1

Data-Driven Mapping Between
Functional Connectomes Using Optimal
Transport

Javid Dadashkarimi'®® Amin Karbasi'?, and Dustin Scheinost?

! Department of Computer Science, Yale University, New Haven, USA
{javid.dadashkarimi,amin.karbasi}@yale.edu
2 Department of Electrical Engineering, Computer Science, Statistics
and Data Science, Yale University, New Haven, USA

3 Department of Radiology and Biomedical Imaging, Yale School of Medicine,

New Haven, USA
dustin.scheinost@yale.edu

Abstract. Functional connectomes derived from functional magnetic
resonance imaging have long been used to understand the functional
organization of the brain. Nevertheless, a connectome is intrinsically
linked to the atlas used to create it. In other words, a connectome gen-
erated from one atlas is different in scale and resolution compared to
a connectome generated from another atlas. Being able to map connec-
tomes and derived results between different atlases without additional
pre-processing is a crucial step in improving interpretation and gener-
alization between studies that use different atlases. Here, we use opti-
mal transport, a powerful mathematical technique, to find an optimum
mapping between two atlases. This mapping is then used to transform
time series from one atlas to another in order to reconstruct a connec-
tome. We validate our approach by comparing transformed connectomes
against their “gold-standard” counterparts (i.e., connectomes generated
directly from an atlas) and demonstrate the utility of transformed con-
nectomes by applying these connectomes to predictive models based on a
different atlas. We show that these transformed connectomes are signifi-
cantly similar to their “gold-standard” counterparts and maintain indi-
vidual differences in brain-behavior associations, demonstrating both the
validity of our approach and its utility in downstream analyses. Over-
all, our approach is a promising avenue to increase the generalization of
connectome-based results across different atlases.

Keywords: Optimal transport - Functional connectome + fMRI

Introduction

®

Check for
updates

Functional connectomics, using functional magnetic resonance imaging (fMRI),
are a powerful approach for investigating the functional organization of the brain.
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A prerequisite for creating a functional connectome—i.e., a matrix describing
the connectivity between any pair of brain regions—is defining an atlas to par-
cellate the brain into these regions. Given the popularity of this approach, many
atlases, for which there is no gold standard, exist [2]. As these atlases divide the
brain into a different number of regions, where each vary by size and topology,
connectomes created from different atlases are not directly comparable. Thus,
results and potential biomarkers generated from one atlas are not readily applica-
ble to connectomes generated from a different atlas. To extend previous results
to a connectome generated from a different atlas, additional preprocessing is
needed, a barrier to replication and generalization efforts and limiting wider use
of potential connectome-based biomarkers.

To overcome these limitations, we propose how to find an optimum map-
ping between two different atlases, allowing data processed from one atlas to
be directly transformed into a connectome based on another atlas. First, in a
training sample with time-series data from two different atlases, we find this
mapping by solving the Monge—Kantorovich transportation problem [23]. Then,
by employing this optimal mapping, time-series data based on the first atlas
from novel subjects can be transformed into connectomes based on the second
atlas without ever needing to use the second atlas. An overview of our approach
is shown in Fig. 1. We validate our approach by comparing transformed connec-
tomes against their “gold-standard” counterparts (i.e., connectomes generated
directly from an atlas) and demonstrate the utility of transformed connectomes
by applying these connectomes to predictive models based on a different atlas.
Overall, our results suggest that data from one atlas can be transformed into a
connectome comparable to one generated directly from a different atlas.

2 Methods

2.1 Optimal Transport

The optimal transport problem solves how to transport resources from one loca-
tion « to another B while minimizing the cost C' to do so [12,15,19,26]. It has
been used for contrast equalization [9], image matching [20], image watermark-
ing [21], text classification [16], and music transportation [11]. OT is one of the
few methods that provides a well-defined distance metric when the support of
the distributions is different. Other mappings approaches such as KL divergence
do not make this guarantee.

