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Abstract. We consider the natural problem of counting isotopy classes of es-
sential surfaces in 3-manifolds, focusing on closed essential surfaces in a broad
class of hyperbolic 3-manifolds. Our main result is that the count of (possibly
disconnected) essential surfaces in terms of their Euler characteristic always has a
short generating function and hence has quasi-polynomial behavior. This gives
remarkably concise formulae for the number of such surfaces, as well as detailed
asymptotics. We give algorithms that allow us to compute these generating func-
tions and the underlying surfaces, and apply these to almost 60,000 manifolds,
providing a wealth of data about them. We use this data to explore the delicate
question of counting only connected essential surfaces and propose some con-
jectures. Our methods involve normal and almost normal surfaces, especially the
work of Tollefson and Oertel, combined with techniques pioneered by Ehrhart for
counting lattice points in polyhedra with rational vertices. We also introduce a
new way of testing if a normal surface in an ideal triangulation is essential that
avoids cutting the manifold open along the surface; rather, we use almost normal
surfaces in the original triangulation.
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1 Introduction

Essential surfaces have played a central role in 3-manifold topology for at least the
last 70 years, being both a key tool and a fundamental object of study. Roughly, these
are compact embedded surfaces F ⊂ M 3 where π1F →π1M is injective; throughout
this introduction, see Section 2 for precise definitions and conventions. While some
compact 3-manifolds contain no essential surfaces at all (the 3-sphere, lens spaces),
others contain infinitely many isotopy classes of essential surfaces of the same
topological type (the 3-torus contains infinitely many essential 2-tori). However, for
M that are irreducible and atoroidal (i.e. contain no essential spheres or tori), the
number of essential F of a fixed topological type is always finite [JO, Corollary 2.3].
For example, any hyperbolic 3-manifold is irreducible and atoroidal, and these form
the main class of interest here.

A natural problem is thus to describe in a structured way the set of essential
surfaces in a given 3-manifold M , in particular to list and to count them. Focusing on
those F that are closed, connected, and orientable, define aM (g ) to be the number of
isotopy classes of essential surfaces in M of genus g . There are plenty of hyperbolic 3-
manifolds where aM (g ) = 0 for all g , including all those that are exteriors of 2-bridge
knots [HT]. In contrast, for the exterior of X of the Conway knot K 11n34, we can
use Theorem 1.4 below to compute the values of aX (g ) shown in Table 1, as well as
further values such as aX (50) = 56,892 and aX (100) = 444,038.

While the sequence in Table 1 is a complete mystery to us, if we broaden our
perspective to include disconnected surfaces, we get a relatively simple pattern that
we can describe completely. Specifically, for any M define bM (n) to be the number
of isotopy classes of closed orientable essential surfaces F in M with χ(F ) = n. For
the Conway exterior X , we show (see Figure 3):

bX (−2n) = 2

3
n3 + 9

4
n2 + 7

3
n + 7+ (−1)n

8
for all n ≥ 1. (1.1)

The formula for bX would be a polynomial in n were it not for the final term which
oscillates mod 2. The first main result of this paper, Theorem 1.3 below, shows that
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K 11n34

g aX (g ) g aX (g ) g aX (g ) g aX (g )

1 0 7 87 13 602 19 1,993
2 6 8 208 14 1,168 20 3,484
3 9 9 220 15 1,039 21 2,924
4 24 10 366 16 1,498 22 4,126
5 37 11 386 17 1,564 23 3,989
6 86 12 722 18 2,514 24 6,086

Table 1. The first few values of aX (g ) where X is the exterior of the Conway knot
shown at left.

the count bM always has this kind of almost polynomial structure for a broad class of
3-manifolds M .

1.2 Main results. We can encode a function s : N → Q by its generating function
S(x) = ∑∞

n=0 s(n)xn in the formal power series ring Q[[x]]. We say this generating
function is short when S(x) = P (x)/Q(x) for polynomials P and Q in Q[x] where Q(x)
is a product of cyclotomic polynomials. For example, the function s(n) = bX (−2n)
from (1.1) above has a short generating function, namely

S(x) = −x5 +3x4 −2x3 +2x2 +6x

(x +1)(x −1)4

Having a short generating function is equivalent to s(n) being a quasi-polynomial
for all but finitely many values of n, see Section 2.7. Quasi-polynomials first arose in
Ehrhart’s work on counting lattice points in polyhedra with rational vertices [Ehr] and
have many applications to enumerative combinatorics [Sta, Chapter 4]; curiously,
they also appear in quantum topology [Gar1, GL, Gar2]. We can now state:

1.3 Theorem. Suppose M is a compact orientable irreducible ∂-irreducible
atoroidal acylindrical 3-manifold that does not contain a closed nonorientable
essential surface. Let bM (n) be the number of isotopy classes of closed essential
surfaces F in M with χ(F ) = n, and BM (x) =∑∞

n=1 bM (−2n)xn be the corresponding
generating function. Then BM (x) is short.

Here, we can ensure that M has no closed nonorientable essential surfaces by re-
quiring that H1(∂M ;F2) → H1(M ;F2) is onto, see Proposition 2.4. Thus, Theorem 1.3
applies to the exterior of any hyperbolic knot in S3. We discuss possible extensions
of Theorem 1.3 to nonorientable surfaces, as well as to surfaces with boundary, in
Section 4.13.
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All aspects of Theorem 1.3 can be made algorithmic, both in theory and in prac-
tice. The theoretical part is:

1.4 Theorem. There exists an algorithm that takes as input a triangulation T of a
manifold M as in Theorem 1.3 and computes P (x),Q(x) ∈Q[x] such that BM (x) =
P (x)/Q(x). Moreover, there is an algorithm that given n ∈N outputs a list of normal
surfaces in T uniquely representing all isotopy classes of essential surfaces with
χ = −2n. Finally, there is an algorithm that given an essential normal surface F
with χ(F ) =−2n finds the isotopic surface in the preceding list.

In Section 6, we refine Theorem 1.4 into a practical algorithm that uses ideal trian-
gulations and their special properties. Then in Section 7, we compute BM (x) for
almost 60,000 examples. It is natural to ask whether one could permit nonorientable
essential surfaces in Theorem 1.3, as well as essential surfaces with boundary; we
outline some of the difficulties inherent in such extensions in Section 4.13 below.

1.5 Motivation and broader context. From Theorem 1.3 and the discussion in Sec-
tion 2.7, the sequence bM (−2n) grows at most polynomially in n. It is not always
the case that bM (−2n) is asymptotic to cnd : we found an example where bM (−2n) is
n/2+1 for n even and 0 for n odd. However, by Lemma 2.8, we get precise asymptotics
if we smooth the sequence by setting bM (−2n) =∑n

k=1 bM (−2k):

1.6 Corollary. For each M as in Theorem 1.3, either bM (−2n) = 0 for all n or there
exists d ∈N and c > 0 in Q such that limn→∞ bM (−2n)/nd = c.

We conjecture in Section 1.11 below that d is the dimension of the space ML0(M)
of measured laminations without boundary in M , and c is the volume of a certain
subset of ML0(M).

As aM (g ) ≤ bM (−2g +2) for each g , we have that aM (g ) also grows at most poly-
nomially in g . In stark contrast, if we allow immersed surfaces, then Kahn-Markovic
[KM] showed that, for any closed hyperbolic 3-manifold M , the number of essential
immersed surfaces of genus g grows like g 2g .

This distinction between counts of embedded versus immersed surfaces parallels
the following story a dimension down. For a closed hyperbolic surface Y of genus g ,
Mirzakhani [Mir] showed that the number sY (L) of embedded essential multicurves
in Y of geodesic length at most L satisfies sY (L) ∼ n(Y )L6g for some n(Y ) > 0; in
contrast, the number cY (L) of primitive closed geodesics of length at most L satisfies
cY (L) ∼ eL/L, see e.g. [Bus]. In fact, Mirzakhani proved much more: given an essential
multicurve γ, the count sY (L,γ) of multicurves in the mapping class group orbit of γ
also satisfies sY (L,γ) ∼ nγ(Y )L6g with nγ(Y ) > 0. In particular, this gives asymptotics
for the counts of all connected essential curves, analogous in our setting to aM

as opposed to bM ; we hint at how this connection might be further developed in
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Section 1.13. There are also similarities between the setting of [Mir] and the measured
lamination perspective on Theorem 1.3 outlined in Section 1.11. The fact that we
count surfaces by Euler characteristic, which is discrete, rather than by a continuous
notion such as length or area, is what allows us get precise formulas for bM as well
as asymptotics. (More directly analogous to the surface case, one could try to count
embedded essential surfaces in a closed hyperbolic 3-manifold M in terms of the
area of their least area representatives. As such representatives satisfy π

∣∣χ(F )
∣∣ ≤

Area(F ) ≤ 2π
∣∣χ(F )

∣∣ by [Hass, Lemma 6], it is not inconceivable that there are good
asymptotics here as well given Corollary 1.6.)

The algorithm of Section 6 relies heavily on ideal triangulations and their normal
and almost-normal surfaces. Curiously, normal surfaces are also used to construct
recent topological quantum invariants of 3-manifolds, specifically the 3D-index of
Dimofte, Gaiotto and Gukov [DGG1, DGG2]. The latter is a collection of Laurent
series with integer coefficients which are defined using an ideal triangulation and
depend only on the number of tetrahedra around each edge of the triangulation, as
encoded in the Neumann-Zagier matrices. The 3D-index is a topological invariant
of cusped hyperbolic 3-manifolds [GHRS] that can be expressed as a generating
series of generalized normal surfaces in a 1-efficient triangulation [GHHR], a class
of surfaces that includes both normal and almost normal surfaces. It would be very
interesting to connect the topological invariants of Theorem 1.3 with the 3D-index.

1.7 The key ideas behind Theorem 1.3. We first explain how the perspective of
branched surfaces, especially the work of Oertel [Oer2], naturally relates the se-
quence bM (−2n) to counting lattice points in an expanding family of rational poly-
hedra; combined with Ehrhart’s work [Ehr] on the latter topic, this discussion will
make Theorem 1.3 very plausible. We then sketch how Tollefson [Tol1] reinterpreted
and extended Oertel’s branched surface picture in the context of normal surface
theory, and how this viewpoint allows us to actually prove Theorem 1.3. For ease
of exposition, we assume throughout that M is closed and contains only orientable
surfaces by Proposition 2.4.

A branched surface B in a 3-manifold M is the analog, one dimension up, of a
train track on a surface; see [FO, Oer2] for definitions and general background. A
surface F is carried by B if it is isotopic into a fibered neighborhood N (B) of B so
that it is transverse to the vertical interval fibers. Such an F is determined by the
nonnegative integer weights it associates to the sectors of B, which are the compo-
nents of B minus its singular locus. Such weights correspond to a surface if and only
if they satisfy a system of homogenous linear equations that are analogous to the
switch conditions for a train track. The set of all nonnegative real weights satisfying
these equations gives a finite-sided polyhedral cone ML(B), which corresponds
to measured laminations carried by B. Here, each integer lattice point in ML(B)
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corresponds to a surface carried by B. As the equations defining ML(B) have integer
coefficients, each edge ray of the cone ML(B) contains a lattice point.

For M as in Theorem 1.3, by Theorem 4 of [Oer2] there is a finite set B1, . . . ,Bn

of branched surfaces that together carry all essential surfaces in M and also carry
only essential surfaces. Moreover, two surfaces carried by one Bi are isotopic if
and only if they correspond to the same lattice point in ML(Bi ). Putting aside the
important issue of surfaces being carried by several of these branched surfaces,
here is how to count essential surfaces carried by a fixed Bi . First, there is a linear
function χ : ML(Bi ) → R which on lattice points gives the Euler characteristic of
the corresponding surface. Because M is irreducible and atoroidal, every essential
surface has χ < 0; as each edge ray of the cone ML(Bi ) contains a lattice point
corresponding to an essential surface, we conclude that χ is proper and nonpositive
on ML(Bi ). Hence P = χ −1(−1) is a compact polytope with, it turns out, rational
vertices. Thus, the contribution to bM (−2n) of surfaces carried by Bi is exactly the
number of lattice points in 2n ·P , where the latter denotes the dilation of P by a
factor of 2n. The foundational work of Ehrhart [Ehr] shows that this count of lattice
points is quasi-polynomial.

If no surface is carried by multiple Bi , the sketch just given would essentially
prove Theorem 1.3 as sums of quasi-polynomials are again quasi-polynomial. How-
ever, there is no avoiding this issue in general, and we deal with it by using the work
of Tollefson [Tol1], who built on [Oer2] to provide a concrete description of isotopy
classes of essential surfaces in the context of normal surface theory. If we fix a tri-
angulation T of M , then every essential surface in M can be isotoped to be normal
with respect to T; throughout, see Section 2.6 for definitions and general background.
There can be many normal representatives of the same essential surface, so to reduce
this redundancy, Tollefson focuses on those that are least weight in that they meet
the 1-skeleton of T in as few points as possible. We define a lw-surface to be a normal
surface that is essential and least weight. To prove Theorem 1.3, we need to count
such lw-surfaces modulo isotopy in M .

Let ST be the normal surface solution space, which is a finite rational polyhedral
cone whose admissible integer points correspond to normal surfaces in T, and let
PT be its projectivization. A normal surface F is carried by a face C of PT if the
projectivization of the lattice point corresponding to F is in C . An admissible face
C of PT is a lw-face if every normal surface it carries is a lw-surface. While it is not
obvious that any lw-faces exist, Tollefson showed that every lw-surface is carried by
a lw-face. To make the parallel with the previous discussion explicit, each lw-face C
has a corresponding branched surface BC which carries, in the prior sense, exactly
the surfaces carried by C in the current sense. The collection of all lw-faces is a
complex we denote LWT; see Figure 3 for an example in the case of a triangulation
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of the Conway knot exterior.
Tollefson shows moreover that every lw-surface is carried by a lw-face that is

complete: if F and G are isotopic lw-surfaces and C carries F then it also carries
G . The isotopies between lw-surfaces carried by the same complete lw-face can be
understood using a foliation of C by affine subspaces parallel to some fixed linear
subspace WC ; roughly, surfaces F and G carried by C are isotopic if their lattice points
differ by an element of WC . See Section 3 and especially Theorem 3.5 for details,
including the key notion of dep(C ). This translates the problem of counting essential
surfaces carried by a complete face to one of counting projections of lattice points
in the cone over C after we quotient out by WC . This is exactly the setting of recent
work of Nguyen and Pak [NP], which we use in Section 4 to complete the proof of
Theorem 1.3.

1.8 Making Theorem 1.3 algorithmic. Since Haken, normal surfaces have played
a key role in the study of algorithmic questions about 3-manifolds. Despite this,
Tollefson in [Tol1] did not give an algorithm for finding the lw-faces of PT nor deter-
mining their properties such as completeness. Section 5 here focuses on establishing
Theorem 5.1, which gives an algorithm for computing all complete lw-faces. One
important tool for this is Theorem 5.3, which shows that if F and G are isotopic lw-
surfaces then there is a sequence of isotopic lw-surfaces F = F1,F2, . . . ,Fn−1,Fn =G
with each pair (Fi ,Fi+1) disjoint and cobounding a product region. Combined with
results from Section 3, especially Theorem 3.3, we can strengthen the arguments
behind Theorem 1.3 to prove Theorem 1.4.

1.9 Ideal triangulations and almost normal surfaces. When the 3-manifold M has
nonempty boundary, the proofs of Theorems 1.3 and 1.4 use ideal triangulations
rather than finite ones (see Section 4.9). Our computations were with M where
∂M is a single torus whose interior admits a complete hyperbolic metric of finite-
volume, and we used ideal triangulations there as well, especially as they have
several advantages. For example, they typically have fewer tetrahedra than finite
triangulations, which speeds up normal surface computations. Most importantly,
when the ideal triangulation admits a strict angle structure, Lackenby showed [Lac2]
that the number of connected normal surfaces of a fixed genus is finite and described
how they can be enumerated. In Section 6, we explain how to exploit this to give a
practical version of the algorithms in Theorem 1.4. Unlike the proof of Theorem 1.4,
we make heavy use of almost normal surfaces, including those with tubes, and
in particular the process of tightening (also called normalizing) an almost normal
surface.

The usual method for testing if a normal surface F in M is essential is to cut M
open along F , triangulate the result, and then use normal surfaces to search for a
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compressing disk; a key difficulty with this is that the triangulation of M \F is usually
much more complicated than the original one. Here, we introduce a completely new
method for determining when F is essential that does not require cutting M open
but rather uses almost normal surfaces in the original triangulation (Section 6.8).

Our implementation of the algorithm in Section 6 can be found at [DGR] and
makes heavy use of Regina [BBP+], SageMath [Sage], and Normaliz [BIRSS]. It in-
cludes code for tightening almost normal surfaces, as well as dealing with general
normal surfaces with tubes, both of which have explored extensively in theory but
never before in practice.

1.10 Computations and patterns. Sections 7 and 8 detail our experiments using
the algorithm of Section 6. In particular, we applied it to more than 59,000 manifolds,
including more than 4,300 where dimLWT > 0. We include overall statistics about
the complexes LWT, the generating functions BM (x), and the sequences aM (g ) in
Tables 2–6 and 7–9, as well as detailed examples of LWT in Figures 1–4. In Section 8.1,
we give examples showing that, perhaps surprisingly, neither of BM (x) and aM (g )
determines the other.

For the more mysterious aM (g ), while we are unable to find a pattern in these
sequences in many cases, there are some M where we conjecture relatively simple
formulae for aM (g ); see Conjecture 8.2 and Table 9. In Conjecture 8.9, we posit the
existence of general asymptotics for (a smoothed version of) aM (g ) based on the
striking plots in Figures 6 and 7, where we computed aM (g ) out to g = 200 in many
cases.

