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ABSTRACT

Recent field-based studies indicate that the
northern margin of North America is best
interpreted as a tectonic boundary that experi-
enced a long, complex history of strike-slip
displacement. Structures juxtaposing the
Pearya and Arctic Alaska terranes with North
America are linked and define the Canadian
Arctic transform system (CATS) that accom-
modated Paleozoic terrane translation, trun-
cation of the Caledonian orogen, and shorten-
ing within the transpressional Ellesmerian
orogen. The structure was reactivated during
Mesozoic translational opening of the Canada
Basin. Land-based evidence supporting trans-
lation along the Canadian Arctic margin is
consistent with transform structures defined
by marine geophysical data, thereby provid-
ing a robust alternative to the current consen-
sus model for rotational opening of the
Canada Basin.

INTRODUCTION

Recent ocean- and land-based studies of
the circum-Arctic region bring significant
advances in high-quality data to formulate
new models for the tectonic evolution of the
Arctic margin (e.g., Pease and Coakley, 2018;
Piskarev et al., 2019; Piepjohn et al., 2019).
Nevertheless, evolution of the Canada Basin
remains one of the most enigmatic and con-
tentious topics of the Arctic. Two end-mem-
ber models for the Mesozoic opening of the
Canada Basin invoke Arctic Alaska (1) rift-
ing and rotating (‘faters) from or (2) translat-
ing (sliders) along the Canadian Arctic
margin (Fig. 1 inset). Late Paleozoic and
Mesozoic stratigraphic correlations between

the northwestern Alaskan and Canadian
Arctic margins provide the clearest rationale
for the rotation model (Embry, 1990), which
is by far the most commonly expressed
mechanism (e.g., Hutchinson et al., 2017,
Miller et al., 2018). In contrast, we explore
the implications of a growing set of onshore
observations that indicate that the northern
Laurentian margin has experienced a pro-
tracted history of translation. This view is
bolstered by a variety of data that support
models of Paleozoic large-magnitude terrane
translation through the Arctic region (Colpron
and Nelson, 2009). Despite early calls for
large-magnitude sinistral offsets (e.g., Boreal
fault of Bally in Kerr et al., 1982; Canadian
transcurrent fault of Hubbard et al., 1987;
Porcupine fault of Oldow et al., 1989), the
Canadian Arctic margin generally has not
been viewed as a viable candidate for trans-
form boundaries to accommodate evolution
of the Arctic region (e.g., Doré et al., 2016).
Results of our recent field studies on the
northern margin of Laurentia challenge this
conclusion and support translation.

CURRENT SETTING

The Canadian Arctic Islands expose a
south to north transition from shallow marine
deposits of the Paleozoic Arctic platform into
deep-water rocks of the late Proterozoic to
early Paleozoic Franklinian basin that were
deformed in the Devonian and overlain by late
Paleozoic and early Mesozoic rocks of the
Sverdrup basin. Rocks of the Franklinian
basin were deposited after the Neoproterozoic
breakup of Rodinia and rifting along the
northern Laurentian margin, which closely
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followed mafic magmatism associated with
the Franklin Large Igneous Province at 720
Ma (Macdonald et al., 2010; Cox et al.,
2015). The basin is flanked to the north by
Ordovician to Silurian clastic and subduction-
related mafic and ultramafic rocks and alloch-
thonous units of the Pearya terrane (Fig. 1;
Trettin, 1998). The Pearya terrane is domi-
nated by two assemblages juxtaposed in
the Ordovician: a displaced peri-Laurentian
crustal fragment that records early Neo-
proterozoic (Tonian) and Ordovician conver-
gent margin magmatism (Malone et al., 2017,
2019) and a latest Neoproterozoic (Ediacaran)
to Ordovician mafic arc complex built on
Tonian basement (Majka et al., 2021). Steeply
dipping faults juxtaposed Pearya with the
Laurentian passive margin by the Devonian
(Trettin, 1998; Malone et al., 2019). Sub-
sequently, units of both the Pearya terrane
and Franklinian basin were deformed within
the Devonian—Carboniferous Ellesmerian
fold belt and overlain by Carboniferous and
younger deposits of the Sverdrup basin.
Structures of the Ellesmerian fold belt extend
westward to Prince Patrick Island where they,
and Carboniferous to Mesozoic structures of
the Sverdrup basin, are truncated at a high
angle by the present-day Arctic margin (Fig.
1; Harrison and Brent, 2005).
Autochthonous strata of the Laurentian
margin in northern Yukon are juxtaposed
with peri-Laurentian platform and basinal
strata of the North Slope subterrane of Arctic
Alaska (Macdonald et al., 2009; Strauss et al.,
2019a, 2019b; Colpron et al., 2019) on a near-
vertical fault zone broadly referred to as the
Porcupine shear zone (Fig. 1; von Gosen et al.,
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Figure 1. Generalized terrane map showing the location of the Canadian Arctic transform system, geophysically defined features in the Canada Basin, and
terrane distribution on the Arctic and Cordilleran margins of Laurentia (modified after Colpron et al., 2019). Insets show simplified (1) rotation and (2) trans-

