
The Power of Subsampling in
Submodular Maximization∗

Christopher Harshaw
1
, Ehsan Kazemi

2
, Moran Feldman

3
, and Amin Karbasi

4

1
Yale University, Department of Computer Science

2
Google, Zürich

3
University of Haifa, Department of Computer Science

4
Yale University, Department of Electrical Engineering

Abstract

We propose subsampling as a unified algorithmic technique for submodular maximization

in centralized and online settings. The idea is simple: independently sample elements from

the ground set, and use simple combinatorial techniques (such as greedy or local search)

on these sampled elements. We show that this approach leads to optimal/state-of-the-art

results despite being much simpler than existing methods. In the usual o✏ine setting, we

present SampleGreedy, which obtains a (p+ 2 + o(1))-approximation for maximizing a

submodular function subject to a p-extendible system using O(n + nk/p) evaluation and

feasibility queries, where k is the size of the largest feasible set. The approximation ratio

improves to p + 1 and p for monotone submodular and linear objectives, respectively. In

the streaming setting, we present Sample-Streaming, which obtains a (4p+ 2� o(1))-

approximation for maximizing a submodular function subject to a p-matchoid using O(k)

memory and O(km/p) evaluation and feasibility queries per element, where m is the number

of matroids defining the p-matchoid. The approximation ratio improves to 4p for monotone

submodular objectives. We empirically demonstrate the e↵ectiveness of our algorithms on

video summarization, location summarization, and movie recommendation tasks.

1 Introduction

Submodular functions have played a celebrated role in both the theory of discrete optimization
and practical modeling scenarios. Submodular functions are defined by a diminishing returns
property, which makes this function class natural for modeling many applications in a wide va-
riety of domains, from economics to machine learning. Constrained submodular maximization
has found numerous applications, including viral marketing [Kempe et al., 2003], network mon-
itoring [Leskovec et al., 2007, Gomez-Rodriguez et al., 2010], sensor placement and information
gathering [Guestrin et al., 2005], news article recommendation [El-Arini et al., 2009], movie rec-
ommendation [Mitrovic et al., 2019, Haba et al., 2020], active set selection in non-parametric
learning [Mirzasoleiman et al., 2016b], image summarization [Tschiatschek et al., 2014, Kazemi
et al., 2020], location summarization [Badanidiyuru et al., 2020], corpus summarization [Lin and

∗The results presented in this paper previously appeared in COLT 2017 [Feldman et al., 2017] and NeurIPS
2018 [Feldman et al., 2018] in the form of extended abstracts. We note, however, that some results of Feldman
et al. [2017] were not included in the current paper since they are unrelated to its central theme. Nevertheless,
for completeness, we reference these results while discussing the related work.

1

ar
X

iv
:2

10
4.

02
77

2v
1

 [c
s.D

S]
 6

 A
pr

 2
02

1

Bilmes, 2011, Kirchho↵ and Bilmes, 2014, Sipos et al., 2012], fMRI parcellation [Salehi et al.,
2017], ensuring privacy and fairness [Kazemi et al., 2018, Mitrovic et al., 2017], two-stage sub-
linear data summarization [Balkanski et al., 2016, Stan et al., 2017, Mitrovic et al., 2018] and
removing redundant elements from DNA sequencing [Libbrecht et al., 2018]. For a more de-
tailed description of theses applications in machine learning and signal processing, we refer the
interested reader to Tohidi et al. [2020].

Although producing an exactly optimal solution for constrained submodular maximization is
computationally hard [Nemhauser and Wolsey, 1978], the seminal work of Nemhauser et al. [1978]
showed that the natural greedy algorithm produces a (1�e

�1)�1-approximate solution when the
objective function is monotone submodular and the constraint set is a cardinality constraint;
however, the greedy algorithm may perform much worse in more complex scenarios, e.g., when
the objective is non-monotone or the constraint is more involved. Most existing algorithms
developed for these more complicated settings can be grouped into a few categories: repeated
greedy procedures, local search techniques, and relax-and-round methods which go through a
continuous relaxation of the problem. Unfortunately, these techniques tend to be quite slow, and
moreover, some of them are quite complex, making their implementation challenging Buchbinder
and Feldman [2018].