1.11 The view from measured laminations. For surfaces, a central tool for studying
their topology, geometry, and dynamics is measured laminations; for example, the
space ML(F ) of all measured laminations on a surface F plays a key role in [Mir]. In
3-dimensions, building on work of Morgan and Shalen [MS1, MS2], independently
Hatcher [Hat] and Oertel [Oer3] studied measured laminations on 3-manifolds in
detail, organizing them into a topological space ML(M). Note here an essential
surface, with or without boundary, can be viewed as a measured lamination, and
the set of all essential surfaces nearly injects into ML(M) (see page 6 of [Hat] for
the caveat which involves the two nonorientable surfaces in a semifibration) with
its image being a discrete set of points. While for a surface F of genus g the space
ML(F ) is just homeomorphic to R6g−6, for a general 3-manifold M the space ML(M)
can be singular, being built from open strata each of which is a PL manifold. The
charts on the individual strata come from branched surfaces; specifically, one uses
the polyhedral cones ML(Bi ) associated with certain essential branched surfaces Bi

as sketched in Section 1.7; see [Hat, Oer3] for details.
Let ML0(M) denote the subset of measured laminations that are disjoint from
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∂M . The topological dimension of ML0(M) is the maximum of dim(ML(B)) for the
appropriate class of essential branched surfaces B without boundary. Because of the
theory of Oertel [Oer2] that underlies [Tol1], we are highly confident that:

1.12 Conjecture. The dimension of ML0 is the maximum of dimC −dimWC +1
where C is an essential lw-face of PT and WC is defined in Theorem 3.5.

If Conjecture 1.12 holds, then in Corollary 1.6 where bM (−2n) ∼ cnd one has d =
dim(ML0), thus giving an intrinsic characterization of that exponent. We further
posit that the coefficient c in these asymptotics has the following natural interpre-
tation. As mentioned, the PL structure on the strata of ML0(M) comes from charts
to ML(Bi ) for certain branched surfaces Bi ; in particular, one gets PL coordinate
change maps between (possibly empty) subsets of each pair ML(Bi ) and ML(B j ),
see Proposition 4.1 of [Hat]. These coordinate change maps must take lattice points
to lattice points, since these correspond to the special measured laminations that
come from essential surfaces. Hence the coordinate change maps should have
derivatives that are in GLnZ and so are (unsigned) volume preserving. This would
give a well-defined measure (in the Lebesgue class) on each strata of ML0(M); this is
a direct analog of Thurston’s notion of volume on ML(F ) where F is a surface, which
is defined in terms of the integral PL structure on ML(F ) coming from train track
charts.

Recall for any branched surface Bi , there is a linear map χ : Bi →R which gives
the Euler characteristic of the corresponding surface at each lattice point. These
should piece together to give a PL map χ : ML0(M) → R. In the setting of Theo-
rem 1.3, the subset P =χ −1([−1,0]

)
in ML0(M) will be compact. We conjecture that

the coefficient c is precisely vol(P ).

1.13 Understanding counts by genus. The key problem to overcome in understand-
ing aM (g ) is to determine, for a complete lw-face C , which lattice points in C̃ =R≥0 ·C
correspond to connected surfaces. Agol, Hass, and Thurston showed in [AHT, §4]
how counting the number of connected components of a normal surface can be
reframed as counting the number of orbits of a family of interval isometries acting
on {1,2, . . . , N }. Such families of interval isometries include both classical and non-
classical interval exchange transformations on surfaces [Gad], but are considerably
more general. Geometrically, a family of interval isometries can be thought of as
an interval I of some length L to which finitely many bands of specified widths are
attached, without any restriction on how many bands are glued to any subinterval of
I . For normal surfaces, the interval I is basically an arbitrary concatenation of the
edges of the ambient triangulation T, and the bands correspond to families of normal
arcs in the corners of each face of T2; see Corollary 13 of [AHT] for details. (For each
admissible face C of PT, one can also think about this in terms of the associated
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branched surface BC .) Thus, a general theory of the number of orbits of the integer
points of such a family of isometries should allow one to develop a detailed picture
for aM (g ).

Currently, the best understood case is for a suitable train track τ on a surface
F , where Mirzakhani [Mir] gives asymptotics on the portion of integer points in
ML(τ) that correspond to connected curves, see also [Bell] for a detailed discussion.
(Here, one uses the total weight of a point in ML(τ) as the “length” of the associated
multicurve, rather than Euler characteristic in the 3-dimensional setting.) Even for
simple train tracks, it seems that the counts of connected curves can be irregular in
the sense of Section 8.4, so there is work to be done even in that setting.
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2 Background and conventions

2.1 Numbers. We use N to denote the nonnegative integers, i.e. N= {0,1,2, . . . }.

2.2 Surfaces in 3-manifolds. Throughout the rest of this paper, every 3-manifold
M will be compact, orientable, irreducible (every embedded sphere bounds a ball)
and ∂-irreducible (every properly embedded disk bounds a ball with some disk in
∂M). Surfaces need not be orientable, but will always be embedded in any ambient
3-manifold, and in particular be compact. Moreover, a surface F in a 3-manifold M
will be assumed to be properly embedded with F ∩∂M = ∂F , except for compressing
disks and ∂-compressing disks which we define next. A compressing disk for a surface
F in a 3-manifold M is a disk D ⊂ M where D∩F = ∂D and ∂D does not bound a disk
in F . An orientable surface F in M is incompressible when it has no compressing disks
and is neither a sphere nor a disk. (A more general notion of incompressibility allows
certain spheres and disks, but none such exist in an irreducible and ∂-irreducible
manifold.) Since M is ∂-irreducible, any parallel copy of a component of ∂M is
incompressible.

A ∂-compressing disk D for a surface F in M is one where ∂D consists of an arc α in
F and an arc β in ∂M , the interior of D is disjoint from F ∪∂M , and α does not bound
a disk in F with a segment of ∂F . An orientable surface F in M is ∂-incompressible
when it has no ∂-compressing disks and is not itself a disk. A surface F in M is
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∂-parallel when every connected component of F is isotopic, keeping ∂F fixed, into
∂M ; when ∂F =;, this is equivalent to F being ambient isotopic to a union of parallel
copies of components of ∂M .

An orientable surface F in M is essential when it is incompressible, ∂-incompress-
ible, and no connected component is ∂-parallel. A 3-manifold is atoroidal when it
does not contain an essential torus (this is sometimes called geometrically atoroidal).
Similarly, it is acylindrical when it does not contain an essential annulus (also called
anannular).

2.3 Nonorientable surfaces. For a nonorientable surface F in M , we define it to
be incompressible, ∂-incompressible, or essential when the boundary of a regular
neighborhood of F has that same property. One could instead apply the above defini-
tions directly to nonorientable surfaces, which give significantly weaker conditions
in general. Sources such as [FO, Tol1] use the terms injective and ∂-injective for
what we here call incompressible and ∂-incompressible to distinguish the possible
definitions in the nonorientable case. Some corner cases are worth mentioning. First,
with our conventions, a connected surface F in M is incompressible if and only if
π1F →π1M is injective and F is not a sphere, a disk, or RP2. Also, if M is the twisted
interval bundle over a nonorientable closed surface F , then F is incompressible but
not essential.

In our main results, we require that M contain no closed nonorientable essen-
tial surfaces, and the following proposition provides an easily checkable sufficient
condition for this to be the case:

2.4 Proposition. Suppose M is a compact orientable 3-manifold. Every closed
embedded surface in M is orientable if and only if H2(∂M ;F2) → H2(M ;F2) is onto.

Thus a closed M contains only orientable surfaces if and only if H2(M ;F2) = 0. Using
the long exact sequence of the pair, you can check that the homological condition in
Proposition 2.4 is equivalent to dim H1(M ;F2) = 1

2 dim H1(∂M ;F2).

Proof of Proposition 2.4. It suffices to consider the case when M is connected. First,
note that any closed surface F in M gives a class in H2(M ;F2). Moreover, any c in
H2(M ;F2) can be represented by a closed surface F that is connected (by adding
tubes between components if needed) and nonempty (by adding a sphere bounding
a ball if c = 0). In the rest of this proof, all surfaces will be connected, nonempty, and
embedded in M .

As M is orientable, any nonorientable surface F is nonseparating. Also, given a
nonseparating orientable surface F we can build a nonorientable surface as follows:
take an embedded arc α in M that meets F only at its endpoints and goes from one
side of F to the other; attaching a tube to F along α gives the desired nonorientable
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surface. Thus every closed surface F in M is orientable if and only if every closed
surface is separating. So we will prove that the homological hypotheses of the
proposition are equivalent to every closed surface in M being separating. When M is
closed, the proposition is now immediate since a closed surface F is 0 in H2(M ;F2) if
and only if it is separating.

To prove the proposition when M has boundary, it suffices to show that the
class [F ] of a closed surface F is in the image of H2(∂M ;F2) if and only if F is sep-
arating. If F is separating, then F divides M into two pieces A and B and we have
[F ] = [A∩∂M ] = [B ∩∂M ], so [F ] comes from H2(∂M ;F2) as claimed. If instead F is
nonseparating, let γ be a loop disjoint from ∂M that meets F in a single point; hence
the homology intersection pairing H2(M ;F2)×H1(M ;F2) → F2 has [F ] · [γ] = 1. As any
c ∈ H2(∂M ;F2) has c · [γ] = 0, it follows that [F ] does not come from H2(∂M ;F2). So
we have characterized which F give classes coming from H2(∂M ;F2), completing the
proof.

2.5 Triangulations. A triangulation of a compact 3-manifold is a cell complex made
from finitely many tetrahedra by gluing some of their 2-dimensional faces in pairs
via orientation-reversing affine maps so that the link of every vertex is either a sphere
or a disc. (For such face gluings, the link condition is equivalent to the complex being
a 3-manifold, see e.g. [Thu, Prop. 3.2.7].) In particular, a triangulation is not neces-
sarily a simplicial complex, but rather what is sometimes called a semi-simplicial,
pseudo-simplicial, or singular triangulation.

An ideal triangulation of a compact 3-manifold with nonempty boundary is a cell
complex T made out of finitely many tetrahedra by gluing all of their 2-dimensional
faces in pairs as above with no conditions on the vertex links. Here, the manifold M
being triangulated is not the underlying space of T but rather the subset of it gotten by
removing a small regular neighborhood of each vertex. Put another way, the manifold
M is what you get by gluing together truncated tetrahedra in the corresponding
pattern. Hence M will be a compact 3-manifold with nonempty boundary, and T \T0

is homeomorphic to the interior of M , where Ti denotes the i -skeleton of T. See
e.g. [Til] for more background on ideal triangulations.

We will work with both kinds of triangulations in this paper and will sometimes
refer to the first kind as finite triangulations for clarity.

2.6 Normal surfaces. Our conventions and notation for normal surfaces closely
follow [Tol1, §2], which the reader should consult for additional details beyond the
sketch we give here. Throughout, we consider a fixed triangulation T of a compact
3-manifold M , which can be either finite or ideal. However, in the ideal case, we
only consider closed normal surfaces, not the spun-normal ones of [Til, Wal2]. An
elementary disk E in a tetrahedron ∆ is a disk meeting each face of ∂∆ in either a
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straight line or the empty set; note ∂E is determined by E ∩∆1, and [Tol1, pg. 1089]
gives a convention so that the interior of E is determined by E ∩∆1 as well. A surface
F in M is normal when it is in general position with the skeleta of T and meets each
tetrahedron of T in elementary disks. A normal surface F is completely determined
by F ∩T1. A normal isotopy of M is one that leaves every simplex in T invariant. The
normal isotopy classes of elementary disks in a tetrahedron ∆ are called the disk types,
of which there are seven: three kinds of triangles and four kinds of quadrilaterals (or
quads for short). Fixing an ordering of the t tetrahedra in T and the seven disk types,
a normal surface F gives a tuple ~F ∈N7t by counting the number of occurrences of
each disk type; these are called the normal coordinates of F , or more precisely the
triangle-quad normal coordinates. Note that the vector ~F determines F up to normal
isotopy.

The coordinates of ~F satisfy a system of homogenous linear equations, called the
matching equations in [Tol1], one for each arc type in a face of T2. In the vector space
R7t , the intersection of the solutions to the matching equations with the positive
orthant gives a polyhedral cone ST called the normal solution space. A vector~x ∈ ST
is admissible when for every tetrahedron of T there is at most one quad coordinate
of~x that is nonzero. The points in ST corresponding to normal surfaces are precisely
the admissible integral points.

A key property of a normal surface F is its weight wt(F ) which is the number
of times it intersects T1 and can be viewed as its combinatorial area. This notion
of weight extends to a linear function wt: R7t → R as follows. For an elementary
disk Ei corresponding to coordinate i , each vertex of Ei is incident on an edge of
T1; take ci to be the sum of the reciprocals of the valences of those edges. Defining
wt(~x) =∑

i ci xi , we have wt(F ) = wt(~F ) for every normal surface F .
The projective solution space PT for T is abstractly the quotient of ST \ {0} modulo

positive scaling. It is useful to concretely identify PT with a subset of ST, and here
[Tol1] uses the points of ST whose coordinates sum to 1. However, we instead use
the convention that PT =

{
~x ∈ ST | wt(~x) = 1

}
as this simplifies the statement of a key

result of [Tol1]. We will use ~F∗ = (1/wt(~F ))~F to denote the projectivization of ~F and
call it the projective normal class of F .

The carrier CF of a normal surface F is the unique minimal face of PT containing
~F∗. The faces of ST and hence PT correspond to having some of the defining inequal-
ities xi ≥ 0 become equalities. Thus the carrier CF is the face of PT cut out by the
requirement that xi = 0 whenever Fi = 0.

If normal surfaces F and G are compatible in the sense that they never have
distinct quad types in a single tetrahedron, then they have a natural “cut and paste”
geometric sum that is also a normal surface. This new surface is called their normal
sum and denoted F +G . Its normal coordinates are ~F +~G and in particular the normal
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sum is determined up to normal isotopy by the normal isotopy classes of F and G ,
even though F ∩G can change under normal isotopy of the surfaces individually.

2.7 Short generating functions and quasi-polynomials. Throughout this subsec-
tion, see Chapter 4 of [Sta] for details and further background. We can encode a
function s : N→Q by its generating function S(x) = ∑∞

n=0 s(n)xn in the ring Q[[x]]
of formal power series. This generating function is short when S(x) = P (x)/Q(x)
for polynomials P and Q in Q[x] where Q is a product of cyclotomic polynomials.
Equivalently, the generating function is short if and only if

S(x) =
k∑

i=1

ci xai

(1−xbi )di
for some ci ∈Q and ai ,bi ,di ∈N.

If s has a short generating function S = P/Q where further degP < degQ, then
we say that s is a quasi-polynomial. Equivalently, a function s : N → Q is quasi-
polynomial if and only if there exists L ∈ N and polynomials f0, f1, . . . , fL−1 ∈ Q[x]
such that s(n) = fk (n) if n ≡ k mod L, see Proposition 4.4.1 of [Sta]. When s has a
short generating function, it is equal to a fixed quasi-polynomial except for finitely
many inputs [Sta, Proposition 4.2.2].

We will be interested exclusively in s where s(n) ∈N for all n. When such an s
has a short generating function S(x) = P (x)/Q(x), where Q ∈ Z[x] is a product of
cyclotomic polynomials, then P must also be in Z[x]; this is because P (x) = S(x)Q(x)
as elements of Q[[x]] and S(x)Q(x) is a product of elements in Z[[x]].

We end this section with the lemma that gives Corollary 1.6 from Theorem 1.3:

2.8 Lemma. Suppose s : N→Q with all s(n) ≥ 0 has a short generating function
and consider s(n) = ∑n

k=0 s(k). Then either s(n) = 0 for all large n or there exists

d ∈N and c > 0 in Q such that s(n) ∼ cnd .

Proof. Since we only care about asymptotics, assume that s is a quasi-polynomial
with f0, f1, . . . , fL−1 ∈ Q[x] where s(n) = f`(n) if n ≡ ` mod L. Assume some f` 6= 0
as otherwise we are done. Set e = max(deg f`), which is at least 0, and let c` be the
coefficient on xe in f`, so that f`(n) = c`ne +O(ne−1). Then as s(n) ≥ 0 for all n it
follows that c` > 0 if deg f` = e and otherwise c` = 0; in particular, all c` ≥ 0 and∑

` c` > 0. Separating the sum in s(n) into congruence classes modulo L, we write

s(n) =
L−1∑
`=0

s(`)(n) where s(`)(n) =
n∑

j=0
j≡` mod L

s( j ) =
b(n−`)/Lc∑

k=0
f`(`+Lk) (2.9)

Using that (`+Lk)e is a polynomial in k with leading term Le ke , we get f`(`+Lk) =



16

c`(`+Lk)e +O(ne−1) = c`Le ke +O(ne−1) where n = `+Lk. Thus

s(`)(n) =
b(n−`)/Lc∑

k=0

(
c`Le ke +O(ne−1)

)= c`Le

(b(n−`)/Lc∑
k=0

ke

)
+O(ne )

= c`Le

e +1

⌊
n −`

L

⌋e+1

+O(ne ) = c`

(e +1)L
ne+1 +O(ne )

where we have used
∑m

k=0 ke = me+1

e+1 +O(me ). Set d = e +1 and c = 1
dL

∑
` c` > 0, and

it now follows from (2.9) that s(n) ∼ cnd as required.

3 Isotopy classes of essential normal surfaces

In this section, we discuss and refine Tollefson’s work on isotopy classes of incom-
pressible surfaces from the point of view of normal surface theory. In particular, this
allows us to build a bijection between isotopy classes of such surfaces and certain
equivalence classes of lattice points in a collection of rational cones. We will use this
framework to prove Theorem 1.3 in Section 4. We begin by explaining some key facts
from Tollefson [Tol1] using the notation that we reviewed in Section 2.6. Throughout,
we consider a compact orientable irreducible ∂-irreducible 3-manifold M equipped
with a fixed finite triangulation T.

A lw-surface is a compact orientable incompressible ∂-incompressible normal
surface that is least weight among all normal surfaces in its isotopy class; such
surfaces play a key role in [Tol1]. (The term lw-surface is not actually used in [Tol1]
but makes its results easier to state.) A face C of PT is a lw-face when every orientable
normal surface carried by C is a lw-surface. We use LWT to denote the set of all lw-
faces of PT. Clearly, LWT is a subcomplex of PT. A lw-face C is complete if whenever
it carries an orientable normal surface F it also carries every lw-surface isotopic to F .
A key fact for us is:

3.1 Theorem [Tol1, Theorem 4.5]. Every lw-surface is carried by a complete lw-
face. In particular, any lw-face is contained in some complete lw-face.