lation models (from Patrick and McClelland, 1995).

2019). The North Slope subterrane was incor-
porated into the greater Arctic Alaska terrane
and juxtaposed with the Laurentian margin
by the Carboniferous (Strauss et al., 2013).
South-directed Late Devonian—Carboniferous
structures on the north side of this boundary
mark the probable offset western continuation
of the Ellesmerian orogen (Oldow et al., 1987).

PALEOZOIC TERRANE ACCRETION
AND TRANSLATION ON THE PEARYA
AND PORCUPINE SHEAR ZONES

Models that invoke terrane translation from
the Arctic domain to the Cordilleran margin
(e.g., Northwest Passage model; Colpron and
Nelson, 2009) require a transcurrent bound-
ary along the Paleozoic Arctic margin.
Evidence for such a boundary on Ellesmere
Island was outlined by Trettin (1998) in his
assessment of the history of Pearya. Recent
fieldwork has confirmed that Pearya is sepa-
rated from the Laurentian margin by vertical
strike-slip structures that record a complex
history of reactivation, overprinting, and
reversals in displacement direction (Piepjohn
et al.,, 2015). Current timing estimates for
Paleozoic sinistral displacement suggest a
long-lived Ordovician to Devonian metamor-
phic and deformation history associated with
juxtaposition and translation of Pearya along
the Laurentian margin (McClelland et al.,
2012; Kosminska et al., 2019).

Structures that accommodated translation
of Pearya project eastward to faults with
similar timing and kinematics in Svalbard
(Fig. 1; Mazur et al.,, 2009). Although com-
monly linked with strike-slip faults in the
Caledonides (e.g., Storstremmen shear zone;
Fig. 1), we suggest that faults in Svalbard
truncate the Caledonian structures and con-
tinue eastward to Scandinavia as the de Geer
transform (Fig. 1; Lundin and Dor¢, 2019).
The Harder Fjord fault zone, a long-lived
steep structure that juxtaposes Ediacaran arc
rocks with the Franklinian margin on North
Greenland (Rosa et al., 2016), is similar to
faults in Pearya and Svalbard (Fig. 1).

Strike-slip faults project westward from
Pearya to the boundary between the
Laurentian margin and North Slope subter-
rane in Yukon (Fig. 1). This boundary is
marked by the Porcupine shear zone, a broad
fault zone (>17 km wide) of older sinistral
and recent (late Cenozoic) dextral brittle
deformation (von Gosen et al., 2019). The
lithology and structural history of the North
Slope subterrane contrast sharply with the
adjacent Laurentian margin rocks and are
more akin to units in northeastern Laurentia
(Macdonald et al., 2009; Strauss et al., 2013;
Gibson et al., 2021). Although originally
interpreted to crosscut the shear zone (Lane,
1992), Devonian granitoids common to the
North Slope subterrane were emplaced within

the Porcupine shear zone while it was an
active lithosphere-scale transform (Ward et
al., 2019). Strike-slip basin sedimentation
may be recorded by the newly recognized
Devonian—Carboniferous Darcy Creek for-
mation within the Porcupine shear zone
(Faehnrich et al., 2021).