Monge Problem: The original formulation of the optimal transport problem
is known as the Monge problem. Lets define some resources x1, .., Z, in « and
some resources yi, .., Y, in G. Then, we specify weight vectors a and b over these
resources and define matrix C' as a measure of pairwise distances between points
2; € a and comparable points 7 (z;); Monge problem aims to solve the following
optimizing problem [22]:

mTin{ZC’(xi,’T(xi)) : 7;1@:5}, (1)
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Fig. 1. Optimal transport pipeline to estimate a mapping between different atlases in
order to transform connectomes between the atlases. A) Training data includes time
series data from two atlases, which can be of different number of brain regions. B)
Extracting the empirical distribution of brain activity for each node for both atlases
at a given time point. C) Learning the optimal transport mapping between source and
target distributions for a pre-defined cost matrix. D) Applying the mappings on testing
data and then building transformed connectomes according to the new time series data.

where the push forward operator f indicates that mass from « moves towards
B assuming that weights absorbed in b; = ZT(zi):yj a;. Assignment problem
when the number of elements in the measures are not equal is a special case of
this problem, where each point in « can be assigned to several points in (.

Kantorovich Relaxation: As a generalization of the Monge problem, the Kan-
torvich relaxation solves the mass transportation problem using a probabilistic
approach in which the amount of mass located at z; potentially dispatches to
several points in target [18]. Admissible solution for Kantorvich relaxation is
defined by a coupling matrix 7 € R}*™ indicating the amount of mass being
transferred from location x; to y; by 7, ;:

U(a,b) ={T eR?*"™ :T1,, =a,T"1, = b}, (2)

for vectors of all 1 shown with 1. An optimum solution is obtained by solving
the following problem for a given “ground metric” matrix C' € R™*™ [24]:

Le(ab) = min <C.T>= ZJ: Ci;Tij (3)
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which is a linear problem and is not guarantee to have a unique solution [23],
but always there exists an optimal solution (see proof in [3,4]). Kantorovich and
Monge problems could also be equivalent in some conditions (see proof in [6]).

2.2 Proposed Algorithm for Mapping Atlases Using Optimal
Transport

Formulation: For paired time-series data from the same individual but from
two different atlases (atlas .27 with n regions and atlas &7, with m regions),
lets define 1 € R™ and v € R™ to be the distribution of brain activity at single
time point ¢ based on atlases P and 2, respectively. For a fixed cost matrix

C € R™™ we aim to find a mapping 7 € R™*™ that minimizes transportation
cost between p; and vy:

Le(pev) = minO7T s.t, AT = M , (1)

Vi

in which 7 € R™™ is vectorized version of 7 such that the i +n(j —1)’s element
of T is equal to 7;; and A is defined as:

(1 1) 11 .1 (5)

The mapping 7 represents the optimal way of transforming the brain activity
data from n regions into m regions.

Yet, solving a large linear program is computationally hard [8]. Thus, we use
the entropy regularization, which gives an approximation solution with complex-
ity of 0(n?log(n)n=3) for € = 41%(") [23], and instead solve the following;:

Le(p, 1) = rr%i_n cTT — eH(T) s.t, AT = {Mt] . (6)

Vi

Specifically, we use the Sinkhorn algorithm—an iterative solution for Eq. 6 [1]—
to find the optimum mapping 7 as implemented in the Python Optimal Trans-
port (POT) toolbox [10]. Initial investigations suggest that similar mappings are
obtained using the exact linear programming solution or the Sinkhorn approxi-
mation. Similarly, results appear stable over a range of €’s.

Defining the Cost Matrix: We investigated two different cost matrices. First,
we computed the pairwise FEuclidean distance between every combination of
brain regions between the two atlases by: (i) computing cluster centroids for all
n regions in .22 and m regions in .77, and (ii) then, calculating the Euclidean

distance between these nodes: Ceyc (p, q) = \/Zle (q; — pi)z, where p; and g¢;
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are coordinates for the arbitrary regions: p in 7 and q in P . Second, we
compute functional distance between regions by: (i) calculating the correlation
(p) between the time series for all pairwise combinations of regions between
S and 7, (ii) normalizing by puorm = (p — min(p))/(max(p) — min(p)),
(iii) converting to distance: Ctyne = Lyuxm — Pnorm, (V) and average the cost
matrix over participants s to get a more robust estimation for Cryne (i.€., C =

1/s>,C5).