On a complete lw-face, Tollefson characterizes the various possible forms for isotopy
relations among the surfaces that it carries. As we will describe, these have to be
relatively simple on the interior C ◦ of C , but proper faces of C can have different
isotopy relations. Tollefson introduces the notion of a PIC-partition to encode all
of these. We will not work with PIC-partitions directly, but reframe the underlying
structure in a way more suited for the proof of Theorem 1.3. To give our structure
theorem, we first need some definitions and a useful characterization of when a face
of LWT is complete.
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If F is an orientable surface in M and m a positive integer, a disjoint union of m
parallel copies of F is called a multiple of F and denoted mF . When F is normal, we
always take mF to be a normal surface whose normal coordinates are m~F . To mirror
what happens algebraically in the normal case, for a nonorientable surface F one
defines 2F as the boundary G of a regular neighborhood of F and then mF as either
m
2 G or F ∪ m−1

2 G depending on the parity of m. Surfaces F and G are projectively
isotopic when they have multiples that are isotopic. We say two normal surfaces
are projectively normally isotopic if they have multiples that are normally isotopic.
Note here that the admissible rational points of PT correspond exactly to projective
normal isotopy classes of normal surfaces.

3.2 Remark. Our definitions of least-weight and completeness for a face C differ
from those in [Tol1] in that we only look at orientable normal surfaces F carried by
C whereas [Tol1] allows nonorientable F . However, it is easy to see our definitions
are equivalent to the originals. For example, if C is a lw-face with our definition
and F is a nonorientable surface carried by C , then 2F is a lw-surface and hence F
itself is incompressible and ∂-incompressible. Moreover, if G is any normal surface
isotopic to F then 2G is isotopic to 2F and hence wt(2G) ≥ wt(2F ) which implies
wt(G) ≥ wt(F ); thus F is least weight among all normal surfaces in its isotopy class.
The equivalence of the two definitions of completeness is similar, using that if C
carries 2G then it carries G .

Important for us throughout this paper is that whether a face is (complete) least-
weight is determined by any one surface carried by its interior:

3.3 Theorem. Suppose F is an orientable normal surface carried by the interior of
a face C of PT. Then the following are equivalent:

(a) C is a lw-face.
(b) F is a lw-surface.
(c) Every connected component of F is a lw-surface.

If C is a lw-face, the following are equivalent:
(d) C is complete.
(e) C carries every lw-surface isotopic to F .
(f ) C carries every lw-surface isotopic to a connected component of F .

We will prove Theorem 3.3 below in Section 3.10.

3.4 Dependent faces. A face D of a lw-face C is C -dependent if there exists a surface
carried by D that is projectively isotopic to one carried by C ◦; otherwise, the face
D is C -independent. The collection of C -independent faces of C clearly forms a
subcomplex D of ∂C and we define dep(C ) to be C \

⋃
D∈D D. Note that if D is a

C -dependent face of C , then D◦ ⊂ dep(C ) since if any~x ∈ D◦ was in a C -independent
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face E then D would be a face of E , contradicting that D is C -dependent. As any
point of C is in the interior of some face, we see that dep(C ) is also the union of D◦

over all C -dependent faces D of C .
Tollefson completely characterized the isotopy relations among the surfaces

carried by each dep(C ). We rework this as:

3.5 Theorem. For each face C of LWT there is a rational linear subspace WC such
that the following holds. Any two surfaces F and G carried by dep(C ) are projec-
tively isotopic if and only if ~F∗− ~G∗ is in WC . Moreover, if F and G are orientable
then they are isotopic if and only if ~F − ~G is in WC . Also,

dep(C ) = {
~x ∈C |~x +WC meets C ◦ }

(3.6)

so that in particular any F carried by dep(C ) is projectively isotopic to one carried
by C ◦. Finally, the subspace WC is contained in ker(wt) and given any F carried by
C ◦ there exist surfaces F1, . . . ,Fk projectively isotopic to F and carried by C ◦ such
that the ~F∗−~F∗

i span WC .

The example in Section 7.4 may help you understand the statement of Theorem 3.5.
For the practical algorithms in Section 6, we will need the following additional

properties of WC :

3.7 Corollary. Suppose C is a face of LWT. If surfaces F and G carried by C are
projectively isotopic, then ~F∗− ~G∗ ∈ WC . Also, if D is a face of C , then WD ⊂ WC .
Finally, if F is any orientable surface carried by C ◦, then WC is spanned by all ~G− ~H
where G is a connected component of F and H is isotopic to G and carried by C .

Combined with Theorem 3.5, the next result will be key to proving Theorem 1.3:

3.8 Theorem. The complex LWT is the disjoint union of the dep(C ) as C ranges
over the complete lw-faces of PT. Moreover, if C and C ′ are distinct complete
lw-faces, then no surface carried by dep(C ) is projectively isotopic to one carried
by dep(C ′). Consequently, for an orientable incompressible ∂-incompressible
surface F , there is a unique complete lw-face C such that dep(C ) carries a surface
(non-projectively) isotopic to F .

3.9 Remark. We defined PT =
{
~x ∈ ST | wt(~x) = 1

}
rather than P′

T
= {

~x ∈ ST | ∑xi = 1
}

in order to state Theorem 3.5 in the above form. Tollefson uses P′
T

, and ends up
with a partition of dep(C ) along a family of typically nonparallel affine subspaces
whereas our partition is along parallel affine subspaces. While both PT and P′

T
are

projectivizations of ST, the map that identifies them is not affine but rather projective
and so this is not a contradiction.
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3.10 Complete lw-faces in detail. We begin with the proof of Theorem 3.3 as it is
needed to prove Theorem 3.8.

Proof of Theorem 3.3. First, recall that faces of PT are defined by setting a subset of
the normal coordinates to 0. Consequently, a normal surface G is carried by C if and
only if every connected component of it is carried by C . More generally, if K and L
are compatible normal surfaces, then C carries K +L if and only if it carries K and L
individually.

A normal surface F is carried by C ◦ if and only if the carrier of F is equal to C ;
the equivalence of (a) and (b) is thus Theorem 4.2 of [Tol1]. From the definition it is
clear that (c) implies (b), so to complete the proof of the first part of the theorem we
will show (a) implies (c). This holds because if F ′ is a component of F then, as noted
above, C carries F ′ and thus F ′ is a lw-surface as C is a lw-face.

For the second part, by definition (d) implies (e), and (d) implies (f) since every
component of F is also carried by C . Since C carries a surface if and only if it carries
all of its components, we see that (f) easily gives (e). So it remains to prove (e) implies
(d). So suppose C is a least-weight face of PT such that every lw-surface projectively
isotopic to F is carried by C . We must show that C is complete, so suppose K is
a lw-surface carried by C and L is a lw-surface isotopic to K . As ~F∗ ∈ C ◦, we can
pick a lw-surface E with ~E∗ ∈C ◦ and ~F∗ in the interior of the line segment joining
~K ∗ to ~E∗. Then there are positive integers {m, a,b} with mF = aK +bE . Applying
Corollary 4.3 of [Tol1] with G = aK , G ′ = aL, and H = H ′ = bE , we conclude that aL
and bE are compatible and that aL+bE is isotopic to mF . By hypothesis, as aL+bE
is projectively isotopic to F , it is carried by C . Then aL is carried by C and hence L is
carried by C as well as a > 0. Hence C is complete as claimed.

We now turn to the proof of Theorem 3.5 for which we will need:

3.11 Lemma. Suppose C is a compact convex polyhedron in Rn and W a subspace
of Rn . Set dep(C ,W ) = {

~x ∈C |~x +W meets C ◦ }
. If D is a face of C , then the

intersection D ∩dep(C ,W ) is either empty or contains D◦.

Proof. Passing to a subspace if necessary, we assume that dimC = n and hence
C ◦ is open in Rn . There are finitely many nonzero linear functionals `i on Rn , say
indexed by a set I , and αi ∈ R, such that C = {

~x ∈Rn | `i (~x) ≥αi for all i ∈ I
}
. Then

C ◦ = {
~x ∈Rn | `i (~x) >αi for all i ∈ I

}
. For a face D of C , define ID to be the indices

in I where `i (~x) =αi on all of D .
Now assume D ∩dep(C ,W ) is nonempty, and pick~x ∈ D and ~w ∈W with~x + ~w

in C ◦. For any i ∈ I , we have `i (~x + ~w) >αi , which for those i ∈ ID implies `i (~w) > 0
since `i (~x) =αi . Given ~y in D◦ = {

~x ∈ D | `i (~x) >αi for all i ∉ ID
}
, we need to show

that it is in dep(C ,W ). For ε > 0, consider ~v = ~y + ε~w . For i ∉ ID , we have `i (~v) =
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`i (~y)+ ε`i (~w); since `i (~y) >αi , we can thus make `i (~v) >αi as well by choosing ε

small enough. On the other hand, for i ∈ ID we have `i (~v) =αi +ε`i (~w) >αi for any
positive ε as `i (~w) > 0 for such i . Thus ~v is in C ◦ for small ε and so ~y ∈ dep(C ,W ) as
needed.

Proof of Theorem 3.5. This result is essentially a reframing of Theorem 5.5 of [Tol1]
on the existence of a PIC-partition for C , but to see this one must use a number of
details from the proof of that theorem. Hence we will simply prove Theorem 3.5
directly relying on results earlier in that paper. Suppose F is any lw-surface carried
by C ◦. Let VF be the subspace of R7t spanned by all ~G where G is carried by C
and projectively isotopic to F . Using that VF is finite-dimensional, we can find
mutually isotopic lw-surfaces F1, . . . ,Fk carried by C , each projectively isotopic to
F with ~F∗

1 = ~F∗, such that {~F1, . . . ,~Fk } is a basis for VF . Then Theorem 5.3 of [Tol1]
implies that every normal surface carried by AF =C ∩VF is projectively isotopic to F .

Consider the affine subspace X = {
~x ∈R7t

∣∣ wt(~x) = 1
}

and note PT = ST ∩ X
where ST is the normal solution space. Define XF = X ∩VF which is also the smallest
affine subspace containing {~F∗

1 , . . . ,~F∗
k }. Note here that AF is also C ∩ XF . If ~G is

another orientable normal surface carried by C ◦, then either AF = AG or AF ∩AG =;
depending on whether or not F and G are projectively isotopic. When AF and AG are
disjoint, we claim that XF and XG are still parallel; formally, the tangent space to an
affine subspace Y ⊂R7t is T Y = {

~y1 −~y2
∣∣~y1,~y2 ∈ Y

}
and we will show T XF = T XG .

As ~G∗ ∈ C ◦, we can find a lw-surface H with ~H∗ ∈ C ◦ and ~G∗ on the interior of
the line segment between ~F∗

1 and ~H∗. Hence there are positive integers {m, a,b}
such that mG = aF1 +bH . Set Gi = aFi +bH . By Corollary 4.3 of [Tol1], all the Gi are
isotopic to G1 = mG and hence lie in VG . The Fi are isotopic lw-surfaces and so have
the same weight, and consequently so do the Gi and hence

~F∗
i −~F∗

j = wt(G1)

a ·wt(F1)

(
~G∗

i − ~G∗
j

)
for all i , j .

In particular, we have T XF ⊂ T XG . Reversing the roles of F and G shows T XG = T XF

as claimed.
Now set WC = T XF for any orientable F carried by C ◦. Note that WC is spanned

by the ~Fi −~F j = wt(F1)
(
~F∗

i −~F∗
j

)
from above, and hence by the ~F∗−~F∗

i since ~F∗
1 = ~F∗.

As F is arbitrary, this verifies the claims in the last sentence of the statement of the
theorem since in addition each ~Fi −~F j is in ker(wt).

We extend our notion of AF to all ~y ∈ C ◦ by setting A~y = (~y +WC )∩C . Let Ã =⋃
~y∈C ◦ A~y . We will show:

3.12 Claim. Ã = dep(C ).
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Before proving the claim, let us show that Theorem 3.5 follows from it. First, the
equation (3.6) holds since Ã is also

{
~x ∈C |~x +WC meets C ◦ }

. Second, the claim
that surfaces F and G carried by Ã are projectively isotopic if and only if ~F∗−~G∗ ∈WC

follows because Ã is partitioned by the A~y which for rational ~y correspond exactly to
projective isotopy classes of surfaces carried by C . Finally, if F and G are orientable
surfaces carried by dep(C ), we need to show they are isotopic if and only if ~F−~G ∈WC .
If they are isotopic, they must have the same weight and so ~F − ~G is a multiple of
~F∗−~G∗, and the latter must be in WC as F and G are projectively isotopic. Conversely,
if ~F − ~G ∈ WC , the surfaces are projectively isotopic and as WC ⊂ ker(wt) it follows
wt(F ) = wt(G). As F and G are orientable, least weight, of the same weight, and
projectively isotopic, they are actually isotopic as needed.

To prove Claim 3.12, note both sets contain C ◦, so for each face D of ∂C we will
check that both sets agree on D◦. By Lemma 3.11, either Ã∩D is empty or it contains
D◦. If the former, then no surface carried by D can be projectively isotopic to one
carried by C ◦, and so D is C -independent and hence dep(C )∩D =; as well. If the
latter, then any rational point in D◦ gives a surface projectively isotopic to one carried
by C ◦; hence, D is C -dependent. As noted in Section 3.4, this implies D◦ ⊂ dep(C ).
This proves the claim and hence the theorem.

Proof of Corollary 3.7. First, suppose F and G are projectively isotopic and carried
by C . Since this does not change ~F∗− ~G∗, we will assume F and G are orientable and
actually isotopic. Let H be an orientable surface carried by C ◦. Then by Corollary 4.3
of [Tol1], we have H +F and H +G are isotopic, and hence by Theorem 3.5 above we

have
−−−−−→
(H +F )−−−−−−→

(H +G) = ~F − ~G = wt(F )(~F∗− ~G∗) is in WC as needed.
Second, if D is a face of C , then by the last part of Theorem 3.5 we have WD is

spanned by certain ~F∗−~F∗
i where F and Fi are carried by D . By what we just showed,

all of these are in WC as well, proving WD ⊂WC .
Finally, fix an orientable surface F carried by C ◦ and define Z to be the span of

all ~G − ~H where G is a connected component of F and H is isotopic to G and carried
by C . We need to show WC = Z . By the first part of this corollary, we know Z ⊂WC .
From Theorem 3.5, there are surfaces F1, . . . ,Fk projectively isotopic to F where the
~F∗−~F∗

i span WC . We can moreover arrange that each Fi is isotopic to F so that the
~F −~Fi span WC . To see ~F −~Fi is in Z , let G1, . . . ,Gn be the connected components
of F . Under an isotopy between F and Fi , let G ′

j be the connected component of

Fi corresponding to G j . Then ~F −~Fi =∑
(~G j − ~G ′

j ) which is in Z , giving WC = Z and
completing the proof of the corollary.

Turning now to the proof of Theorem 3.8, we begin with a lemma:

3.13 Lemma. Suppose C is a complete lw-face. A maximal C -independent face D
of C is also complete.
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Proof. Pick a lw-surface F carried by D◦. By Theorem 3.3, it suffices to show that
given a lw-surface G isotopic to F then G is carried by D . By completeness of C , we
know G is carried by C . By Theorem 5.3 of [Tol1], every normal surface carried by the
segment L = [~F∗,~G∗] in C is projectively isotopic to F . Let E be the minimal face of C
containing L; since L is just a segment, it meets E◦. We cannot have E be C as then F
is projectively isotopic to some surface in C ◦, violating that D is C -independent. For
the same reason, the face E cannot be C -dependent as then E ◦ ⊂ dep(C ) and hence
by Theorem 3.5 any surface carried by E ◦ is projectively isotopic to one carried by C ◦.
Thus E must be C -independent and we know that it contains ~F∗ which is an interior
point of the maximal C -independent face D ; consequently, we must have E = D and
so G is carried by D . Thus D is complete as claimed.

Proof of Theorem 3.8. We start with:

3.14 Claim. Any lw-surface F is carried by dep(C ) for some complete lw-face C .

By Theorem 3.1, the surface F is carried by some complete lw-face. It is immediate
from the definition that the intersection of two complete lw-faces is again complete,
so there exists a minimal complete lw-face C carrying F . Let D be the face of C
containing F in its interior. If D is C -dependent, then D◦ ⊂ dep(C ) and so F ∈ dep(C )
as desired. So assume D is C -independent. Let E be a maximal C -independent face
of C containing D , and note E 6=C as C is C -dependent. By Lemma 3.13, the face E
is complete and so we have found a smaller complete face containing F than C , a
contradiction. So we have proven Claim 3.14.

To prove Theorem 3.8 it remains to show:

3.15 Claim. If C1 and C2 are distinct (but perhaps not disjoint) complete lw-faces,
then no surface carried by dep(C1) is projectively isotopic to one carried by dep(C2).
In particular, the sets dep(C1) and dep(C2) are disjoint.

Suppose not and that F1 and F2 are projectively isotopic normal surfaces carried by
dep(C1) and dep(C2) respectively. By Theorem 3.5, we can further assume each Fi is
carried by C ◦

i . Replacing them with multiples if necessary, we can assume that they
are actually isotopic. By Corollary 4.6 of [Tol1], it follows that both F1 and F2 must be
carried by C1 ∩C2; as each Fi is carried by C ◦

i , we must have C1 =C2, a contradiction.
This proves Claim 3.15 and hence the theorem.

4 Surface counts are almost quasi-polynomial

The first of this section’s two main results is:
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4.1 Theorem. Suppose M is a closed irreducible atoroidal 3-manifold that con-
tains no nonorientable essential surfaces and C is a complete lw-face of PT. Let
bC (n) be the number of isotopy classes of closed essential surfaces F carried by
dep(C ) with χ(F ) = n, and let BC (x) =∑∞

n=1 bC (−2n)xn be the corresponding gen-
erating function. Then BC (x) is short.