Linking strike-slip structures across
Svalbard and northern Ellesmere Island to
Yukon and Alaska on the basis of orienta-
tion, timing, and kinematics defines a
throughgoing Paleozoic fault system on the
northern Laurentian margin (Fig. 1), referred
to here as the Canadian Arctic margin
transform system (CATS). Recognition of
CATS carries significant implications for
Paleozoic paleogeographic reconstructions
of the northern Laurentian margin. Dis-
placement and terrane juxtaposition along
the margin culminated with south-directed
shortening of the Late Devonian—Early
Carboniferous Ellesmerian orogeny and
development of a thick clastic wedge derived
from a continental sediment source to the
north. The nature of this northern source
remains tentative but is most probably
derived from the Arctic Alaska—Chukotka
terrane (Beranek et al., 2010; Anfinson et
al., 2012). The CATS model that accommo-
dates large-magnitude translational motion
of terranes suggests the source may have
varied through time.
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GRAINS AND TERRANES: WHERE
DID THEY COME FROM?

Evidence for terrane displacement along
the Arctic margin can be evaluated by com-
paring detrital zircon data from the Paleozoic
passive margin to terranes thought to have
moved along it. Critical components include
(1) variation in detrital zircon signatures
across northern Laurentia; (2) the ca. 970 Ma
signature of the convergent margin external
to Rodinia; (3) Neoproterozoic magmatic
ages; and (4) Ordovician, Silurian, and
Devonian arc magmatism common to many
of the displaced terranes. Tracking detrital
zircons in combination with their Hf isotopic
signatures demonstrates significant differ-
ences in provenance history between Arctic
terranes and the Laurentian margin. For
example, Proterozoic to Devonian units of
Svalbard remain similar throughout their
evolution, whereas Proterozoic to Silurian
components of the Alexander terrane are
highly variable but coalesce to a common
signature in the Devonian (Fig. 2A).
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The terranes of Svalbard, Pearya, and
North Slope show clear evidence of
Mesoproterozoic and older material consis-
tent with derivation from Laurentia but dis-
tinct from passive margin units in the
Franklinian basin. The Precambrian signa-
ture of the North Slope subterrane is most
compatible with northeastern Laurentia
(Greenland), making a strong case for large-
scale translation of a peri-Laurentian frag-
ment along the Arctic margin (Gibson et al.,
2021). The Tonian (ca. 970 Ma) signature of
the Pearya, Svalbard, Arctic Alaska, and
Farewell terranes clearly distinguishes these
crustal fragments from the Franklinian mar-
gin (Fig. 2). The Tonian signature is subtle to
absent in the Alexander and Yukon-Tanana
terranes, making it a useful discriminant as
well. Evidence for Neoproterozoic—early
Paleozoic (710-520 Ma) magmatism coeval
with activity in the Timanide orogen of east-
ern Baltica (Fig. 3) appears in the Pearya,
Arctic Alaska, Farewell, and Alexander ter-
ranes, but is notably missing from the
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Laurentian signature of the North Slope sub-
terrane and Franklinian basin. Terranes with
this signature are assigned origins adjacent
to Baltica or Siberia (e.g., Beranek et al.,
2013; White et al., 2016), consistent with fau-
nal (Soja and Antoshkina, 1997) and paleo-
magnetic (Bazard et al., 1995) data.
Ordovician to Silurian arc magmatism
observed in the Arctic terranes indicates
that they largely represent displaced arc
fragments. The age of individual peaks var-
ies by terrane, and Hf isotopes range from
juvenile (>+5 eHf)) to evolved (<5 €Hf)
settings (Fig. 2B), tracking differences in
arc basement and proximity to active con-
vergent boundaries. For example, Ordovician
signatures are dominant in the Pearya,
Alexander, Farewell, and Arctic Alaska ter-
ranes, but lacking in Svalbard and portions
of the Yukon-Tanana terrane. Silurian mag-
matic rocks are absent from Pearya and the
North Slope subterrane although both regions
record influx of Silurian detrital compo-
nents. The eHf, signatures for Ordovician and
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Figure 2. (A) Two-dimensional multidimensional scaling (MDS) plot (Saylor et al., 2017; Kolmogorov-Smirnov comparison of probability density plots, metric
squared test = 0.137) and (B) age-cHf, plot of detrital zircon data from units involved in translation along the Canadian Arctic transform system. Annotations
on (A) show general detrital age trends reflected in the MDS plot. Alexander terrane data in (B) is plotted as contoured density maps of bivariate kernel
density estimates with contours of 68% (10) and 95% (20) of peak density and cool to hot color gradient reflecting increasing peak density (Sundell et al.,
2019). Data from Svalbard (Sv); Franklinian basin (FB); Pearya terrane (P; P3—Succession 3); Canadian Arctic Islands clastic wedge (CW; CWp—Parry Islands
Formation); Arctic Alaska terrane (N—North Slope subterrane; SS—southwestern subterranes; D—Doonerak; WMA—Whale Mountain Allochthon); Farewell
terrane (F); Alexander terrane (AT: ATn—northern, St. Elias; ATs—southern, Prince of Wales Island; ATb—Banks Island assemblage); the Yukon-Tanana ter-
rane (YTs) in southeastern Alaska is presented in additional plots and references in the supplemental material'.