Estimating Mapping: For training data with .S participants and k time points
per participant, first, we estimate the optimal mapping 7;, independently, for
each time point and participant using Eq. 6. The distributions were normalized
using min-max scaling and then dividing by sum. Next, we average all 7; over
all participants to produce a single optimal mapping 7 for one time point in the
training data (e.g., 7 = |—é| Zgll 7;). For bigger frames, we use the mapping we
learned at the beginning of a frame for the rest time points in the window (i.e.,
Tlt:t+w] «— T, for a frame size of w and time point ).

Estimating Connectomes from Transformed Time Series: Once the n
time series from .27 are transformed to m time series based on the target atlas
7 we correlate the time series for every pair of regions ¢ and j to build the

7729

final, transformed connectomes.

3 Results

3.1 Datasets

To evaluate our approach, we used data from the Human Connectome Project
(HCP) [27], starting with the minimally preprocessed data [14]. First, data with
a maximum frame-to-frame displacement of 0.15 mm or greater were excluded,
resulting in a sample of 876 resting-state scans. Analyses were restricted only to
the LR phase encoding, which consisted of 1200 individual time points. Further
preprocessing steps were performed using Biolmage Suite [17]. These included
regressing 24 motion parameters, regressing the mean white matter, CSF, and
grey matter time series, removing the linear trend, and low-pass filtering. Regions
were delineated according to the Shen 268 and 368 atlases [25]. These atlases,
defined in an independent dataset, provide a parcellation of the whole gray mat-
ter (including subcortex and cerebellum) into 268 or 368 contiguous, functionally
coherent regions. For each scan, the average time series within each region was
obtained. To calculate connectomes, the Pearson’s correlation between the mean
time series of each pair of regions was calculated and converted to be approxi-
mately normally distributed using a Fisher transformation.

3.2 Intrinsic Evaluation

Correlation with “Gold-Standard” Connectomes: To validate our app-
roach, we, first, partitioned our sample into 80% training data to estimate the
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Table 1. Intrinsic evaluation of the transformed connectomes based on the optimal
mapping 7. The transformed connectomes exhibited high correlation with the “gold-
standard” connectomes for both (top) the Euclidean distance and (bottom) the func-
tional distance cost matrices. Similarity between connectomes was not affected by sam-
ple size and number of time points used to estimate 7;.

Train size (Euclidean Distance)

268 — 368 368 — 268

100 |200 300 [400 |500 |600 |100 |200 300 400 |500 |600
Frame size | 100 | 0.489 | 0.495|0.491 | 0.498 | 0.496 | 0.494 | 0.461 | 0.454 | 0.460 | 0.445 | 0.458 | 0.461
200 |0.496 | 0.490 | 0.497 | 0.502 | 0.494 | 0.501 | 0.456 | 0.455 | 0.456 | 0.454 | 0.457 | 0.458
300 |0.500 0.500 | 0.503 | 0.499 | 0.500 | 0.495 | 0.447 | 0.454 | 0.451 | 0.454 | 0.453 | 0.458
400 |0.490|0.499 1 0.492 | 0.496 | 0.499 | 0.494 | 0.454 | 0.454 | 0.464 | 0.461 | 0.450 | 0.461
500 |0.4910.500|0.492|0.496 | 0.491 | 0.499 | 0.461 | 0.459 | 0.466 | 0.457 | 0.458 | 0.448
600 |0.503|0.492|0.494 | 0.495 | 0.499 | 0.496 | 0.454 | 0.455 | 0.456 | 0.457 | 0.454 | 0.452
700 |0.491 | 0.508 | 0.492|0.500 | 0.493 | 0.498 | 0.455 | 0.454 | 0.465 | 0.462 | 0.459 | 0.457
800 |0.493|0.497 1 0.501 | 0.495 | 0.503 | 0.499 | 0.460 | 0.457 | 0.455 | 0.456 | 0.459 | 0.465
900 | 0.505 | 0.505|0.486 | 0.498 | 0.492 | 0.491 | 0.451 | 0.456 | 0.460 | 0.461 | 0.462 | 0.458
1000 | 0.502 | 0.492 | 0.489 | 0.502 | 0.496 | 0.503 | 0.452 | 0.457 | 0.469 | 0.450 | 0.461 | 0.452
11001 0.499 | 0.496 | 0.498 | 0.497 | 0.503 | 0.485 | 0.453 | 0.460 | 0.455 | 0.460 | 0.453 | 0.464
Train size (Functional Distance)
268 — 368 368 — 268
100 |200 300 [400 |500 |600 |100 |200 300 400 |500 |600
Frame size | 100 | 0.626 | 0.622 | 0.630 | 0.624 | 0.622 | 0.624 | 0.589 | 0.596 | 0.587 | 0.586 | 0.593 | 0.591
200 ]0.621]0.630|0.623|0.6250.632 | 0.621 | 0.592 | 0.597 | 0.590 | 0.601 | 0.584 | 0.591
300 |0.6240.629 | 0.629 | 0.627 | 0.629 | 0.630 | 0.590 | 0.593 | 0.591 | 0.590 | 0.596 | 0.600
400 ]0.626|0.628 | 0.631 | 0.626 | 0.631 | 0.625 | 0.595 | 0.587 | 0.590 | 0.595 | 0.596 | 0.590
500 |0.6320.627|0.629|0.631 | 0.626 | 0.624 | 0.594 | 0.598 | 0.596 | 0.601 | 0.591 | 0.593
600 |0.633|0.630|0.6310.631|0.629 | 0.631 | 0.596 | 0.597 | 0.595 | 0.600 | 0.594 | 0.593
700 10.6350.639|0.636 | 0.629 | 0.632 | 0.627 | 0.594 | 0.592 | 0.589 | 0.596 | 0.598 | 0.597
800 |0.628|0.634 1 0.6310.634 | 0.634 | 0.634 | 0.598 | 0.596 | 0.590 | 0.592 | 0.593 | 0.601
900 |0.632|0.633|0.634 | 0.635|0.635 | 0.638 | 0.600 | 0.596 | 0.597 | 0.599 | 0.603 | 0.595
1000 | 0.632 | 0.635 | 0.635 | 0.638 | 0.643 | 0.636 | 0.595 | 0.593 | 0.595 | 0.596 | 0.600 | 0.594
1100 | 0.638 1 0.636 | 0.638 | 0.634 | 0.639 | 0.639 | 0.598 | 0.591 | 0.601 | 0.594 | 0.593 | 0.601