In this paper, we propose subsampling as a simpler alternative to existing algorithmic tech-
niques. In particular, we present two algorithms which use subsampling to achieve better ap-
proximation guarantees than existing techniques at a fraction of the computational costs. At
the heart of our algorithms is a carefully designed—but simple to implement—subsampling of
the ground set. Interestingly, our algorithms naturally produce state-of-the-art results for both
monotone and non-monotone objective functions; which is rare for a submodular maximization
algorithm.

Our first algorithm, SampleGreedy, is designed for maximizing a submodular function
subject to a p-extendible system. The algorithm achieves a (p+1)2/p = p+2+o(1) approximation
guarantee (which is nearly tight for this problem by a result of Feldman et al. [2017]) and uses
only O(n + nk

p
) function evaluations and feasibility queries, where n is the size of the ground set

and k is the largest feasible set. The technique is simple: independently sample elements from
the ground set and run the greedy algorithm. Moreover, the approximation guarantee improves
to p + 1 or p when the function is monotone or linear, respectively. Our second algorithm,
Sample-Streaming, is designed for maximizing a submodular function subject to a p-matchoid
constraint in the streaming setting where elements arrive one at a time and only a small working
memory is kept. Sample-Streaming achieves a 4p+2�o(1) approximation ratio in this setting
and uses O(k) memory. To process the arrival of every element the algorithm uses, in expectation,
O(km/p) function evaluations and matroid feasibility queries, where m is the number of matroids
used to define the p-matchoid. We also note that the approximation ratio improves to 4p for
monotone functions.

We empirically demonstrate the e↵ectiveness of our subsampling based algorithms for video
summarization and movie recommendation tasks with real datasets. We show that our algorithms
are competitive with respect to existing algorithms, but require a fraction of the computational
cost.

Organization. Section 2 contains a brief summary of related works on constrained submodular
maximization as well as a comparison of our new results with these works. We review preliminary
definitions in Section 3. Section 4 presents and analyzes our subsampling algorithms, focusing on
the o✏ine algorithm in Sections 4.1 and the streaming algorithm in Section 4.2. In Section 5, we
empirically evaluate the performance of our algorithms against existing methods on real datasets.
Finally, we provide concluding remarks in Section 6.

2

Algorithm Function Approx. Ratio Query Complexity Reference

Deterministic Monotone p + 1 O(nk) Fisher et al. [1978]

Deterministic Non-monotone ⇡ 2p O(nkp) Mirzasoleiman et al. [2016a]

Deterministic Non-monotone ⇡ 3p O(nkp) Gupta et al. [2010]

Deterministic Non-monotone p + O(
p
p) O(nk

p
p) Feldman et al. [2017]

Randomized Non-monotone (p+1)2

p
= p+ 2 + o(1) O(n + nk/p) SampleGreedy (this paper)

Randomized Monotone p + 1 O(n + nk/p) SampleGreedy (this paper)

Table 1: Greedy algorithms for submodular maximization subject to a p-extendible constraint.

2 Related Work

In this section, we briefly survey the most relevant related work on constrained submodular
function maximization. In what follows, n is the size of the ground set, p is in reference to
p-extendible systems or p-matchoids, and k is the size of the largest independent set.1

The most relevant works for comparing our SampleGreedy algorithm are the repeated
greedy algorithms, which have been historically developed for a slightly broader class of con-
straints known as p-systems. Fisher et al. [1978] showed that the natural greedy algorithm
achieves a (p + 1) approximation for maximizing a monotone submodular function subject to a
p-system. Algorithms for the non-monotone variant of this problem were developed only much
more recently and rely on repeated applications of the greedy algorithm. Gupta et al. [2010]
showed that iteratively running the greedy algorithm on the constrained problem followed by
an unconstrained optimization on the greedy solution results in an approximation guarantee of
roughly 3p for general non-monotone submodular functions, while requiring O(nkp) function
evaluations and independence oracles queries. Using a di↵erent analysis, Mirzasoleiman et al.
[2016a] improved the approximation guarantee of this algorithm to roughly 2p. Feldman et al.
[2017] showed that an improved approximation guarantee of p + O(

p
p) is possible with fewer

iterations of the repeated greedy procedure. The main drawback of all these algorithms is the
large number of function evaluation and independence oracle queries they require, which grows
unfavorably with p. Our proposed subsampling based algorithm, SampleGreedy, significantly
improves upon these algorithms in the case of p-extendible systems in two ways: the oracle
complexity is greatly reduced and the approximation guarantee is improved. A summary and
comparison of these algorithms are presented in Table 1.