!Supplemental Material. Probability plots, Shepard plot, and sources of U/Pb data in Figure 2A. Go to https://doi.org/10.1130/GSAT.S.14442635 to access the supplemental
material; contact editing@geosociety.org with any questions.
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Figure 3. Schematic Devo-
nian paleogeographic recon-
struction showing terrane
translation on the Canadian
Arctic transform system
(CATS). Modified after Torsvik
and Cocks (2017). AT—Alex-
ander terrane; Ch—Chukotka;
D—Doonerak arc; F—Fare-
well; N—North Slope sub-
terrane; P—Pearya terrane;
S-K—Sierra-Klamath ter-
ranes; SS—southwestern
Arctic Alaska subterranes;
ST—Stikinia; Sv—Svalbard;
W-—Wrangellia; YTn—Yukon-
Tanana terrane in Yukon;
YTs—Yukon-Tanana terrane
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Silurian zircon in most terranes, ranging
from +5 to —15, record evolution in settings
with variable input from older continental
sources, either from the arc basement or
influx of continentally derived sedimentary
material. In stark contrast, the southern
Alexander terrane on Prince of Wales Island,
along with the Doonerak arc and Whale
Mountain allochthon of Arctic Alaska, con-
sistently have a juvenile signature that indi-
cates evolution in an intraoceanic setting iso-
lated from any continental input throughout
their pre-Devonian history (Fig. 2).

Devonian—Carboniferous detrital zircon
signatures define amalgamation of terranes
and juxtaposition with the Arctic margin. The
Devonian clastic wedge in the Canadian
Arectic Islands records deposition on Laurentia
from a more juvenile source emplaced along
the Franklinian margin (Patchett et al., 1999).
Late Devonian units (e.g., Parry Islands
Formation) at the top of the wedge are domi-
nated by Neoproterozoic to Devonian grains
with juvenile eHf (Anfinson et al., 2012). This
shift in signature is consistent with recycling
of Silurian units from the Pearya, Farewell,
northern Alexander, and Arctic Alaska ter-
ranes (Fig. 2). The eHf values for Ordovician
to Early Devonian grains in many terranes are
markedly juvenile but show a sharp pull down
in the Late Devonian (Fig. 2), which reflects
increased crustal involvement due to contrac-
tion and perhaps collision. The Banks Island
and northern (St. Elias) units of the Alexander
terrane (Fig. 1) show a transition from strongly
evolved in Ordovician—Silurian grains to
dominantly juvenile values—a signature that
is more consistent with the southern Alexander
terrane (Fig. 2). This transition, combined
with the similarity in detrital zircon patterns,
suggests Devonian amalgamation of the dis-
parate Alexander fragments.

