 1-yr event are indis-
tinguishable between realizations (Fig. S5) and similarly for
other recurrence intervals (not shown).

As described in section 2, our method of calculating recur-
rence intervals is imprecise. In Fig. S6 we compare the PDF of
daily precipitation (top row), as described above and employed
in this study, with an otherwise-equivalent plot calculated using
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block maxima (bottom row). For example, the 1-yr event using
the block-maxima method is simply Rxlday (see caption for
details). Averaged over the tropics and midlatitudes, there is
little difference in the resulting precipitation magnitudes be-
tween the two methods, except for the most extreme events
where the block-maxima method returns noisy results due to
low sample sizes. We also show the spatial distributions of
Rxl1day for each observational dataset and model in Fig. §7,
which are highly similar to those of the 1-yr event in Fig. §3
(i.e., calculated by the method employed in this paper). Thus,
our method returns similar results of precipitation extremes to
those obtained by extreme value theory. We employ our
method because a larger sample size is required to condition
other atmospheric variables on precipitation (section 5).

b. Subdaily extremes

With decreasing time interval (from daily to 3 hourly), the
underestimate of the simulated magnitude of extremes greatly
increases (Fig. 1, transition from top to bottom panels).
Averaged over the tropics, the MMM is 46% less than the OM
for the 10-yr event of daily precipitation, 69% less for the 10-yr
event of 6-hourly precipitation, and 78% less for the 10-yr
event of 3-hourly precipitation. Averaged over the midlati-
tudes, the MMM is 35% less than the OM for the 10-yr event of
daily precipitation, 52% less for the 10-yr event of 6-hourly
precipitation, and 62% less for the 10-yr event of 3-hourly
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precipitation. Similarly to daily extremes, the equivalent land-
versus-ocean statistics for subdaily extremes show only slightly
higher magnitudes for ocean than land (Fig. S2, second and
third rows).

For 3-h extremes, only the BCC-CSM2 is of comparable
magnitude to the OM in the tropics (Fig. 1e: BCC-CSM2 is the
model that shows about double the magnitude of all others).
Meanwhile, not a single model is of comparable magnitude to
the OM in the midlatitudes (Fig. 1f). The previous generation
of BCC_CSM is also a major outlier among CMIP5 models in
terms of tropical precipitation extremes (not shown). The fact
that this model stands out in the magnitude of tropical, but not
midlatitude, precipitation extremes suggests that the deep
convective scheme that it utilizes is responsible for its realism
in the tropics. [The model uses the Wu (2012) scheme, which
was slightly modified for the current BCC-CSM2—Wau et al.
(2019).] However, the precipitation extremes in BCC-CSM2
are significantly stronger than its corresponding Earth System
Model (ESM). This difference highlights that a particularly
low-resolution model cannot simulate sufficiently large ex-
tremes (2.8° and 26 vertical levels in ESM1 vs 1.1° and 46
vertical levels in CSM2), even with a convective scheme that is
conducive to extreme precipitation.

The global distributions of 6- and 3-h extremes further il-
lustrate the major underestimate of the models, compared to
the observations (Fig. 2, second and third rows; shown for the
1-yr event). The global patterns are similar, with a spatial
correlation of r = 0.95 between the MMM and OM for both
6- and 3-h extremes. However, there is a lack of latitudinal
variation in magnitude in the MMM, uniformly about 20 mm
(6h) " for 6-h extremes and about 15mm (3h)~' for 3-h ex-
tremes (note the halved color scale for the models compared to
observations). By contrast, the OM shows well-defined en-
hancement in the tropics in the range of about 60-90 mm
(6h)”" and 40-60mm (3h)~". As the spatial distributions in
individual observations and models for 6-h (Fig. S8) and 3-h
(Fig. 89) extremes illustrate, even the wettest models are much
drier than the observations in subdaily extremes. The one ex-
ception is BCC-CSM2 in the tropics. There are also lower
spatial correlations between individual models and the OM
(Figs. S8 and 89) than for daily extremes (Fig. S3).

