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ABSTRACT

Widely known for their uses in displays and electro-optics, liquid crystals are more than just tech-
nological marvels. They vividly reveal the topology and structure of various solitonic and singular
field configurations, often markedly resembling the ones arising in many field theories and in the
areas ranging from particle physics to optics, hard condensedmatter and cosmology. In this review,
we focus on chiral nematic liquid crystals to show how these experimentally highly accessible sys-
tems provide valuable insights into the structure and behavior of fractional, full, and multi-integer
two-dimensional skyrmions, dislocations and both abelian and non-abelian defect lines, as well as
various three-dimensionally localized, often knotted structures that include hopfions, heliknotons,
torons and twistions. We provide comparisons of some of these field configurations with their topo-
logical counterparts in chiral magnets, discussing close analogies between these two condensed
matter systems.
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1. Introduction

Being the first anisotropic fluids to be experimentally dis-
covered over 150 years ago [1,2], chiral nematic liquid
crystals (LCs) offer a particularly diverse variety of topo-
logically nontrivial field configurations [3]. Uniquely,
they serve as a testbed for theories describing singu-
lar defects and solitons in chiral magnets and various
lamellar systems, as well as topological counterparts of
solitonic structures found in particle physics and cosmol-
ogy and non-abelian defects in low-symmetry ordered
media [3–6]. Starting from 60-ies of the 20es century,
the foundations for fundamental understanding of topo-
logical structures in chiral LCs were introduced by key
early works of Kleman and colleagues [3,7–26]. Decades
of active research that followed revealed a rich variety
of emergent and fascinating phenomena, with implica-
tions for the understanding of the inner workings of
our World, well beyond LCs and condensed matter and
often well ahead of similar experimental and theoretical
developments in other branches of physics. Being highly
accessible experimentally, chiral nematic LCs reveal how
chirality can enable diversity and stability of fascinating
topological objects, with both fundamental and applied
potential.
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In this article, we review the rich, multi-faceted nature
of topological structures in chiral nematic LCs, as well as
compare them to their topological counterparts in chiral
magnets and other physical systems.We start from intro-
ducing order parameters and different theoretical models
for describing energetic costs of perturbing orientational
order within these soft matter media, as well as showing
how these models, under certain assumptions and within
certain limits, exhibit similarities with the ones describ-
ing lamellar systems, magnets, and other ordered media
(Section 2). We then overview the basics of homotopy
theory and its application to chiral nematic LCs under
different levels of coarse graining of description (Section
3). Following this, in Section 4, we discuss the struc-
ture and experimental observation of various disclina-
tions and dislocations in chiral nematic LCs. How certain
types of descriptions of the chiral nematicmedium reveal
non-abelian properties of the cholesteric line defects is
discussed in Section 5. Two-dimensional solitonic struc-
tures, referred to as both twist-escaped disclinations
and as fractional, full or multi-integer skyrmions, are
described in Section 6, whereas Section 7 is devoted to
torons that comprise fragments of such skyrmions along
with singular point defects, co-embedded in a uniform
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background. Fully three-dimensional topological soli-
tons, such as hopfions and heliknotons, are described
in Section 8 whereas the emergent dynamic behavior
of various solitons and defects is revealed in Section
9. Finally, Section 10 provides concluding remarks and
perspectives. This review intends to provide a sense of
broad relevance and importance of the research efforts
on LC defects and topological solitons. The article is not
intended to provide an in-depth comprehensive overview
of the entirety of relevant literature, but rather to place
our own recent work and other related recent studies into
a broader context of this field, showing how these studies
build on key breakthroughs in the LC research on defects,
starting fromkey contributions of Kleman and colleagues
[3,5–27]. For additional insights into the physical behav-
ior of topological structures in chiral LCs and related
material systems, such as in terms of analytical model-
ing of topological solitons and singular defects, we refer
the readers to several other recent reviews [4,28–32].

2. Directors and free energy of chiral liquid
crystals

In the description of nonchiral nematic LCs within
a mean-field theory, the nonpolar molecular director
field n(r), representing the local average orientation of
anisotropic (e.g. rodlike) molecules, is commonly used.
The energetic costs of elastic deformations away from
the ground state in chiral nematic LCs, also referred to
as cholesteric LCs (CLCs), can also be fully described
in terms of gradients of n(r). However, the twisting
nature of the chiral director configurations implies that
the spatial geometry of elastic deformations can be more
completely characterized by three non-polar, orthonor-
mal director fields [7,8,18,26,33,34] (Figure 1a): λ(r) for
molecular director field (equivalent to n(r) and inter-
changeably used along with n(r) as a notation within
this review), χ(r) for the orientation of helical axis, and
τ (r) being the cross product of the former two, with
the exceptions when the tensorial description is neces-
sary [35,36]. A perfect alignment of helical structure of
the ground-state CLC (Figure 1b,c), for example, has the
background of χ directors uniformly oriented and every-
where perpendicular to the λ field twisting around it. The
helical pitch p, measured along χ(r), is then defined as
the distance containing 2π rotation of λ(r) (Figure 1a),
whereas p/2 represents the helical CLC quasi-layer thick-
ness corresponding to π-rotation of the nonpolar n≡λ

director. The τ field of such structure, being orthogo-
nal to the other two fields, is like the λ field rotated 90°
around the helical axis and exhibits the same structure
of helical quasi-layers but shifted vertically along χ by
a quarter of pitch as compared to the λ field (Figure

1c). The detailed description of deriving the χ and τ

fields from an arbitrary λ-field alignment can be found
in Refs. [36,37]. With the introduction of the two direc-
tors χ(r) and τ (r), in addition to themolecular field λ(r),
the elastic distortions in CLCs are respectively identified
with these directors. Given three director order parame-
ters (instead of one in nonchiral nematic systems), CLC
systems can reveal a richer variety of topological struc-
tures as compared to nematic LCs. For example, a defect
structure can be singular in λ(r) and χ(r) fields but non-
singular in τ (r) field, or show discontinuity in χ(r) and
τ (r) while being smooth in λ(r). Similarly, spatial dis-
tortions of different director fields give rise to different
but interrelated interpretations of elastic deformations in
CLCs, as discussed below.

In the modeling of a CLC, the equilibrium configu-
ration of directors can be found by minimizing the free
energy of its continuum representation, which typically
takes the form:

F = ∫ feldV + ∫ fsdS, (1)

where the elastic bulk energy density is integrated over
three-dimensional volume occupied by the CLC and the
surface anchoring contribution is integrated over the
confining two-dimensional surfaces that enclose this vol-
ume. For structures with elastic distortions on the scale
much smaller than the cholesteric pitch p, the effectively
nematic-like, weakly twisted CLC systems can be most
effectively described by the Frank-Oseen free energy den-
sity for the molecular director field [9,23,26,38–40]:

f FOel =
K11

2
(∇ · λ)2 +

K22

2
(λ · (∇ × λ) + q)2

+
K33

2
(λ × (∇ × λ))2

−
K24

2
∇ · (λ(∇ · λ) + λ × (∇ × λ)), (2)

where K11, K22, K33, and K24 are the Frank elastic mod-
uli for splay, twist, bend, and saddle-splay deformations,
respectively. The chirality wavevector q is determined
by q = 2π /p. The saddle-splay term is often interpreted
as ‘surface-like’ elasticity since the divergence theory
assures that one can rewrite the volume integral of
the divergence term and find only surface contribution
[41,42]. When the length scale of elastic deformations is
much larger than the cholesteric pitch, using distortions
in helical axis is typically convenient and sufficient way
to describe the CLC system from a coarse-grained per-
spective. In this case, the elastic properties of the system
are similar to those of smectic A and other lamellar LCs,
and the free energy is given by the Lubensky-de Gennes
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Figure 1. (a) A cholesteric LCwith helical pitch p and three orthonormal director fieldsλ(r),χ (r), and τ (r) defined. (b) Topologically trivial
helical state of a CLC observed experimentally using fluorescence confocal polarizing microscopy. Bright stripes correspond to regions
where λ(r) directors are parallel to the polarization of an incident excitation laser beam, which in this case is perpendicular to the image.
(c) Numerical visualizations of the three director fields corresponding to the regionmarked in (b). The directors are colored based on their
orientations as shown in the order parameter space in the insets. The nonpolar nature asserts that the two opposite points on the sphere
are labeled with the same color. The same color scheme is used for directors (ellipsoids) in all figures unless mentioned otherwise. Part
(a) and (b) are reproduced with permission from Ref. [37] and Ref. [93], respectively.

coarse-grained model [9,23,38,40,43]:

f CGel =
K1

2
(∇ · χ)2 +

K3

2
(χ × (∇ × χ))2

+ K̄∇ · (χ(∇ · χ) + χ × (∇ × χ)) +
1

2
Bβ2,

(3)

where β = (h− h0)/h0 is the scaled difference between
the actual CLC quasilayer spacing h and its equilibrium
value h0 (corresponding to half-pitch of the CLC). In
this expression of elastic energy density (Equation (3)),
splay, bend, and saddle-splay elastic deformations of χ(r)
field are quantified by means of K1, K3, and K̄ elastic
constants, respectively, and the energetic costs of dila-
tion/compression of helical quasi-layers are character-
ized with the Young modulus B. Naturally, these defor-
mation modes in the helical axis field are related to the
ones described by Frank elastic moduli of the molecular
λ(r) director field: the splay deformation of χ(r) is asso-
ciated with the bending of λ(r), and the B-term is equiva-
lent to the twist term in the Frank-Oseenmodel, as stated
by the Lubensky–de Gennes relationships: K1 = 3K33/8;
B = K22(2π /p)2. The Kats-Lebedev theory additionally
gives K3 = K11K33/2(K11+K33), derived by neglecting
surface-like terms, also connecting the energetic costs
of elastic distortions in different directors [38]. Con-
sidering relative contributions of different terms in the
above expression for the case of large-scale distortions,
this coarse-grained description is often further simpli-
fied to the form (analogous to the description of elastic
deformations in smectic LCs):

f CGel =
K1

2
(∇ · χ)2 + K̄∇ · (χ(∇ · χ) + χ(∇ × χ)) +

1

2
Bβ2.

(4)

In principle, with expressions of elastic free energy
in λ(r) (Equation (2)) and χ(r) (Equation (3)), one
could also derive Frank-Oseen-like functional for the free
energy of distortion modes expressed in terms of τ (r)
and use the relation τ = λ × χ to find their connection
to the other descriptions of CLC elasticities using vector
analysis, though this is not as helpful for practical uses of
such models and we will not do this here.

Similar to the elasticity of smectic layers, one can
re-express Equation (4) in terms of the radii of curva-
ture R1, R2 of helical layers and obtain a simpler equation
[38,44,45]:

f CGel =
K1

2

(

1

R1
+

1

R2

)2

+
K̄

2

1

R1R2
+

1

2
Bβ2. (5)

Within this description, the saddle-splay K̄ term has
no contribution for translationally invariant structures
(one of the curvatures vanishes), such as the ones due
to edge dislocations. Also, in an ideal ground state,
cholesteric quasilayers align flat and parallel to each
other. For small distortions in the helical quasilayers, one
can introduce a layer displacement field u(r) defined as
the vertical deviation of the actual quasilayers away from
the ideal ones in the equilibrium flat structure [46]. Con-
sidering this, one can re-express both the helical director
field and the coarse-grained elastic free energy density
Equation (4) in terms of u(r):

χ(r) = ±

{

−
∂u

∂x

(

1 +
∂u

∂z

)

, 0, 1 −
1

2

(

∂u

∂x

)2
}

f CGel =
K1

2

(

∂2u

∂x2

)2

+
1

2
B

(

∂u

∂z
−

1

2

(

∂u

∂x

)2
)2

(6)
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where we can see the curvature of helical layers (the sec-
ond derivative) gives rise to the splay K1 term while the
compressibility B term is dominated by the linear dis-
placement of helical quasilayers in the vertical direction.

In the Frank-Oseen energy density (Equation (2)), the
saddle-splay contribution as well as the elastic constant
anisotropy are sometimes ignored. By re-writing the twist
energy term, dropping the K24 term and making one-
constant approximation K11 = K22 = K33, Equation (2)
can be simplified to a more compact form:

f FOel
∼=

K11

2
(∇ · λ)2 +

K22

2
(λ · (∇ × λ))2

+
K33

2
(λ × (∇ × λ))2 + qK22λ · (∇ × λ)

=
K

2
(∇λ)2 + qKλ · (∇ × λ) (7)

The CLC’s free energy functional in Equation (7) then
reduces to a form resembling that of the micromagnetic
Hamiltonian for non-centrosymmetric chiral magnets
for Am = K/2, Dm = Kq and λ(r)→m(r) [47–49]:

H = Am(∇m)2 + Dmm · (∇ × m), (8)

where m(r) is the unit magnetization field and coeffi-
cients Am and Dm describe the effective exchange energy
and the Dzyaloshinskii-Moriya coupling constants for
magnetic solids. The similarity between energetics of chi-
ral LCs and chiral magnetic materials (Equations (7)
and (8)) suggests that similarities of structures and phe-
nomena can be anticipated for these different physi-
cal systems. It also implies that one could use LCs,
a purely classical material, to reproduce or simulate
some of the phenomena in magnetic material originat-
ing from quantum effects. The recent advent of CLC
compositions formed by mixtures of rodlike and bent-
core molecules allows for ‘engineering’ elastic constant
anisotropies [50–52], so that different elastic constants
can be designed to be equal or rather different from each
other, which further boosts the predictive power of CLCs
as a model system. Within this cross-inspiration of chi-
ral LC and chiral magnet studies, it should be noted that
bothmagnets and LCs can also have effects uniquely spe-
cific to them, including additional free energy terms. For
example, additional Hamiltonian contributions in mag-
nets can arise due to various types of crystal anisotropies
(see, for example, such effects accounted for in some of
our past studies [53]), due to Zeeman-like magnetic field
coupling term (though this term is also present in chiral
magnetic colloidal LCs [47]), as well as due to nonlocal
effects like dipole-dipole interactions that may be impor-
tant or not [54], depending on sample geometry and spe-
cific field configurations considered. Conversely, beyond

elastic constant anisotropy, LCs exhibit more complex
and typically much stronger contributions due to surface
interactions, as well as may have spatial variations of the
scalar order parameter and require tensorial description.
Additionally, the treatment of energetics due to cores of
various singular defects in both LCs and magnets may
require careful considerations, though discussing them
in detail is outside of this review’s scope. The diversity of
material systems in both soft and hard condensed mat-
ter [52], along with the careful designs of experiments
and models, can still allow for controlling the role of
these extra terms and gaining valuable cross-pollinating
insights in studies of these systems, as we shall also see in
the examples provided within this review.