Local search algorithms have also been proposed for maximization over various subclasses of
p-extendible systems. Lee et al. [2010b] developed a local search method which attains a p + "

approximation for maximizing a monotone submodular function subject to the intersection of p

matroids using a number of evaluations and independence oracle queries which is polynomial in
n and exponential in 1

"
. They also showed how to use this algorithm to obtain a p + 1 + 1

p+1
+ "

approximation for non-monotone objectives, improving over a (p+ 2+ 1

p
+ ") approximation due

to Lee et al. [2010a]. Feldman et al. [2011b] showed that the same results can also be obtained
for maximization over a p-exchange system, which is a di↵erent subclass of p-extendible systems.
For p � 4, the last approximation guarantee was improved to (p + 3)/2 + " by Ward [2012].
Despite running in polynomial time, these local search algorithms have very large oracle queries
complexity, and so they are mostly of theoretical interest.

There has also been a long sequence of works which aim to obtain a tighter approximation

1These terms, along with a precise notion of oracle complexity, are defined in Section 3.

3

guarantees for the special case of matroid constraints. Such methods rely on approximately
optimizing continuous extensions of the discrete submodular objective, followed by rounding to
obtain a discrete solution. The seminal work of Călinescu et al. [2011] showed that this technique
achieves the tight (1� e

�1)�1 approximation ratio for maximizing a monotone submodular func-
tion subject to a matroid constraint. In the non-monotone setting, a long series of work [Vondrák,
2013, Oveis Gharan and Vondrák, 2011, Feldman et al., 2011a, Ene and Nguyen, 2016, Buch-
binder and Feldman, 2019] has further developed these techniques to obtain a 2.59 approximation
ratio, but the best inapproximability result is still slightly further away at 2.09 [Oveis Gharan
and Vondrák, 2011]. Although these algorithms achieve tighter approximation guarantees for the
special case of matroids, they su↵er from a high evaluation oracle complexity due to the sampling
techniques they use to obtain gradient estimates for the continuous extension. A more recent line
of work suggests some techniques to (partially) remedy this problem [Badanidiyuru and Vondrák,
2014, Buchbinder et al., 2016, Mokhtari et al., 2018, Korula et al., 2018, Buchbinder et al., 2019,
Ene and Nguyen, 2018]. Finally, we remark that [Mirzasoleiman et al., 2015] devised a di↵er-
ent randomized subsampling technique which achieves a (1 � e

�1 � ")�1 approximation ratio
using O(n log 1

"
) evaluation queries for monotone submodular objectives under the cardinality

constraint, improving upon the query complexity of the greedy algorithm.
Additional recent work in constrained submodular maximization has focused on the stream-

ing environment, where data points appear one at a time and centralized storage capacity is
limited. A streaming algorithm for monotone submodular maximization under a cardinality con-
straint was presented by Badanidiyuru et al. [2014], which achieves a 1/2�" approximation using
O("�1

k log k) memory. Recently, Kazemi et al. [2019] presented modification of this algorithm
which reduces the memory complexity to O(k/"). A di↵erent series of work [Chakrabarti and
Kale, 2015, Chekuri et al., 2015] used a di↵erent technique to provide a 4p approximation for
monotone submodular maximization subject to p-matchoid constraints. The first streaming algo-
rithm for non-monotone submodular maximization was given by Buchbinder et al. [2015], whose
randomized algorithm achieves 11.197 approximation for non-monotone maximization under a
cardinality constraint. This was shortly after improved by Chekuri et al. [2015], who presented a
randomized streaming algorithm for non-monotone maximization under p-matchoid constraints
which achieves an approximation ratio of (5p + 2 + 1/p)/(1 � ") and a deterministic algorithm
which achieves a slightly worse approximation ratio of (9p+O(

p
p))/(1� ") but is more memory

and update e�cient. Recently, Mirzasoleiman et al. [2018] proposed a deterministic algorithm
which they claim achieves an approximation ratio of 4p + 4

p
p + 1 and uses O(k

p
p) memory;

however, Haba et al. [2020] pointed out several errors in their analysis and so the guarantees of
Mirzasoleiman et al. [2018] may not hold. While the monotone algorithms mentioned above are
quite e�cient in terms of memory and update cost, the non-monotone algorithms are much less
e�cient in these aspects, having unfavorable dependence on p or " terms. In contrast, our ran-
domized streaming algorithm, Sample-Streaming, achieves an improved approximation ratio
of 4p + 2 � o(1) for non-monotone maximization over a p-matchoid constraint using only O(k)
memory and O(km/p) expected evaluation and independence queries per iteration. With a minor
modification to the algorithm, this approximation ratio improves to 4p for monotone functions.
A summary and comparison of these algorithms is given in Table 2