These comparisons indicate that CMIP6 models are unable
to simulate realistic magnitudes of the most extreme precipi-
tation intensities (i.e., subdaily precipitation), both in and out
of the tropics. The better agreement for daily extremes must be
due to error cancellation when averaged over the longer in-
terval. This feature is illustrated in Fig. 3 in which 3-hourly
precipitation during an extreme of daily precipitation is plotted
at three randomly sampled locations in the tropics (top row)
and three in the midlatitudes (bottom row). Given that each
recurrence interval is calculated by averaging over part of the
PDF of precipitation (section 2a), the 1-yr event of precipita-
tion in this study is the mean of multiple events. For this
analysis, for the sake of illustration, we randomly sample one of
the many 1-yr events at each location. We also reduce the
CMIP6 ensemble to 10 randomly selected models, so as to
make the figure legible. This figure shows how, when a daily
extreme occurs, precipitation is relatively sporadic in the
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observations (red curves) and relatively uniform in time in the
models (black curves). The contrast in the temporal distribu-
tion of 3-hourly precipitation between the observations and
models is quantified at each location by the dispersion (stan-
dard deviation/mean) of 3-hourly precipitation. In the tropics,
the dispersion of about 1 in the observations and about 0.5 in
the models illustrates the large variance in the observations,
relative to the daily mean, and small variance in the models.
In the midlatitudes, there is less contrast between the models
and observations, with a dispersion of about 1 in the obser-
vations and about 0.75 in the models. This analysis highlights
that, on a day in which there is an extreme of 3-hourly pre-
cipitation, the models significantly underestimate that 3-h
total, but overestimate somewhat the weaker precipitation
that falls in the remaining 21 h of the day, so that the daily
total is more realistic. These results are consistent with the
well-documented overestimation of low precipitation rates
and underestimation of high precipitation rates in GCMs
(Sun et al. 2006).

Although the models are closer to the observations for daily
than subdaily precipitation extremes, some models more ac-
curately represent these extremes than others (Fig. 1). We
subsequently further investigate this intermodel spread by
analyzing other atmospheric variables conditioned on the
given recurrence intervals of precipitation. To ease computa-
tion demands of multiple 3D variables for each model, we
hereafter analyze just daily extremes.

4. The roles of convective and nonconvective
precipitation in daily extremes

To investigate the model spread in precipitation extremes,
we begin by calculating the fraction of extreme precipitation
that is simulated by the convective scheme, the convective
fraction, across models. For daily precipitation, convective
fraction is generally greater in the tropics than midlatitudes
across recurrence intervals (Figs. 4a.b). This is expected due to
the greater occurrence of large-scale precipitation due to
frontal systems in midlatitudes. In the tropics, in about half the
models, there is a striking reduction in the convective fraction
from the 1072- to the 10-yr event (Fig. 4a). In the other half of
models, convective fraction increases with recurrence interval.
Consequently, the MMM of convective fraction is near con-
stant with recurrence interval. Above about the 0.1-yr event,
there is a clear divide between the two halves of the ensemble,
with 17 models about 80% convective or greater and 14 models
about 60% or less. One might expect that this divide arises
from native model resolution, but in both the tropics and
midlatitudes, the convective fraction across models is unre-
lated to resolution (Figs. 4c.d; shown for the 1-yr event but
other recurrence intervals are similar). This implies that the
specific convective schemes employed in each model are re-
sponsible for this divide in the ensemble.

The spatial distributions of the medians of both subsets of
the ensemble highlight the distinction between the two subsets
(Fig. 5). This figure shows the 10" %yr (which is the average
over such a large number of events that it may be considered a
proxy for the mean climate) and 10-yr (the highest recurrence
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F1G. 3. The time series of 3-hourly precipitation during daily precipitation extremes at six different locations. Each panel represents a

different random grid point in the (top) tropics (between 15°N and 15°S) and (bottom) midlatitudes (between 35° and 50° in each
hemisphere). Each curve represents an individual observational dataset (red) or model (black), and we randomly select just 10 models
(among those archiving 3-h precipitation) for the sake of legibility. Each curve represents a day of extreme precipitation in the given
dataset, randomly sampled from the events contributing to the 1-yr daily precipitation at the given grid point (see section 2a),
breaking down that day of extreme precipitation into 3-hourly amounts. The observations contain some missing data. This figure
illustrates the more uniform temporal distribution of 3-hourly precipitation during daily extremes in the models than observations.
Each panel gives the dispersion (standard deviation/mean) of 3-hourly precipitation during the given day in the observations vs
models. The value given for models is obtained by calculating the dispersion in each model and then averaging over all models, and

similarly for observations.