The other main result of this section is Theorem 4.12, which is the analog of Theo-
rem 4.1 when M has boundary. Combining Theorem 4.1 with the results from the
last section, we can now give:

Proof of Theorem 1.3 when M is closed. As M is closed, a (necessarily closed) surface
in M is essential exactly when it is incompressible. Therefore, by Theorem 3.8, each
isotopy class of essential surface is carried by dep(C ) for a unique complete lw-face
C . As sums of short generating functions are also short, Theorem 1.3 now follows
from Theorem 4.1.

4.2 Counting surfaces via lattice points. We now turn to the proof of Theorem 4.1,
so let M be a closed irreducible atoroidal 3-manifold with triangulation T. From now
on, fix a complete lw-face C of PT and consider the cone C̃ ⊂ ST, that is R≥0 ·C ={

t~x | t ∈R≥0,~x ∈C
}

. Recall that dep(C ) ⊂C is the complement of its C -independent
faces, and define dep(C̃ ) = (

R≥0 ·dep(C )
)

\ {~0}. Now bC (n) in Theorem 4.1 is the
number of isotopy classes of normal surfaces F with ~F ∈ dep(C̃ ) and χ(F ) = n.

As motivation, let us start with the easy case when the subspace WC from Theo-
rem 3.5 is zero. Then dep(C̃ ) = C̃

◦
, and two surfaces F and G carried by dep(C̃ ) are

isotopic if and only if ~F = ~G . In our triangle-quad coordinates, there is a linear func-
tion χ : R7t →R such that the Euler characteristic of a normal surface F is given by
χ(~F ), see [JT, Algorithm 9.1]. Every normal surface F carried by C is incompressible
and hence χ(F ) ≤−1 as M is closed, irreducible, and atoroidal. Thus χ< 0 on every
vertex of C which implies χ is proper on C̃ and so the set X = {

~x ∈ C̃
∣∣ χ(x) =−1

}
is

a compact polyhedron. Now bC (−n) is simply the size of the set (nX ◦)∩Z7t , and
counting lattice points in dilations of a compact polyhedron has been studied exten-
sively starting with the work of Ehrhart in the 1960s. In particular, Theorem 4.6.26 of
[Sta], whose proof uses Ehrhart-Macdonald reciprocity, tells us that the generating
function BC (x) is short, proving Theorem 4.1 when WC = 0.

When WC is nonzero, to count isotopy classes of surfaces we need to identify
lattice points in dep(C̃ ) that differ by an element of WC . We do so in the following
way. Let V be the linear subspace of R7t spanned by all vectors in C , and let W be
WC . Define V (Z) =V ∩Z7t and W (Z) =W ∩Z7t . Using Smith normal form, we can
find a complementary rational subspace L ⊂ V to W such that the lattice V (Z) is
the direct sum of W (Z) and L(Z) = L∩Z7t . Let T : V → L be the projection operator
associated with the decomposition V = W ⊕L. We can now turn our question of
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counting isotopy classes of surfaces into one about counting certain lattice points in
L(Z):

4.3 Lemma. The set T
(
dep(C̃ )∩Z7t

)
is in bijection with isotopy classes of normal

surfaces carried by dep(C ).

Proof. Normal surfaces carried by dep(C ) correspond to lattice points in dep(C̃ ). As
W is the kernel of T , the claim is equivalent to saying that if F and G are normal
surfaces with ~F and ~G in dep(C̃ ), then F is isotopic to G if and only if ~F − ~G ∈W . As
we are assuming that all incompressible surfaces in M are orientable, this follows
immediately from Theorem 3.5.

To prove Theorem 4.1, we will need a tool for counting points in sets such as
T

(
dep(C̃ )∩Z7t

)
. Recently, Nguyen and Pak [NP], building on [BW], established

exactly the result we need here. To apply [NP], we need the linear map T to be
integral in the sense that its matrix with respect to any Z-bases of V (Z) and L(Z) has
integer entries, but that is clear from its definition. Since we want to count by Euler
characteristic, we first study χ : V →R:

4.4 Lemma. The restriction χ : V (Z) → R is integral and, since M is closed, irre-
ducible, and atoroidal, the function χ is proper on C̃ and negative on C̃ \ {~0}.

Proof. For χ|V , note that C̃ has nonempty interior as a subset of V and contains
open balls of arbitrary size. Hence, given any ~v ∈ V (Z), we can find ~x,~y ∈ C̃ (Z)
with ~v =~x −~y . There are normal surfaces F and G with ~F =~x and ~G = ~y , and so
χ(~v) =χ(F )−χ(G) is in Z as needed to show χ|V is integral.

For χ|C̃ , every normal surface F carried by C is incompressible and hence χ(F ) ≤
−1 as M is closed, irreducible, and atoroidal. Thus χ< 0 on every vertex of C which
implies it is proper on C̃ and negative on C̃ \ {~0}.

Now we combine χ and T as follows. Define T : V → L⊕R by T (~x) = (
T (~x),−χ(~x)

)
,

which is integral as both its component functions are, and we have:

4.5 Lemma. The set T
(
dep(C̃ )∩Z7t

)
is in bijection with isotopy classes of normal

surfaces carried by dep(C ).

Proof. By Lemma 4.3, it suffices to show that projecting away the second factor of
L⊕R gives a bijection between T

(
dep(C̃ )∩Z7t

)
and T

(
dep(C̃ )∩Z7t

)
. This projection

is clearly onto, so this reduces to showing that for normal surfaces F and G with ~F
and ~G in dep(C ) and T (~F ) = T (~G) then −χ(~F ) = −χ(~G). But the latter holds since
~F − ~G ∈W implies the surfaces F and G must be isotopic by Theorem 3.5 and thus
homeomorphic.
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To apply [NP], we will need one more property about T and T :

4.6 Lemma. There is a lattice L′(Z) containing L(Z) which has a Z-basis such that
T (C̃ ) ⊂ Rd

≥0 under the induced identification of L with Rd . Moreover, the same

holds for T .

Proof. The claim for T follows immediately from that for T since −χ(C̃ ) = [0,∞) by
Lemma 4.4. So now we consider only T .

Fourier-Motzkin elimination tells us that the image T (C̃ ) is again a polyhedral
cone. We first show that T (C̃ ) is a pointed cone, that is, one that does not contain a
line. By Theorem 3.5, we know W ⊂ ker(wt). Therefore, the map wt: V →R factors
through the projection T : V → L. Hence all of T (C̃ )\{~0} is strictly to the positive side
of the hyperplane (wt |L)−1(0) and so T (C̃ ) is a pointed cone.

We will now find a basis for L(Q) as a Q-vector space with the property that T (C̃ )
lies in the postive orthant; this suffices to prove the lemma as we can scale the basis
elements by a > 0 in Q so that the lattice they generate contains L(Z). Let {~vi } denote
the vertices of C . Note that if we can find a basis {` j } of L(Q)∗ = Hom

(
L(Q),Q

)
where

` j (~vi ) > 0 for all i and j , then the algebraically dual basis~ek of L(Q), that is, the one
where ` j (~ek ) = δ j k , is the basis we seek. Fix any basis {β j } of L(Q)∗ where β1 = wt
and for ε ∈Q× consider the new basis {` j } where `1 =β1 and all other ` j =β1 +εβ j .
Since we showed above that β1(~vi ) = wt(~vi ) > 0 for each i , for small enough ε we
have ` j (~vi ) > 0 for all i and j as needed to prove the lemma.

Next, we introduce the language needed to state the conclusion of [NP]. A set A
of points in Nn has an associated generating function:

f A(t) = ∑
~a∈A

t~a in Z[[t1, . . . , tn]] where t~a = t a1
1 · · · t an

n for ~a = (a1, . . . , an).

We say that A has a short generating function when there are ci ∈Q and ~ai ,~bi j ∈Zn

such that:

f A(t) =
N∑

i=1

ci t~ai(
1− t~bi 1

) · · ·(1− t
~bi ki

) . (4.7)

These multivariable short generating series were introduced by Barvinok and play a
key role in polynomial time algorithms for counting lattice points in convex polyhe-
dra [Bar].

Using the lattice L′(Z)⊕Z⊂ L⊕R, where L′(Z) is from Lemma 4.6, we henceforth
view T

(
dep(C̃ )∩Z7t

)
as subset of Nd+1. The key to Theorem 4.1 is:

4.8 Lemma. The set T
(
dep(C̃ )∩Z7t

)
has a short generating function.
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Proof. We will construct a rational polyhedron Q ⊂ C̃ such that

Q ∩Z7t = dep(C̃ )∩Z7t

By Lemma 4.6, we have T (Q) ⊂Rd+1
≥0 using the basis of L′(Z) given there. Addition-

ally, the projection T is integral with respect to the lattices V (Z) and L′(Z) since
L′(Z) ⊃ L(Z). Therefore, Theorem 1.1 of Nguyen-Pak [NP] will apply and give that the
generating function for T

(
Q ∩Z7t

)
is short, proving the lemma.

Now dep(C̃ ) is simply C̃ with some closed faces removed, and we can use the
following standard trick to construct Q. For a face D of C its active variables are

ID = {
i ∈ [1,2, . . . ,7t ]

∣∣ xi = 0 on D but xi > 0 somewhere on C
}

Thus D is the subset of C cut out by xi = 0 for i ∈ ID , or equivalently the locus where∑
i∈ID xi = 0 since each xi ≥ 0 on C . Then dep(C̃ ) consists of those~x ∈V where:

(a) all xi ≥ 0,
(b) for each C -independent face D one has

∑
i∈ID xi > 0,

(c) and finally
∑7t

i=1 xi > 0 as the origin is not in dep(C̃ ).

If we define Q to be those ~x ∈ V where all xi ≥ 0, where for each C -independent
face D one has

∑
i∈ID xi ≥ 1, and finally where

∑7t
i=1 xi ≥ 1, then we have Q ∩Z7t =

dep(C̃ )∩Z7t as needed.

Proof of Theorem 4.1. Let f (t) be the generating function for T
(
dep(C̃ )∩Z7t

)
. The

variable td+1 in f (t) corresponds to −χ and by Lemma 4.4 the function χ is proper on
C̃ ; thus, there are only finitely many terms of f (t) with any given power of td+1. Hence
g (t ) = f (1, . . . ,1, t ) is a well-defined element of Z[[t ]], and indeed by Lemma 4.3 it is
the generating function BC (x) we seek with x replaced by t 2.

Since f (t) is short by Lemma 4.8, it remains to use this to see that g (t ) is also short.
Provided no denominator in (4.7) has a factor of

(
1− t a1

1 t a2
2 t a3

3 . . . t ad
d

)
, that is, has no

td+1-term, then this is immediate. To handle the general case, we will use results from
[Woods], noting that our notion of a generating function being short is equivalent
to rationality in the sense of Definition 1.4 of [Woods]. First, set S = T

(
dep(C̃ )∩Z7t

)
.

As the generating function f (t) of S is short, Theorem 1.5 of [Woods] gives that S is
a Presburger set, that is, there is a Presburger formula F which tests points in Nd+1

for membership in S. Writing points in Nd+1 as (~c, p) with~c ∈Nd and p ∈N, we see
from Definition 1.6 of [Woods] that g (t ) is the generating function of the Presburger
counting function p 7→ #

{
~c ∈Nd

∣∣ F (~c, p)
}
. Therefore, by Theorem 1.10 of [Woods],

specifically A ⇒C , the generating function g (t ) is short.
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4.9 Ideal triangulations. Our proof of Theorem 1.3 when ∂M is nonempty will use
ideal triangulations instead of finite ones. The theory of closed normal surfaces
in ideal triangulations is nearly identical to that of normal surfaces in finite tri-
angulations; after all, normal surfaces stay away from the vertices of the ambient
triangulation, which is the only place where the topology differs between the two
cases. Indeed, we claim that all the results of [Tol1] hold for closed normal surfaces
in ideal triangulations without any changes to the proofs. Manifolds with boundary
are allowed in [Tol1], so switching from finite to ideal triangulations can be viewed
as using a slightly different type of finite cellulation as the background to do normal
surface theory, specifically a cellulation by truncated tetrahedra. The combinatorics
of closed normal surfaces in truncated tetrahedra is almost indistinguishable from
standard normal surface theory in a finite triangulation, and hence the proofs in
[Tol1] work as written in our new context. Consequently, the results of Section 3 also
hold for closed surfaces in ideal triangulations.

From now on, suppose M is a compact irreducible ∂-irreducible 3-manifold with
nonempty boundary and T an ideal triangulation of M , which exists by e.g. [JRST,
Proposition 3]. The vertex link Hv of a vertex v ∈ T0 is the normal surface consisting of
one triangle in each tetrahedron corner where the vertex in that corner corresponds
to v . The vertex link Hv should be viewed as a parallel copy of the corresponding
boundary component of M . An ideal triangulation T is ∂-efficient when the only
connected normal surfaces that are boundary parallel are the vertex links. For
example, if T has a positive angle structure then it is ∂-efficient by [Lac1, Proposition
4.4]. Provided M is acylindrical, then any minimal ideal triangulation is ∂-efficient by
[JRST, Theorem 4], so such triangulations always exist for the manifolds we consider
in Theorem 1.3.

Our goal now is to weed out the inessential incompressible surfaces, i.e. those
with a ∂-parallel component, from our counts. When ∂M includes a torus, this is not
just an aesthetic preference but a requirement since there are infinitely many isotopy
classes of (disconnected) incompressible surfaces with the same Euler characteristic.

4.10 Lemma. Suppose T is a ∂-efficient ideal triangulation of a 3-manifold M that
contains no nonorientable closed incompressible surfaces. Let C be a lw-face of
PT. If C carries no vertex link then every normal surface carried by C is essential. If
C carries some vertex link then no normal surface carried by dep(C ) is essential.

Proof. Let IC ⊂ {1,2, . . . ,7t } be the indices of the coordinates on R7t which vanish on
all of C . Then C = {

~x ∈PT | xi = 0 for all i ∈ IC
}

and C ◦ = {
~x ∈C | xi > 0 for all i ∉ IC

}
.

First, suppose C carries an inessential normal surface F . As T is ∂-efficient, the
surface F is the disjoint union of a normal surface G (possibly empty) and some
vertex link Hv ; in particular F =G +Hv . From the above description of C , it is clear
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that as G +Hv is carried by C , both G and Hv are also carried by C . This proves the
first claim.

Second, suppose C carries some vertex link Hv . Since Hv is carried by C , for each
index i corresponding to a triangle in Hv we have i ∉ IC . Hence, for any normal
surface F carried by C ◦, each triangle that appears in Hv also has positive weight in
F . Consequently, the surface F has a component which is normally isotopic to some
Hv and in particular is inessential. More broadly, suppose G is a normal surface
carried by dep(C ). As C is least-weight, by Theorem 3.5, the surface G is projectively
isotopic to some F carried by C ◦, and by the previous argument the latter has a
component which is Hv . By the hypotheses on M , both G and F are orientable since
they are incompressible; as they are projectively isotopic, it follows that G also has a
component isotopic to Hv . In particular, the surface G is inessential. This proves the
second claim.

We call a lw-face C essential if every normal surface carried by C is essential. By
Lemma 4.10, a lw-face C is either essential or every normal surface carried by dep(C )
is inessential. Hence Theorem 3.8 gives:

4.11 Theorem. Suppose T is a ∂-efficient ideal triangulation of a 3-manifold M
that contains no nonorientable closed incompressible surfaces. For each orientable
essential surface F there exists a unique complete essential lw-face C such that
dep(C ) carries a surface (non-projectively) isotopic to F .

We can now prove the analog of Theorem 4.1 for manifolds with boundary:

4.12 Theorem. Suppose M is an irreducible ∂-irreducible atoroidal acylindrical 3-
manifold with ∂M 6= ; that contains no nonorientable essential surfaces. Suppose
T is a ∂-efficient ideal triangulation of M and C is a complete essential lw-face of
PT. The generating function BC (x) corresponding to the counts of isotopy classes
of closed essential surfaces carried by dep(C ) is short.

Proof. As C carries only essential surfaces, we have χ : C̃ → R is proper since all
essential surfaces have χ ≤ −1. This gives the analog of Lemma 4.4 in our setting,
and the proof of the theorem is now identical to that of Theorem 4.1.

We now complete the proof of the first main theorem of this paper:

Proof of Theorem 1.3 when M has boundary. Take T to be a minimal ideal triangu-
lation of M , which is ∂-efficient by [JRST, Theorem 4] since M is acylindrical. By
Theorem 4.11, every isotopy class of essential surface is carried by dep(C ) for a
unique complete essential lw-face C . As sums of short generating functions are also
short, Theorem 1.3 now follows from Theorem 4.12.
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4.13 Whither nonorientable and bounded surfaces. We would of course like to
remove the hypothesis in Theorem 1.3 that M contains no closed nonorientable
essential surfaces, and also broaden the count to allow essential surfaces with bound-
ary. We now outline some of the difficulties inherent in such extensions.

For nonorientable closed essential surfaces, what prevents us from just including
them in the count is that while LWT can carry nonorientable essential surfaces, it
need not carry all of them. (This distinction is also present in the branched surface
perspective of [Oer2].) The issue is that you can have a nonorientable essential
normal surface F which is least weight in its isotopy class but where its double 2F ,
while normal and essential, may not be least weight. This does not happen for an
orientable F since the double is just two parallel copies of F . One could sidestep
this issue by just counting orientable surfaces, but picking those out of each lw-face
seems tricky for the following reason. Note that F is orientable if and only if 2F has
twice the number of connected components as F . As we see from the aM versus bM

discussion in Sections 1 and 8, counting components is subtle. Consequently, we
suspect there are examples where the count of orientable surfaces does not have a
short generating function.

A key obstruction to counting surfaces with boundary is actually the issue of
orientability. Unlike in the closed case with Proposition 2.4, there is no homological
condition we can impose that a priori eliminates the possibility of nonorientable
essential surfaces with boundary. For example, the exterior of a knot in S3 can
contain such nonorientable surfaces (e.g. many checkerboard surfaces for alternating
knots). As [Tol1] and our Section 3 do allow orientable surfaces with boundary, we
are hopeful that if nonorientable closed surfaces can be dealt with, then counting
bounded surfaces will also be possible.