The surface anchoring free energy, in its simplest form,
can be described as the work required to deviate the
director from its equilibrium orientation, or easy axis.
Adopting a harmonic-like potential, the Rapini-Papoular
surface energy density, expressed as polar and azimuthal
terms with the help of polar θ and azimuthal φ angles
describing director orientation, reads [38,55]:

fs =
1

2
Wpsin

2(θ − θe) +
1

2
Wasin

2θesin
2(φ − φe). (9)

However, the angular coordinates of the easy axis θ e
and φe of the molecular director λ orientation are typ-
ically not well-suited for the CLCs with strong helical
twists. Mimicking the descriptions of bulkfree energy of
CLCs, the coarse-grained descriptions of the interactions
of quasilayered CLC structures with surfaces have been
developed too and are described elsewhere [38].

Evenmore complete description of energetic costs due
to perturbations of order within CLCs can be done using
the tensorial approach, allowing one to describe both
bulk and surface energy costs of CLCs in terms of the
Q-tensor order parameter, a 3-by-3 matrix defined by
scalar order parameter S and the molecular director field
for a uniaxial LC:

Q =
S

2
(3λ ⊗ λ − I), (10)

with ⊗ being the outer product operator and I is the
identity matrix. By quantifying molecular alignment
order through S, the tensorial expression of bulk free
energy density includes a thermotropic contribution that
describe the nematic-isotropic transition of LCs:

F = ∫(fel + fthermo)dV + ∫ fsdS, (11)

where the thermotropic part is often written in the form
of Landau-de Gennes expansion of free energy [56–58]:

fthermo =
At

2
Tr(Q2) +

Bt

3
Tr(Q3) +

Ct

4
Tr(Q2)2, (12)
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withAt ,Bt , andCt beingmaterial parameters determined
by the phase transition temperatures [59]. Minimization
of Equation (12) gives us the equilibrium scalar order
parameter:

Seq =
−Bt +

√

B2t − 24AtCt

6Ct
. (13)

The elastic part, determined by the spatial derivatives
of the tensorial order parameter, reads:

fel =
L1

2

(

∂Qij

∂xk

)2

+
L2

2

∂Qij

∂xj

∂Qik

∂xk
+

L3

2

∂Qij

∂xk

∂Qik

∂xj

+
L4

2
ǫijkQil

∂Qkl

∂xj
+

L6

2
Qij

∂Qkl

∂xi

∂Qkl

∂xj
, (14)

with x being the spatial coordinates and ε the antisym-
metric tensor (Levi-Civita symbol). Summation over all
indices is assumed in Equation (14). These elastic distor-
tion modes can be related to those in Frank-Oseen free
energy (Equation (3)), as derived in Ref. [60] by neglect-
ing the spatial gradient of the scalar order parameter and
enforcing that S = Seq:

L1 =
2

27S2eq
(K33 − K11 + 3K22)

L2 =
4

9S2eq
(K11 − K24)

L3 =
4

9S2eq
(K24 − K22)

L4 =
8

9S2eq
K22q

L6 =
4

27S2eq
(K33 − K11)

. (15)

As shown inEquation (15), the chirality of thematerial
is characterized by the constant L4 related to the twisting
elasticity constant K22 and the equilibrium scalar order
parameter.Within one-constant approximation, the elas-
tic moduli L2, L3, and L6 vanish, and Equation (14)
reduces to an expression analogous to Equation (7) [59]:

fel ∼=
L

2

(

∂Qij

∂xk

)2

+ 2qLǫijkQil
∂Qkl

∂xj
. (16)

The surface anchoring free energy expression in terms
of the tensorial order parameter, analogous to its counter-
part in the director description in Equation (9), adopts
the harmonic potential form:

fs =
W

2
(Qij − Q

eq
ij )2, (17)

with the equilibrium order parameter Qeq constructed
not only in terms of the easy axis, but from surface

preferred value of S as well. Other types of surface
boundary conditions, planar or conically degenerate
anchoring [61,62], for example, have also been developed
tomodel various cases of surface confinementswithin the
Q-tensor representation.

Comparedwith vector representation of themolecular
director field, the Q-tensor modeling is computationally
more expensive due to the larger number independent
variables. The method, however, is essential in describ-
ing the nonpolar nature of nematic director λ(r)≡−λ(r)
[60]. The λ(r) within the singular half-integer defects, for
example, cannot be consistently assigned with vector ori-
entations, and such defects cannot be modeled properly
within the Frank-Oseen expression. Besides, the tensorial
approach provides more complete modeling of LCs by
considering nematic degree of order (scalar order param-
eter) and biaxiality, allowing for further quantification
of nematic-isotropic transition, defect size and internal
structure, broken rotational symmetry, etc. [59].

The diversity of descriptions of the energetic costs of
perturbing CLC’s orientational order reflects the large
variety of practical situations that can arise and require
such descriptions to capture the essential physics of phe-
nomena involving CLCs. For example, the free energy
expressions in Equations (3)–(6) are used to model
behavior of chiral LC’s quasilayer structures on the scales
much larger than the cholesteric pitch, with the specific
expressions used depending on approximations, if any.
We will see below that this diversity of modeling of CLC
energetics is also mimicked by a large variety of different
topological constructs in the order parameter field con-
figurations that can arise within this soft matter system.
Furthermore, when appropriate, we will discuss which
approach and free energy expression is used to model
the chiral LC systems under specific circumstances in the
specific examples we provide.

3. Homotopy theory of topological solitons and
defects

CLCs exhibit particularly large variety of topologi-
cally nontrivial field configurations. These configurations
include the ones of singular type (singular topologi-
cal defects), containing regions of physical space where
the order parameters cannot be defined, and the ones
of nonsingular type (topological solitons), within which
the structure of the λ(r) field is continuous everywhere,
but it cannot be smoothly morphed to a trivial, uni-
form state without destroying the order or introduc-
ing singular defects. Topologically trivial configurations
here refer to uniform alignment in the λ(r) field with-
out any distortions, or the ones that can be smoothly
morphed into it. Various topological structures can be
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classified based on mappings from the physical con-
figuration spaces to the order parameter spaces (the
manifolds of possible values of the order parameter)
[8,18–22,24,26,58,63–65]. Typically, this is the mapping
from spheres of various dimensions to the order parame-
ter spaces that often are also multi-dimensional spheres.
Therefore, the homotopy groups of spheres classifying
these mappings are the most common (Figure 2) and
often utilized to label the different topologically distinct
field configurations, though, as we will discuss below,
there are also other homotopy group examples relevant to
LCs andCLCs in particular. Algebraic topology describes
how such spheres of various dimensions canwrap around
each other, which is systematically characterized by the
homotopy groups that describe the structure of topolog-
ical spaces (without considering the precise geometry)
[23,65,66]. In studies of topological solitons and singu-
lar defects, such classifications provide a means of sum-
marizing topologically different structures in the order
parameter fields, although the existence of a nontriv-
ial element in the homotopy class does not guarantee
their energetic stability or experimental observation [65].
The n-dimensional spheres (n-spheres, denoted as Sn)
are defined as sets of points equidistant from the ori-
gin in n+ 1 dimension, with an S1 circle being the 1-
sphere embedded in 2D space (R2), S2 being an ordinary
sphere embedded in 3D space (R3) andS0 being 0-sphere
embedded in R1 that comprises 2 points equidistant
from the origin in 1D, and so on [66–72]. The homo-
topy group labeled as π i (Sn) is the i-th homotopy group
that enlists the topologically different maps from Si into
Sn, where none of the distinct mappings can be con-
tinuously deformed to the other mappings (Figure 2)
[22,63,65,71,72]. Algebraic topology results depend on

Figure 2. Homotopy theory classification of singular and soli-
tonic field configurations. The green, yellow and blue colors high-
light different examples of topologically nontrivial field config-
urations discussed within this review, whereas the π3(S

3) = Z

topological solitons (red) arise in high energy and nuclear physics
models of subatomic particles.

the integers i relative to n, with π i(Sn) = 0 for i < n

(Figure 2), which means that the corresponding homo-
topy groups are the trivial groups [71,72]. In the case
of mappings between spheres of the same dimension
(i = n), πn(Sn) = Z, so that the spheres can be wrapped
around spheres integer number of times for each map
(Figure 2). When i > n, a particularly interesting exam-
ple of the mappings is called the Hopf fibration [71,72]
(Figure 2), which wraps S3 around S2 an integer number
of times, π3(S2) = Z.

Since the singular defects in fields are discontinuities
in the form of walls, lines and points, with the order
parameter varying continuously outside these singular
regions, one can surround them with spheres of the cor-
responding dimensions (say S1 for line defects and S2 for
point singularities) and characterize how the field, like
the vector or director field, varies around these spheres
(Figure 3) [22,63,65]. The order parameter spaces often
also take the form of spheres. For example, the order
parameter space for unit vectors in 3D space R3 is S2

(describing all possible orientations of the unit vector),
but it becomes S1 when these unit vectors are forced
to confine their orientations into a 2D plane R2 and
becomes S0 when the unit vectors can only take orienta-
tions parallel or anti-parallel to the positive direction in
R1. Therefore, the topologically distinct singular defects
in unit vector fields can be classified with the help of
maps from the i-spheres surrounding them to n-spheres
describing their order parameter spaces [65]. Some of the
simplest examples are illustrated in Figure 3. Just like one
can wrap one circle around the other an integer number
of times (imagine wrapping a closed-loop rubber band
around a finger), the structure mapped from S1 around
a singular defect in 2D can wrap the S1 order parameter
circle an integer number of times, π1(S1) = Z, indicat-
ing that singular defects with integer winding numbers
exist in this system (Figure 3a,b). Also, the structures of
a vector field mapped from S2 around a singular point
defect in 3D can wrap the S2 order parameter sphere
an integer number of times (Figure 3c), π2(S2) = Z,
again defining the charges of all possible singular point
defects in this system (Figure 3) [21,22,63,65]. On the
other hand, the fact that π1(S2) = 0 informs one that
singular line defects in 3D unit vector fields are topolog-
ically unstable, so that they can be smoothly morphed
to a uniform, topologically trivial state [65]. Likewise,
since π2(S1) = 0, one cannot form topologically non-
trivial point defects when the unit vectors are forced to
take orientations confined to a 2D plane [22].

Nonsingular solitonic structures always have the field
orientation well defined and, thus, may seem to be rather
different from singular defects, but they can be clas-
sified based on the very same sphere-to-sphere maps
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Figure 3. Topologically nontrivial structuresof fields in condensedmatter. (a,b) Examplesof 2Dπ1(S
1) = Z singular defects classifiedby

mapping the vector field fromS1 surrounding the singularity toS1 order parameter space of vectors confined to 2D plane, with the order
parameter space coveredonce in (a) and twice in (b), yielding thewindingnumbers. (c) Anelementary+1 radial point defect representing
a family of point singularities with integer-valued hedgehog charges labeled as π2(S

2) = Z. (d) An example ofπ1(S
1) = Z topological

soliton in the formof an elementary 1D solitonicwall with 360° unit vector rotation embedded in the uniform (vertical, pointing upwards)
far-field background, which can be represented on S1, as shown in (e), where red-blue colors on R1 and S1 correlate with and depict
vector orientations. (f ) Skyrmions inR2 (bottom) can be mapped bijectively from field configurations in S2 (top) through stereographic
projections (P ). TheNeel-type (bottom-left) and Bloch-type (bottom-right) 2D skyrmions are related by a smooth rotation (R) of vectors.
The vector orientations are shown as arrows colored according to the corresponding points on the target S2 (inset). (Part f is reproduced
with permission from Ref. [73]). (g) Schematic of the S2/Z2 order parameter space, with the diametrically opposite points of the circular
base identified. (h–j) Half-integer defects in non-polar 2Dλ(r), includingwedgedisclinations (h, j) that in 2Dare characterizedbyopposite
s = ±1/2 winding numbers, and a twist disclination (i). InR3, there is only one type of topologically distinct disclinations different from
a uniform state, with the topologically distinct states labeled π1(S

2/Z2) = Z2; local structures of defect lines like the ones shown in
(h–j) can smoothly inter-transform one into another in 3D and correspond to a single, topologically equivalent state. (k) Twisted wall
with 180° rotation of nonpolar λ(r) embedded in a uniform background can be compactified on S1/Z2

∼=S1. (l) Mapped director field
of the twisted wall winds around the order-parameter space S1/Z2 once; since S1/Z2

∼=S1, 1D LC solitons are classified byπ1(S
1) = Z.