1The memory and query complexities of the algorithm of Mirzasoleiman et al. [2018] have been calculated
based on the corresponding complexities of the algorithm of [Chekuri et al., 2015] for monotone objectives and the
properties of the reduction used by [Mirzasoleiman et al., 2018]. We note that these complexities do not match
the memory and query complexities stated by [Mirzasoleiman et al., 2018] for their algorithm.

4

Algorithm Function
Approx.

Ratio
Memory

Queries per

Element
Reference

Deterministic Monotone 4p O(k) O(km) Chekuri et al. [2015]

Randomized Non-monotone 5p+2+1/p
1�"

O(k

"2
log k

"
) O(k

2
m

"2
log k

"
) Chekuri et al. [2015]

Deterministic Non-monotone 9p+O(
p

p)
1�"

O(k

"
log k

"
) O(km

"
log k

"
) Chekuri et al. [2015]

Randomized Monotone 4p O(k) O(km/p) Sample-Streaming(this paper)

Randomized Non-monotone 4p + 2 � o(1) O(k) O(km/p) Sample-Streaming(this paper)

Table 2: Streaming algorithms for submodular maximization subject to a p-matchoid constraint.

3 Preliminaries

In this section, we describe the mathematical formulation of the constrained submodular maxi-
mization problem and preliminary definitions.

Let N be a finite set of size n, which we refer to as the ground set. The objective functions
are real-valued set functions of the form f : 2N ! R, which assign a real number to each set
S ✓ N . Such a function f is submodular if

f(A [{e})� f(A) � f(B [{e})� f(B) (1)

for all sets A ✓ B ✓ N and element e /2 B. Inequality (1) is also referred to as the diminishing
returns property. Indeed, when f is interpreted as a utility, (1) states that the marginal gain
in utility of an element e 2 N decreases as the current set grows. For shorthand, we write the
marginal gain of an element as f(e | S) , f(S [{e})� f(S) and the marginal gain of adding an
entire set as f(A | S) , f(S [A) � f(S). A function f is monotone if f(A)  f(B) for all sets
A ✓ B. A function f is linear if (1) holds with equality for all A ✓ B and e /2 B.

We now describe the structure of the constraints we consider in this paper. Given a ground
set N and a collection of sets I ✓ 2N , we say that the pair (N , I) is an independence system
if ? 2 I and A ✓ B, B 2 I implies that A 2 I. A set A 2 I is called independent, and a
set B /2 I is called dependent. An independent set A 2 I which is maximal with respect to
inclusion is called a base; that is, B 2 I is a base if A 2 I and B ✓ A imply that B = A.
Given an independent set A 2 I, an extension is an independent set B 2 I that contains A,
i.e., A ✓ B. There is a hierarchy of classes of independence systems which are considered in the
literature as constraint families. Our results only require two such classes: p-extendible systems
and p-matchoids. However, for the sake of context, we present here a few additional central
classes from the hierarchy.

An independence system (N , I) is a p-system if for every set S ✓ N , the ratio |B1|/|B2| is
upper bounded by p for every two bases B1 and B2 of (S, 2S \ I). The class of p-systems is
the most general class usually included in the hierarchy of independence systems. An important
class included in it is the class of p-extendible systems. An independence system is a p-extendible
system if for all A 2 I, extension B 2 I of A and element e /2 A such that A [{e} 2 I, there
exists a set Y ✓ B \ A with |Y |  p such that B \ Y [{e} 2 I. Intuitively, an independence
system is p-extendible if adding an element e to an independent set B requires the removal of
at most p other elements in order to keep the resulting set independent. Another important
class of independence systems is the class of matroids. While the usual definition of matroids
is based on linear algebra intuition, [Mestre, 2006] showed that this definition is equivalent to
the definition of a 1-extendible system. An independence system (N , I) is a p-matchoid if there
exist m matroids (N1, I1), . . . (Nm, Im) such that N = [m

i=1
Ni, each element e 2 N appears in

5

p-system

p-extendible system

p-matchoid

p-Matroid

intersection

Matroid

b-Matching

Matching

Figure 1: A visualization of the hierarchy of independence systems.

no more than p ground sets N1, . . . ,Nm and I = {S 2 N | 8i=1,...,m Ni \S 2 Ii}. The hierarchy
of the classes of independence systems mentioned above is presented below. We note that all the
inclusions between these classes are known to be strict.

matroid ⇢ intersection of p matroids ⇢ p-matchoid ⇢ p-extendible ⇢ p-system .