5 Proof of the decision theorem

This section is devoted to proving Theorem 1.4, which says that there are algorithms
for finding the generating function in Theorem 1.3 as well as enumerating repre-
sentatives of the isotopy class of essential surfaces and determining which isotopy
class a given surface belongs to. In this section, we do not worry about the efficiency
of these algorithms, merely their existence; the actual method used to compute
the examples in Section 7 uses some of the ideas here but in the modified form of
Section 6 which is specific to when ∂M is a nonempty union of tori.

Throughout this section, let M be a compact orientable irreducible ∂-irreducible
3-manifold with a fixed triangulation T, which is a finite triangulation when M is
closed or an ideal triangulation otherwise. With the exception of the proof of Theo-
rem 1.4 itself at the very end, in this section we do not require that M is acylindrical
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or atoroidal, nor that T is ∂-efficient; moreover, the manifold M may contain nonori-
entable closed essential surfaces. The algorithms in Theorem 1.4 follow the approach
of the proof of Theorem 1.3 closely, so the first thing we will need is:

5.1 Theorem. There exists an algorithm for computing the collection CLWT of
complete lw-faces of PT.

Given a normal surface F in T, one can algorithmically determine whether or not it
is incompressible and ∂-incompressible; indeed, this is essentially Haken’s original
application of normal surface theory, see e.g. [JT, Algorithm 9.6]. The tricky part of
computing CLWT is figuring out the isotopy relationships between different such
normal surfaces.

5.2 Graph of incompressible surfaces. We use the following framework for under-
standing isotopies among normal surfaces. Let GT be the graph whose vertices are
connected incompressible closed normal surfaces, more precisely the normal iso-
topy classes of such surfaces, and where there is an edge between surfaces F and G
exactly when F and G can be normally isotoped to be disjoint and cobound a product
region. Given an integer w , we use G≤w

T
to denote the subgraph whose vertices are

all surfaces F ∈ GT of weight at most w . Since there are only finitely many normal
surfaces of bounded weight, each G≤w

T
is finite. Moreover, given w , the graph G≤w

T

can be algorithmically constructed as follows. First, the vertices of G≤w
T

can be found
by enumerating all connected normal surfaces of weight at most w and then testing
each for incompressibility. Second, for each pair of surfaces F and G in G≤w

T
, one

can test if they can be normally isotoped to be disjoint using Algorithm 9.5 of [JT];
specifically, this can be done if and only if F and G are compatible and the normal
sum F +G consists of two connected components where one is normally isotopic to
F and the other to G . When they can be made disjoint in this way, there is a unique
way to do so up to normal isotopy. Finally, for each pair of surfaces F and G that can
be normally isotoped apart, we test all components of M cut along F ∪G for being
products using Algorithm 9.7 of [JT]. This completes the algorithm for constructing
G≤w
T

.
Any two surfaces in the same connected component of GT are of course isotopic.

It turns out the converse is true as well, in the following strong form:

5.3 Theorem. If F and G are two vertices of GT that are isotopic, then they
are joined by a path in GT passing only through vertices H with wt(H) ≤
max(wt(F ),wt(G)). In particular, the isotopy classes of surfaces in any G≤w

T
corre-

spond precisely to the connected components of G≤w
T

.

We prove this theorem in Section 5.4 below, but we first use it to derive Theorem 5.1.



31

Proof of Theorem 5.1. First, compute the polytope PT from the normal surface equa-
tions. For each face C of PT, fix a normal surface FC that is carried by its interior.
Compute the graph G≤w

T
where w is the maximum weight of any FC . The incom-

pressible FC are those that are vertices of G≤w
T

, and, by Theorem 5.3, we know exactly
which FC are least-weight. When FC is least-weight, we also know every other least-
weight surface isotopic to it. Applying Theorem 3.3 now identifies exactly the faces C
that are in CLWT.

5.4 Isotopic normal pairs. Throughout, let M be a compact orientable irreducible
3-manifold with a fixed triangulation T as in the previous section. An isotopic normal
pair (F,G) is an isotopic pair of closed incompressible normal surfaces F and G that
meet transversely in the sense of [Tol1, Page 1091]. Define the complexity of such a
pair by

c(F,G) = (
max(wt(F ),wt(G)), min(wt(F ),wt(G)), #(F ∩G)

)
where #(F ∩G) denotes the number of connected components of F ∩G . We will
compare complexities lexicographically.

If (F,G) is an isotopic normal pair where F and G are disjoint, then by Lemma 5.3
of [Wal1] the surfaces F and G are parallel, i.e. cobound a region homeomorphic to
F × I . In this case, the pair (F,G) gives rise to an edge of GT. The key result of this
subsection is:

5.5 Theorem. If (F,G) is an isotopic normal pair with F ∩G 6= ; then, after possibly
interchanging F and G , there exists a normal surface F ′ that is isotopic to F and
disjoint from it that meets G transversely with c(F ′,G) < c(F,G).

Given any (F,G) isotopic normal pair with w = max(wt(F ),wt(G)), we can apply
Theorem 5.5 repeatedly until we arrive at a pair (F ′′,G ′′) where F ′′ and G ′′ are disjoint.
This proves Theorem 5.3 above, since each application of Theorem 5.5 gives an edge
in G≤w

T
and there is also an edge from F ′′ to G ′′.

Suppose F̃ and G̃ are subsurfaces of F and G respectively, with ∂F̃ = ∂G̃ . Here
is one way to make precise the notation that F̃ and G̃ are “parallel rel boundary”.
Given a compact surface H , define P (H) as the quotient of H × I where for each
h ∈ ∂H the set {h}× I has been collapsed to a point. A product region between F̃ and
G̃ is an embedding f : P (H) → M where f (H × {0}) = F̃ and f (H × {1}) = G̃ ; here we
do not insist that P = f (P (H)) meets F ∪G only in F̃ ∪ G̃ . The first step in proving
Theorem 5.5 is to show:

5.6 Lemma. Suppose (F,G) is an isotopic normal pair with F∩G 6= ;. After possibly
interchanging F and G , there exist subsurfaces F̃ ⊂ F and G̃ ⊂G where G̃ ∩F = ∂G̃
and ∂F̃ = ∂G̃ and wt(G̃) ≤ wt(F̃ ) with G̃ and F̃ bounding a product region P with
P ∩F = F̃ .
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Proof. Suppose all components of F ∩G are essential in both F and G . Then by
Proposition 5.4 of [Wal1], there exist subsurfaces F̃ ⊂ F and G̃ ⊂G with F̃ ∩G = ∂F̃ =
∂G̃ = F ∩G̃ where F̃ ∪G̃ bounds a product region P where P ∩F = F̃ and P ∩G = G̃ .
Relabeling, we can arrange that wt(G̃) ≤ wt(F̃ ) to prove the lemma in this case.

Suppose instead some component of F ∩G is inessential in one of F or G . Among
all disks contained in one of F or G bounded by a component of F ∩G , let D be one
of least weight, which exists since the weight (i.e., the number of intersection points
with the 1-skeleton of T) of any subsurface is a nonnegative integer. By passing
to an innermost component, we can assume D meets F ∩G only along ∂D. After
relabeling, we can assume this D is contained in G and then set G̃ = D. As F is
incompressible, the curve ∂G̃ must bound a disk F̃ in F . Together the disks F̃ ∪ G̃
form a sphere which must bound a ball as M is irreducible, and hence F̃ and G̃ bound
the required product region P . By our initial choice of G̃ , we must have wt(G̃) ≤ wt(F̃ )
as desired.

Proof of Theorem 5.5. Let F̃ and G̃ be given by Lemma 5.6. Set F0 = (F \ F̃ )∪G̃ which
is isotopic to F via the product region P . Move F0 slightly so that it is disjoint from
F , and notice that wt(F0) = wt(F )−wt(F̃ )+wt(G̃) ≤ wt(F ). If F ′ is a normalization
of the incompressible surface F0, we have wt(F ′) ≤ wt(F0); by the barrier theory [JR,
Theorem 3.2(1)], the surface F ′ is disjoint from F , and we can perturb F ′ slightly to
be transverse to G .

If wt(F ′) < wt(F ) we now have our desired (F ′,G) as c(F ′,G) < c(F,G) where the
two complexities differ in one of the first two components. If instead wt(F ′) = wt(F ),
then we must have wt(F0) = wt(F ). This means that F0 is normally isotopic to F ′ as all
normalization moves that change the normal isotopy class strictly reduce the weight.
Then #(F ′∩G) = #(F0 ∩G) = #(F ∩G)−#∂F̃ < #(F ∩G) and hence c(F ′,G) < c(F,G)
with the complexities differing only in the last component.

We turn now to the proof of Theorem 1.4, so now the manifold M is atoroidal,
acylindrical, and does not contain a nonorientable essential surface.

Proof of Theorem 1.4. As input, we are given a triangulation T of M which will be
finite if M is closed or could be finite or ideal if M has boundary. If M has boundary
and we are given a finite triangulation, convert it to an ideal one using the procedure
described in the proof of [Mat, Theorem 1.1.13], which is relevant as per [JRST,
Proposition 3]. When M has boundary, apply the algorithm of [JR, Theorem 4.7] so
that the ideal triangulation T we are working with is ∂-efficient.

Start by computing CLWT via Theorem 5.1. As in the proof of Theorem 1.3, the
claim that we can compute the overall generating function algorithmically follows if
we can implement Theorem 4.1 or Theorem 4.12 as appropriate for a particular face
C of CLWT. (In the case when M has boundary, by Lemma 4.10 we can skip any C
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which carries a vertex link, which is easy to test.) From the proofs of those theorems,
we need algorithms for two things: finding the subspace WC from Theorem 3.5 and
applying Theorem 1.1 of [NP]. The latter is provided by [NP] itself, so we focus on
the former.

To compute WC , first let F0 be any normal surface carried by the interior of C and
compute G

≤wt(F0)
T

. Now apply Theorem 5.3 to find all least-weight surfaces F1, . . . ,Fk

that are isotopic to F . As C is complete, all the Fi are carried by C and hence are
mutually compatible. By Lemma 3.5, we have that WC is spanned by the ~F0 −~Fk ,
giving us the needed description of WC .

The second claim of the theorem, that we can give unique normal representatives
of the isotopy classes of incompressible surfaces with χ = −2n, is easy by looking
at the lattice points in the sublevel sets of χ on C̃ ⊂ ST for each face C of CLWT and
modding out by WC . The final claim, that we can determine the isotopy class of a
given incompressible surface F , can be done using this list and G

≤wt(F )
T

because of
Theorem 5.3.

6 Almost normal surfaces in ideal triangulations

This section discusses the algorithm used to implement Theorem 1.4 for the com-
putations in Section 7. The key difference compared to the proof of Theorem 1.4
in Section 5 is that we use almost normal surfaces, rather than normal ones, to
determine which normal surfaces are incompressible and to find isotopies between
them.

In this section, we study manifolds with boundary a union of tori using ideal
triangulations admitting a partially flat angle structure in the sense of [Lac2]. Since
we are restricting to M with χ(∂M) = 0, we require the angles at each ideal vertex
to sum to exactly π rather than at most π as in (i) on page 916 of [Lac2]. Such
triangulations impose restrictions on the topology of the underlying manifold M .
The only connected closed normal surfaces in T with χ ≥ 0 are vertex links, and
M is irreducible, ∂-irreducible, atoroidal, and acylindrical [Lac2, Theorem 2.2]; in
particular, the interior of M admits a finite-volume complete hyperbolic metric, and
T is a ∂-efficient triangulation of M . A general algorithm for finding such a T in
this setting is given in [Lac2, §2] and in practice one easily finds a T admitting the
stronger notion of a strict angle structure from [HRS].

6.1 Tightening almost normal surfaces. An almost normal surface is a surface S in
T built from the same elementary discs as normal surfaces except for exactly one
piece, which is either an almost normal octagon or made by joining two elementary
discs in the same tetrahedron by an unknotted tube. Given a transverse orientation
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of an orientable almost normal surface A in T, we can “destabilize” the exceptional
piece in that direction and then perform normalization moves. This process, called
tightening the surface A, moves it in only one direction and terminates in a normal
surface which we denote T+(A), see [Sch, Chapter 4] for details. While the sequence
of normalization moves is not unique, the tightened surface T+(A) is well-defined:
together A and T+(A) bound the canonical compression body of A defined in [Sch,
§4.1] which we denote V+(A). Here, the compression body V+(A) is built from A× I
by adding 2- and 3-handles, so that A is the minus boundary of V+(A) and T+(A)
is the plus boundary. In particular, we have χ(A) ≤ χ (T+(A)) with equality if and
only if V+(A) is just A × I . Moreover, since T contains no normal 2-spheres, every
component of T+(A) has genus at least 1. We will use T−(A) to denote the tightening
of A in the opposite transverse direction with V−(A) the corresponding canonical
compression body.

As per [Sch], the tightening process can be followed by tracking just the intersec-
tion of each surface with the 2-skeleton of T. Thus it amounts to looking at a family of
arcs in T2, which need not all be normal, and then doing a sequence of bigon moves
across edges of T1 until one is left only with normal arcs. It is thus straightforward to
implement once one creates an appropriate data structure to do the bookkeeping,
though our code is the first time this has been done.

6.2 Sweepouts and thin position. The notions of sweepouts [Rub] and Gabai’s thin
position [Tho] can independently be used to prove the existence of almost normal
surfaces in many situations. We will need the following two such results, which are
quite standard.

6.3 Lemma. Suppose N and N ′ are normal surfaces cobounding a product region
V . Then there are disjoint surfaces N = N0, A1, N1, A2, . . . , Nn−1, An , Nn = N ′ in
V with the Nk normal and the Ak almost normals such that T−(Ak ) = Nk−1 and
T+(Ak ) = Nk .

Proof. Since T is ideal and the surfaces N and N ′ are closed, the product region
V between them contains no vertices of T. The usual sweepout or thin position
argument for a product, see e.g. [Sch, Theorem 6.2.2], gives the needed sequence of
surfaces.

6.4 Lemma. Suppose V is a nonproduct compression body in M where both ∂−V
and ∂+V are normal surfaces in T. Then there exists an almost normal surface
A ⊂V such that T−(A) and A are parallel inside V to ∂−V and T+(A) is a (proper)
compression of ∂−V .

Proof. As T is ideal, there are no vertices of T inside V , and a push off of ∂−V into V is
a strongly irreducible Heegaard surface for V . By a slight strengthening of [Rub, Sto]
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in the same manner as [Lac2, Theorem 4.2], we can find an almost normal surface
A in V that is parallel to ∂−V . Transversely orient A away from ∂−V . Since A is
incompressible in the negative direction, we have T−(A) is parallel to ∂−V . We are
done if T+(A) is a compression of A. Otherwise, the region between ∂−V and T+(A)
is a product, and we repeat the argument on the compression body bounded by
the normal surfaces T+(A) and ∂+V . As there is a bound on the number of disjoint
normal surfaces in T, none of which are normally isotopic, this will terminate and so
produce the surface we seek.

6.5 Finiteness of (almost) normal surfaces. For g ≥ 2, we define N
g
T

to be the set of
connected normal surfaces of genus g in T, up to normal isotopy. Correspondingly,
the set of such almost normal surfaces is Ag

T
, again up to normal isotopy. A key result

for us is Theorem 4.3 of [Lac2]

6.6 Theorem [Lac2]. When T has a partially flat angle structure, both N
g
T

and A
g
T

are finite and algorithmically computable.

We will sketch the proof of Theorem 6.6 as it outlines the algorithm for finding
N

g
T

and A
g
T

, which is an important component of the overall algorithm given in
Section 6.12. This discussion is most natural in the setting of the quadrilateral
coordinates for normal surfaces introduced in [Tol2] rather than the standard triangle-
quad coordinates we’ve used so far. We now describe the basics of quad coordinates,
referring to [Bur2] for details. As the name suggests, in these coordinates a normal
surface F is recorded by just the 3t weights on the quadrilateral discs, where t is the
number of tetrahedra of T. It turns out this determines F up to any vertex-linking
components Hv as in Section 4.9. There are still linear equations, one for each edge
of T, characterizing the admissible vectors in N3t that give normal surfaces; we use
S′
T

and P′
T

to denote the corresponding linear solution space and its intersection
with the positive orthant. (The relationship between the vertices of PT and P′

T
is

described in detail in [Bur2].) Given an admissible vector ~v ∈N3t carried by P′
T

, we
take the associated normal surface to be the one with those quad weights and no
vertex-linking components; following [Bur2], we call such surfaces canonical. Two
things to keep in mind about quad coordinates:

(a) In standard coordinates, adding vector representatives corresponds to the
geometric Haken sum. In quad coordinates, adding vector representatives
corresponds to geometric Haken sum followed by removing all copies of the
vertex links. Hence the total weight is additive in standard coordinates but
only subadditive in quad coordinates. Correspondingly, the total weight of a
surface is only piecewise linear in quad coordinates.
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(b) Because we have an angle structure on T, the Euler characteristic function is
linear in quad coordinates. (In contrast, it is only piecewise linear in quad
coordinates for finite triangulations.) Specifically, consider the linear function
χ : R3t →R defined as follows. Consider the basis vector ei corresponding to a
quad Q in a tetrahedron σ. We set

χ(ei ) =−1+ θ1 +θ2 +θ3 +θ4

2π

where the θk are the angles assigned to the four edges of σ that Q meets. Then
χ(F ) = χ(~F ) by [Lac1, Proposition 4.3]. Moreover, for each face C of P′

T
that

carries only admissible vectors, the function χ : (R+ ·C ) →R is in fact proper,
nonpositive, and zero only at the origin [Lac2, Theorem 2.1]; when the angle
structure is strict, this is immediate for all of P′

T
since each χ(ei ) < 0.