optimal mapping 7 between atlases and 20% testing data for evaluating the
quality of the transformed connectomes. In the training data, we estimated 7
using all 1200 time points and 700 participants for each of the cost matrices
(Coue and Chypc). Next, in the testing data, we applied 7 to construct 368 x 368
connectomes from the 268 atlas data (labeled: 268 — 368) as well as 268 x 268
connectomes from the 368 atlas data (labeled: 368 — 268). Finally, the trans-
formed connectomes were compared to the “gold-standard” connectomes (i.e.,
connectomes generated directly from an atlas) using correlation. Using a 12 core
processor Intel Xeon Gold 6128 CPU with a 3.40 GHz clock speed, estimating
T took 2,975s.

For both cost matrices, significant correlations between the transformed
connectomes and the “gold-standard” connectomes were observed (for Ceyc,
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Fig. 2. Box plots for 1Q prediction from transformed connectomes. Participants
were randomly split into three groups (g1, g2, and g¢3) with a respective ratio of
{0.25,0.5,0.25}. A mapping is trained on gi, the model is trained on connectomes
from gs, and tested on transformed connectomes from gs. orig shows prediction perfor-
mance in “gold-standard” connectomes, euc and fun show prediction performance for
transformed connectomes found using either Ceye or Chune, respectively. A null model
(labeled null) is obtained by permuting labels.

268 — 368: r = 0.508,p < 0.01; 368 — 268: r = 0.469,p < 0.01; for Cryne,
268 — 368: r = 0.643,p < 0.01; 368 — 268: r = 0.603, p < 0.01). Notably, trans-
formed connectomes using the Cyne cost matrix were significantly (p < 0.01)
more similar to the “gold-standard” connectomes compared to transformed con-
nectomes using the Cey. cost matrix. Finally, the 268 — 368 connectomes were
more similar to the “gold-standard” connectomes compared to the 368 — 268
connectomes.

Evaluation of Free Parameters: Next, we investigated the sensitivity of our
approach to the number of time points and number of participants used to find
the mapping between atlases. Using the 80/20 split for training and testing, we
varied the number of time points used from 100 to 1100 in 100 increments and
varied the number of participants from 100 to 600 in 100 increments. No clear
pattern of performance change was observed across either parameter, suggest-
ing that our approach is stable to both the number of frames and participants
(Table 1). However, using only 100 participants and 100 time points in a frame
significant (p < 0.05) reduced the processing time from 2,975s to 467 s.