This hierarchy of independence systems is quite rich and expressive, containing many classic
examples which are useful for modeling applications. The simplest example is the k-cardinality
constraint, where I = {S | S ✓ N and |S|  k}, which is also referred to as the uniform
matroid. The partition matroid is specified by a partition P1, P2, . . . P` ✓ N ([`

i=1
Pi = N and

Pi \ Pj = ? for i 6= j) and integers k1, k2 . . . k` such that I = {S | |Pi \ S|  ki, i = 1, 2 . . . `}.
The graphic matroid is specified by an undirected graph G = (V, E) where N = E and I =
{S ✓ E | S does not contain a cycle}. Matching constraints on subsets of edges of a graph—and
more generally, b-matchings—form 2-matchoids. Moreover, a variety of scheduling constraints
may be represented as p-extendible systems [Mestre, 2006]. Similarly to a partition matroid, the
independence system given by subsets P1, P2 . . . P` ✓ N (not necessarily a partition) and integers
k1, k2 . . . k` such that I = {S | |Pi \ S|  ki i = 1, 2 . . . `} is the intersection of ` matroids (and
thus, also an `-matchoid). Finally, we remark that an example of an independence system which
is p-extendible but not a p-matchoid is a knapsack constraint in which the sizes of all the elements
are between 1 and p. A visualization of the hierarchy of independence systems is presented in
Figure 1.

The problem we are interested in in this paper is the mathematical program

max
S2I

f(S) , (2)

where f is non-negative and submodular on a ground set N and (N , I) is a p-extendible system.
We denote an arbitrary set achieving this maximum by OPT. We say that a set S 2 I is an
↵-approximation for some ↵ � 1 if

f(S) � 1

↵
· f(OPT) .

We assume that both the objective function f and the independence system I are accessed by
the algorithms through oracles; that is, given a set S there is a value oracle which returns the

6

value f(S) and an independence oracle which returns whether or not S 2 I. Our goal is to design
an algorithm which makes few queries to the value and independence oracles and produces a set
that is an ↵-approximation for as small ↵ � 1 as possible.

In many practical applications, when the data is too large to be randomly accessed, o✏ine
algorithms are impractical. The streaming model of computation is an alternative computational
paradigm for such settings. In this model, data points arrive in an arbitrary order and only a
small amount of memory may be kept. More formally, let the elements of the ground set be
arbitrarily ordered as N = {u1, . . . , un}, and let Nt = {u1, . . . , ut} be the first t elements in
this ordering. An algorithm A for the model is presented with each element u1, u2 . . . un in a
sequential manner. The algorithm A maintains a set M of the elements it currently keeps in its
memory. Let us denote by Mt the set M immediately after the processing of ut by the algorithm.
We note that Mt must be a subset of Nt, and also that it must be a subset of Mt�1[{ut} because
once an element leaves M , it is forgotten and cannot be added to M later on. Naturally, A is
allowed to query the value and independence oracle queries only with respect to subsets S of the
current M , because M includes all the elements kept in A’s memory.

To be an ↵-approximation algorithm, the algorithm A must be able—after viewing every
element et—to produce a set St ✓ Mt that is independent (St 2 I) and is an ↵-approximation,
i.e.,

f(St) �
1

↵
· max

S✓Nt
S2I

f(S) .

The performance of a streaming algorithm is judged based on its approximation ratio ↵, its
update cost (which is the number of evaluation and independence oracle queries it makes after
viewing each element), and the memory size maxt |Mt|. In this paper, we consider streaming
algorithms only for the case in which the constraint is defined by a p-matchoid, and we denote by
m the number of matroids used to defined the p-matchoid. As is standard in the literature, we
assume the streaming algorithm has access to an independence oracle for each of the m defining
matroids when considering a p-matchoid.