Turning to almost normal surfaces, those with octagons can be described in terms
of lattice points in certain polytopes, and we will use the quad-octagon coordinates
of [Bur1], as opposed to the standard quad-octagon-tri coordinates, to record them.
Almost normal surfaces with tubes will be encoded by a normal surface together
with the pair of adjacent normal discs that the tube runs between. With these
preliminaries in hand, we can now give:

Proof of Theorem 6.6. First, consider the case of Ng
T

which is contained in the preim-
age χ−1(2−2g ) for the map χ : R3t → R defined in (b) above. Since χ is proper on
the cone over each admissible face of P′

T
, there are only finitely many lattice points

in χ−1(2−2g ) corresponding to surfaces. These can be enumerated and tested for
whether the surfaces are connected, giving us exactly N

g
T

.
For Ag

T
, we consider the cases of octagons and tubes separately. For octagons,

the map χ is again proper on the relevant polytope, and so this case works out the
same as N

g
T

. For tubes, one first enumerates all normal surfaces (not necessarily
connected) with χ= 4−2g . For each such surface N , one considers all possible tubes
and selects those that produce a connected surface, i.e. an element of Ag

T
.

6.7 Remark. A single normal surface F can give rise to many different almost normal
surfaces with tubes, where we are considering almost normal surfaces up to normal
isotopy. To keep the computation manageable, we considered non-normal isotopies
of tubes for a fixed normal surface F . That is, for an almost normal surface A made by
adding a tube to F , we can “slide” the attaching points of the tube through one of the
faces of the tetrahedron that contains it to get another almost normal surface built
on the same F . In our actual computations, we considered such surfaces up to this
equivalence. It is not hard to show that two tubed surfaces that are equivalent in this
sense have the same canonical compression body and hence the same tightenings.
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6.8 Another graph of normal surfaces. We now turn N
g
T

into a graph by adding

edges as follows. For each A ∈A
g
T

, we pick a transverse orientation arbitrarily and
consider its two tightenings T±(A):

(a) If both T±(A) are homeomorphic to A, we add an (undirected) edge joining
T−(A) and T+(A). In this situation, both V±(A) are products and so T−(A) and
T+(A) are isotopic.

(b) If T+(A) is homeomorphic to A but T−(A) is not, mark the vertex T+(A) in N
g
T

as compressible. Also do the same with the roles of T+(A) and T−(A) reversed.

The main result of this subsection is:

6.9 Theorem. Isotopy classes of closed essential surfaces in M of genus g are in
bijection with the connected components of Ng

T
where no surface is marked as

compressible.

Given how the edges in N
g
T

were defined, to prove Theorem 6.9, it suffices to show
the following two lemmas:

6.10 Lemma. If N ∈N
g
T

is essential and isotopic to N ′ ∈N
g
T

then there is a path
joining them in N

g
T

.

Proof. Let w = max
(

wt(N ), wt(N ′)
)

and consider the graph G≤w
T

from Section 5.2.
Temporarily viewing N and N ′ as vertices of G≤w

T
, since they are isotopic surfaces,

Theorem 5.3 gives a sequence of normal surfaces N = N0, N1, . . . , Nn = N ′ where Nk

and Nk+1 can be normally isotoped to be disjoint and cobound a product region
Pk . Applying Lemma 6.3 to Pk gives a path in N

g
T

joining Nk to Nk+1. Concatenating
these paths together gives a path in N

g
T

joining N to N ′ as needed.

6.11 Lemma. If N ∈ N
g
T

is compressible, it can be joined by a path in N
g
T

to a
surface N ′ that is marked as compressible.

Proof. We first show there exists a nontrivial compression body V in M with ∂−V = N
and ∂+V a normal surface. Splitting M open along N and using the characteristic
compression body of [Bon, §2], we can find a nontrivial compression body V ⊂ M
with ∂−V = N and ∂+V is incompressible in the complement of N . Since N is
normal, barrier theory [JR, Theorem 3.2(1)] tells us that we can normalize ∂+V in the
complement of N via an isotopy, giving us the desired compression body.

By Lemma 6.4, there is an almost normal surface A in V so that T−(A) and A are
parallel to N and T+(A) is a compression of A. Set N ′ = T−(A), which is marked as
compressible because of the surface A. As N and N ′ are parallel, by Lemma 6.3 they
are joined by a path in N

g
T

, completing the proof of the lemma.
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6.12 Algorithm. The input for the algorithm is an ideal triangulation T with a par-
tially flat angle structure of a manifold M where H2(∂M ;F2) → H2(M ;F2) is onto so
M contains no nonorientable surfaces by Proposition 2.4. (Here, the angles are given
as rational multiples of π; the set of partially flat angle structures form a convex
polytope with rational vertices, so this is not a real restriction.) The output is the list
{(C ,WC )} of complete essential lw-faces C of LWT ⊂PT together with the correspond-
ing subspaces WC . Before starting, recall that a vertex surface is a normal surface F
where ~F is a primitive lattice point on the ray corresponding to an admissible vertex
of PT. Note that every vertex surface is connected, and that each vertex-linking torus
Hv for v ∈ T0 is a vertex surface [Bur2, Corollary 4.4].

(1) Enumerate all vertex surfaces for the normal surface equations for T in stan-
dard triangle-quad coordinates via [Bur2, Algorithm 5.17]. Then use Algo-
rithm 3.2 of [Bur3] to find all admissible faces of PT. Set g0 to be the maximum
genus of any vertex surface.

(2) For each g with 2 ≤ g ≤ g0, enumerate the finite sets Ng
T

and A
g
T

as described
in the proof of Theorem 6.6. Apply the tightening procedure of Section 6.1 to
each surface A in A

g
T

to compute T−(A) and T+(A). As detailed in Section 6.8,
this information makes N

g
T

into a graph where certain vertices are labeled
compressible.

We then compute a complete list of lw-surfaces of genus g from the graph N
g
T

using Theorem 6.9 as follows: for each connected component of Ng
T

where no
surface was marked as compressible, compute the weight of each surface and
then take all those of minimal weight for that component. This also computes
all isotopy relations among the lw-surfaces of genus g . Because of the angle
structure on M , there are no essential tori in M and the only nonessential lw-
surfaces are the vertex links. Thus we now have a complete list of all essential
lw-surfaces of genus at most g0.

(3) From the list of admissible faces of PT which were computed in Step 1, select
those where all vertices are among the essential lw-surfaces enumerated in
Step 2. For each such C , select a surface FC carried by its interior, e.g. take FC to
be the sum of the vertex surfaces of C . Use Algorithm 9.4 of [JT] to decompose
FC into its connected components which are again normal surfaces. If any
component of FC has genus greater than g0, replace g0 with the maximum
genus of any component of FC and re-run Step 2. By Theorem 3.3, the face C is
least-weight if and only if every connected component of FC is a lw-surface.
So we now determine whether or not C is least-weight by using the list of
lw-surfaces of genus at most g0 from Step 2. Finally, if C is least-weight, it is
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essential by Lemma 4.10 and the observation that if C carried a vertex link
Hv , then Hv would have to be one of the vertex surfaces of C . We now have a
complete list of all essential lw-faces of PT.

(4) Now we determine which essential lw-faces are complete. Given such a face
C , let FC be the preferred surface in its interior. By Step 2, we know all lw-
surfaces isotopic to a connected component of FC . By Theorem 3.3, the face C
is complete if and only if all these other surfaces are carried by C .

(5) It remains to determine the subspace WC for each complete essential lw-face C .
Let G1, . . . ,Gk be all lw-surfaces isotopic to a connected component of FC , all
of which will be carried by C as it is complete. By the last part of Corollary 3.7,
the vectors ~Gi − ~G j span WC . This concludes the algorithm.

6.13 Remark. It is clearly to our advantage to keep g0 as small as possible, which
suggests several performance improvements. For example, in Step 3 it pays to search
the interior of C for an FC whose components have the least genus. More elaborately,
say that a normal surface N has an obvious compression when there is a chain of
quads forming an annulus around a thin edge. In our setting, such surfaces cannot be
essential, and we can discard in Step 1 any vertex surfaces with obvious compressions
before setting g0. Because the notion of obvious compression can be framed as an
admissibility criteria on the faces of PT that is compatible with [Bur3, Algorithm 3.2],
it is not hard to check that this does not affect the correctness of the answer.

6.14 Remark. The above algorithm in particular determines whether or not M con-
tains a closed essential surface. It would be very interesting to study the practical ef-
ficiency of this algorithm as compared to the more traditional approach of [BCT, BT]
involving testing for incompressibility by cutting M open along candidate surfaces.
While we did implement Steps 1–3 of our algorithm for the computations in Section 7,
we used a high-level but slow programming language and did not optimize the code
extensively. Consequently, we did not have a good basis for making this comparison.

7 Computations, examples, and patterns

In this section, we describe the results of computing LWT for some 59,096 manifolds
with torus boundary. These manifolds were drawn from two censuses. The first was
the 44,692 orientable hyperbolic 3-manifolds that have ideal triangulations with at
most 9 tetrahedra where ∂M is a single torus and H1(M ;F2) = 0 [Bur4]. The second
was the 14,656 hyperbolic knots in S3 with at most 15 crossings whose exteriors have
ideal triangulations with at most 17 ideal tetrahedra [HTW]. These two censuses
have little overlap, with only 216 manifolds common to both.
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sample count small
barely
large

very
large

isotopy
of lw

failed

Cusped census 44,692 38,358 6,046 288 0 0
Knot exteriors 14,656 10,554 3 4,049 14 36

Combined 59,132 48,703 6,049 4,330 14 36

Table 2. Summary of the manifolds where we tried to compute LWT . There are 216
manifolds common to both samples, which is why the last row is not the sum of
the previous two. The 14 knot exteriors where there was a non-normal isotopy of
lw-surfaces are all large; they are likely very large, but we did not check this.

Using the default triangulation for each manifold provided by SnapPy [CDGW],
we used Algorithm 6.12 to try to compute LWT. We succeeded except for 36 tri-
angulations where the computation ran out of time or memory. Combined, the
computations took about 8 CPU-months, with the running time for a single manifold
having a mean of 5.85 minutes and a maximum of 3 days. The median time was 0.8
seconds for the cusped census and 1.3 minutes for the knot exteriors.

With the initial triangulations, some 182 manifolds had distinct essential lw-
surfaces that were isotopic. To avoid computing the generating function BM (x) in
the general case where one is taking the quotient by the subspaces WC , we replaced
168 of these triangulations with others where there were no such isotopies. Except for
Section 7.4, we will unfairly lump the remaining 14 manifolds with distinct isotopic
essential lw-surfaces in with the 36 whose computations timed out, and restrict
our analysis to the other 59,082. A summary of these manifolds is given in Table 2,
where we use the following terminology. Recall a 3-manifold M is large when it
contains a closed essential surface and small otherwise. We call a large manifold M
barely large when every closed essential surface is a multiple of a finite collection of
such surfaces; otherwise M will be very large. In the language of Section 1.11, the
terms small, barely large, and very large correspond, respectively, to ML0(M) =;,
dim(ML0(M)) = 1, and dim(ML0(M)) > 1.

It is natural to ask what is the smallest volume of a hyperbolic manifold that
is barely or very large. In our sample, the smallest manifold that is barely large is
m137, which has volume Voct ≈ 3.663862376, and the smallest knot exterior that is
barely large is that of K 15n153789, which has volume about 9.077985047. Similarly,
the smallest manifold we found that is very large is s783 which has volume about
5.333489566, and the smallest such knot exterior is that of K 10n10 = 10153, which
has volume about 7.374343889.
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dim count
comps verts max faces face size
µ range µ range µ range µ range

1 1,697 1.1 [1,4] 2.8 [2,14] 1.8 [1,10] 2 [2,2]
2 1,810 1.1 [1,2] 5.6 [3,16] 3.3 [1,13] 3.1 [3,4]
3 606 1.2 [1,3] 10.6 [6,21] 7.8 [1,26] 4.8 [4,7]
4 205 1.0 [1,2] 16.4 [8,44] 11.3 [2,48] 7.7 [5,12]
5 12 1.0 [1,1] 19.3 [16,21] 13.6 [7,18] 10.8 [10,12]

Table 3. Statistics about the complexes LWT for the 4,330 very large manifolds, broken
down by dimLWT . The properties recorded are: the number of connected compo-
nents (comps), the number of vertices (verts), the number of maximal faces (max
faces), and the largest number of vertices in any face (face size). For each numerical
property, we give the mean in the µ column as well as the min-max interval in the
range column.

7.1 Very large manifolds. For the 4,330 manifolds where dimLWT ≥ 1, the com-
plexes LWT run the gamut from a single edge (for 760 manifolds) up to monsters like
LWT for K 13n3838 which is connected with 44 vertices and 48 maximal faces all of
dimension 4, where each maximal face has between 5 and 9 vertices. Basic statistics
about the topology and combinatorics of the LWT are given in Table 3. All but 178
of these complexes are pure, that is, every maximal face has the same dimension;
the exceptions are 140 cases where each component of LWT is pure but there are
components of differing dimensions, and 38 cases where LWT is connected and
impure.

While the combinatorics of some of these complexes is quite elaborate, the under-
lying topology of all LWT in our sample is simple in that every connected component
is actually contractible. Moreover, for a component Y of dimension d , each (d −1)–
face is glued to at most two d-faces; consequently, all components of dimension 1
are homeomorphic to intervals rather than more general trees. Here, contractibility
was checked as follows. First, each LWT was converted to a simplicial complex (some
3,603 of the LWT are in fact simplicial, for the rest a barycentric subdivision of the
polyhedral complex was used). We then checked that every component had vanish-
ing reduced homology and trivial fundamental group using [Sage], which implies
contractibility.

7.2 Surface counts by Euler characteristic. For each of the 4,330 very large mani-
folds, we computed the generating function BM (x) from Theorem 1.3 starting from
LWT by using Normaliz [BIRSS]. This resulted in only 88 distinct generating func-
tions whose properties are summarized in Table 4 and examples of which are given



42

dim count degree periods `1-norm

1 35 2, 3, 4, 6, 8 1, 2, 3, 6 [7, 53]
2 18 3, 6, 7 1, 2, 3 [16, 38]
3 24 4, 5, 6, 7, 8 1, 2 [26, 71]
4 9 5, 6, 8 1, 2 [38, 94]
5 2 7, 8 2 [78, 88]

Table 4. Statistics about the 88 distinct generating functions BM (x) for the 4,330
very large manifolds, broken down by dimLWT . Here, each BM (x) has rational form
P (x)/Q(x) for some P,Q ∈Z[x] with degP = degQ. The properties recorded are: the
number of distinct BM (x) (count), the values of degP (degree), the observed periods
of BM (x) (periods), and the range of the `1-norm of the combined coefficients of the
polynomials P and Q (`1-norm).

Figure 1. For the knot K 15n51747 shown at left, at right is the complex LWT for a
triangulation of its exterior with 17 ideal tetrahedra. This example is unusual in that
there are components of different dimensions. The vertex surfaces are either genus
2 (solid vertices) or genus 3 (open vertices). Here BM (x) = (−3x7 +3x6 +9x5 −9x4 −
9x3 +9x2 +2x)/

(
(x −1)4(x +1)3

)
.

in Tables 5 and 6.

7.3 Sample LW complexes. We next give several examples of LWT for specific tri-
angulations of knot exteriors. To start off, Figure 1 gives an example of a simple
LWT which is unusual in having components of different dimensions. Then Figure 2
describes one of the most complicated 2-dimensional examples we found. Figure 3
shows the fairly complicated 3-dimensional complex coming from the Conway knot
K 11n34. In dimension four, we were only able to visualize one of the very simplest
examples in Figure 4, and for dimension five we simply gave up.

All 38 examples where LWT is connected and impure have dimension 4 or 5;
those of dimension 4 also have maximal faces of dimension 2 and those of dimension
5 also have maximal faces of dimension 3. One of the simplest such is K 13n857 where
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dim BM (x) per `1 sample M count

1
−x2 +2x

(x −1)2 1 7 K 10n10 1,009

1
−x4 +2x2

(x −1)2(x +1)2 2 7 K 14n11913 259

2
−x3 +3x2 −4x

(x −1)3 1 16 t12766 1,459

2
−x6 +3x4 −6x2

(x −1)3(x +1)3 2 18 K 15n93515 82

3
−x4 +4x3 −5x2 +6x

(x −1)4 1 32 K 12n605 219

3
−x5 +3x4 −2x3 +2x2 +6x

(x −1)4(x +1)
2 26 K 11n34 139

4
−x6 +4x5 −5x4 −2x3 −2x2 −8x

(x −1)5(x +1)
2 42 K 14n1808 62

4
−x5 +5x4 −10x3 +10x2 −8x

(x −1)5 1 66 K 12n214 44

5
−x8 +4x7 −3x6 −4x5 +14x4 +2x3 +14x2 +10x

(x −1)6(x +1)2 2 88 K 15n15582 11

Table 5. Nine of the most common BM (x), which together account for 3,284 (75.8%)
of the 4,330 very large manifolds. The properties recorded are the dimension of LWT

(dim), the rational form P (x)/Q(x) of BM (x), the period of BM (x) (per), the `1-norm of
the combined coefficients of P and Q, an example manifold with this BM (x) (sample
M), and the number of manifolds with this BM (x) (count).
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dim BM (x) per `1 M

1
−2x8 −4x7 −2x6 +6x5 +13x4 +8x3 +2x2

(x −1)2(x +1)2(x2 +x +1)2 6 53 K 15n138922

2
−2x6 +5x4 −4x3 −15x2 −4x

(x −1)3(x +1)3 2 38 K 15n27228

2
−2x7 +2x6 −x5 +x4 −9x3 −5x2 −4x

(x −1)3(x2 +x +1)2 3 32 K 15n86383

3
−3x8 +13x6 +2x5 −14x4 −4x3 +17x2 +2x

(x −1)4(x +1)4 2 71 K 15n139871

4
−2x8 +4x7 +4x6 −14x5 −12x4 −6x3 −22x2 −8x

(x −1)5(x +1)3 2 94 K 13n1795

5
−x7 +5x6 −9x5 +5x4 +8x3 +10x

(x −1)6(x +1)
2 78 K 13n2458

Table 6. Six of the most complicated BM (x) in our sample. The properties recorded
are the dimension of LWT (dim), the rational form P (x)/Q(x) of BM (x), the period of
BM (x) (per), the `1-norm of the combined coefficients of P and Q (`1), and a manifold
with this generating function (M).