Reproduced with permission from Ref. [4].

(Figure 2) [22,23,63,65,71,72]. In R1, a solitonic 360°-
twist nonsingular wall in a unit vector field has the far
field vector pointing upwards, and, thus, this configura-
tion space can be ‘compactified’ (by connecting the far-
field regions of R1 with like-oriented unit vectors) into
a circle, also referred to as one-sphere S1 (Figure 3d,e)
[47,70,73]. The topological class of the solitonic struc-
tures of this kind is then labeled by π1(S1) = Z, similar
to the case of singular line defects for the 2D unit vec-
tor fields (Figure 3a,b,d,e) [73]. The configuration space
of solitonic topological structures embedded in the uni-
form far-field background in R2 can be compactified to
S2 (e.g. bymeans of the stereographic projection), so that

the nontrivial resultπ2(S2) = Z from algebraic topology
(in addition to classifying singular point defects like the
one shown in Figure 3c) also informs us that all possible
topologically nontrivial structures in this case are char-
acterized by the integer-valued 2D skyrmion numbers
(Figure 3f) [74,75]. Similarly, the configuration space
in R3 with the uniform far-field is compactified to S3

through a higher-dimensional analogue of stereographic
projection and the mathematical result from algebraic
topology π3(S2) = Z also implies that the Hopf indices
of 3D spatially localized solitons in systems with order
parameter spaces in the form of two-spheres also take
integer values [70].
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The multi-dimensional spheres cannot always repre-
sent the ground state manifolds for the order param-
eters [22,63,65,71]. Because of the non-polar nature of
the LC director, representing all its orientations on S2

requires only half the sphere and leaves diametrically
opposite points non-distinguishable from each other
(Figure 3g) [21,65]. The corresponding order parame-
ter space is S2/Z2 ≡RP2, a sphere with diametrically
opposite points identified (Figure 3g). One of the major
differences as compared to the case of unit vectors is
that π1(S2/Z2) = Z2, meaning that singular vortex lines
(disclinations) can be stable in 3D space of LCs [22,65],
though only one type of such defect lines can be real-
ized that is topologically different from the uniform
state. These defect lines can have different local struc-
tures when embedded in 3D samples, including wedge
disclinations with opposite signs of winding numbers
(Figure 3h,j) (which are topologically distinct when real-
ized in 2D) and twist disclinations (Figure 3i). In 3D,
however, the defect line structures shown in Figure 3h–j
can be smoothly morphed one to another within R3

and are therefore topologically the same. In a similar
way, unlike in the case of vector fields, one can real-
ize nonsingular twist domain walls with only 180°-twist
of the nonpolar director embedded in a uniform far
field background (Figure 3k,l), which are labeled by
π1(S1/Z2)≡π1(S1) = Z [73].

The solitonic structures that exist in lower dimensions
can be also embedded in higher dimensions while being
translationally invariant with respect to some dimen-
sions. For example, theπ2(S2) = Z solitons can be found
as translationally invariant structures spanning R3 of
LCs and magnets, either as individual spatially localized
structures or periodic arrays [73]. When embedded in
R3 in LC samples like glass cells of finite thickness, such
solitons often terminate on π2(S2) = Z point defects
due to boundary conditions [73–76]. Similarly, trans-
lationally invariant solitonic walls π1(S1/Z2) = Z are
often embedded into finite-size structures in 2D by sin-
gular defects of the same class π1(S1/Z2) = Z; in 3D
samples with all 3D orientations of director allowed,
such twist walls are described by π1(S2/Z2) = Z and
can be embedded into a uniform background by the
π1(S2/Z2) = Z disclinations, forming one type of the so-
called ‘cholesteric fingers’ (a CLC finger of the 3rd type)
[73]. The examples above illustrate a more general rule
for imbedding lower-dimensional solitonic structures
into a uniform background in higher dimensions with
the singular defects of a homotopy class matching that
of solitons [4,73]. The soft-matter topological solitons
and defects have many topological counterparts in other
branches of physics. For example, π3(S3) = Z Skyrme
solitons (Figure 2) are used to model subatomic particles

in high energy and nuclear physics [4,70,77], which is
also the reason for often referring to their π2(S2) = Z

low-dimensional analogues in LCs and magnets as ‘baby
skyrmions’ [47,70,74].

Although exceptionally useful in classifying topologi-
cally distinct field configurations, homotopy theory does
not provide the means for exploring the entirety of topo-
logical complexity of fields in soft matter even in cases
when defects and solitons are embedded within a bulk of
an orderedmedium like the LC [30,76,78–80]. For exam-
ple, a closed loop of a half-integerπ1(S2/Z2) = Z2 discli-
nation is equivalent to a point defect π2(S2/Z2) = Z in
the far-field, but its hedgehog charge (topological charge
of a point defect) depends on how this disclination is
closed on itself, its local structure, twisting, knotting and
possible linking with other defect loops [30,76,79,80].
Knowledge of this relation cannot be predicted solely by
the homotopy theory but can be understood by invoking
the analysis of the disclination’s structure along the loop,
its twist and writhe [79,80]. In other words, the homo-
topy theory identifies what the complex order parameter
fields can be comprised of, but not how to obtain field
configurations with desired π2(S2/Z2) hedgehog num-
ber by looping and knotting π1(S2/Z2) vortex lines or
how to construct solitons with desired π3(S2/Z2) Hopf
index by looping and knotting the 2D π2(S2/Z2) soli-
tons. Moreover, when LCs interact with surfaces due to
various boundary conditions, the topology of structures
of these fields interplays with that of surfaces, which
can be rather nontrivial and are a subject of ongoing
studies [81–92].

The interpretation and classification of topological
structures in CLCs depend on the level of description and
the types of the order parameter used for this description.
For nonpolar and vectorized director fields, the order
parameter spaces are S2/Z2 and S2, respectively, with
different types of possible topological defects and soli-
tons described above, which will be discussed and illus-
trated within this review below. However, the use of all
three director fields, λ(r), χ(r) and τ (r), implies a more
complete description of topological defects in CLCs, as
we shall see in sections below. Throughout the sections
below, we will emphasize how CLC defects and solitons
can be described within different frameworks, similar
to how free energetics of elastic distortions discussed in
the previous sections could be theoretically described in
different ways as well.

4. CLC disclinations and dislocations

Defect lines in CLCs are commonplace and include vari-
ous disclinations and dislocations. For example, for vivid
illustration purposes, they can be easily generated using
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the Grandjean-Cano wedge cells [26,34,93–95]. To fabri-
cate such cells, a pair of mica or glass plates are placed at
a small angle α to form a wedge cell such that the gap
d between the two confining surfaces varies along the
bisector plane. Before filling-in with a cholesteric LC, the
surfaces are often chemically treated to induce uniform
planar anchoring, and to promote a uniform alignment
of helical axes perpendicular to the substates. Figure 4a,
for example, shows a series of defect lines. The regions
between the defect lines, called Grandjean zones, corre-
spond to different numbers of helical layers n∼=2d/p. A
twist disclination separates n = 0 and n = 1 Grandjean
zones (the first line in Figure 4b). As n increases start-
ing from n = 1, across the cell thickness gradient, the
thin part of the wedge contains ‘thin lines’ separated by
distance l = p/2tan(α) (Figure 4a), while in regions with
large cell gap one observes ‘thick lines’ at the distances of
2l. Also, the distance between the last thin and the first
thick line is ∼1.5l (Figure 4a). As originally theoreti-
cally explained by Kleman and Friedel [7], these defect
lines are edge dislocations – a type of defect lines that
breaks the translational symmetry of CLC quasilayers
[20] – consistent with the change in the number of helical
layers in the cross-sectional images of the Grandjean-
Cano wedge (Figure 4b). In the fluorescence confocal

polarizing microscopy images [93,94,96–98] (Figure 4b),
each white/dark strip of the cross-sectional image repre-
sents a helical quasilayer with a rotation of the director
by π . Accordingly, the Burgers vector b characterizing
theVolterra process of these dislocations (associatedwith
filling in or removing helical layers to become a trivial
state) can be determined by the corresponding transla-
tional displacement [9,20,26]. For instance, a thin line
separating the regions of n = 2 and n = 3 is represented
by b‖ïÿĂz with magnitude b = p/2; a thick line marking
the boundary of regions n = 23 and n = 25 has Burgers
vector of magnitude b = p and oriented parallel to the
z-direction [93] (Figure 4b).

InGrandjean-Canowedgeswith a strong in-plane sur-
face anchoring, both b = p/2 and b = p dislocations are
located in the bulk of the cell, at or close to the bisector
plane. The edge dislocation fragments at different sample
depths are inter-connected by energetically metastable
structures called kinks (Figure 4c) [26,93,94]. Viewed
along the dislocation line, the molecular director rotated
90° around the helical axis (dark ↔ white in the image)
when the z coordinate is changed by p/4; a second kink
in the same direction restore the structure by another 90°
rotation of λ and another vertical displacement of p/4
(Figure 4d). The two structures of b = p/2 dislocation,

Figure 4. Edge dislocations and kinks in Grandjean-Cano wedges. (a) Polarizing microscopy textures showing an array of thin lines
(b = p/2 dislocations) with interval l = p/2tan(α) at the thinner part of the cell (left), and thick lines (b = p dislocations) with spac-
ing 2 l at the thicker region (right). (b) A series of fluorescence confocal polarizing microscopy (FCPM) x–z slices in a Grandjean-Cano
wedge showing a twisting disclination, b = p/2 dislocations, and a b = p dislocation with increasing cell gaps. (c) A FCPM image along
the glide plane (y–z plane) of a kink with height p/2 along a b = p/2 dislocation. The black triangles mark the positions of the vertical
sections (x–z plane) in (d), showing the change in λ(r) alignment along the kink. The helical pitch p = 5µm for all experiments, and
polarization of the excitation beam is perpendicular to the images for (b–d). Reproduced with permission from Ref. [93].
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which will be discussed in detail in Section 5, have dis-
tinct energetic properties [3]. Therefore, one can often
see kinks traveling along defect lines in a freshly prepared
CLC cell, showing structural and positional relaxation of
the dislocation positions, often slowly evolving with time
(days).

Other than dislocations that mark the changing cell
gap, thick defect lines are often observed perpendicular
to the equilibrium dislocations and parallel to the thick-
ness gradient of the wedge (Figure 5a–c). These defect
lines have been shown to be pairs of dislocations with
opposite signs of the Burgers vector, adding up to net
zero b = 0 (Figure 5d). In the case of two parallel sym-
metric b = p dislocations with the same depth location
(z coordinate), the simplest such energetically metastable
structure is referred to as a ‘Lehmann cluster’ [99] (Figure
5e). Since these assemblies of dislocations are topologi-
cally trivial from the standpoint of the quasilayer struc-
ture, they shrink quickly to an unperturbed helical state
under external disturbance. Defect lines of Burgers vec-
tor b = 0 can be found connecting b = p/2 dislocations
(Figure 5a), b = p dislocations (Figure 5b) or even one
of each (Figure 5c). Near the joint of these defect lines,
tilt and shift of dislocations to a different depth z level are
observed. The topology, however, is preserved within the
positional deviation. Moreover, the sum of line tensions
of individual dislocations should be zero under mechan-
ical equilibrium. The different angles φ made by thin

and thick lines with b = 0 dislocation, therefore, inform
us that dislocations with b = p/2 are characterized by
larger values of line tension and higher cost of elastic
energy than that of b = p type. This experimental obser-
vation can be explained by the energetics associated with
the split core structures of the defects, as we discuss in
the following section. The lamellar-like nature of CLCs
in different geometries was used to test nonlinear the-
ory of smectic elasticity by probing layer profiles around
edge dislocations in different geometries, showing good
agreement between experiments and theoretical models
even before similar experiments could be done for the
actual lamellar LCs [94,100,101]. The models describing
CLC dislocations and disclinations in this geometry were
introduced by Kleman and Friedel in 1969, even though
it was several decades later that researchers could directly
visualize such defects by means of direct 3D imaging of
the director field [93].

5. Quaternion representation of disclinations in
chiral nematics

As introduced previously, structures of CLCs can bemost
fully described by the orthonormal λ(r), χ(r), τ (r) with
three unoriented, nonpolar director fields (Figure 6a).
The corresponding order parameter space of the CLC
yields a different homotopy group representation of field
configurations. Due to the ensuing orthorhombic point

Figure 5. Dislocationswith overall b = 0 in Grandjean-Canowedges. (a-c) Polarizingmicrographs showing b = 0 dislocations connect-
ing b = p/2 dislocations (a), b = p types (b), and one of each type (c). The angle of defect lines at the joints are schematically shown in
the insets in (a,b). (d,e) FCPM textures (left) and the corresponding director visualizations (right) taken perpendicular to b = 0 disloca-
tions revealing that the composing dislocations have the opposite Burgers vectors. The structure in (e) is known as Lehmann cluster. The
polarization of the excitation beam is perpendicular to the images in (d,e). Reproduced with permission from Ref. [93].