In the context of streaming algorithms, given an element ui 2 N and sets S, T ✓ N , we
use the shorthands f(ui : S) = f(ui | S \ {u1, u2, . . . , ui�1}) and f(T : S) =

P
u2T

f(u : S).
Intuitively, f(u : S) is the marginal contribution of u with respect to the part of S that arrived
before u itself.

4 Main Results

In this section, we present two algorithms which use the subsampling technique for constrained
submodular maximization. The subsampling technique is simple: the algorithm only considers a
random subset N 0 ✓ N of the ground set, where each element appears independently with some
probability q, which is determined solely by the complexity of the constraint set p. Sample-
Greedy is proposed for the usual o✏ine setting where random access to the data is assumed
and Sample-Streaming is proposed for the streaming setting, where elements arrive one at
a time and only a small dataset is maintained in memory. Our theoretical guarantees on the
performance of these algorithms are given below.

Theorem 1. When q = (p + 1)�1, SampleGreedy achieves a (p+1)
2

p
-approximation ratio for

the problem of maximizing a non-negative submodular function f subject to a p-extendible system.
Moreover, this approximation ratio improves to p + 1 when f is monotone. When f is linear
and q = p

�1, SampleGreedy achieves a further improved p-approximation ratio. In all cases,
SampleGreedy uses in expectation O(nk/p) calls to the evaluation and independence oracles.

7

Theorem 2. When c = 1 and q = ((1 + c)p + 1)�1, Sample-Streaming achieves an approx-
imation ratio of at most (2p + 2

p
p(p + 1) + 1) = 4p + 2 � o(1) for maximizing a non-negative

submodular function f subject to a p-matchoid system (N , I) in the streaming setting. When
c =

p
1 + 1/p and f is monotone, Sample-Streaming achieves an improved approximation

ratio of at most 4p. In both cases, Sample-Streaming requires O(k) memory and O(km/p)
evaluation and independence oracle queries in expectation when processing each arriving element.

We remark that the (p+1)2/p = p+2+o(1) approximation ratio of SampleGreedy is nearly
tight, due to Theorem 4 of [Feldman et al., 2017], which shows that no randomized algorithm can
achieve an approximation better than p+1/2 for the problem using polynomially many queries to
the evaluation and independence oracles. Although Sample-Streaming has an approximation
guarantee which is worse than SampleGreedy and applies to a subclass of constraints, its
approximation ratio is currently the best among known algorithms for the problem setting.
Moreover, there is no known non-trivial streaming algorithm for maximizing even a monotone
submodular function subject to a p-extendible constraint. The di↵erence between the guarantees
of SampleGreedy and Sample-Streaming is of course aligned with the intuitive expectation
that the streaming setting should be more challenging than the o✏ine setting.

In addition to its simplicity, one of the more attractive aspects of the subsampling technique is
the way in which it can be analyzed to provide approximation guarantees for both the monotone
and non-monotone settings in a unified manner. The main technical result which makes this
possible is due to Buchbinder et al. [2014].

Lemma 3 (Lemma 2.2 of [Buchbinder et al., 2014]). Let g : 2N ! R�0 be a non-negative
submodular function, and let B be a random subset of N containing every element of N with
probability at most q (not necessarily independently). Then, E[g(B)] � (1� q) · g(?).

Suppose that S is the random set returned by an algorithm. When using the subsampling
technique, this lemma provides a nontrivial lower bound on the term E[f(S[OPT)]. In particular,
we can apply the lemma to the function defined by g(T) = f(T [OPT) 8 T ✓ N , whose
submodularity and non-negativity is guaranteed by the same conditions on f . The subsampling
technique implies that each element of N appears in S with probability at most q, and therefore,

E[f(S [OPT)] = E[g(S)] � (1� q) · g(?) = (1� q) · f(OPT) .

This allows for a basically interchangeable step when lower bounding the term E[f(S [OPT)]
in the algorithmic analysis for monotone and non-monotone functions. If f is monotone, then
we have E[f(S [OPT)] � f(OPT) by monotonicity; otherwise, we invoke the subsampling
technique to obtain E[f(S [OPT)] � (1� q) · f(OPT) by Lemma 3. Note that Lemma 3 alone
is not enough to guarantee any approximation factor. Rather, Lemma 3 shows that subsampling
algorithms for monotone optimization can be converted into subsampling algorithms for non-
monotone optimization with a controlled loss in the approximation ratio. The powerful—and
arguably, shocking—result is that this controlled loss in approximation yields nearly optimal
approximation ratios in the o✏ine setting.