interval analyzed) events. In the low-convective models,
throughout the tropics there is a transition from large-majority
convective to large-majority nonconvective with increasing
recurrence interval (cf. Figs. 5a.c). This is associated with the
tendency of models to produce precipitation at the grid scale
in strong tropical disturbances (e.g., Mapes et al. 2009;
Klingaman et al. 2017). In the high-convective models, the
large majority of convective precipitation is just in the deep
tropics at low recurrence intervals (Fig. 5b). But at high re-
currence intervals, this feature is more widespread, from about
30°N to 30°S (Fig. 5d). The spatial distributions of convective
fraction for all models for the 10 *-yr (Fig. $10) and 10-yr
(Fig. S11) events further illustrate this wide range across
models, particularly for the higher recurrence interval.

This large spread in convective fraction in the tropics is a
large factor in the magnitude of the daily extremes across
models. For the 1-yr event, the regression between convective
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fraction and precipitation amount is plotted, averaged over the
tropics (Fig. 6c) and midlatitudes (Fig. 6d). In the tropics,
among the half of models with <60% convective fraction
previously noted, precipitation amount decreases with con-
vective fraction. Among these models, those with lower con-
vective fraction better match the observations (red lines, OM
in bold). Just considering these 14 models, there is a correlation
of r = —0.63 between convective fraction and precipitation
amount. However, among the 17 models with >75% convec-
tive fraction, this relationship breaks down, with a large spread
in precipitation amount among this subset. For the full en-
semble, in the tropics the correlation is —0.32.

In the midlatitudes, convective fraction and precipitation
amount are weakly correlated (r = 0.21; Fig. 6d). (Note, the x
axis in Fig. 6d is the average convective fraction in the mid-
latitudes, hence not the same as the x axis in Fig. 6c. But,
broadly speaking, the same models have high vs low convective
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FIG. 4. (a).(b) The convective fraction (P¢/P¢) as a function of recurrence interval of daily total precipitation across models. Each
individual model is shown in gray (the 31 models that archive convective precipitation; see Table 1) and the multimodel median is in black
(based on the values of the gray curves at each recurrence interval). (¢),(d) Convective fraction for the 1-yr event of daily precipitation as a
function of native model grid spacing (calculated in Table 1) in the same models. The least squares regression line is shown, along with the
Pearson rank-order correlation coefficient . Each model is averaged over the (left) tropics (all grid points in the range of 15°S—-15°N) and
(right) midlatitudes (all grid points in the range of 35°-50° in each hemisphere). The colors and symbols for each model in (¢) and (d) match
those in other figures.

fraction in both the tropics and midlatitudes.) However, in the The dependence of midlatitude extreme precipitation on
midlatitudes, the more important factor in determining pre- resolution, and of tropical extreme precipitation on convective
cipitation amount is native model resolution, with a corre- fraction, is shown in terms of spatial patterns in Fig. 7. In
lation between grid spacing and 1-yr precipitation amount midlatitudes, the 10 highest-resolution models are generally
of —0.49 (Fig. 6b). This is to be expected, given the lower about 1Smmday ' wetter than the 10 lowest-resolution
convective fraction in the midlatitudes than tropics models, with the differences particularly pronounced over
(Figs. 4a.b). Hence, the higher-resolution models are closer the storm tracks (cf. Figs. 7a.b). Meanwhile, in the tropics, the
to the observations (red lines). By contrast, in the tropics, 14 models with convective fraction < 60% are broken down
grid spacing and precipitation amount are uncorrelated intoseven models with <45% convective fraction (Fig. 7c) and
(r = —0.13; Fig. 6a). This illustrates how the differing con- seven models with 45%-60% convective fraction (Fig. 7d).
vective schemes between models prevent the intuitive re- Those with <45% convective fraction are generally about
lationship between grid spacing and precipitation amount 15 mmday ' wetter in the deep tropics than those with 45 %-—
from emerging in the tropics. 60% convective fraction. This illustrates the negative correlation
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FIG. 5. The convective fraction (P4/P¢) conditioned on the (top) 1072 and (bottom) 10-yr event of daily total
precipitation. (a),(c) The median at each grid point of the 14 models that for the 1-yr event have a convective
fraction < 60%, averaged over the tropics (those below the regression line in Fig. 4¢). (b),(d) The median of the 17
models with convective fraction > 75% for the 1-yrevent, averaged over the tropics (those above the regression line

in Fig. 4c).