LIQUID CRYSTALS REVIEWS 11

group symmetry D2, the topology of a CLC within this
representation is hence identical to biaxial nematic mate-
rial with brick-shaped (D2) building blocks [65] (Figure
6b). With the nonpolar directors free to rotate in 3D
space (R3), the order parameter space of a CLC can be
expressed as O(3)/D2h or SO(3)/D2 [21,102]. Thus, the
classification of singular defect lines in a CLC is charac-
terized by the first homotopy group π1(SO(3)/D2) = Q8,
the quaternion group [21,23,24,26,29,65,102–109] (with
the multiplication table provided in Figure 6c). There
are exactly eight topologically different defect lines that
could possibly form in such CLC systems. Within the
eight group elements of the quaternion groupQ8, six ele-
ments (±λ,±χ ,±τ ) correspond to defect lines with half-
integerwinding numbers, either+1/2 or−1/2 (see exam-
ples in Figure 6d–f), the element ‘1’ corresponds to the
trivial state with no singularity in any of the director fields
(Figure 1b), and the element ‘−1’ represents disclinations
with a winding number of one [23,65,110,111]. More-
over, for all nontrivial structures of cholesteric disclina-
tions, two out of the three director fields exhibit singular-
ities where the orientation of directors cannot be defined,
while the third director is continuous throughout the
structure. This property of ‘semi-defects’ suggests a sim-
ple terminology for half-integer disclinations: a X line
is a cholesteric disclination nonsingular only in X field

[18,20,23]. For example, χ lines are disclinations with
uniformhelical axis field, while singularities can be found
in λ(r) and τ (r) fields (Figure 6d) and the structure is
known as a screw dislocation [18,23,58]. This classifica-
tion of line defects in CLCs as λ, τ and χ lines was orig-
inally proposed by Kleman and Friedel and is currently
widely used [7]. Interestingly, the director alignments of
two different λ lines, one with defects in χ(r) and τ (r)
fields having a winding number +1/2 (λ+1/2, Figure 6e)
and the other having a −1/2 defect in each of χ(r) and
τ (r) fields (λ−1/2, Figure 6f), can be used to illustrate τ

lines with the very same χ(r) directors while swapping λ

and τ field configurations (one then obtains defect lines
with singular defects in λ(r) and χ(r) but not in τ (r),
hence τ lines). The idea of interchangeability of λ(r) and
τ (r) fields (with the same χ(r) alignment) is consistent
with the Lubensky-de Gennes coarse-grained model of
CLC elasticity (Equation (3)), in which deformations are
described only in terms of χ(r). Topologically, in some
sense, it also suggests an explanation of why most of the
dislocations are found to be comprising combinations of
λ and τ lines in their cores, whichwill be discussed below.

In accordance with the conventional classification of
disclinations using five conjugacy classes (1, −1, Cλ,
Cχ , Cτ ) [23,65] (as distinct colors in Figure 6c), the
name ‘λ line’ itself does not distinguish the quaternion

Figure 6. The topology of disclinations in CLCs. (a,b) The symmetry of the building blocks in cholesterics (a) and biaxial nematics (b) illus-
trated by the orthonormal frames λ,χ ,τ and x,y,z, respectively. (c) The multiplication table of the quaternion group Q8. All topologically
stable disclinations in CLCs are characterized by one of the eight group elements, or one of the five conjugacy classes distinguished by
colors. (d–f) Numerical visualizations of the λ(r), χ (r), and τ (r) director fields along a χ disclination (d), perpendicular to a λ+1/2 line (e),
or a λ−1/2 line (f ). The long green tube in (d) marks the core of the χ disclination. All directors are colored according to their orientations
in the nonpolar order parameter space as shown in the insets in (d).
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group elements ‘λ’ and ‘−λ’ [18,23,65] whereas they
have different winding numbers, which can be found
from the cross-section imaging of the disclinations
[93,112]. The detailed discussion of apparent ambiguity
[23,65,104,113] in the one-to-one assignment of the Q8

group elements to disclinations in CLCs is beyond the
scope of this review, and for the following paragraphs we
use superscript to indicate only the winding number.

Following the notation defined previously, all defect
lines in CLCs can be interpreted as λ±1/2, χ±1/2, τ±1/2,
and−1 disclinations or their combination, as in the cores
of dislocations. The simplest way to identify the quater-
nion representation of a line defect is to find out which
director field is nonsingular along the structure, and to
obtain the winding number from the director alignments
of the other two fields. The cross-section of an edge dis-
location of Burgers vector b = p/2, as an example, can
have two distinct configurations of director alignments
[93] (Figure 7a,b). One of the thin line structures within
the dislocation core is a τ line with winding number
−1/2 on the side with lower number of helical layers

and a λ+1/2 at the opposite side, and is subsequently
labeledwith τ−1/2 λ+1/2 (Figure 7a). The other structure,
denoted as λ−1/2 τ+1/2, has the disclinations distributed
distinctly with the same winding numbers (Figure 7b).
The dislocations with these core structures have identi-
cal χ(r) field alignment, within which one can find a pair
of half-integer defects with the opposite winding num-
bers (±1/2), and remind us of the topological similarity
between λ(r) and τ (r) fields. By swapping λ(r) and τ (r)
field arrangement of τ−1/2 λ+1/2, one gets to the direc-
tor structures of λ−1/2 τ+1/2 (Figure 7a,b). Furthermore,
the associated elastic energy cost is higher forλ−1/2 τ+1/2

compared with τ−1/2 λ+1/2 [3,18,93], which can be qual-
itatively explained by the larger relative volume occupied
by the disclination with positive winding number and the
stronger elastic distortion within the τ lines. The relative
energetic stability of b = p/2 edge dislocations is further
verified by the spontaneous transition of λ−1/2 τ+1/2 into
τ−1/2 λ+1/2 within numerical modeling (Figure 7a,b).
In these cases of half-integer defects in λ(r), the under-
standing of stabilization of structures requires a complete

Figure 7. Dislocations as combination of disclinations. (a) Experimental FCPM image of a τ−1/2 λ+1/2 dislocation (left) with the λ(r),
χ (r), and τ (r) director fields in the marked region reconstructed by numerical simulations (right). The positions of the τ−1/2 and λ+1/2

disclinations are shown by the long blue and red tubes perpendicular to the vertical section, respectively. (b-d) Similar visualizations for
λ−1/2 τ+1/2 dislocation (b), λ−1/2 λ+1/2 dislocation (c), and Lehmann cluster (d), with τ and λ lines represented by blue and red tubes,
respectively. (e) Smoothly vectorized λ(r) along the cross-section of a Lehmann cluster. The vectors are colored based on their orienta-
tions as shown in the insets. FCPM images are reproduced with permission from Ref. [93] and simulations are carried out by numerical
minimizing Equation (11) with parameters matching those in experiments. Directors are colored according to their orientations.
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description of the non-polar director field, e.g. within the
Q-tensor modeling (Equation (11)).

As for edge dislocation of Burgers vector b = p, a sim-
ilar analysis of the composing directors shows that two
parallel λ lines with the opposite winding numbers con-
tribute to the jump in the number of helical layers (Figure
7c). Again, the positions and winding numbers of the
two disclinations λ−1/2 λ+1/2 are revealed by the two
half-integer defects in the χ(r) field of the cross-section
image (Figure 7c), which resemble that of b = p/2 dis-
locations. Due the absence of singular defects in λ(r),
the molecular field can be smoothly vectorized with-
out introducing ambiguity in the assigned orientations
(Figure 7e) [114,115]. Therefore, the Frank-Oseen elas-
ticity (Equation (2)) suffices to describe physical behavior
of λ−1/2 λ+1/2 disclinations. Though lacking stability on
the energy landscape, τ−1/2 τ+1/2 is another hypothet-
ically possible structure of a b = p dislocation but with
director singularities in λ(r) instead of τ (r) field [93].
One can picture this energetically unstable dislocation
core with τ−1/2 τ+1/2 disclinations by exchanging the
two director fields of a λ−1/2 λ+1/2 type (Figure 7c),
analogous to the case of thin lines discussed above. Fur-
thermore, +1/2 defect in χ field is found at the side with
a larger number of helical layers since the elastic distor-
tion of χ(r) energetically favors such arrangement in an
equilibrium structure of dislocation within a uniform χ

far-field. The +1/2 defect line within a dislocation core,
therefore, is always located at the thicker side of the liquid
crystal wedge cell, which has also been revealed exper-
imentally through imaging with fluorescence confocal
polarizing microscopy [93,94].

Another common line defect in CLCs is the so-called
‘Lehmann cluster’ (Figure 5e), which can be decomposed
into four lambda lines, seen by visualizing the three direc-
tor fields (Figure 7d,e). As shown by the χ(r), two of
these λ lines have +1/2 winding number and the other
two have the winding number of −1/2 (Figure 7d). With
a director organization similar to the combination of
two λ−1/2 λ+1/2 dislocations in the opposite direction,
Lehmann cluster is energetically metastable and has zero
Burgers vector. However, it terminates on point defects
and its cross-section can be viewed as a full 2D skyrmion
[116], as we will discuss further below. Its λ-τ -exchanged
counterpart with four τ lines is energetically unstable and
not observed due to high energetic costs.

Besides dislocations composed of disclinations, the
elastic energy of individual disclinations can be numer-
ically computed using tensorial order parameter given
by Equation (14). (In the cases of half-integer defects,
directors cannot be vectorized without introducing addi-
tional singularities like wall defects connecting them.)
Under parameters for common LCs like 5CB, τ lines have

higher elastic energies comparedwithχ lines, withλ lines
being most stable disclinations due to the absence of sin-
gularity in the molecular field. Furthermore, since these
disclinations are represented by different elements in the
same homotopy group (the quaternion group Q8), their
interaction with and transformation into each other are
thoroughly characterized by the multiplication rules of
the group [23,64,65,108,117,118] (Figure 6c). This pro-
vides an explanation for the lack of experimental obser-
vation of an isolated τ line, which is expected to quickly
transform into pairs of other disclinations due to its high
energetic costs. However, as far as we are aware, there
have not been clear experimental demonstrations of these
multiplication rules involving cholesteric disclinations
beyond the representation of defects by homotopy group
elements. By employing director analysis of dislocations
and disclinations in CLCs, we can see that the different
types of dislocation cores in CLCs effectively comprise
distinct arrangements of λ and τ lines embedded within
helical quasilayers, or equivalently, pairs of half-integer
defects within uniform far-field in terms of χ(r) direc-
tors. The quaternion interpretation also provides deep
insights into the geometries and energetics of the CLC
defect lines. Interestingly, the classification of CLC discli-
nations as λ, τ and χ lines was introduced by Kleman
and Friedel [7] well before the quaternion interpretation
and homotopy (also co-invented by Kleman) theory clas-
sification of CLC defects was introduced and appreciated
[21,22,65,102], but it naturally became an important part
of it.

6. Fractional, full andmulti-integer skyrmions

CLCs host a large variety of topological solitons. To
understand them, in principle, it is sufficient to charac-
terize field configurations only using the material direc-
tor field, n(r)≡λ(r). Two-dimensional, translationally
invariant skyrmions and merons that exist in chiral
magnetic spin textures can be also found in CLCs and
vice versa, due to the similarities between the two sys-
tems in terms of free energy and accessible degrees
of freedom. For example, a variety of magnetic ‘baby
skyrmions’, particle-like low-dimensional analogues of
Skyrme solitons originally introduced in particle physics
[70], have been realized in solid-state magnetic systems
[119]; it is instructive to overview them here before
introducing their LC counterparts. With unit magne-
tization order parameter of chiral magnets having the
order parameter space S2, these smooth vector con-
figurations in two-dimensional space (which can have
embodiments of translationally invariant structures in
the three-dimensional space) are characterized by the
homotopy group π2(S2) = Z. This result implies that
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Figure 8. Full elementary skyrmions inmagnetic systems. 2DMagnetic skyrmions characterizedby the skyrmionnumberNsk andhelicity
γ . All arrows are colored according to their orientations in the order parameter space S2 shown in the insets.

all structures of these skyrmions correspond to a local-
ized spatial distribution of unit vectors wrapping around
the order parameter space S2 integer number of times
(Figure 8). Thus, 2D magnetic skyrmions are assigned
with integer topological numbers Nsk, sometimes also
called vorticity (Figure 8) [4,119,120]. The topological
degree Nsk of a baby skyrmion is also referred to as the
skyrmion number, which counts the number of times the
field configuration of the magnetization unit vector field
m(r) wraps around its target space S2 [73,120,121]:

Nsk =
1

4π

∫∫

dxdym · (∂xm × ∂ym). (18)

In addition to Nsk, the helicity parameter γ is used
to describe their geometry and may determine their sta-
bility in different material systems. The parameter γ ,
in principle, can take arbitrary values, though the cor-
responding structures with the same Nsk but different
γ are able to be smoothly inter-transformed into each
other [119,120]. When γ = 0 or π , linear Neel domain
walls can be found between the center of the skyrmion to
the periphery, and the structures are thus referred to as
Neel-type skyrmions [122]. Bloch type skyrmions with
γ = ±π /2, in contrast, comprise rotating spins orthogo-
nal to the radial direction and are found being stabilized
in chiral magnetic systems (Figure 8). The skyrmions
with Nsk = 1 and γ = ±π /2 correspond to the lowest
energy and are found in the so-called A-phase of chiral
magnetic systems (we note that the sign of Nsk depends
on the convention; with a different convention, the same
skyrmion can be assigned Nsk = −1 [123]). For our Nsk

sign-defining convention used in Figure 8, theNsk = −1

skyrmions are energetically much more costly in chi-
ral magnets because of containing regions with opposite
handedness of twist within them. Both Neel-type and
Bloch-type skyrmions can be smoothly embedded in the
uniform far-field magnetization background as individ-
ual localized objects. The color scheme of unit vector
orientations adopted in Figure 8 shows how localized
structures of the 2D skyrmions contain all possible val-
ues (orientations) of the order parameter m(r). We note
that only the γ = ±π /2 skyrmions can be stabilized in
the model given by Equation (8), and that more com-
plete expressions of DMI based on the Lifshitz invari-
ants are needed to model stability of skyrmions with
other values of γ [49,119,124–127]. Depending on the
crystallographic class of the chiral magnet, it can host
one type out of the whole family of possible skyrmions
and antiskyrmions as energy-minimizing structures. The
case of skyrmions with γ = ±π /2 is closely related to
chiral LCs and this review because such structures can
emerge as energy-minimizing configurations in the bulk
of common chiral LC media. However, we note that
configurations with other values of γ can also appear
in experiments on LCs as transient or confinement-
and boundary-conditions-stabilized structures, includ-
ing within networks of defects in polydomain samples
upon their melting from isotropic phase (as an example,
the ‘thick lines’ of LC textures can have internal struc-
tures of half-skyrmions shown in Figure 12a, which were
historically referred to as ‘disclinations escaped in the 3rd
dimension’ in the LC research community).