s transform

in southeastern Alaska.
\ ridge

PALEOZOIC EVOLUTION OF THE
NORTHERN LAURENTIAN MARGIN

The variations in zircon age and eHf, sig-
natures in circum-Arctic and Cordilleran
terranes record changes in Paleozoic arc
magmatism that broadly represent a north-
ern continuation of the arc system associated
with closure of lapetus and the subsequent
Silurian collision of Baltica with Laurentia
(Fig. 3; Strauss et al., 2017). These arc com-
plexes are best viewed as age equivalent to
subduction-related rocks preserved in the
thrust sheets of the Caledonides. Svalbard
represents a Caledonian signature; however,
the other circum-Arctic terranes are arc
complexes that extended beyond the
Caledonides and are characterized by a mix-
ture of juvenile intraoceanic fragments (e.g.,
southern Alexander terrane, Doonerak) and
arc fragments with continental substrates
(e.g., Pearya, northern Alexander terrane).

Translation associated with the CATS initi-
ated as Ordovician and Silurian subduction
migrated along the northern Laurentian mar-
gin. Subduction-related rocks inboard of
Pearya are inferred to record transpressional
collapse of the Ordovician arc against the
Franklinian margin, with Silurian arc activity
continuing offshore as subduction migrated
westward. The location of Siberia and its role
in the transfer of circum-Arctic terranes to the
Cordilleran margin is poorly understood, but
relative motion between Baltica, Siberia, and
the Arctic terranes likely increased after the
Silurian Baltica—Laurentia collision. Silurian
translation placed several crustal fragments
and arc terranes along the Arctic margin.
Silurian to Early Devonian arc activity con-
tinued in outboard terranes destined to
approach the Cordilleran realm.

Devonian displacement on the CATS
emplaced Pearya and the North Slope

subterrane along the Laurentian continental
margin, with the rest of Arctic Alaska and
Alexander located farther outboard. Final
contraction in the northern Caledonides, rep-
resented by ultrahigh-pressure metamor-
phism at 360 Ma in North-East Greenland,
was accompanied by sinistral and dextral
translation that accommodated margin-
parallel escape from the orogen (Gilotti and
McClelland, 2007). This intra-Caledonian
strike-slip system was truncated by the
CATS, effectively transferring Caledonian
rocks of Svalbard to the Arctic margin
(Fig. 3). The eastern continuation of CATS
projects toward the truncated margin of
northern Scandinavia marked by the
Trollfjord-Komagelva fault system, requir-
ing an Ordovician—Devonian strike-slip
history on this or an outboard structure along
the Timanide-Baltica suture.

The amalgamated terranes translated
along the Arctic margin shed detritus with
characteristic juvenile isotopic signatures
(e.g., Anfinson et al., 2012) southward into
the Canadian Arctic Island clastic wedge
(Fig. 1). Middle Devonian arc magmatism
developed in Arctic Alaska simultaneously
with clastic wedge deposition. This activity
was contemporaneous with Uralian arc mag-
matism on the Baltican margin, but the two
systems were separated by the CATS. The
Late Devonian marks a transition to subduc-
tion initiation along the western margin of
Laurentia with granitic magmatism present
in the North Slope subterrane to the north
and Yukon-Tanana, Stikinia, Quesnellia,
Kootenay, and Sierra-Klamath terranes to
the south (Fig. 3). The CATS effectively
accommodated migration of Paleozoic arcs
active outboard of the Laurentian margin
into the paleo-Pacific realm. Latest stages of
Ellesmerian shortening and translation on
the northern margin coincide with the start
of Yukon-Tanana magmatism in the northern
Cordillera (Colpron and Nelson, 2009).