between convective fraction and precipitation amount among
models with <60% convective fraction (Fig. 6c). The models
with >75% convective fraction are broken down into the eight
wettest (Fig. 7e) and nine driest (Fig. 7f), that is, those above
and below the regression line in Fig. 6¢. This separation il-
lustrates the wide range of tropical precipitation amount
among models with a large convective fraction, with the me-
dian of the wetter models about 50% greater than the median
of the drier models.

Thus, a relationship emerges in the tropics that, up to 60%
convective fraction, the models with more explicitly simulated
extremes produce larger extremes. This result is consistent
with Maher et al. (2018) who showed that GCMs with con-
vection switched off produce greater precipitation extremes
than the otherwise-equivalent simulations employing the
convective scheme. Similarly, Frierson (2007) showed that
there is greater ITCZ precipitation in idealized GCM simu-
lations when convection is switched off. In the following
section, we investigate the atmospheric environments in
which extremes are generated. We examine the high-
convective versus low-convective models in the tropics, and
the high-resolution versus low-resolution models in the
midlatitudes.

5. 3D atmospheric conditions associated with daily
extremes

a. Dependence of midlatitude vertical profiles on model
resolution

Finally, we investigate the 3D environment associated with
precipitation extremes across models. In Fig. 8, we show the
profiles of temperature, specific humidity, relative humidity,
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and vertical velocity in the 10 highest-resolution and 10 lowest-
resolution models. These are the average over the midlatitudes
for the 1-yr event (other recurrence intervals are similar and
are not shown). Temperature, specific humidity, and relative
humidity profiles do not show any distinction between high-
and low-resolution models (Figs. 8a—c). Viewing the full model
spread at 700hPa, these variables are all weakly correlated
with model grid spacing (r = 0.01, 0.12, and 0.26, respectively;
Figs. 9a—), and similarly at other pressure levels (not shown).
The major distinction between high- and low-resolution
models in the midlatitudes is in vertical velocity. In the mid-
troposphere, almost all of the high-resolution models experi-
ence greater w than almost all of the low-resolution models
(Fig. 8d). Viewing the full model spread, there is a correlation of
0.50 between grid spacing and 700-hPa w (Fig. 9d). In particular,
CNRM-CM6-HR, the highest-resolution model at 0.5° grid
spacing, experiences by far the greatest ascent. Note that the
most outlying models from this regression line—IPSL-CM6A,
HadGEM3-GC31-LL, UKESMI, and ACCESS-CM2—are
among those with the highest convective fraction in the mid-
latitudes (Fig. 6d). Thus, as expected, in the midlatitudes the
higher-resolution models simulate larger extremes via stronger
dynamical forcing than the lower-resolution models. But the
greater involvement of the convective scheme in some
models can interfere to some extent with this relationship.
For each of the given variables, the ERAS results are within
the model spread, but toward the high end for temperature and
hence low end for relative humidity (green profile in Figs. 8a.c
and red line in Figs. 9a,c). This suggests that most CMIP6
models may simulate midlatitude extremes in too cool an en-
vironment, hence with saturation occurring over too deep a
layer. As expected, only the highest-resolution models are
comparable to the vertical velocity exhibited by ERAS (green
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FIG. 6. Precipitation amount as a function of (top) native model grid spacing and (bottom) convective fraction for the 1-yr event of daily

total precipitation. Each model is averaged over the (a),(c) tropics (all grid points in the range of 15°S-15°N) and (b),(d) midlatitudes (all
grid points in the range of 35°-50° in each hemisphere). In each panel, the least squares regression line is shown, along with the Pearson
rank-order correlation coefficient r. The observational median for the 1-yr event of daily precipitation is shown by the bold red line and the
individual observational datasets are shown by the thin red lines, based on the values for the 1-yr event in Figs. 1a and 1b. The colors and
symbols for each model match those in other figures. Native model grid spacing is calculated as in Table 1. Convective fraction is the

average over the tropics in (¢) and midlatitudes in (d), i.e., the same as the y axes of Figs. 4c and 4d.

