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Since development of lipidomic techniques [9–12], quantitation and 
classification of lipids in relation to the pathogenesis and progression of 
diseases have been greatly accelerated. As pioneer work, Min et al. and 
our lab employed these techniques performed lipid profiling on urine or 
plasma samples from PCa patients and healthy controls, respectively. 
Results indicated that urine or plasma lipid profiles were significantly 
different between PCa patients and healthy controls [13]. A few lipid 
species were identified as potential biomarkers in differentiation of PCa 
patients from healthy men with high sensitivity, specificity, and accu
racy [14]. After that, several studies performed lipid profiling on PCa 
patients’ serum, urine, and extracellular vesicles from body fluids, PCa 
cell lines, and xenograft of human PCa in animals [15–21]. All these 
studies provided meaningful information regarding the roles of lipids in 
the pathogenesis and in the discovery of diagnostic biomarkers of PCa. 
However, lipid profiling on body fluids or cell lines may not reflect real 
association of alterations in prostatic lipids with pathogenesis and pro
gression of PCa. Li et al. performed a global lipid profiling on prostatic 
tissues from Asian PCa patients, and found that cholesteryl esters (CE) 
are largely accumulated in PCa. Many CE species might be potential 
biomarkers in the differentiation of PCa from benign prostatic tissues 
(BPT) with high predictive values [22]. However, this study was not able 
to show racial differences in lipid compositions, nor their association 
with the progression of PCa. 

In current study, we employed electrospray ionization-tandem mass 
spectrometry (ESI-MS/MS) approaches to quantitate lipids in the levels 
of total lipids (TL), group (neutral lipids, NL, and phospholipids, PL), 
class and individual species on human PCa and BPT from AA and CA 
patients with PCa, and on animal PCa and normal prostatic tissues 
(NPT). Our purpose is to determine the differences in lipid compositions 
between PCa and non-cancerous prostatic tissues in human and animals, 
to correlate alterations in lipid profiles with clinical progress and racial 
disparity of PCa, and to identify lipid biomarkers in the diagnosis and 
prognosis of PCa. 

Materials and methods 

Patients and samples 

This study was approved by the Institutional Review Board at the 
University of Mississippi Medical Center. The patients included in this 
study were all males with PCa form African American (AA) population 
and Caucasian American (CA) population. All human prostatic tissue 
samples were collected by and fresh-frozen in Cooperative Human Tis
sue Network (CHTN) at time of prostatectomy during 2007–2012 
period. The sample were excluded if it was previously thawed, weighted 
less than 50 mg, and without accompanied de-identified Information on 
age, race, tumor Gleason score, and clinical stage of the tumor at time of 
prostatectomy. 

Animal prostatic tissues 

Fresh frozen animal prostatic tissues were provided by Dr. Zhenbang 
Chen at Meharry Medical College. Briefly, the animals were strains of 
mutant mice from mixed background of C57BL/6JX129/Sv XDBA2. The 
protocols for establishment of Pten (PtenloxP/loxP; Probasin-Cre4) and 
Pten/Trp53 (PtenloxP/loxP; Trp53loxP/loxP; Probasin-Cre4) mouse models, 
and for housing and feeding animals have been described in previous 
studies [23–25]. At 6 months of age, mice with indicated genotypes were 
euthanized, and their anterior prostate (AP) tissues or tumors were 
dissected and procured for lipid analysis. Specifically, normal prostate 
tissues (NPT) were obtained from five wild type (Wt) mice. The indolent 
PCa (iPCa, having a long latency without clinical manifestations of PCa) 
tissues were collected from the prostates of three Pten mutant mice. The 
aggressive PCa (aPCa, with a clinical course mimicking that of human 
PCa, with death occurring within 7 months of age) tissues were obtained 
from eight Pten/Trp53 mutant mice. 

Lipid extraction 

Extraction of total lipids from human and animal PCa and non- 
cancerous prostatic tissues was performed with chloroform and meth
anol, following a modified Bligh and Dyer protocol [26]. Briefly, 
50–100 mg tissues were weighed and homogenized. To 0.8 part (vol
ume) aqueous homogenized tissue, 1 part chloroform and 2 parts 
methanol were added and shaken well, followed by the addition of 1 
part chloroform and 1 part water. The sample was shaken well, centri
fuged at 3000 rpm for 5 min, and the lower layer was transferred to a 
glass vial. Then 1 part chloroform was added, the samples were shaken 
well, and centrifuged at 3000 rpm for 5 min, and the lower layer was 
transferred to the same glass vial; this process was repeated. The lipid 
extract solvent collected in the glass vial was evaporated with liquid 
nitrogen, capped with a Teflon-lined cap, and transported to the KLRC 
Analytical Laboratory on dry ice for analysis. 

Lipid profiling 

An ESI-MS/MS approach was used, and data acquisition and analysis 
were carried out as described and modified previously [14, 27, 28]. A 
modified protocol is provided in Supplemental Material [29, 30, 31]. 

Data analysis 

We used 1) Fisher exact probability test to determine the signifi
cances of differences in ratios and percentages, odds ratio (OR) and 
relative risk (RR) between two groups. 2) Independent Student’s T-test 
in IBM SPSS Statistics 26 software to analyze significances of differences 
in means between two groups. 3) The R software in bioinformatics an
alyses. 4) The Generalized Linear Model (GLM) with binomial distri
bution to predict disease and control status based on lipid concentration 
by R function of GLM. 5) The package of ROCR to estimate sensitivity, 
specificity, recall, precision, F-measure, and area under curve (AUC). 6) 
Simple Logistics Classification Algorithm (a supervised attribute ranking 
method) to determine Information gain (InfoGain). 

Results 

Human sample selection 

A total of 47 human prostatic tissues (26 from PCa and 21 from BPT) 
fulfilled inclusion and exclusion criteria were selected. The selected 
samples were matched with patient’s race and age, and tumor’s pa
thology grade and clinical stage. Statistical analysis indicated, as shown 
in Table 1, that there were no significant differences in geographic and 
clinical statuses between samples from PCa and BPT, and between AA 
and CA populations. 

Human prostatic lipid profiles 

Human prostatic lipid profiles as listed in Supplemental Table 1 
included 496 individual lipid species in two lipid groups: NL, which 
comprises 144 individual lipid species in four classes, and PL, which 
contains 352 individual lipid species in 13 classes. 

The differences in absolute concentrations (nmol/mg wet weight 
tissues, wwt) of prostatic lipids at the level of total lipid, group, class, and 
individual species between PCa and BPT in all population (AA and CA 
together), stratified AA population, and CA populations are listed in 
Supplemental Table 2, 3 and 4, respectively. 

Differences in human prostatic lipids between PCa and BPT among study 
populations 

At the level of total lipid and lipid group 
The concentrations of TL, NL, and PL were different between PCa and 
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Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.tranon.2021.101218. 
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