3.3 Extrinsic Evaluation

In addition to validating our approach, we demonstrated that the transformed
connectomes can be used to elucidate brain-behavior associations. To this aim,
1) We partitioned our data into three folds gi, g2, and g3 with a respective ratio
of {0.25,0.5,0.25}. 2) Using only participants in g1, we estimated the optimal
mapping 7 for both cost matrices. 3) We applied 7 to the participants in g3
to produce the transformed connectomes (268 — 368 and 368 — 268). 4) We
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Table 2. Extrinsic evaluation of the transformed connectomes based on the optimal
mapping 7. Indicator * shows the significance of the results with respect to the null
model for p < 0.05 using corrected resampled t-tests [5].

Sex 1Q

Null | Euc Func Null | Euc Func
268 — 368 | 0.5033 | 0.6961* | 0.7253" | 0.0083 | 0.1553* | 0.1376"
368 — 268 | 0.5077 | 0.7312* | 0.7243" | 0.0036 | 0.1313" | 0.1835"

predicted 1Q using ridge regression [13] and classified sex using support vector
machine (SVM) with a linear kernel [7] using the connectomes in g for both
the 268 and 368, independently. All models were trained with 10-fold cross-
validation. 5) We used the predictive models from Step 4) to predict phenotypic
information using the transformed matrices from Step 3) (e.g., using the 268 —
368 connectomes as inputs to the models trained with the 368 connectomes).
We tested the significance of predictions based on the transformed connectomes
against a null distribution of prediction based on permuted values using corrected
resampled t-tests [5].

Results showed that using transformed connectomes from both cost matrices
and both directions (e.g., 368 — 268) lead to significantly (p < 0.05) better pre-
diction of IQ compared to the null model (see Table 2, Fig. 2a). Similarly, results
showed that sex classification achieves up to 72% accuracy and is significantly
higher compared to the null distribution for all transformed connectomes (see
Table 2). There were no clear differences in prediction performance between the
transformed connectomes from either cost matrix or direction.

Finally, we compared the prediction performance of the “gold-standard” con-
nectomes and the transformed connectomes. In this comparison, the predic-
tion performance of the “gold-standard” connectomes was treated as an upper
limit of how well the transformed connectomes could perform, as it is unreason-
able to expect the transformed connectomes to outperform the ‘gold-standard”
connectomes. For both 1Q and sex prediction, prediction performance of the
transformed connectomes overlapped that of the “gold-standard” connectomes,
indicating that little information about brain-behavior association is lost when
transforming data using the estimated optimal mapping 7.

4 Discussion and Conclusions

Atlas selection is a prerequisite for creation of a functional connectome. Yet,
any choice of atlas ultimately constrains interpretation and future replication
and generalization efforts to that particular atlas. Since there is no single gold-
standard atlas, results generated from two distinct atlases must undergo addi-
tional processing before comparison. In this work, we propose optimal trans-
port to find optimum mappings between different atlases, which enable data,
previously processed with one atlas, to be mapped to a connectome generated
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from a different atlas, without the need for further prepossessing. We show that
these transformed connectomes are significantly similar to their “gold-standard”
counterparts and maintain individual differences in brain-behavior associations,
demonstrating both the validity of our approach and its utility in downstream
analyses. Importantly, our optimal mappings are robust to training parameters,
suggesting that a single mapping between any atlas pair could be generated once
and used as an off-the-shelf solution by the community.

Our approach is in the spatial domain (i.e., mapping node-to-node), rather
than mapping timecourse-to-timecourse or even connectome-to-connectome.
Once we have a node-to-node mapping, timecourses (and resulting connectomes)
naturally come for free. While our end goal is to generate the transformed con-
nectomes, we chose the node-to-node approach as it is more general. Our method
could be used to map other neuroimaging results, such as cortical thickness in
the Desikan-Killiany Atlas to the Destrieux Atlas.

Future work will include further validation of our approach in a wider range
of atlases and the generation of a publicly available repository of mappings for
community use. Overall, our approach is a promising avenue to increase the
generalization of connectome-based results across different atlases.
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