profile in Fig. 8d and red line in Fig. 9d), further illustrating
the importance of resolution for simulating midlatitude
extremes.

b. Dependence of tropical vertical profiles on convective
fraction

In the tropics, as demonstrated in section 4, the convective
fraction is a greater factor than resolution in determining the
magnitude of extremes. In Fig. 10, the vertical profiles of the
same four variables are averaged over the tropics for the 1-yr
event. The models are separated into those with convective
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fraction < 60% and >75%, which encompasses all models,
given the clear divide in convective fraction across the en-
semble (Fig. 6c). These two subsets are hereafter termed low-
convective and high-convective. For temperature, there is a
larger spread for the low-convective than high-convective
models (Fig. 10a). The full spread at 700hPa reveals that
there is no correlation between convective fraction and tem-
perature (r = —0.07; Fig. 11a). For specific humidity, the low-
convective models exhibit markedly higher moisture levels
than the high-convective models in the lower troposphere
(Fig. 10b). The full spread at 700 hPa reveals a correlation
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FIG. 7. The median of 1-yr daily precipitation at each grid point among various subsets of models. (a) The 10
highest-resolution and (b) the 10 lowest-resolution models (i.e., the first and last 10 models listed in Table 1).
(c) The 7 models with convective fraction << 45% averaged over the tropics and (d) the 7 models with convective
fraction 45%—-60% averaged over the tropics for the 1-yr event (i.e., the 14 models with convective fraction << 60%
in Fig. 6¢). Those with >75% convective fraction, averaged over the tropics, divided into (e) the 8 models with
higher precipitation and (f) the 9 models with lower precipitation (i.e., those with >75% convective fraction that are
above and below the regression line in Fig. 6¢). The color scales are different in order to focus on the midlatitudesin

(a) and (b) and tropics in (c)—(f).

between convective fraction and specific humidity of —0.46
(Fig. 11b). Accordingly, relative humidity in the lower tropo-
sphere is larger (generally above 90%) in the low-convective
models (Fig. 10c¢), with a correlation at 700 hPa between con-
vective fraction and relative humidity of —0.62 (Fig. 11c).
Vertical velocity also exhibits a weak tendency for low-
convective models to be larger (Fig. 10d), with a correlation
at 700 hPa between grid spacing and vertical velocity of 0.25
(Fig. 11d).

Thus, the largest distinction between high- and low-
convective models is the greater amount of moisture in the
low-convective models, with associated near saturation in the
lower troposphere. This near saturation in the lower tropo-
sphere in the low-convective models is consistent with their
larger fraction of gridscale precipitation. Taken together with
the stronger vertical velocity, this suggests that these models
are effectively doing convection-like dynamics at the grid scale
(Klingaman et al. 2017; Kuo et al. 2017). The convection
schemes are failing to remove enough moisture, allowing the
grid cell to saturate. The large-scale precipitation balances
large-scale ascent, with associated moisture convergence
maintaining the moisture. This feedback is similar to what
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should happen at a much smaller scale in moist convection. For
the high-convective models, the smaller relative humidity
values in the lower troposphere (80%-90%) are high enough
to maintain conditional instability for subgrid convection,
without large-scale saturation.

Comparing CMIP6 and ERAS, temperature and specific
humidity are similar between the MMM and ERAS
(Figs. 10a,b; red line showing ERAS in Figs. 11a,b). This sug-
gests model skill at representing these variables, albeit with
some model variability. As in the midlatitudes, most models
show greater relative humidity than ERAS (Figs. 10c and 11c).
And most models show lower vertical velocity than ERAS,
with the low-convective models generally closer to ERAS
(Figs. 10d and 11d). These comparisons highlight potential
errors in the GCMs’ representation of the 3D environment
associated with tropical extremes. However, as discussed pre-
viously the reanalysis is itself derived from model output.