The nonpolar counterparts of the 2D magnetic
skyrmions, the LC skyrmions (Figure 9), have also
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Figure 9. Full skyrmions in LC systems. Values of skyrmion number Nsk and helicity γ aremarked for different 2D LC skyrmions. With the
order parameter space of nonpolar LC directors being S2/Z2, we emphasize that each skyrmion wraps around S2/Z2 twice due to the
nonpolar nature of the LC. Director orientations are colored according to their orientations.

been extensively studied analytically, numerically and
experimentally (Figure 10) [4,73,114,123,128–131]. Rep-
resented by the homotopy group π2(S2/Z2) = Z, LC
skyrmions can be illustrated in similar ways as in mag-
nets. That is, the skyrmion number Nsk labels the topo-
logical charges and the helicity γ reflects the chirality
of the LC material, but with each elementary skyrmion
wrapping around the order parameter space (S2/Z2)
exactly twice due to the nonpolar nature of the host
medium (Figure 9). Upon smoothly vectorizing the non-
polar LC director field within the entire two-dimensional
structure of the translationally invariant LC skyrmion’s
cross-section, the order parameter space becomes S2

and the LC skyrmion’s texture becomes analogous to
that of the skyrmions in magnets, with Nsk then again
determined by Equation (18). An important difference
from magnetic skyrmions, however, is that this ‘decora-
tion’ of the nonpolar LC director with unit vectors can
be done while aligning the far-field vector along two
anti-parallel directions of the far-field director, which
yields opposite signs of the skyrmion numbers, reflect-
ing the nonpolar nature of the LC host medium. There-
fore, the topological invariant Nsk of an isolated 2D LC
skyrmion can be defined only up to the sign, a con-
sequence of the nonpolar nature of the director field.
This property of LC skyrmions resembles that of 3D
point defects in nematic LCs, described by the same
homotopy group, π2(S2/Z2) = Z [88], where, unlike for
point defects in vector fields, the hedgehog charge is
also defined up to the sign. Like for chiral magnets,
CLC skyrmions with twisted structures matching that of

the chiral host medium are energetically the most sta-
ble as they help realizing the CLC’s tendency to twist.
Because of the common LC’s strong interactions with
confining surfaces, realization of skyrmions as both indi-
vidual objects and arrays requires rather soft but con-
trolled surface boundary conditions [73,124,128]. Figure
10 shows examples of CLC skyrmions, both observed
experimentally and modeled numerically for such con-
ditions [73,124,128].

When embedded in 3D samples, the CLC and mag-
netic 2D analogues of Skyrme solitons have topologically
protected translationally invariant 2D tube-like struc-
ture that cannot be eliminated from a uniformly oriented
background without destroying the order or introducing
singular defects. Differently, tubes of merons, also known
as fractional skyrmions (Figures 11 and 12), are typically
accompanied by singular line defects (for CLCs) or by
other merons with the same-sign or opposite-sign frac-
tional charges, especially when embedded in the uniform
far-field background [130,132]. Spins of chiral magnets
or rod-like molecules of CLCs within the simplest type
of a fractional skyrmion (double twist tube) contained
within blue phases are parallel to its axis at the cen-
ter, twisting radially outwards (Figures 11 and 12), with
the configurations identical to the central part of full
skyrmions (Figures 8 and 9). For example, blue phases of
CLCs can be interpreted as various arrays of double-twist
tubes that are fractional skyrmions (merons or half- and
quarter-integer skyrmions) [48,123,128–130,133–138],
including their cubic and hexagonal lattices, where
fractional skyrmions are accompanied by singular line
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Figure 10. Experiments and modeling of 2D skyrmions. (a,b) Experimental polarizing optical micrographs of a 2D skyrmion obtained
without (a) andwith (b) a 530-nmphase retardationplatewith its slowaxis labeledby theyellowdouble arrow. (c) Experimental polarizing
optical micrograph of an assembly of 2D skyrmions. (d) Midplane cross-sections of a numerically simulated stable skyrmion in a plane
perpendicular (top) and parallel (bottom) to the far field. (e) Numerically simulated FCPM images obtained with circular polarization of a
skyrmion in (d) in the midplanes perpendicular (top) and parallel (bottom) to the far field. (f ) Experimental FCPM images obtained with
circular polarization of a skyrmion in (a) and (b) in themidplanes perpendicular (top) and parallel (bottom) to the far field. The cell gap is
d = 0.8µm and the CLC has pitch p = 1µm. The numerical modeling is based on Equation (2). Reproduced with permission from Ref.
[73].

Figure 11. Magnetic fractional skyrmions (meron)withdifferent values of skyrmionnumberNsk andhelicityγ . (a) Eachmeron ismapped
to, and colored according to, the half of the order parameter space, as shown in the insets. (b) The cross-section of a translationally
invariant structure that resembling a cholesteric finger of the second type in the vectorized director field is characterized by the overall
Nsk = 1, with the meron seen within it, in its center.
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Figure 12. LC merons with different values of skyrmion number Nsk and helicity γ and as components of CLC fingers. (a) Each meron
wraps around the order parameter space S2/Z2 once, as shown with the help of the color scheme depicting director orientations and
relating it to the order parameter space in the insets. (b) Model (left) and cross-sectional FCPM image (right) of a cholesteric finger of the
second type. In the model of director field, the half-skyrmion in the center and a quarter-skyrmions at the top and bottom are shown
with filled and open circles, which add to unity and embed to a uniform far-field background. (c) Same as in (b), but for the cholesteric
finger of the 1st kind, with filled and open circles showing quarter-skyrmions of opposite signs that add to zero and embed in a uniform
background. Parts in (b,c) are reproduced with permission from Ref. [93].

defects. As compared to the solid-state magnets, the pos-
sible overall structures involving the skyrmionic field
configurations are enriched by the nonpolar nature of
chiral LCs, which can also host topologically stable sin-
gular line defects [48,49,129,130,136,137,139–148].

The study of integer-strength disclinations in the bulk
of LCs, including CLCs, concluded that they either split
into half-integer lines or ‘escape in the third dimension’
upon being embedded in 3D and being allowed 3Dorien-
tations of the order parameter [9,26,65,149–155]. Inter-
estingly, the director structures within merons closely
resemble escaped integer-strength disclinations in the
bulk of LCs (Figure 12), with the topological invari-
ant Nsk of half-skyrmions inheriting half of the pre-
escape disclination’s original winding number for the
case of vectorized director field. Though singular integer-
strength defect lines are no longer stable once 3D orienta-
tions of director are allowed as π1(S2/Z2) = 0, nontriv-
ial field configuration become merons (half skyrmions
in S2/Z2), inside the 2D cross-sectional plane of the

LC bulk. Therefore, the fractional skyrmions, with the
molecular alignment field being fully nonsingular, can
be interpreted in the historic LC language as 3D-escaped
disclinations with pre-escape winding numbers of 2Nsk

in a material with different properties related to γ . For
example, the half-skyrmions with a radial structure of
the director in their periphery are found in thick capil-
laries with the so-called ‘escape of the director in the 3rd
dimension’ [151–154]. Within Schlieren textures of thick
nematic slabs confined between plates with tangentially
degenerate boundary conditions, practically all config-
urations of half-skyrmions shown in Figure 12 can be
found existing in the bulk of LC cells, albeit terminating
on various boojum surface point defects at the confining
surfaces (hypothetically, such boojums can be avoided
when surface boundary conditions are sufficiently soft)
[151–154]. The ‘thick’ lines (threads) that gave theGreek-
origin name ‘nematic’ to the most common type of LCs,
which are 3D-escaped integer-strength lines [23], also
can be interpreted as merons, similar to objects that
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recently fascinate researchers and play important roles
in solid-state magnetic systems [132]. Moreover, Bloch-
typemerons (γ = ±π /2) are naturally found to be stable
in CLCs [48,73,128,130] and recent studies revealed fas-
cinating thermodynamically stable 2D crystals of such
half-skyrmions in thin CLC cells [129,130]. Under spe-
cific confinement conditions, the stability of such half-
skyrmion lattices (also containing singular defect arrays)
in chiral LCs does not require applying external fields
[129,130], which is different from the chiral magnets.

The common CLC fingers of the first and second
types can be interpreted as being composed of the non-
singular λ-disclinations, or fractional skyrmions (Figure
12b,c). The structures of these cholesteric fingers show
how the fractional values of Nsk add to unity in the fin-
ger of the second type (comprising one half skyrmion
and two quarter skyrmions) and to zero for the finger of
first type (four quarter-skyrmions), in both cases being
embedded to the uniform far field background (Figure
12b,c). Themapping to the vectorized director field to the
order parameter space S2 from a cholesteric finger of the
second type (cross-section shown in Figure 11b) indeed
gives an integer skyrmion number Nsk = 1. Therefore,
one canmorph an axisymmetric translationally-invariant
skyrmion tube into a cholesteric finger of the 2nd type
by rotating individual vectors by 90°. These analogue
of skyrmions with in-plane far-field directors, in fact,
have been extensively researched for magnetic materi-
als, and are often referred to as ‘bimerons’ [156,157].
It has been shown recently that such morphing can
take place in CLCs with negative dielectric anisotropy
upon application of electric field and actually can lead
to squirming motion of such solitons when this field
is periodically modulated [74]. Another example of a
2D skyrmion that can be decomposed into fractional
skyrmions (λ-disclinations) is the skyrmion embedded
in a helical structure of CLCs or chiral magnets, which
is the already familiar Lehmann cluster shown in Figure
5e. Its cross-section, after vectorization of the director
field, wraps around S2 once everywhere except at the
equator, to which the background helical layers map
(Figure 7e). Being translationally invariant in the plane of
cholesteric quasilayers, a pure helical state has zero con-
tribution to Nsk (Equation (18)). Therefore, a Lehmann
cluster has Nsk = 1 of its 2D cross-section and is topo-
logically equivalent to a horizontal skyrmion tube [116].
Such Lehmann clusters (skyrmions) have been known to
the CLC community for many years, though their 2D
skyrmion nature was not fully appreciated until recent
interest that similar structures attracted in chiral mag-
nets [116,144]. Just like the skyrmions embedded in a
uniform far-field background, their counterparts in the
helical field background can terminate or nucleate on

point defects of an integer hedgehog charge matching
Nsk. The four λ-disclinations within such skyrmions can
be each assigned fractional Nsk values, with all four frac-
tional charges adding to unity and then being embedded
in the uniformly twisted quasi-layered structure of the
CLC. Equivalently, a λ−1/2 λ+1/2 type b = p disloca-
tion (half of a Lehmann cluster) can be associated with
a meron (half-skyrmion), as also noted in Ref. [158]. In
thin CLC films, individual fractional skyrmions could
be also embedded into a uniform background with the
help of singular disclination lines, as well as 2D crys-
tals comprising half-skyrmions and singular line defects
could form [129,130]. Stabilized by the thin-cell confine-
ment at no external fields, such fascinating 2D lattices
of CLC half-skyrmions and singular line defects can-
not have magnetic analogues because they can exist only
in nonpolar LCs where half-integer singular defect lines
are allowed [129,130], though fully solitonic arrays of
half-skyrmions are studied in magnets too [132].

Translationally invariant tube-like structure of CLC
Bloch skyrmions can be also described using the quater-
nion representation for disclinations in CLCs (though
χ(r) and τ (r) fields are ill-defined at peripheries where
λ(r) is nonchiral). With integer winding numbers,
skyrmions in chiral LCs corresponding to the cross-
section of −1 lines in the terminology of the quater-
nion representation. As an instance, the χ(r) directors
in a Nsk = 1, γ = ±π /2 skyrmion are aligned along the
radial direction, forming a point defect with +1 wind-
ing number on the two-dimensional plane (Figures 9
and 12). It is worth noting that the −1 disclination can
be morphed into several different configurations with
λ(r) field singular or nonsingular while preserving the
continuity of director fields around the defect line, and
that γ = ±π /2 skyrmions are the cross-section of −1
lines with least elastic free energy (calculated using Frank
elasticities Equation (2), for example).With the introduc-
tion of χ(r) and τ (r) field characterizations for chiral
systems, 2D and even 3D topological solitons in CLCs,
conventionally described as nontrivial structures with a
continuous λ(r) field, can now be interpreted as singular
defects of χ(r) and τ (r) fields, as we shall see discussed
in sections below.