MESOZOIC TRANSLATION AND
OPENING OF THE CANADA BASIN
Despite lithologic, sedimentologic, and
structural arguments for translation of Arctic
Alaska along the northern Laurentian mar-
gin (Patrick and McClelland, 1995; Oldow et
al., 1987, 1989; Dickinson, 2009), Early
Cretaceous counterclockwise rotation of
Alaska is the generally accepted model for
opening of the Canada Basin (Grantz et al.,
2011). The rotation model persists in large
part due to a perceived lack of evidence for
Mesozoic displacement on the Canadian
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Arctic margin. Strike-slip faults are clearly
exposed on Ellesmere Island and record a
complex history of post-Carboniferous to
Eocene sinistral and dextral displacement
(Piepjohn et al., 2013). These structures
record reactivation of the Paleozoic trans-
form margin. West of Ellesmere Island to the
Yukon-Alaska mainland, the structural his-
tory of the Canadian margin is in question.

Although conventionally interpreted as
representative of Mesozoic extension, pub-
lished seismic reflection profiles across the
northern boundary of the Sverdrup basin
(Embry and Dixon, 1990) show the bound-
ary to be disrupted by near-vertical faults
more reasonably interpreted as strike-slip
faults. The faults separate blocks with sub-
stantial differences in thickness of Late
Jurassic and Early Cretaceous sedimentary
rocks. The faults cut and are locally sealed
by Late Cretaceous clastic rocks that indi-
cate displacement into the late Mesozoic.
Along Prince Patrick Island, the faults trun-
cate Paleozoic and Mesozoic stratigraphic
and structural trends at a high angle to the
margin (Harrison and Brent, 2005). Local
evidence of extensional deformation is
described along Banks Island (Fig. 1; Helwig
et al,, 2011) in a segment of the boundary
characterized by a slight deflection in strike
consistent with an extensional step in a
sinistral transcurrent fault system (Fig. 4).
Seismic sections west of Banks Island doc-
ument near-vertical structures that truncate
the continental margin along the Tuk trans-
form (Helwig et al., 2011).

The Porcupine shear zone, separated from
the Tuk transform to the east by a series of
north-striking Cenozoic faults that record
east-west contraction and disrupt the simple
continuation of the CATS, is essential to
translation models for opening of the Canada
Basin. Preliminary structural studies sup-
ported Late Jurassic to Early Cretaceous
sinistral transpression along the Porcupine
shear zone (Oldow and Avé Lallemant,
1993). Recent studies have demonstrated that
reactivation of the Porcupine shear zone
involved Jurassic and Cretaceous rocks (von
Gosen et al., 2019). Although the magnitude
and timing of Mesozoic displacement on the
Porcupine shear zone is not well documented
at present, sinistral translation associated
with opening of the Canada Basin is clear.

Marine geophysical data have long been
interpreted in support of the rotation model,
particularly satellite gravity data that was
inferred to represent a spreading center
(McAdoo et al., 2008). New data suggest a
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Siberia

Laurentia

Figure 4. Schematic Mesozoic
paleogeographic reconstruction
showing the role of the Canadian
Arctic transform system (CATS) in
opening of the Canada Basin and
large magnitude extension in the
Amerasian Basin. Modified after
Patrick and McClelland (1995),
Dickinson (2009), Miller et al.
(2018), and Dgssing et al. (2020).
AMR-—AIpha-Mendelev Ridge;
CB—Canada Basin; CBL—Chuk-
chi Borderland; ESB—East Sibe-
rian basins (see Nikishin et al.,
2021); MB—Makarov basin; PB—
Podvodnikov basin; SAR—south
Amerasia ridge; SAZ—South Anyui
suture zone. Extent of thin crust
(<10 km) is from Lebedeva-lvanova