5

5

5

7

Figure 2. For the knot K 15n18579 shown at left, at right is the complex LWT for a
triangulation of its exterior with 17 ideal tetrahedra. It is one of the most complicated
examples in our sample with dimLWT = 2; note that one face is a square rather than
a triangle. The vertex surfaces are genus 2 (solid vertices), genus 3 (open vertices), or
genus 5 or 7 as labeled. Here BM (x) = (−2x6 +5x4 −4x3 −15x2 −4x)/

(
(x −1)3(x +1)3

)
.

LWT consists of seven 4-simplices plus two triangles, where the triangles are glued
together to form a square, and then one edge of that square is glued to the main mass
of 4-simplices.

7.4 Isotopies of lw-surfaces. An example of a non-normal isotopy of lw-surfaces
occurs in the 13-tetrahedra triangulation:

T = nvLAAvAPQkcdfgfhkmjlmklmwcadtfaaoaedrg
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Figure 3. The complex LWT for a triangulation of the exterior of the Conway knot
K 11n34. The 11 vertex surfaces are N5, N6, N8, N9, N11, N12, N18, N19, N37, N38, N40,
where the notation follows [DGR]. The first six surfaces have genus 2 (dark vertices
above) and the rest genus 3 (white vertices above). There are seven 3-dimensional
faces: four tetrahedra, a pyramid with quadrilateral base (N5, N6, N40, N38, N11), a tri-
angular prism (N11, N12, N38, N8, N9, N37), and the one in the lower right whose faces
are four triangles and two quadrilaterals (N11, N8, N37, N38 and N11, N8, N18, N5). Here
BM (x) = (−x5 +3x4 −2x3 +2x2 +6x)/((x +1)(x −1)4).

of the exterior of K 13n585. To determine LWT, we enumerated normal and almost
normal surfaces down to χ = −8. In this range, there are 138 connected normal
surfaces, 261 connected almost normal surfaces with octagons, and 603 almost
normal surfaces with tubes. By tightening the almost normal surfaces, we found
there are 11 connected essential lw-surfaces with χ ≥ −8 with four non-normal
isotopies among them. Figure 5 shows the complex LWT which consists of an
edge B = [N12, N23] and a triangle C = [N23, N4, N7]. For the face C it is the surface
N116 that plays the role of FC in steps (3–5) of Algorithm 6.12, and the isotopies
N115 ∼ N116 ∼ N118 are what determine the subspace WC . Here, the subspace WE for
E = [N4, N7] is the same as WC . In general, even if a face E of C is parallel to WC , it
could be that WE is a proper subspace of WC ; see the example at the start of Section 5
of [Tol1] for more on this important phenomenon. Notice also that dep(C ) is the
complement of {N23}∪E and that the surfaces N70 and N71 are projectively isotopic
to a surface carried by the interior of C , but not isotopic to such a surface.

Because WE =WC , every isotopy class of essential lw-surface is uniquely repre-
sented by a surface carried by B ∪ [N23, N4]. This allows us to easily compute that
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Figure 4. For a 15-tetrahedra triangulation of the exterior of the knot K 13n1019
shown at left, the complex LWT consists of two 4-dimensional faces C1 and C2 with
the same combinatorics that are glued together along a single 3-dimensional face.
The boundary of each Ci is depicted above via an identification of ∂Ci with S3; hence,
in each case there is an additional face of ∂Ci on the outside, namely a triangular
prism whose vertices are N10, N25, N9, N15, N29, N14. It is these two outside faces that
are identified to form LWT . As usual, solid and open vertices correspond to surfaces
of genus 2 and 3 respectively, and the numbering follows [DGR]. Here BM (x) = (−x5 +
5x4 −10x3 +10x2 −8x)/(x −1)5.

BM (x) = (−x2 +2x)/(x −1)2. This is also what one gets from the triangulation:

S= nvLALAwAQkedffgiijkmlmlmfvaeetcaangcbn

where LWS is two edges sharing a common vertex and there are no isotopies between
essential lw-surfaces.

7.5 Barely large knots and those without meridional essential surfaces. A striking
contrast in Table 2 is that there are more than 6,000 barely large manifolds in the
cusped census yet only three such knot exteriors. Many constructions of closed
essential surfaces in knot exteriors come from tubing essential surfaces with merid-
ional boundary, and there are classes of knots where all closed essential surfaces
are of this form, including Montesinos knots [Oer1], alternating knots [Men], and
their generalizations [ABBC+, Ada]. A connected meridional surface F in M can be
tubed along ∂M in two distinct ways, resulting in a pair of disjoint surfaces; hence
if both tubings are essential then M is very large. However, barely large knot exte-
riors do exist: Baker identified an infinite family of barely large knots with a single
incompressible genus 2 surface in [Bak, §4.7.1]. Additionally, Adams-Reid [AR] and
Eudave-Muñoz [EM] gave examples of closed essential surfaces that cannot come
from a meridional tubing construction. Still, the following appears to be new:
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Figure 5. For this triangulation of the exterior of K 13n585, there are 11 connected
lw-surfaces down to χ = −8: three of genus 2 (N4, N7, N12), one of genus 3 (N23),
three of genus 4 (N70 = N4 +N23 and N71 = N7 +N23 and N73 = N12 +N23), and four
of genus 5 (N115 = 2N4 + N23 and N116 = N4 + N7 + N23 and N117 = 2N7 + N23 and
N120 = 2N12+N23). The complete list of isotopies between them is: N4 ∼ N7, N70 ∼ N71,
and N115 ∼ N116 ∼ N118. The complex LWT consists of the edge B = [N12, N23] and
the triangle C = [N23, N4, N7] shown above. Here WB = 0, but for the faces C and
E = [N4, N7], the subspaces WC and WE are both 1-dimensional; indeed, WC = WE

with the induced decomposition of C into projective isotopy classes indicated by the
dashed vertical lines.

7.6 Theorem. There exists a knot in S3, namely K 15n153789, whose exterior is
large (indeed, barely large) and where the meridian is not the boundary slope of
any essential surface.

Here, the knot K 15n153789 is one of the three examples of barely large knots we
found; its exterior contains a unique essential surface, which has genus 2. We
checked the boundary slope condition by noting that there are no spunnormal
surfaces with meridional boundary slope in the triangulation:

kLLLzPQkccfegjihijjlnahwdavhqk_bBaB

of its exterior.

7.7 Code and data. Complete data and the code used to compute it are available
at [DGR]. Regina [BBP+] was used as the underlying engine for triangulations and
normal surface computations, including enumeration of vertex and fundamental
(almost) normal surfaces, and Normaliz [BIRSS] was used for computing BM (x),
with the whole computation taking place inside SageMath [Sage] using the Python
wrappings of these libraries. The code for dealing with almost normal surfaces



48

with tubes, tightening almost normal surfaces (with either tubes or octagons), and
implementing Algorithm 6.12 was all completely new.

To help validate our code, we started with a sample of 6,510 of the manifolds
from Table 2 and generated 5 random triangulations of each. Then the complete
algorithm was run on all 32,550 triangulations and the output compared to ensure
that each triangulation gave the same surface counts and other associated data. This
technique proved extremely effective at finding bugs in the code (and, if we are being
honest, our thinking), including subtle ones that only manifest themselves in corner
cases. Additionally, we compared our data to the lists of which knots are small/large
from [BCT]; on the common set of 1,764 knots, our data matched theirs exactly.

8 Patterns of surface counts by genus

We now return to the question of counting connected essential surfaces in a given
3-manifold in terms of their genus. As we know how to count all essential surfaces
by Euler characteristic given the complex LWT, we approach this by identifying the
connected surfaces in that larger count. This problem has an arithmetic flavor, and

aM (g ) M count

4, 2, 4, 4, 8, 4, 12, 8, 12, 8, 20, 8, 24, 12, 16, 16, 32, 12, 36, 16 t09753 1,473

2, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8 t12198 918

0, 2, 0, 1, 0, 2, 0, 2, 0, 4, 0, 2, 0, 6, 0, 4, 0, 6, 0, 4 K 14n11913 259

6, 4, 8, 8, 16, 8, 24, 16, 24, 16, 40, 16, 48, 24, 32, 32, 64, 24, 72, 32 K 12n605 219

8, 4, 8, 8, 16, 8, 24, 16, 24, 16, 40, 16, 48, 24, 32, 32, 64, 24, 72, 32 K 11n73 169

0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 K 14n13645 148

6, 9, 24, 37, 86, 87, 208, 220, 366, 386, 722, 602, 1168, 1039, 1498,
1564, 2514, 1993, 3484, 2924

K 11n34 139

6, 7, 18, 29, 64, 73, 156, 177, 290, 321, 550, 521, 896, 865, 1236,
1297, 1950, 1731, 2714, 2499

K 11n42 131

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 o937085 91

0, 6, 0, 5, 0, 12, 0, 16, 0, 31, 0, 28, 0, 58, 0, 53, 0, 82, 0, 79 K 15n93515 82

Table 7. The ten most common patterns of aM (g ) for 2 ≤ g ≤ 21, which together
account for 3,629 (83.8%) of the 4,330 very large manifolds. A sample manifold for
each pattern is given in the second column, and the final column is the number of
times the pattern appears.
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aM (g ) M

8, 14, 46, 89, 224, 305, 674, 905, 1536, 1955, 3326, 3771, 6150, 7019,
9850, 11611, 16714, 17767, 25490, 27415

K 12n214

8, 16, 54, 98, 264, 318, 806, 984, 1794, 2098, 3994, 4074, 7368, 7632,
11552, 12976, 20114, 19396, 30670, 30550

K 12n210

12, 21, 61, 109, 261, 320, 721, 880, 1480, 1762, 3094, 3115, 5429,
5666, 8019, 9086, 13596, 13059, 20062, 19841

K 13n3763

10, 25, 71, 140, 352, 473, 1058, 1386, 2389, 2939, 5152, 5585, 9422,
10311, 14887, 17057, 25304, 25573, 38238, 39603

K 15n15582

12, 16, 51, 99, 235, 345, 711, 999, 1649, 2209, 3551, 4319, 6593,
7919, 10971, 13231, 18275, 20555, 28063, 31485

K 15n15220

8, 18, 57, 110, 270, 356, 785, 1013, 1737, 2092, 3667, 3942, 6614,
7134, 10397, 11710, 17426, 17422, 26131, 26891

K 15n23198

12, 34, 110, 216, 532, 708, 1558, 2018, 3462, 4176, 7314, 7876,
13204, 14256, 20778, 23404, 34820, 34832, 52226, 53766

K 13n3838

12, 30, 109, 231, 549, 861, 1737, 2511, 4059, 5643, 8859, 10941,
16623, 20229, 27303, 33729, 46215, 52455, 71079, 80271

K 15n33595

10, 21, 73, 143, 385, 513, 1224, 1605, 2870, 3542, 6409, 7010, 12051,
13231, 19463, 22436, 33614, 34307, 51700, 53862

K 13n2458

Table 8. The eight of the most complicated patterns of aM (g ) for 2 ≤ g ≤ 21. These all
come from examples where dimLWT ≥ 4.

is related to counting primitive lattice points, as well as to the work of Mirzakhani
discussed in Section 1.5.

Let aM (g ) denote the number of isotopy classes of connected essential surfaces of
genus g . For each of the 4,330 very large examples in Table 2, we computed the first 20
values of aM (g ) starting from LWT as follows. Let g be fixed. For each face C of LWT,
let C̃ =R≥0 ·C ⊂ ST be the corresponding cone. We used Normaliz [BIRSS] to find all
lattice points carried by the interior of the rational polytope

{
~x ∈ C̃

∣∣ χ(~x) = 2−2g
}
.

For each corresponding normal surface, we checked connectivity using Algorithm
9.4 of [JT]. As WC = 0 for all these examples, the number of such lattice points
corresponding to connected surfaces is the contribution of the interior C ◦ to aM (g ).

We found 94 distinct patterns for
(
aM (2), . . . , aM (21)

)
. Table 7 lists the most com-

mon patterns and Table 8 gives the most complicated. For one manifold exhibiting
each pattern, we computed additional values of aM (g ), nearly always up to at least
g = 50 and in more than 40 cases up to g = 200. This data is available at [DGR], where
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the largest single value is aM (51) = 3,072,351 for the exterior M of K 15n33595.
From now on, we work with n = g −1 rather than g as the index for the count of

connected surfaces, and so define ãM (n) = aM (n +1); this simplifies the arithmetic,
for example giving ãM (n) ≤ bM (−2n) rather than aM (g ) ≤ bM (2−2g ).

8.1 Independence of aM (g ) and BM (x). We next give four examples showing that
neither ãM (n) nor BM (x) determines the other. We start with two manifolds with the
same BM (x) but different ãM (n). Let A and B be the exteriors of the knots K 14n22185
and K 13n586 respectively, and we use T and S to denote their standard triangulations.
Both LWT and LWS consist of a single edge C whose vertices correspond to genus 2
surfaces F and G . Moreover, the lattice points in the cone over C are simply u~F + v~G
for u, v ∈N. Thus, the surfaces with χ=−2n are the lattice points in N2 on the line
x + y = n, which gives bM (−2n) = n +1 and hence BM (x) = (−x2 +2x)/(x −1)2.

For T, the surfaces F and G can be made disjoint after a normal isotopy, and
hence every normal surface carried by C is a disjoint union of parallel copies of F
and G . Thus the only connected essential surfaces in A are F and G , giving ã A(1) = 2
and ã A(n) = 0 for n > 1. In contrast, we find that the first 30 values of ãB (n) are:

2,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,12,10,22,8,20,12,18,12,28,8

Now, if u~F + v~G is connected then gcd(u, v) = 1. The above data is consistent with
the converse being true, or equivalently ãB (n) is exactly the number of primitive
lattice points in N2 on the line x+y = n, which is the Euler totent function φ(n) when
n > 1. This pattern continues for all n ≤ 500, so we may safely posit:

8.2 Conjecture. For the exterior B of the knot K 13n586, one has ãB (n) =φ(n) for
all n > 1.

Since ãB (1) = 2, equivalently the conjecture is that ãB (n) = ε(n)+φ(n) for all n ≥ 1
where ε(n) is 1 when n = 1 and 0 otherwise. This count of primitive lattice points can
be related to the corresponding count of all lattice points via the Möbius inversion
formula, making Conjecture 8.2 equivalent to:

ãB (n) = ∑
d |n

µ
(n

d

)
(d +1) (8.3)

for all n ≥ 1, where µ is the Möbius function. Note added in proof: Lee [Lee] has
recently proved Conjecture 8.2 by analyzing the number of connected components
of u~F + v~G using the method of [AHT].

A pair with the same ãM (n) but different BM (x) are the census manifolds X =
v3394 and Y = o943058. Both have exactly four connected essential surfaces, all of
genus two, but

BX (x) = −2x2 +4x

(x −1)2
and BY (x) = −x2 +4x

(x −1)2
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For the standard triangulations X and Y of X and Y , the complexes LWX and LWY

are quite different: the first consists of an edge and a disjoint vertex, but LWY consists
of two edges sharing a common vertex. All vertex surfaces are connected, and so the
vertices of LWX and LWY correspond to three of the four essential genus 2 surfaces;
in both cases, the fourth is hiding as a fundamental surface in the interior of an edge.

8.4 Regular genus counts and the Lambert series. For the manifold B = K 13n586
in Section 8.1, while the count ãB (n) does not have a short generating function, from
(8.3) we see its Möbius transform p(n) = ∑

d |n ãB (d) is a polynomial, specifically
p(n) = n +1. This motivates our next definition. Recall that Dirichlet convolution
on arithmetic functions f , g : Z≥1 → C is defined by ( f ∗ g )(n) = ∑

d |n f (n/d)g (d).
We say that ãM (n) is regular if 1∗ ãM has a short generating series. Equivalently,
if we set pM = 1∗ ãM , regularity is equivalent to pM (n) being a quasi-polynomial
for all large n. Thus, when ãM (n) is regular, we can use Möbius inversion ãM (n) =
(µ∗ pM )(n) = ∑

d |n µ
(n

d

)
pM (d) to compute ãM from the simpler pM , as we did in

(8.3). In the language of generating functions, the count ãM is regular if and only if
its Lambert series

L AM (x) =
∞∑

n=1
ãM (n)

xn

1−xn
. (8.5)

is short, since the coefficients of this series are precisely 1∗ ãM .

8.6 Examples. Of the 94 observed patterns for ãM (n) in our sample, we conjecture
that exactly 54 of them are regular, including 7 of the 10 manifolds in Table 7, with the
exceptions being K 11n34, K 11n42, and K 15n93515. Examples of our conjectured
formulae for L AM (x) are given in Table 9. In contrast, we believe all the examples in
Table 8 are irregular.

One example where the count appears irregular, though still highly structured,
is M = o941176. Specifically we conjecture that ãM (n) is equal to f (n) =φ(n)+1 for
n ≥ 2 (here ãM (1) = 5). While f is quite simple, we have 1∗ f = n +σ0 where σ0(n)
is the number of divisors of n, and σ0(n) does not have a short generating function.
For the standard triangulation T of M , the complex LWT is:

N9 N7 N16 N5 N14 N10

C1 C2 C3 C4 C5

using the conventions of [DGR]. Here the vertex surfaces N14 and N16 have genus
3 and the others have genus 2. We conjecture that the faces contribute to ãM as
follows:

(a) The interior of C1 carries a single connected surface N8 which has genus 2.
Here N7 +N9 = 2N8.
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L AM (x) per `1 M

−2x2 +4x

(x −1)2 1 10 t09753

−x2 +2x

(x −1)2 1 7 t12198

−x4 +2x2

(x −1)2(x +1)2 2 7 K 14n11913

−2x2 +6x

(x −1)2 1 12 K 12n605

−4x2 +8x

(x −1)2 1 16 K 11n73

−4x6 +2x5 +16x4 +4x3 −14x2 −6x

(x −1)3(x +1)3 2 54 K 15n67261

−2x8 −4x7 −2x6 +4x5 +9x4 +6x3 +2x2

(x −1)2(x +1)2(x2 +x +1)2 6 45 K 15n129923

−2x8 −4x7 −2x6 +6x5 +13x4 +8x3 +2x2

(x −1)2(x +1)2(x2 +x +1)2 6 53 K 15n138922

Table 9. Eight examples of our conjectured Lambert series L AM (x) for manifolds
where ãM (n) appears regular. The first five are from Table 7 and the last three are
among the most complicated we found.