Skyrmions inmagnets drivemuch excitement because
of their potential for applications in spintronics, includ-
ing data storage [49,139–141,145–148]. Density of such
topologically-encoded information could be increased
by using skyrmions with varying topological degrees
(whose distinction is topologically protected) [123].
CLCs recently provided insights into how high-degree
skyrmionics structures can form [123] as stable chiral
composite skyrmion bags. To realize them, one places
multiple single antiskyrmions (each with elementary
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skyrmion number topological invariant) next to each
otherwithin a stretched elementary skyrmion, thus form-
ing the skyrmion bags (Figure 13) [123]. Moreover, mul-
tiple nested structures can be formed, with, say, anti-
skyrmion bags within skyrmion bags and skyrmions
within them, and so on [123]. This yields nonsingu-
lar skyrmionic structures with arbitrary degrees and of
both positive and negative signs because this design
allows for wrapping and unwrapping S2 by mapping
λ(r) from the sample’s 2D plane by controlled num-
bers of times in a non-alternating fashion [123]. The
total degree of a skyrmion bag with NA antiskyrmions
is NA − 1. More complex structures with antiskyrmion
bags inside skyrmion bags have a net degree NA−NS,
where NS is the total number of skyrmions; counting
NS and NA also includes the nested skyrmion and anti-
skyrmion bags. While we noted above that Nsk of CLC
skyrmions can be defined up to the sign due to LC’s non-
polar nature, it is important to keep track of the relative
signs of skyrmions within composite skyrmionic struc-
tures, like the skyrmion bags. A way to do this involves
vectorization of the director field, an approach also used
to characterize 3D textures in nematic LCs with multiple
hedgehog point defects, where hedgehog charges of these
defects within 3D textures could be analyzed by smoothly
vectorizing the director field [88].

The stability of skyrmions and skyrmion bags in CLCs
require careful selection of experimental conditions and
materials [73,123], where important roles are played by
soft but well-defined perpendicular boundary condi-
tions on confining surfaces, elastic anisotropy, confine-
ment, applied fields, etc. The similarities of Hamiltonians
and soliton topologies between CLCs and chiral mag-
nets allows for using CLCs as model systems to provide
insights into solitonic structures that can be also realized
in chiral magnets [48,74,123,124].

While the recent interest in the 2D skyrmion struc-
tures of CLCs was re-ignited by the very active area of
research in chiral magnets and other branches of con-
densed matter and particle physics [49,77], such non-
singular structures have a long history of studies by
the LC community. Furthermore, CLCs offer unique
experimental accessibility of such structures, their facile
control by external fields and a richer range of possi-
bilities enabled by allowed half-integer defect lines that
can co-exist with full and fractional skyrmions or com-
pete for energetic stability under different conditions
[129,130].While surface anchoring boundary conditions
were shown to be the key enabling realization of frac-
tional, full andmulti-integer skyrmions as translationally
invariant topological structures [73,75,124], what we will
discuss next are CLC torons that arise as stable configu-
rations under different boundary conditions.

7. Torons and twistions with fractional or full
skyrmions within them

In addition to skyrmions and skyrmionbags [73,123,128],
confined CLCs can also host structures called ‘torons’
with both skyrmion-like and Hopf fibrations features
when a chiral LC is confined by substrates treated
for perpendicular alignment boundary conditions of
the director [75,138,159]. When the separation gap d

of the confining planes is approximately equal to the
CLC’s pitch p, the tendency to twist is incompatible
with the strong perpendicular boundary conditions that
induce the background of unwound far-field director λ0

[33,73,75,159]. The solitonic configurations that emerge
incorporate energetically-favorable localized twist while
meeting boundary conditions [159,160]. The nonpolar
and vectorized configurations of the simplest toron is
shown in Figure 14 [73]. In the cell midplane between

Figure 13. 2D skyrmions and skyrmion bags. (a) Polarizing optical micrographs of skyrmion bags with antiskyrmions inside, two stable
conformations of the bag with 13 antiskyrmions inside (images 5 and 6 from the left), and the bag with 59 antiskyrmions within it (right-
side image). (b,c) Computer-simulated counterparts of the skyrmion bags in (a). Crossed polarizers for (a,b) are marked by white double
arrows in (a). (d) Close-up view of a computer-simulated bag with three antiskyrmions shown by colored, vectorized alignment field.
Reproduced with permission from Ref. [123].



20 J.-S. WU AND I. I. SMALYUKH

Figure 14. 3D structure and topology of elementary LC torons. (a,b) Computer-simulated cross-sections of an axisymmetric elementary
toron shown in (a) plane orthogonal to λ0 and (b) containing λ0. (c) Elementary toron as a skyrmion terminating at the two point defects
(red spheres) to meet uniform surface boundary conditions and match the topologically nontrivial skyrmion tube with the uniform far-
field background of the 3D LC sample. Detailed field configurations on spheres around the point defects are shown as right-side insets.
(Reproduced with permission from Ref. [73]). (d) Toron’s preimages of S2-points (inset, shown as cones), with regions where preimages
meet corresponding to point defects. (e) Closed-loop λ(r)-streamlines within the toron at different distances from its circular axis form
different torus knots and links.λ(r) directors are vectorized in (c,d) and before calculation of streamlines in (e). The simulations are carried
out by minimizing the Frank-Oseen expression, Equation (2). Reproduced with permission from Ref. [75].

confining substrates, the elementary toron features a π-
twist of λ(r) radially from the center in all directions
(Figure 14a–c) and smoothly meets the uniform far-field
λ0-periphery [73]. Vectorized director alignment from
the toron’s midplane cross-section (Figure 14c) maps to
fully cover S2 once (inset of Figure 14d), like for an
elementary skyrmion. This skyrmion tube, however, ter-
minates at point defects that are enforced by the uniform
boundary conditions at surfaces (Figure 14b–d). Both top
and bottom point defects are self-compensating hedge-
hogs of opposite charge in the vectorized λ field and,
like elementary skyrmions, are labeled byπ2(S2) = Z (or
π2(S2/Z2) = Z for the nonpolar case) [65,73]. The struc-
ture of torons can be characterized further by probing
streamlines tangent to λ (Figure 14), which form vari-
ous torus knots, resembling the ones found in toroidal
DNA drops [161,162]. Regions near the toron’s circular
axis resemble fragments of S3 to R3 stereographic pro-
jection [75]. Differently from biopolymer drops, toron’s
λ-twist rate changes smoothly as one moves away from
its axis, accommodating effects of confinement and pres-
ence of the singular defects (Figure 14e). Incompatible
with Euclidian 3D space [161], 3D twist is inherently
frustrated, but the geometry of fiber bundles shows how
LC embeds it into toron’s volume [161]. Torus knots
can be identified within such structures with a series
of streamlines of λ(r). While the elementary toron is a

skyrmion tube terminated on point defects, it also has
an interpretation inspired by the torus-knot-like stream-
lines tangent to λ(r). One can also think of it as a half-
skyrmion double-twist tube (or a tube of twist-escaped
integer-strength line) forming a circular loop and com-
pensated near substrates by a pair of hyperbolic point
defects [159]. It has been shown that the point defects
within these torons can open up into singular half-integer
defect loops [159]. Therefore, within the 2D axially sym-
metric cross-section of a toron with two such singular
loops [159], the half-skyrmion (meron and also the twist-
escaped integer-strength line) is compensated by two
singular defect lines in a way similar to what has also
been shown for individual linear half-skyrmions embed-
ded into a uniform background and periodic lattices
[130,138]. Torons have been generated by laser tweezers
and temperature quenching from isotropic phase, both as
individual objects and in periodic arrays [133,163,164],
with and without lattice defects. Toron lattices have been
used as diffractive optical elements whereas lattices with
edge dislocations could be utilized as generators of opti-
cal laser vortices [135]. In addition to CLCs, torons have
been recently discovered in chiral solid-state magnetic
systems, where magnetic torons adopted the same name
as in CLCs [165].

In addition to the elementary torons with π-twist of
λ(r) from their central axes to the periphery in all radial
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directions, torons with larger amounts of such twist also
exist. For example, suchmore complex torons can exhibit
3π , 5π and larger amounts of twist within axisymmetric
toron structures, as found in recent experiments, though
we will not discuss them in detail here [114]. Solitonic
topological structures and singular point defects also co-
exist within hybrid structures called ‘twistions’, configu-
rations that embed spatially localized twisted regions into
a uniform far-field λ0-background but lack axial sym-
metry and (unlike torons) contain more than two point
defects [166]. Within their structure, λ(r) typically twists
from the interior to periphery byπ /2-π , though twistions
with larger amounts of such twist exist too, analogously
towhatwas discussed above for torons [114,115,166]. For
example, the simplest twistions contain stretched loops
of merons and four self-compensating hyperbolic point
defects. Similar multi-point-defect configurations with
solitonic λ(r) in-between have been also reported for
CLC drops [146,167].

8. 3d topological solitons

8.1. Hopfions

The fully three-dimensional topological Hopf soliton,
also called ‘hopfion’, was recently observed experimen-
tally andmodeled numerically [47]. This topological soli-
ton is a physical embodiment of the mathematical Hopf
fibration’s topology in the unit vector and director order
parameters [4,47]. Although hopfions have been studied
in both nonpolar CLCs and in complex fluids formed
by colloidal dispersions of magnetically monodomain
platelets within a CLC, referred to as chiral ferromagnetic
LCs [4], here we will use the latter to introduce topolog-
ical properties of hopfions. The structure and topology
of hopfions can be effectively described with the con-
cept of ‘preimage’, the inverse mapping from a single
point on S2 to the CLC ferromagnet’s 3D physical space
with the same unit magnetization field m(r) orientation
(Figure 15a). For hopfions, preimages of all S2-points are
closed loops [70] (Figure 15a,b). Imbedded into a uni-
form m0 and localized in all three spatial dimensions
(Figure 16), hopfions are classified on the basis of maps
from R3 ∪{∞} ∼= S3to the ground state manifold S2 of
3D unit vectors, π3(S

2) = Z [23,65,70]. Topologically
distinct hopfions are characterized by theHopf indexQ ∈

Z with a geometric interpretation of the linking number
of any two closed-loop preimages (Figure 15c,d). Most
of the three-dimensional sample (R3 space) is occupied
by the preimage of the north-pole in S2 corresponding
tom0 (Figure 16) [47], except for the interior of a torus-
embedded region, within which all other preimages are
smoothly packed. Preimages with the same polar angles

but different azimuthal angles tile into tori; then, tori
corresponding to different polar angles nest within each
other, all imbedded within the biggest torus that has all
the preimages in its interior, except for them0-preimage
that is in its exterior (Figure 16) [47]. In addition to being
derived from its geometric interpretation as the preimage
linking number, Q can be computed explicitly by inte-
grating a topological charge density in either S3 or R3.
For a solitonic unit vector fieldm(r) inR3 with a uniform
far-fieldm0 [37]:

Q =
1

64π2
∫ dVǫijkAiBjk, (19)

where Bij = ǫabcma∂imb∂jmc, Ai is defined as Bij =
1
2 (∂iAj − ∂jAi). Stable hopfions in physical systems rang-
ing from elementary particles to cosmology have been
predicted by Faddeev, Niemi, Sutcliffe and many oth-
ers [70,168,169], as well as demonstrated experimen-
tally as stable solitons in colloidal ferromagnets and LCs
[47,114,115]. Nonlinear optical 3D imaging was utilized
to unambiguously identify topological solitons, reveal-
ing an experimental equivalent of themathematical Hopf
map (Figure 15c,d) [4] and relating experimental and
theoretical closed-loop preimages of distinct S2-points
[47]. The detailed structure of axisymmetricm(r) within
the static Hopf soliton is depicted in Figure 15e with the
help of cross-sections orthogonal to the far-field m0 or
containing it. Hopfions with different Hopf indices can
be realized and co-exist inmonodomain samples because
they all can correspond to local or global free energy
minima.