c. Upper-tropospheric processes in the tropics

Another distinction between the high- and low-convective
models in the tropics is the large negative vertical gradient
of relative humidity in the upper troposphere in low- but not
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F1G. 8. The vertical profiles in the midlatitudes of (a) temperature, (b) specific humidity, (c) relative humidity,
and (d) vertical pressure velocity, all conditioned on the 1-yr event of daily precipitation, averaged over the
midlatitudes (all grid points in the range of 35°-50° in each hemisphere). Temperature is given as an anomaly from
the multimodel median at each pressure level, so that the model spread at each pressure level can be viewed
together. Specific humidity is only shown up to 500 hPa, so that the model spread is more visible. The red and blue
curves are the 10 highest-resolution and 10 lowest-resolution models (where grid spacing is calculated in Table 1)
among those that archive 3D data. The high-resolution models are CNRM-CM6-HR, HadGEM3-GC31-MM, EC-
Earth3, EC-Earth3-Veg, MPI-ESM1-HR, GFDL-CM4, CESM2, CESM2-WACCM, NorESM2-MM, and SAMO-
UNICON and the low-resolution models are INM-CM4, IPSL-CM6A, MPI-ESM-HAM, MPI-ESM1-LR, NESM3,
NorESM2-LM, GISS-E2, BCC-ESM1, CanESMS5, and MIROC-ES2L. However, EC-Earth3 is missing tempera-
ture and vertical velocity, and HadGEM3-GC31-MM and GISS-E2 are missing just vertical velocity (see Table 1),
so there are fewer curves for these variables. The black curves are the MMM (among all models archiving the given
variable). The green curve represents ERAS.

high-convective models (Fig. 10c). The near-saturated layer in
low-convective models is confined to the lower troposphere.
This suggests that, although the intensity of precipitation at
upper recurrence intervals compares better with observations
in low-convective models, the depth of this gridscale convec-
tion is likely far shallower than observed convection. By con-
trast, in many of the high-convective models relative humidity
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increases with height up to 250 hPa and only slightly decreases
above. Accordingly, the vertical structure of w is different—in
the low-convective models, there is a sharp peak at 500 hPa and
large decay above, whereas in the high-convective models, w is
more uniform between 700 and 250 hPa (Fig. 10d).

This contrast in the vertical structure between high- and low-
convective models is remarkable when relative humidity is
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averaged over the midlatitudes (all grid points in the range of 35°-50° in each hemisphere). In each panel, the least squares regression line
is shown, along with the Pearson rank-order correlation coefficient r. The colors and symbols for each model match those in other figures.
Native model grid spacing is calculated as in Table 1. The red line represents the ERAS value, whose native resolution is 0.25°, but is

interpolated to 1° along with the models.

examined at individual locations (Fig. 12). In the lower tro-
posphere, the low-convective models are above 90% relative
humidity almost everywhere (Fig. 12a), while the high-
convective models are below 90% relative humidity through-
out the tropics (Fig. 12¢). In contrast, in the upper troposphere,
the low-convective models are below 90% almost everywhere
(Fig. 12b), while the high-convective models are at near-100%
relative humidity throughout the tropics (Fig. 12d). Evidently,
the greater use of the convective scheme in simulating the
precipitation extremes in the high-convective models leads to
deeper convection and a higher cloud top. This high relative
humidity in the upper troposphere in the high-convective
models occurs at about the detrainment level for deep con-
vection. Thus large-scale precipitation in the high-convective
models likely comes from upper levels. This would be akin to

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 10/31/21 01:56 AM UTC

the dynamics supporting anvil cloud and stratiform precipita-
tion in observations, but occurring at the grid scale. The spatial
patterns of relative humidity are shown for individual models
for the 1-yr event at 700 (Fig. $12) and 250hPa (Fig. S13),
illustrating the large intermodel spread at both levels.
(Comparing these figures with Fig. S11, the tendency for high-
convective models to be saturated in the upper but not lower
troposphere, and vice versa for low-convective models, is
evident.)