.t Crustal thickness <10 km

== Strike-slip / transform fault ~ T~~ normal fault

much more limited extent of oceanic crust
(Chian et al., 2016), and interpretation of geo-
physical lineaments as transform structures
has produced models invoking strike-slip
faults within the Canada Basin (Hutchinson et
al., 2017). These new models will be greatly
improved by incorporating the CATS. In fact,
the recent transform model of Dgssing et al.
(2020) explicitly requires sinistral translation
on the Porcupine shear zone. Many uncertain-
ties remain regarding the crustal composition
and the timing and magnitude of extension
within the Canada Basin and broader
Amerasian Basin (Lebedeva-Ivanova et al.,
2019), but tectonic models place the region in
a back arc setting relative to the Mesozoic
Cordilleran margin (Miller et al., 2018).
Integrating our land-based observations of
translation with the offshore geophysics pro-
vides a realistic geodynamic model for the
Cretaceous opening of the Canada Basin in
this setting (Fig. 4). The greater Amerasian
Basin is best viewed as a domain of large-
magnitude extension in response to slab roll-
back on the paleo-Pacific margin that is bound
by strike-slip displacement on the Laurentian
and Siberian margins (Miller et al., 2018).
Transforms on the Siberian margin and within
the Canada Basin are commonly accepted as
components of the rotational model (Amato et
al., 2015; Dor¢ et al., 2016). Sinistral reactiva-
tion of the CATS on the Laurentian margin
similarly bounds the extensional domain to
the south. Block rotation of northern Alaska
related to opening of the Canada Basin is
permissible but no longer required.

Cenozoic reactivation of the CATS is
recorded along its length. Displacement on
the de Geer transform during opening of the
Eurasian Basin records reactivation at the
eastern end (Doré et al., 2016). Dextral

\4\ convergent plate boundary

et al. (2019).

displacement along the Arctic margin
(Piepjohn et al, 2013) and the Porcupine shear
zone marks reactivation of the central and
western segments of the CATS, respectively.
Activity on the western CATS was linked
with continued evolution of the Cordilleran
strike-slip orogen (Murphy, 2019).

CONCLUDING REMARKS

Auvailable field evidence strongly supports
the presence of a long-lived strike-slip fault
extending from North Greenland westward to
Alaska along the northern Laurentian margin.
Onshore and offshore observations are con-
sistent with Paleozoic translation of arc ter-
ranes and crustal fragments along the CATS,
followed by Mesozoic reactivation to accom-
modate regional extension of continental and
hybrid crust (Miller et al., 2018) during trans-
lational opening of the Canada Basin.
Ongoing geochronologic and kinematic stud-
ies of fault rocks will provide additional
insight on the magnitude, timing, and direc-
tion of displacement along the length of the
boundary. Pre-Devonian terrane translation
complicates restorations based on age or litho-
logic similarities since many correlations are
non-unique. In addition, extension within the
Canada Basin accommodated by transform
boundaries on the Canadian and Chukchi
Borderland margins does not preclude block
rotation within the basin, leading to hybrid
models (Miller et al., 2018).

The rotation model for opening of the
Canada Basin has long rested on stratigraphic
arguments (e.g., Embry, 1990). Early struc-
tural analysis recognized translation of units
with different Paleozoic and Mesozoic defor-
mation histories (Oldow et al., 1987, 1989), but
the necessary kinematic and timing con-
straints were missing, thus allowing the



rotation model to persist as the consensus
model with little supporting structural evi-
dence. For instance, no demonstrable increase
in shortening along the length of the Brooks
Range or obvious contraction south of the
rotation axis in the Mackenzie delta exists to
support rotation. The rotation model has in
essence achieved the status of a Geomyth
(Dickinson, 2003) since it is commonly
assumed and rarely tested. Future models for
Mesozoic opening of the Canada Basin will
need to merge existing stratigraphic and geo-
physical observations with the substantial
database that documents the Paleozoic evolu-
tion and Mesozoic—Cenozoic reactivation of
the CATS in order to solve a tectonic problem
that has dogged the community for decades.
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