Minimization of free energy given by Equation (8)
predicts existence of 3D topological solitons in solid non-
centrosymmetric ferromagnets [169] for experimental
values of exchange energy and Dzyaloshinskii-Moriya
constants Am and Dm. Like in the case of the chiral term
in free energy for ferromagnetic colloidal systems [47],
Dzyaloshinskii-Moriya term in Equation (8), resembling
the chiral term in the Frank-Oseen free energy functional
Equation (2), helps overcoming the stability constraints
defined by the Derick theorem [170]. Inspired by exper-
imental observations in CLCs and chiral ferromagnetic
LC colloids, solid-state magnetic hopfions have been pre-
dicted to exist in nanodiscs, thin films and nanochannels
of non-centrosymmetric magnetic solids with perpen-
dicular surface anisotropy [169] (Figure 17a,b), featur-
ing closed-loop preimages of all S2 points, with each
pair linked Q times. Due to the field topology, the
emergent magnetic field, defined by (Bem)i ≡ ~ǫijkm ·

(∂jm × ∂km)/2 with ~ being the reduced Planck’s con-
stant, of a solid-state elementary hopfion spirals around
its symmetry axis with a unit flux quantum (Figure
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Figure 15. Hopfions in chiral colloidal ferromagnetic LCs. (a) Linking of hopfion’s circle-like closed-loop preimages of points (cones) on
S2. (b) Illustration of a Hopf map of closed-loop preimages of a hopfion embedded in a far-fieldm0 onto S2. (c, d) Computer-simulated
and experimental preimages, respectively, of two diametrically opposite S2-points (cones) in the top-right inset of (c). Bottom-right
inset in (c) shows signs of the crossings and circulation directions that determine linking of preimages. Inset in (d) is a polarizing optical
micrograph of a hopfion. (e) Cross-sections of the hopfion taken in a plane orthogonal tom0 (top) and in a plane containingm0 (bottom),
with the vector field shown using cones colored according toS2 shown in the insets of (a–c). (f ) Linking of preimageswith representative
points onS2, including south-pole preimages corresponding tom0 confining all other preimages. The simulations are based on Equation
(8). Reproduced with permission from Ref. [47].

Figure 16. Tiling and linking of preimages of S2 points within a hopfion. Preimages of different azimuthalm-orientations tile into tori
for the samepolar angles, with the smaller tori nesting inside bigger tori; the largest torus contains the north-pole preimage in its exterior
corresponding tom0 and the other preimages nested within its interior. Reproduced with permission from Ref. [4].

17c,d) [169]. Streamlines of Bem, describing the interac-
tion between conduction electrons and the spin texture,
also resemble Hopf fibration [171]. This behavior of Bem

mimics the topology of preimages for hopfions (Figure
17e,f). It will be interesting to explore in future whether

Bem in solid-state systems can also mimic behavior of
preimages in high-Hopf-index hopfions, like the ones
with Q = 2 Solomon link topology (Figure 17f). The
capability of encoding 1, 0, 2, −1 and other states in
the topological charges of 3D Hopf solitons in a chiral
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Figure 17. Hopfions in solid-state non-centrosymmetric magnets. (a) Cross-sections of the magnetization field within a hopfion in the
plane perpendicular to m0 (upper) and that containing m0 (lower) in a magnetic solid material. Magnetization fields are shown with
cones colored according to S2 (lower-left insets). In the x-z cross section, black stripes at the top and bottom indicate interfaces with
boundary conditions achieved using perpendicular surface anisotropy and thin-film confinement. (b) Preimages of S2-points indicated
as cones in the inset. Linking number of preimage pairs is consistent with the Hopf index Q = 1. (c) Geometry and topology of Hopf
fibration. (d) Visualization of the emergent magnetic field Bem by the isosurfaces of constant magnitude and streamlines with cones
indicating directions. (a–d) Reproduced with permission from [169]. (e,f ) For hopfions, preimages of S2 in R3 (and S3) form Hopf (e)
and Solomon links (f ) with linking numbers matching their Q = 1 (e) and Q = 2 (f ) Hopf indices. Since direct (φ) and inverse (φ−1)
stereographic projections relate configurations onS3 and inR3 when embeddedwithinm0, these solitons are characterized byS3→S2

maps, π3(S
2) = Z homotopy group and Q∈Z; crossing numbers in (e,f ) are marked in red. (e) and (f ) reproduced with permission from

Ref. [115].

magnet can lead to data storage and other spintron-
ics applications, with some of them already pursued in
modeling [169,172]. While the stability of 3D solitons
like hopfions has been always challenged by Derrick
theorem [114,115,170–172], their experimental observa-
tion in chiral LCs and colloidal ferromagnets [47,114]
offered insights that led to the predictions of such hop-
fions inmagnetic solid-statematerials [115,172], demon-
strating the power of CLCs as model systems. The insight
in this particular case is that the energetic stability of
Hopf solitons is enhanced by the medium’s chirality
and that such topological objects can be hosted as sta-
ble or metastable structures in systems with Hamil-
tonians like the ones given by Equations (2) and (8)
of chiral ferromagnetic colloidal LCs and solid-state
magnets.

Hopf solitons in chiral nematics differ from the ones
in vector fields of chiral magnets discussed above in

that they are realized in the nonpolar field with the
S2/Z2 order parameter space [113,114,173,174]. Rod-like
molecules and λ(r) twist by 2π in all radial directions
from the central axis to λ0-periphery of the hopfions
[114]. All S2/Z2-points for the nonpolar director have
thus individual preimages in the form of two linked loops
[114]. This is expected since the manifold S2/Z2 is effec-
tively half of S2 and the smoothly vectorized version of
the hopfion has all preimages of S2 in the form of indi-
vidualized closed-loop regions. Although the χ(r) and
τ (r) director fields in a hopfion are ill-defined for the
far-field λ0, one can still find locally twisting structure
of λ(r) and apply the analysis of director fields accord-
ingly. The result, unsurprisingly, is that the hopfion can
be interpreted in terms of nonsingular disclination loops
that we discussed above, which is also a loop of a 2D
skyrmion. Not only elementary hopfions but entire zoos
of π3(S

2) = Z and π3(S
2/Z2) = Z solitons exist [4,23].
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The insights into the diverse interpretations of structural
embodiments of topological Hopf solitons experimen-
tally revealed by CLCs and chiral ferromagnetic colloidal
LCs are useful for theoretical modeling and experimental
discovery of such topological objects in other branches of
physics.

8.2. Heliknotons

Recently, another embodiment of the Hopf solitons,
called ‘heliknotons’, has been demonstrated in CLCs [37]
that can be characterized by the already familiar triad
of the orthonormal fields (Figure 18a). Heliknotons are
topological solitons with linked closed-loop λ(r)-field
preimages (Figure 18b) while their χ(r) and τ (r) contain
half-integer singular vortex lines forming knots (Figure
18c). Therefore, the heliknoton is a hybrid embodi-
ment of both preimage and vortex knots [37]. These
solitons embed into the helical background and form
spontaneously after the transition from the isotropic to
the CLC phase when an electric field is applied to a
positive-dielectric-anisotropy chiral LC along the far-
field helical axis χ(r). These structures comprise local-
ized regions (depicted in Figure 18b,c) of perturbed
helical fields and twist rate, displaying 3D particle-like
properties [37]. The inter-heliknoton interactions arise
from sharing long-range perturbations of the fields and
minimizing the overall free energy for different relative
positions [37]. These interactions enable a plethora of
crystals, including 2D and 3D low-symmetry and open
crystalline lattices (Figure 18) [37], with tunable crys-
tallographic symmetries and lattice parameters [37]. 3D
crystals of heliknotons emerge in samples of thickness
>4p, when anisotropic interactions yield triclinic pedial
lattices (Figure 18d), whereas 2D crystals form in thinner
samples (Figure 18e–g). Besides the Q = 1 elementary
heliknotons, Q = 2 and Q = 3 topological solitons were
observed as well [37], with preimages in thematerial field
λ(r) linked twice and three times, respectively. ForQ = 2
(Q = 3) heliknotons, singular vortex lines in χ(r) and
τ (r) form closed 51 (71) knots co-located with the same
knot of ameron inλ(r). These and other heliknotonswith
even larger Q can be ground-state and metastable struc-
tures [37], behaving like particles. However, unlike the
atomic,molecular and colloidal crystals, heliknoton crys-
tals exhibit giant electrostriction and dramatic symmetry
transformations under <1V voltage changes. They can
potentially emerge in solid-state non-centrosymmetric
magnets and ferromagnetic colloidal LCs with helical
fields [4] andHamiltonians similar to those of chiral LCs,
as recently predicted theoretically [53].

By calculating the spatial variations of the triad of the
three orthonormal directors λ(r), χ(r), τ (r) based on

λ(r), one can understand heliknotons as various knots
and loops of λ disclinations, which can exist as ener-
geticminimadepending on the LCparameters, boundary
conditions, and the strengths of external electric field
(Figure 19) [52]. For example, a heliknoton in one of its
embodiments exhibits three interlinked closed loops of
the nonsingular λ lines for CLCwith Frank-Oseen elastic
constantsK33 = 2K22, when each pair of the closed loops
are linked once (Figure 19a–c). On the other hand, when
the bend elasticity of the CLC is reduced to K33 = K22

(experimentally realizable [50–52,175]), a trefoil knot of
a single loop (Figure 19d–f), instead, emerges in the
3D topological soliton. In this case, the central vertical
cross-section (Figure 19f) cuts across four segments of
the λ line, resembling that of a Lehmann cluster (Figure
7d,e). Furthermore, the theory of the CLC disclinations
within quaternion representation provides the insight
that unlinking and relinking between the λ line loops
are topologically allowed transformations [23,26,65,117],
which is confirmed by observing a continuous configu-
rational transformation between the three-ring-type and
the single-knot-type heliknoton through careful adjust-
ment of LC parameters in the computer simulations.
The recent advent of novel LC systems with bend- and
splay-relaxed elasticity [176–179] will provide a fertile
ground for the exploration of stability of a variety of
different 3D-localized solitonic structures under such
different elastic anisotropy conditions. The numerical
and experimental observations of continuous morphing
of these localized field configurations in CLCs would
serve as validation of these theories, whereas the phys-
ical behavior of such 3D topological solitons can be
also enriched by the dynamics and out-of-equilibrium
emergent transformations, which we will discuss in the
next section for 2D skyrmions and torons.

9. Emergent dynamics of topological defects
and solitons

CLCs can exhibit even richer interplay of topology and
ordering under the out-of-equilibrium conditions. Topo-
logical defects and solitons in LCs often can be ‘activated’
by supplying energy [74,75,166,180–184], just like this
was done in the past with granular particles by shaking
them [185–187], as an example. When supplied to CLC
samples on macroscopic scales under well controlled
conditions, the external energy can be converted into
motion on the individual soliton or singular defect basis,
which, in turn, can lead to various types of emergent col-
lective behavior. Periodic pulses of applied field lead to
squirming motions of individual skyrmions and torons
[74,75] and then to collective schooling and orderly
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Figure 18. Topology and self-assembled crystals of heliknotons. (a) Helical field comprising a triad of orthonormal λ(r), χ (r) and τ (r).
(b) Preimages of a heliknoton colored according to their orientations on S2 for vectorized λ(r) as shown in the inset. (c) Knotted co-
located half-integer vortex lines in χ (r) and τ (r). Gray isosurfaces in (b,c) show the localized regions of the distorted helical background.
(d) Primitive cell of a 3D triclinic heliknoton crystal. Isosurfaces (gray) of heliknotons with distorted helical background are colocated
with both λ knots (red) and preimages of antiparallel vertical orientations in λ(r) (black and white). (e,g) closed rhombic and (f ) open
heliknoton lattices obtained at U = 1.9 V and U = 1.7 V, respectively. Reproduced with permission from Ref. [37].

Figure 19. The loops and knots of λ lines in heliknotons. (a) Top view and (b) side view of three closed loops of λ disclinations within
one embodiment of a heliknoton, with each pair of the loops linked. The simplified topological visualizations of the loops are shown in
the insets of (b). (c) Vertical sections of the λ(r) director alignment for a heliknoton numerically stabilized under U = 3 V, d = 15µm
for CLC with p = 5µm. K33 = 2K22. The long red tubes represent the geometry of the λ disclinations. The nonpolar color scheme
depicting director orientations is shown in the insets. (d–f) Similar visualizations but for a heliknoton simulated for K33 = K22, show-
ing a trefoil knot of the nonsingular λ line. Schematics of the loops and knots in the insets were generated using the KnotPlot freeware
(https://knotplot.com). The numerical simulations are based on Equation (2).
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Figure 20. Translational skyrmion motions powered by an oscillating electric field. (a–f) Topology and electric switching (topology-
preservingmorphing) of 2D baby skyrmions: (a–c) polarizing optical micrographs of a 2D skyrmion at (a) no fields and (b, c) at voltages U
indicated on the images. Electric field applied to negative-dielectric-anisotropy LC is perpendicular to images. (d–f) Computer-simulated
vectorized λ(r) corresponding to (a–c), shown using arrows colored according to corresponding points on S2 (insets), with the far-field
orientations depicted using cones. (g) Translation of a skyrmion in response to switching U on and off, with corresponding computer
simulated results shown in the top-right inset. Thebottom inset illustrates the squarewaveformvoltagedrivingwith the carrier frequency
f c = 1 kHz and the modulation period Tm. Motion of the skyrmion is compared to that of a tracer nanoparticle at zero field (black solid
line) and at U = 4 V (green solid line). (h) Experimental and (i) computer-simulated polarizing optical micrographs of a skyrmion when
moving along a vector connecting the south- and north-pole preimages (positive x). The schematic in the inset between experimental
and computer-simulatedmicrographs shows the timing of turning U on and off within the elapsed time equal to Tm, correlated with the
micrographs in (h, i). Reproduced with permission from Ref. [74].

motions of hundreds-to-millions of such topologically-
protected particle-like structures, with all motion direc-
tions selected spontaneously [180–183]. While in active
nematics topological defects behave as active parti-
cles themselves [185,187,188], the topological solitons
that we focus on here can be understood as active
particle-like objects within an effectively passivemedium
[74,75,180–183]. Topological solitons move by invok-
ing nonreciprocal rotational director dynamics (without
mass transport), which could be paralleled with sta-
dium waves (which move around the stadium without
people leaving the seats). The LC soliton motions also
resemble dynamics of topologically similar skyrmions in
spin textures in solid-state chiral magnets that can move
through rotations of spins within solid films with up
to kilometer-per-second speeds [123,139–144] (we note,
however, that fluid flows can still arise in LCs, unlike

in the magnetic solids, so the similarities are limited to
specific conditions and many differences can arise). The
applied electric field, through its dielectric coupling with
λ(r), morphs a soliton (Figure 20a–f) and elastic free-
energy costs associated with this deformation tend to
drive relaxation of λ(r) back to the initial state that min-
imizes energy at zero applied field. The non-reciprocal
nature of λ(r)-rotation in response to switching voltage
on and off causes translation of solitons in lateral direc-
tions (Figure 20g–i). Within each voltage modulation
period Tm, the solitons are asymmetrically squeezed dur-
ing the ‘field-on’ cycle and relax to minimize the elastic
free energy during the ‘field-off’ cycle ofTm (Figure 20h,i)
[74]. This periodic non-reciprocal asymmetricmorphing
of the localized λ(r) resembles squirming in biological
systems, albeit CLC solitons have no cell boundaries,
density gradients or interfaces, so that the similarity is
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Figure 21. Schools of skyrmions characterized by a diagram of
static and dynamic skyrmion assemblies and schools versus pack-
ing fraction, frequency f c and voltage U. The configurations
shown in the insets are consistent across all f c at which skyrmions
are stable. Reproduced with permission from Ref. [182].

limited, mainly just in terms of the nonreciprocal char-
acter [75]. Like for active colloidal or granular particles
[185,186,189–192], the energy conversion happens at the
scale of individual particle-like solitons. Although the
oscillating energy-supplying field is applied to the entire
sample, its direction is not related to the emergentmotion
direction [74].