The equivalent maps are shown for ERAS in the bottom row
of Fig. 12. ERAS agrees better with the high-convective models
in terms of the marked increase in relative humidity from 700 to
250 hPa in the deep tropics and storm tracks. However, the high-
convective models overestimate the area over which relative
humidity is >90% at 250 hPa, according to ERAS. Averaged
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FIG. 10. Asin Fig 8, but in the tropics (ie., each model is averaged over 15°N-15°S). Instead of resolution, the models are
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as calculated in Fig. 6c. The green curve represents ERAS. Note that two models from Fig. 6c, AWI-CM and KACE, are
missing, due to the lack of 3D data (see Table 1). See Fig. 6¢ for the specific models in each subset.

over the tropics, the ERAS relative humidity profiles more
closely resemble the high-convective than low-convective
models, that is, not decaying in the upper troposphere (Fig. 10c).

These analyses suggest that a key factor in producing large
precipitation extremes in the tropics is generating saturation at
low levels. Despite their more physical representation of deep
convection, many of the high-convective models produce
smaller precipitation magnitudes for tropical extremes than
the low-convective models (Fig. 6c). It is possible that, with
saturation occurring at higher levels in the high-convective
models, there is insufficient moisture condensing to produce
the larger precipitation amounts. Alternatively, hydrometeors
may be reevaporating before reaching the surface. There is
generally more moisture in the lower troposphere in low-than
high-convective models (Fig. 11b). In the low-convective
models, these large moisture levels in the lower troposphere
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are causing the models to saturate at a relatively low level, with
relative humidity rapidly decaying with height above that level.
Thus, the models with larger relative humidity in the lower
troposphere are closer to the observations of the magnitude of
precipitation extremes, but likely for the wrong reasons.

6. Summary and conclusions

It is well known that GCMs are ill equipped to represent
extreme precipitation events, particularly compared to convection-
permitting simulations. However, given current computational ca-
pabilities, they remain the only option for the global perspective on
future hydrological-cycle intensification. Given that errors inevita-
bly occur in GCMs’ magnitudes of high precipitation percentiles,
can we understand why some simulate closer magnitudes to ob-
servations than others?
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In this study, we evaluated the tail of the precipitation PDF
in CMIP6 models, focusing on the recent climate (1979-2014).
We evaluated events at decreasing intervals (from daily to 3-
hourly) deep into the tail of the PDF (from the 0.01- to 10-yr
event). Models were compared to available subdaily global
gridded precipitation estimates (TRMM 3B42, PERSIANN-
CCS, CMORPH, and GSMaP). The observational record is
short (14-20 years, depending on the dataset), which limits our
ability to evaluate extreme precipitation at large recurrence
intervals. To counter this limitation, each dataset was aggre-
gated spatially to increase the number of years available. We
refer to identified recurrence intervals as extremes, with the
caveat that extreme events as defined by extreme value theory
(Coles 2001) are further into the tail of the PDF, that is, beyond
the cutoff (Peters et al. 2010). Such events are not detectable in
the observational record in terms of global spatial patterns, and
we focus on these global spatial patterns in this study.

At daily intervals, extremes are somewhat underestimated,
where the multimodel median (MMM) is 46% less than the
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observational median (OM) for the 10-yr event in the tropics
and 35% less in the midlatitudes (Figs. 1a.b). However, with
decreasing time interval, the discrepancy between models and
observations increases: for 3-hourly precipitation, the MMM is
78% less than the OM for the 10-yr event in the tropics and
62% less in the midlatitudes (Figs. le.f). These comparisons
indicate that the intensity of the most extreme precipitation is
vastly underestimated in CMIP6 models, but that when ag-
gregated to daily totals the underestimate becomes less pro-
nounced (Fig. 3).

There is a large model spread in the magnitude of extremes
(Fig. 1), ranging from a fourfold spread in the most extreme
events over the tropics and a roughly twofold spread over the
midlatitudes. In the midlatitudes, the spread is largely attrib-
utable to model resolution, with a correlation between native
grid spacing and 1-yr daily precipitation amount of —0.49
(Fig. 6b). Analyzing the 3D profiles of relevant variables in the
higher-resolution versus lower-resolution models, the major
distinction is larger vertical velocity in the higher-resolution
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models (Figs. 8d and 9d). Thus, in the midlatitudes, the intui-
tive relationship exists whereby higher-resolution models
simulate larger extremes, closer to the observations, via greater
dynamical forcing. Similarly, previous studies have found
larger extremes to be simulated in higher-resolution GCMs
(Wehner et al. 2010, 2014; Kopparla et al. 2013; O’Brien et al.
2016). The higher-resolution models also tend to have higher
vertical resolution, which allows for better simulation of hu-
midity and clouds, resulting in larger (more realistic) vertical
moisture gradients throughout the troposphere (Roeckner
et al. 2006; Hagemann et al. 2006; Volosciuk et al. 2015).