(b) The interior of C2 carries no connected surfaces as N7 and N16 are disjoint.

(c) The interior of C3 carries a unique surface of genus g for each g ≥ 4, namely
(g −3)N5 +N16. It is this face that contributes the +1 to ãM (n).

(d) The connected surfaces carried by C4 are exactly uN5 + v N14 for u, v > 0 and
gcd(u, v) = 1. The situation is the same for C5, with N5 replaced with N10.
Together, these faces contribute the φ(n) to ãM (n).

The manifold N = t12071 is similar in that ãN (n) is irregular but ãN (n)−4 appears
regular.

In our sample, a simple example where ãM appears irregular and where we
cannot glean any other structure is W = o942517. The first 50 values of ãW (n) are:

6,4,10,14,26,26,52,46,76,76,118,96,172,136,194,196,286,212,354,274,388,

360,506,378,604,490,634,574,820,568,948,728,946,846,1122,864,1356,1040,

1316,1146,1644,1140,1800,1392,1716,1570,2136,1506,2332,1752
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and [DGR] has all values to n = 200. With its usual triangulation W, the complex
LWW is a triangle whose vertex surfaces N3, N9, and N11 all have genus 2. Here
the edge [N3, N9] appears to carry a single connected surface in its interior, which
has genus 2, and the same for [N9, N11]. The remaining edge [N3, N11] appears to
contribute 2φ(n) to ãW (n) for n > 1, and the interior of the triangle contributes the
mysterious:

0,2,6,10,18,22,40,38,64,68,98,88,148,124,178,180,254,200,318,258,364,340

8.7 Asymptotics of genus counts. We now explore the asymptotics of the sequences
ãM (n). Since ãM (n) ≤ bM (−2n) and the latter grows polynomially, it is natural to
ask whether ãM (n) does so as well. Even in the regular case, the sequence ãM (n)
depends arithmetically on the divisors of n, so it is better to study the smoothed
sequence:

aM (n) = ∑
k≤n

ãM (k) (8.8)

Of the 94 observed patterns for ãM (n), there are 14 where ãM (n) = 0 for all large
n and 4 where we were only able to compute up to ãM (20); we consider only the
remaining 76. The plots in Figures 6 and 7 together suggest:

8.9 Conjecture. Suppose M as in Theorem 1.3. Then either ãM (n) = 0 for all large
n or there exists s ∈N such that limn→∞ aM (n)/ns exists and is positive.

In fact, Conjecture 8.9 holds whenever ãM (n) is regular and the corresponding
quasi-polynomial has constant leading term as we now show; this includes all the
conjecturally regular examples in our sample.

8.10 Lemma. Suppose ãM (n) is regular and the corresponding pM (n) has con-
stant leading term, with pM (n) = cr nr +O

(
nr−1

)
for some r ≥ 1 and positive cr ∈Q.

Then

lim
n→∞

1

nr+1
aM (n) = cr

r +1

1

ζ(r +1)
(8.11)

where ζ(s) is the Riemann ζ-function.

Proof. As
∑m

k=1 k s = 1
s+1 ms+1+O(ms), we see

∑
k≤m pM (k) = cr

r+1 mr+1+O(mr ). Now

aM (n) = ∑
`≤n

∑
d |`

µ(d)pM (`/d) = ∑
d ·k≤n

µ(d)pM (k) = ∑
d≤n

(
µ(d)

∑
k≤bn/dc

pM (k)
)

= ∑
d≤n

µ(d)

(
cr

r +1

⌊n

d

⌋r+1
+O

(⌊n

d

⌋r ))
= ∑

d≤n
µ(d)

(
cr

r +1

nr+1

d r+1
+O

(
nr

d r

))



54

101 102
100

101

102

103

104

105

106

107

108

101 102
100

101

102

103

104

105

106

107

108

s = 2

s = 3

s = 4
s = 5

n

aM

Figure 6. This log-log plot shows the sequence {aM (n)} for 76 manifolds, up to n =
50,100, or 200 depending. Those coming from conjecturally regular ãM (n) are in
red whereas the likely irregular ones are in blue. The dotted lines plot csns for the
indicated s and some choice of cs . Each of aM (n) appears nearly parallel to one of
these lines, consistent with aM (n) being asymptotic to cns as n →∞ for some integer
s and cs > 0.

where we have used that bn/dc = n/d +O(1) and hence by the binomial theorem
bn/dcr+1 = nr+1/d r+1 +O(nr /d r ). Thus

aM (n)

nr+1
= ∑

d≤n
µ(d)

(
cr

r +1

1

d r+1
+O

(
1

nd r

))
=

(
cr

r +1

∑
d≤n

µ(d)

d r+1

)
+O

(
log(n)

n

)
where we have used in the last step that

∑
d≤n 1/d r ≤ ∑

d≤n 1/d ≈ log(n). Now as
r ≥ 1, we have

∑
d≤n µ(d)/d r+1 = 1/ζ(r +1)+o(n) by [Apo, Section 11.4], and so the

lemma follows.

8.12 Remark. If one allows r = 0, then (8.11) still holds if you interpret the righthand
side as 0, seeing that ζ has a pole at 1; we leave the details in this case to the reader.

References

[Ada] C. C. Adams. Toroidally alternating knots and links. Topology 33 (1994), 353–369.
MR1273788.

https://doi.org/10.1016/0040-9383(94)90017-5
http://www.ams.org/mathscinet-getitem?mr=1273788


55

25 50 75 100 125 150 175 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

25 50 75 100 125 150 175 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

aM (n)

ns

10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

n

aM (n)

ns

Figure 7. Using the predicted asymptotic exponent s for each sequence aM (n) from
Figure 6, we plot aM (n)/ns to test Conjecture 8.9. Here, the top plot shows those where
s = 2,3 and the bottom where s = 4,5; again, red and blue correspond to (conjecturally)
regular versus irregular sequences. For better readability, 10 sequences that lie above
the given vertical scales are omitted, 9 from the top plot (all but one regular) and 1
from the bottom; these look very similar to the 66 sequences shown.



56

[ABBC+] C. C. Adams, J. F. Brock, J. Bugbee, T. D. Comar, K. A. Faigin, A. M. Huston, A. M.
Joseph, and D. Pesikoff. Almost alternating links. Topology Appl. 46 (1992),
151–165. MR1184114.

[AR] C. C. Adams and A. W. Reid. Quasi-Fuchsian surfaces in hyperbolic knot comple-
ments. J. Austral. Math. Soc. Ser. A 55 (1993), 116–131. MR1231698.

[AHT] I. Agol, J. Hass, and W. Thurston. The computational complexity of knot
genus and spanning area. Trans. Amer. Math. Soc. 358 (2006), 3821–3850.
arXiv:math/0205057, MR2219001.

[Apo] T. Apostol. Introduction to analytic number theory. Springer-Verlag, New York-
Heidelberg, 1976. Undergraduate Texts in Mathematics. MR0434929.

[Bak] K. L. Baker. Knots on once-punctured torus fibers. ProQuest LLC, Ann Arbor, MI,
2004. Thesis (Ph.D.)–The University of Texas at Austin. MR2706214.

[BW] A. Barvinok and K. Woods. Short rational generating functions for lattice point
problems. J. Amer. Math. Soc. 16 (2003), 957–979. arXiv:math/0211146,
MR1992831.

[Bar] A. I. Barvinok. A polynomial time algorithm for counting integral points in
polyhedra when the dimension is fixed. Math. Oper. Res. 19 (1994), 769–779.
MR1304623.

[Bell] M. C. Bell. Experimental statistics for Mirzakhani’s Theorem. Preprint 2019, 12
pages. arXiv:1910.08155.

[Bon] F. Bonahon. Cobordism of automorphisms of surfaces. Ann. Sci. École Norm. Sup.
(4) 16 (1983), 237–270. MR732345.

[BIRSS] W. Bruns, B. Ichim, T. Römer, R. Sieg, and C. Söger. Normaliz. Algorithms for
rational cones and affine monoids (Version 3.7). Available at https://www.
normaliz.uni-osnabrueck.de.

[Bur1] B. Burton. Quadrilateral-octagon coordinates for almost normal surfaces. Experi-
ment. Math. 19 (2010), 285–315. arXiv:math/0904.3041, MR2731547.

[Bur2] B. A. Burton. Converting between quadrilateral and standard solution sets in nor-
mal surface theory. Algebr. Geom. Topol. 9 (2009), 2121–2174. arXiv:0901.2629,
MR2551665.

[Bur3] B. A. Burton. Enumerating Fundamental Normal Surfaces: Algorithms, Experi-
ments and Invariants. In Proceedings of the Meeting on Algorithm Engineering
& Expermiments, pages 112–124, USA, 2014. Society for Industrial and Applied
Mathematics. arXiv:1111.7055.

https://doi.org/10.1016/0166-8641(92)90130-R
http://www.ams.org/mathscinet-getitem?mr=1184114
http://www.ams.org/mathscinet-getitem?mr=1231698
https://doi.org/10.1090/S0002-9947-05-03919-X
https://doi.org/10.1090/S0002-9947-05-03919-X
http://arxiv.org/abs/arXiv:math/0205057
http://www.ams.org/mathscinet-getitem?mr=2219001
http://www.ams.org/mathscinet-getitem?mr=0434929
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3139184
http://www.ams.org/mathscinet-getitem?mr=2706214
https://doi.org/10.1090/S0894-0347-03-00428-4
https://doi.org/10.1090/S0894-0347-03-00428-4
http://arxiv.org/abs/arXiv:math/0211146
http://www.ams.org/mathscinet-getitem?mr=1992831
https://doi.org/10.1287/moor.19.4.769
https://doi.org/10.1287/moor.19.4.769
http://www.ams.org/mathscinet-getitem?mr=1304623
https://arxiv.org/abs/1910.08155
http://arxiv.org/abs/arXiv:1910.08155
http://www.numdam.org/item?id=ASENS_1983_4_16_2_237_0
http://www.ams.org/mathscinet-getitem?mr=732345
https://www.normaliz.uni-osnabrueck.de
https://www.normaliz.uni-osnabrueck.de
https://doi.org/10.1080/10586458.2010.10390625
http://arxiv.org/abs/arXiv:math/0904.3041
http://www.ams.org/mathscinet-getitem?mr=2731547
https://doi.org/10.2140/agt.2009.9.2121
https://doi.org/10.2140/agt.2009.9.2121
http://arxiv.org/abs/arXiv:0901.2629
http://www.ams.org/mathscinet-getitem?mr=2551665
https://doi.org/10.1137/1.9781611973198.11
https://doi.org/10.1137/1.9781611973198.11
http://arxiv.org/abs/arXiv:1111.7055


57

[Bur4] B. A. Burton. The cusped hyperbolic census is complete. Preprint 2014, 32 pages.
arXiv:1405.2695.

[BBP+] B. A. Burton, R. Budney, W. Pettersson, et al. Regina: Software for low-dimensional
topology. http://regina-normal.github.io/, 1999–2020.

[BCT] B. A. Burton, A. Coward, and S. Tillmann. Computing closed essential surfaces in
knot complements. In Computational geometry (SoCG’13), pages 405–413. ACM,
New York, 2013. arXiv:1212.1531, MR3208239.

[BT] B. A. Burton and S. Tillmann. Computing closed essential surfaces in 3-manifolds.
Preprint 2018, 25 pages. arXiv:1812.11686.

[Bus] P. Buser. Geometry and spectra of compact Riemann surfaces, volume 106 of
Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1992. MR1183224.

[CDGW] M. Culler, N. M. Dunfield, M. Goerner, and J. R. Weeks. SnapPy, a computer
program for studying the topology and geometry of 3-manifolds, Version 2.7.1.
Available at http://snappy.computop.org.

[DGG1] T. Dimofte, D. Gaiotto, and S. Gukov. 3-manifolds and 3d indices. Adv. Theor.
Math. Phys. 17 (2013), 975–1076. arXiv:1112.5179, MR3262519.

[DGG2] T. Dimofte, D. Gaiotto, and S. Gukov. Gauge theories labelled by three-manifolds.
Comm. Math. Phys. 325 (2014), 367–419. arXiv:1108.4389, MR3148093.

[DGR] N. Dunfield, S. Garoufalidis, and J. H. Rubinstein. Code and data to accompany
this paper. Harvard Dataverse, 2020. https://doi.org/10.7910/DVN/FZIHMB

[Ehr] E. Ehrhart. Sur les polyèdres homothétiques bordés à n dimensions. C. R. Acad.
Sci. Paris 254 (1962), 988–990. MR0131403.

[EM] M. Eudave-Muñoz. Incompressible surfaces and (1,1)-knots. J. Knot Theory
Ramifications 15 (2006), 935–948. MR2251034.

[FO] W. Floyd and U. Oertel. Incompressible surfaces via branched surfaces. Topology
23 (1984), 117–125. MR721458.

[Gad] V. S. Gadre. Dynamics of non-classical interval exchanges. Ergodic Theory Dynam.
Systems 32 (2012), 1930–1971. MR2995879.

[Gar1] S. Garoufalidis. The degree of a q-holonomic sequence is a quadratic quasi-
polynomial. Electron. J. Combin. 18 (2011), Paper 4, 23. arXiv:1005.4580,
MR2795781.

[Gar2] S. Garoufalidis. The Jones slopes of a knot. Quantum Topol. 2 (2011), 43–69.
arXiv:0911.3627, MR2763086.

http://arxiv.org/abs/arXiv:1405.2695
http://regina-normal.github.io/
https://doi.org/10.1145/2462356.2462380
https://doi.org/10.1145/2462356.2462380
http://arxiv.org/abs/arXiv:1212.1531
http://www.ams.org/mathscinet-getitem?mr=3208239
http://arxiv.org/abs/arXiv:1812.11686
http://www.ams.org/mathscinet-getitem?mr=1183224
http://snappy.computop.org
http://projecteuclid.org/euclid.atmp/1408626510
http://arxiv.org/abs/arXiv:1112.5179
http://www.ams.org/mathscinet-getitem?mr=3262519
https://doi.org/10.1007/s00220-013-1863-2
http://arxiv.org/abs/arXiv:1108.4389
http://www.ams.org/mathscinet-getitem?mr=3148093
https://doi.org/10.7910/DVN/FZIHMB
http://www.ams.org/mathscinet-getitem?mr=0131403
https://doi.org/10.1142/S0218216506004804
http://www.ams.org/mathscinet-getitem?mr=2251034
https://doi-org.prx.library.gatech.edu/10.1016/0040-9383(84)90031-4
http://www.ams.org/mathscinet-getitem?mr=721458
https://doi.org/10.1017/S0143385711000691
http://www.ams.org/mathscinet-getitem?mr=2995879
http://arxiv.org/abs/arXiv:1005.4580
http://www.ams.org/mathscinet-getitem?mr=2795781
http://dx.doi.org/10.4171/QT/13
http://arxiv.org/abs/arXiv:0911.3627
http://www.ams.org/mathscinet-getitem?mr=2763086


58

[GHHR] S. Garoufalidis, C. D. Hodgson, N. R. Hoffman, and J. H. Rubinstein. The 3D-index
and normal surfaces. Illinois J. Math. 60 (2016), 289–352. arXiv:1604.02688,
MR3665182.

[GHRS] S. Garoufalidis, C. D. Hodgson, J. H. Rubinstein, and H. Segerman. 1-efficient
triangulations and the index of a cusped hyperbolic 3-manifold. Geom. Topol. 19
(2015), 2619–2689. MR3416111.

[GL] S. Garoufalidis and T. T. Q. Lê. The colored Jones function is q-holonomic. Geom.
Topol. 9 (2005), 1253–1293. arXiv:math/0309214, MR2174266.

[Hass] J. Hass. Acylindrical surfaces in 3-manifolds. Michigan Math. J. 42 (1995), 357–365.
MR1342495.

[HT] A. Hatcher and W. Thurston. Incompressible surfaces in 2-bridge knot comple-
ments. Invent. Math. 79 (1985), 225–246. MR778125.

[Hat] A. Hatcher. Measured Lamination Spaces for 3-manifolds. 36 pages, preprint 1999.
http://math.cornell.edu/~hatcher/Papers/ML.pdf

[HRS] C. Hodgson, J. H. Rubinstein, and H. Segerman. Triangulations of hyperbolic
3-manifolds admitting strict angle structures. J. Topol. 5 (2012), 887–908.
arXiv:1111.3168, MR3001314.

[HTW] J. Hoste, M. Thistlethwaite, and J. Weeks. The first 1,701,936 knots. Math. Intelli-
gencer 20 (1998), 33–48. MR1646740.

[JO] W. Jaco and U. Oertel. An algorithm to decide if a 3-manifold is a Haken manifold.
Topology 23 (1984), 195–209. MR744850.

[JR] W. Jaco and H. Rubinstein. Annular-Efficient Triangulations of 3-manifolds.
Preprint 2011, 21 pages. arXiv:1108.2936.

[JRST] W. Jaco, H. Rubinstein, J. Spreer, and S. Tillmann. On minimal ideal trian-
gulations of cusped hyperbolic 3-manifolds. J. Topol. 13 (2020), 308–342.
arXiv:1808.02836, MR4138740.

[JR] W. Jaco and J. H. Rubinstein. 0-efficient triangulations of 3-manifolds. J. Differen-
tial Geom. 65 (2003), 61–168. arXiv:math/0207158, MR2057531.

[JT] W. Jaco and J. L. Tollefson. Algorithms for the complete decomposition of a closed
3-manifold. Illinois J. Math. 39 (1995), 358–406. MR1339832.
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