Elastic interactions between moving skyrmions
emerge to reduce the free energy costs of λ(r)-distortions
that each topological soliton induces, albeit without
the dynamic λ(r) reaching equilibrium because of
the periodic voltage modulation and soliton motions
[182]. These interactions are key to define the emer-
gent collective behavior of skyrmions while they move,
including the formation of schools of skyrmions with
different types of internal clustering, as summarized
in the diagram in Figure 21. The nature of instan-
taneous interactions between continuously morphing
solitons effectively changes within each Tm, but the
overall collective behavior then arises from the cumu-
lative effects of Tm-averaged instantaneous interactions.
In presence of thousands-to-millions of skyrmions, the
applied electric field initially induces random tilting
of the director around individual skyrmions, so that
their south–north preimage unit vectors pi = Pi/|Pi| ini-
tially point along random in-plane directions. Individ-
ual skyrmions exhibit translational motions with velocity
vectors vi roughly antiparallel to their pi. With time,
coherent directional motions emerge, with schooling of
skyrmions either individually-dispersed or within vari-
ous cluster-like assemblies [182]. Velocity andpolar order

parameters Sv = |
N
∑

i
vi|/(Nvs) and Sp = |

N
∑

i
pi|/N char-

acterize degrees of ordering of vi and pi within the
moving schools, where N is the number of skyrmionic
particles and vs is the absolute value of velocity of
a coherently-moving school. Both order parameters
increase with time from zero to ∼0.9, indicating the
emergence of coherent unidirectional motion of the
particle-like topological solitons.

Similar to skyrmions, torons too can exhibit collec-
tive dynamics experimentally realized when perpendic-
ular surface boundary conditions on surfaces confining
the CLC are strong (Figure 22a). A particularly interest-
ing dynamic regime involves dense polycrystalline arrays
of torons (Figure 22b,c). An oscillating electric field E

applied to a CLC with such polycrystalline arrangements
of torons prompts motions of crystallites and lattice
defects (Figure 22d), showing behavior very different
from that of skyrmions discussed above [181]. The exter-
nal electric field E is again applied orthogonally to cell
substrates and motions emerge along a spontaneously
selected direction in a plane orthogonal to E (Figure
22a–d). The crystallites of torons have different orien-
tations of crystallographic axes of the quasi-hexagonal
lattice relative to the average motion direction before
and during motion (Figure 22b–d). The temporal evolu-
tion of deformations of the complex director field upon
turning U on and off is not invariant upon time rever-
sal, prompting lateral translations of torons, which syn-
chronize to yield coherent motions of the crystallites of
toronswithin quasi-hexagonal periodically deformed lat-
tices (Figure 22) [181]. Although the average direction
of motion of toron crystallites is well defined, individ-
ual torons within the lattices execute rather elaborate
‘dancing-like’ dynamics (Figure 22e), where local trans-
lations in directions other than motion direction average
out over longer periods of time. As a result, the primitive
cells of crystals of torons are translated along the average
motion direction (Figure 22e) with velocities approach-
ing a micrometer per second range (Figure 22f). While
there is no net displacement of toron lattices and both
skyrmions and singular point defects within them at
zero applied field (though thermal fluctuations of toron
positions are present), this displacement becomes linear
in time soon after the periodically oscillating voltage is
applied (Figure 22f). Numerical modeling and experi-
ments reveal that this motion is accompanied by voltage-
dependent lateral shifts of hyperbolic point defects and
tilts/deformations of preimages as compared to those
at U = 0 (Figure 22g,h). This electrically-powered self-
shearing of torons is apparentwhen visualizing the south-
pole preimages and lateral shifts of the singular point
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defects at opposite confining surfaces (Figure 22h), as
well as can be inferred from tracking point defects in
bright-field microscopy (insets of Figure 22f). Further-
more, all the preimages also rotate around an axis nor-
mal to the sample plane [181] (Figure 22i). As voltage
is effectively turned on and off within each period of
square-wave modulation, toron’s preimages rotate coun-
terclockwise and clockwise (Figure 22i), so that the direc-
tor evolution that is manifested through such textural
changes is not invariant upon reversal of time (Figure
22i). Collective motions of crystallites of these solitons
prompt fascinating evolution of grain boundaries and
5–7 defects [181]. The lattice defect motions are not gen-
erated by external stresses (like this would be the case,
for example, during mechanical deformation of crys-
talline solids) but rather emerge from collective motions
of crystallites of topological solitons within the mate-
rial’s interior, powered by the conversion of energy on
an individual soliton basis. The collective dynamics of
torons increases the orientational order, causes polar
ordering of these asymmetrically sheared solitons, as well
as leads to rather high velocity order parameters, which

are all rather unexpected emergent effects [181]. These
findings show that, being ‘activated’ through supplying
energy that is converted into motion locally, singular
point defects, torons and skyrmions can emerge as active
particles within the new breed of solitonic active matter
[74,75,181,182,188,193–195]. Therefore, CLCs exhibit a
great potential for revealing fundamental behavior of
topological field configurations in and out of equilibrium.

10. Outlook and conclusions

Being highly experimentally accessible, CLCs not only
provide a fertile ground for fundamental exploration
of topologically nontrivial field configurations, but also
serve as model systems for other branches of science.
For example, we have seen above how, under different
experimental conditions, they provide valuable insights
into the nature of line defects in biaxial nematics and
smectics and two-dimensional skyrmions and merons
in chiral magnets. Studies of such topological objects in
CLCs often took place long before similar topological

Figure 22. Dynamics of 2D crystallites of torons. (a) Schematic of crystallite motions powered by electric field orthogonal to the cell
substrates. (b–d) Crystallites of torons colored according to orientations relative to themotion direction (b) and in polarizingmicrographs
at zero applied voltage (c) and at U = 2.5 V (d); black arrows in (d) denote crystallite motions directions. Color scheme for visualizing
crystallite orientations in (b) is shown in the inset between (a) and (b). (e) Trajectories of crystallite motions at U = 2.5 V, f c = 10 Hz,
progressively zooming in on the details of translations, colored according to elapsed time (with the maximum elapsed time marked
in each part); dashed hexagons indicate the unit cell shift during motion, colored according to the color-coded timescale. (f ) Average
displacement of the hyperbolic point defects near confining substrate, analyzed with bright-field microscopy (video frames in insets).
(g, h) South-pole preimages (magenta) and point defects (orange and yellow) of a hexagonal unit cell of torons shown (g) before and
(h) during motion. (i) Nonreciprocal angular rotations of torons within crystallites upon voltage modulation, with the times of turning
instantaneous voltage on and off marked by the blue and red dashed vertical lines. Reproduced with permission from Ref. [181].
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field configurations attracted interest in other physi-
cal systems [29]. CLCs were also the first media where
the three-dimensional Hopf solitons were experimen-
tally discovered [4], which now also attract consider-
able and growing interest in solid-state magnets, ferro-
electrics and optics [53,196,197]. However, the model-
system potential of CLCs is far from being fully uti-
lized. For example, although orthorhombic and mon-
oclinic nonchiral nematics have been recently demon-
strated in molecular-colloidal systems [56], their chiral
counterparts still need to be demonstrated. While in the
conventional CLCs only the λ director is material and
directors χ and τ are immaterial, defined by configu-
rations of λ, low-symmetry CLCs could have two or
all three such directors material. Such more complex
CLCs could allow for stability of new types of multi-
dimensional solitons and defects. For example, chiral-
ity could help energetically stabilize topological objects
corresponding to the high-dimensional order parame-
ter spaces of these systems, such as SO(3) = S3/Z2of the
chiral versions of monoclinic biaxial colloidal ferromag-
nets [198] and SO(3)/D2 = S3/Q8 of the orthorhombic
biaxial nematics [199]. What types of solitonic and sin-
gular knotted field configurations can be energetically
stabilized in these low-symmetry analogues of CLCs?
For example,π3(S

3/Q8) = Z andπ3(S
3/Z2) = Z topo-

logical solitons in biaxial chiral nematics and ferromag-
netic LCs would be rather interesting analogues of the
Skyrme solitons in high energy physics, but can they
emerge as global or local free energy minima in these
soft matter systems? What would be the fate of var-
ious solitonic and singular knots during monoclinic-
orthorhombic, orthorhombic-uniaxial nematic and var-
ious other phase transitions involving these mesophases?
Recently also becoming experimentally available, the
helimagnetic and helielectric LC analogues of CLCs
pose new questions about topological and energetic
properties of defects and solitons in such systems
[160,200–202]. The recent demonstration of 3D active
nematics [203] also promises a variety of new opportuni-
ties in realizing various out-of-equilibrium vortices and
solitons. For example, both active [203–210] and out-of-
equilibrium passive LCs with ‘activated’ dynamic defects
[74,75,180–183] could reveal various analogues of topo-
logical instantons and nontrivial topological connectiv-
ity where dynamics of defects and topological solitons
could even lead to formation of topological field con-
figurations in a different class. For example, although
topological objects in soft matter can be realized only in
one-to-three-dimensional physical-configuration spaces,
time in certain cases can be treated as an additional
spatial dimension (say R3+1 for a 3D configuration
space with certain special temporal dynamics and the

corresponding S4-compactification) [70,211], so that an
interesting question arises if topological objects predicted
by the homotopy theory and labeled as π4(S3) = Z2

and π4(S3) = Z2 could be potentially realized in out-of-
equilibrium soft matter systems.

Particle-like topological solitons can be building
blocks of exotic condensed matter phases too. Helikno-
tons have been shown to form various crystalline lat-
tices, open and closed, including triclinic crystals (Figure
18d–g) [37]. An important question is what it would
take for the heliknotons to self-organize into solitonic
LCs with only orientational ordering of the solitons. The
interactions between heliknotons already could be con-
trolled between few kBT and hundreds of kBT, as well
as effective shapes could be controlled between nearly
isotropic and highly elongated [37]. This could bring
about hierarchical liquid crystallinity, where nanometer-
long organic molecules form a chiral LC host medium
that hosts heliknotons and then these micrometer-long
topological solitons form yet another, solitonic LC on
larger scales. What are the LC mesophases that can
emerge in such systems? What types of new physical
behavior and properties can arise because of these stable
phases formed by topologically nontrivial solitonic field
configurations? Technological needs and fundamental
curiosity call for research to reveal such LCmaterials with
different symmetries, topological diversity and varying
combinations of order and fluidity.

From a more applied perspective, controlled pat-
terning of defects in LC elastomers [212–214] can be
extended to CLC skyrmions, hopfions and helikno-
tons, where topologically-protected nature of these field
configurations can be utilized to produce well-defined
localized mechanical responses, much like with sin-
gular defects [212–214], but now with a considerably
larger inventory of possibilities. Topographic features at
confining interfaces can be used to define and pattern
spatial positions of various solitons through harnessing
interactions mediated by CLC’s orientational elasticity,
much like colloidal particles in nematic LCs could be
attracted by topographic features like pyramids [215].
On the other hand, optical effective refractive index pat-
terns associated with various arrays of solitons with and
without lattice defects can be utilized to generate tun-
able diffraction patterns and optical vortices in laser
beams [134,135,216,217], where 3D topological solitons
like heliknotons [37] within crystalline arrays may again
allow formuch needed reconfigurability in defining these
diffractive elements and optical vortex generators. It will
be interesting to explore how various linear and nonlin-
ear optical interactions within CLCs can be exploited to
use topological solitons in guiding laser beams of light
and optical solitons like nematicons [218–220], as well
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as how these interactions can potentially enable practical
applications in beam steering and telecommunications.
CLC defects and topological solitons may also provide
a platform for co-assembly of colloidal particles within
these media, as already explored in several recent studies
[112,221–223].
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