In the tropics, however, there is no relationship between
resolution and precipitation amount (Fig. 6a). Instead, the
convective fraction, the percentage of the extreme precipita-
tion simulated directly by the convection scheme, is more of a
relevant factor (Fig. 6c). Among models below 60% convective
fraction (about half the models), precipitation amount de-
creases with convective fraction (Figs. 7c.d; r = —0.63 among
this subset). Above 75% convective fraction (the other half of
models), this relationship breaks down and there is a large
spread in precipitation amount among this subset (Figs. 7e.f).
Note that, even when the convective fraction is modest, the
convection scheme may still be contributing to the moisture
redistribution that can affect large-scale precipitation.

The vertical profiles of models with <60% convective frac-
tion exhibit more moisture and near-saturated relative humidity

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 10/31/21 01:56 AM UTC

in the lower troposphere (Figs. 10b,c and 11b,c). This is
consistent with the occurrence of large-scale precipitation
and suggests these models are effectively undergoing convection-
like behavior at the grid scale. From about 500 hPa upward in
these models, relative humidity rapidly decreases (Figs. 10c and
12, top row), indicating relatively shallow convection. By contrast,
in the models with >75% convective fraction, relative humidity
increases with height up to 250 hPa (Figs. 10c and 12, second row).
These models appear to better represent the deep convection that
is to be expected during the most extreme events in the tropics, in
agreement with ERAS reanalyses (Fig. 12, bottom row). These
models exhibit near saturation in the upper troposphere, sug-
gesting that the moisture transport by the convection scheme may
be creating large-scale precipitation at about the level where one
would expect bowl or stratiform precipitation in observations.
This may explain some of the range of convective fraction seen
across the CMIP6 ensemble—part of the large-scale precipitation
may actually be associated with moisture transport by the con-
vective scheme but expressed as precipitation through grid scale
condensation. Thus, models can record large or small convective
fractions, although the convective scheme is likely involved in
generating precipitation in either case.

One might ask whether, purely in terms of accurately sim-
ulating precipitation extremes, GCMs may benefit from having
the convective scheme switched off. This hypothesis is raised
by the more consistent agreement with observations in the
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tropics among the models with low convective fraction (Fig. 6¢c).
Two considerations weigh against this hypothesis. First, in the
CMIP6 ensemble, the convective schemes in the lower resolu-
tion models are not the same as those in the high-resolution
models, and changing resolution in a single model can have more
intuitive effects, with daily precipitation extremes increasing
with resolution in both tropics and midlatitudes (Wehner et al.
2014). Second, the impacts of poor vertical structure in absence
of convective parameterization can have far-reaching effects on
radiative, dynamical, and cloud response that would affect pre-
cipitation magnitudes in unpredictable and undesirable ways.

The underestimates of the subdaily extremes (Figs. 1 and 2)
may provide a hypothesis for more fruitful avenues to cor-
recting these deficits in the models. In this study, it is clear that
the subdaily extremes are underestimated more severely than
the daily extremes. This is consistent with prior studies noting
that the models tend to precipitate too smoothly, with smaller
precipitation rates over longer durations (e.g., Gutowski et al.
2003; Sun et al. 2006). The lack of subdaily variance (Fig. 3)
suggests that revisions to convective parameterizations so they
do not simply restore toward a reference state, or so they in-
clude effects of stochastic subgrid variability (e.g., Buizza et al.
1999; Lin and Neelin 2000; Khouider et al. 2003; Lin and Neelin
2003; Plant and Craig 2008; Teixeira and Reynolds 2008),
would tend to increase the subdaily variations in precipitation.
Such revisions would likely have beneficial effects for the daily
variance and subdaily magnitudes of extreme precipitation.
Moreover, a comparison of extremes between CMIP and
AMIP models could highlight sources of model errors shown
here, that is, to what extent an improved representation of
SSTs could bring the models closer to observations.
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