Our subsampling technique is di↵erent from that proposed by [Mirzasoleiman et al., 2015],
which was developed for the problem of maximizing a monotone submodular function under a
cardinality constraint. The subsampling technique of [Mirzasoleiman et al., 2015] works by sam-
pling a new subset at each iteration and greedily choosing the element in the random subset with
highest marginal gain. The analysis works by guaranteeing that if the sample size is large enough,
then it is likely that an element with su�ciently large marginal gain is chosen by the algorithm.
On the other hand, our subsampling technique in SampleGreedy is quite di↵erent in that it
requires only one subsampling of the ground set at the beginning of the algorithm. Moreover, our

8

proposed subsampling technique admits guarantees in more general problem settings, including
non-monotone objectives and p-extendible system constraints.

4.1 O✏ine Algorithm: SampleGreedy

In this section, we present SampleGreedy, a subsampling algorithm for the o✏ine setting. The
idea is simple: first independently sample elements to obtain a subsampled ground set, then run
the vanilla greedy algorithm. We present SampleGreedy as Algorithm 1 here.

Algorithm 1: SampleGreedy (q, f,N , I)

1 Let N 0 ? and S ?.
2 for each u 2 N do

3 with probability q do

4 Add u to N 0.
5 end

6 while there exists u 2 N 0 such that S + u 2 I and f(u | S) > 0 do

7 Let u 2 N 0 be the element of this kind maximizing f(u | S).
8 Add u to S.
9 end

10 return S.

For analysis purposes, we introduce an auxiliary algorithm, Algorithm 2. While Sample-
Greedy first independently samples elements from the ground set N and then runs a greedy
maximization, Algorithm 2 runs a greedy maximization over the entire ground set and indepen-
dently samples the greedily chosen element at each iteration. We will show that both algorithms
produce the same distribution over their output sets S ✓ N because the sampling of elements
is independent from the greedy maximization. Thus, approximation guarantees obtained for
Algorithm 2 also hold for SampleGreedy.

Algorithm 2: Equivalent-SampleGreedy (q, f,N , I)

1 Let N 0 N , S ?, O OPT, and Ou ?, Su ? for each u 2 N .
2 while there exists an element u 2 N 0 such that S + u 2 I and f(u | S) > 0 do

3 Let u 2 N 0 be the element of this kind maximizing f(u | S), and let Su S.
4 with probability q do

5 Add u to S and O.
6 Let Ou ✓ O \ S be the smallest set such that O \ Ou 2 I.
7 otherwise

8 if u 2 O then let Ou {u}.
9 else let Ou ?.

10 Remove the elements of Ou from O.
11 Remove u from N 0.
12 end

13 return S.

As in SampleGreedy, S is the current solution to which elements are incrementally added.
Algorithm 2 also maintains several auxiliary sets for analysis purposes, such as O and the sets Ou,
Su for each element u in N . We use these sets in the analysis of the algorithm below, however,
they do not a↵ect the output distribution (or other behavior) of Algorithm 2.

9

We now establish the equivalence between SampleGreedy and Algorithm 2. It is important,
however, to note that for the equivalence to hold we must make some technical assumption about
the tie-breaking rule used by the two algorithms. In the proof below we assume that this tie-
breaking rule is based on an ordering of the ground set. In other words, suppose that the ground
set is (arbitrarily) ordered N = {u1, u2 . . . un} and that both algorithms break ties in favor of
the element appearing earlier in this order.2

Lemma 4. Let S
1 and S

2 be the random sets produced by SampleGreedy and Algorithm 2,
respectively. These random sets have the same probability distribution.

Proof. Proof Let u
1
1
, u

1
2
. . . u

1

k1
be the random sequence of elements chosen by SampleGreedy,

and let u
2
1
, u

2
2
. . . u

2

k2
be the random sequence of elements chosen by Algorithm 2. We prove

that these two random sequences have the same distribution, which implies the lemma since
S
1 = {u1

1
, u

1
2
. . . u

1

k1
} and S

2 = {u2
1
, u

2
2
. . . u

2

k2
}.

Observe that both SampleGreedy and Algorithm 2 require at most n random (biased)
bits, as each element from the ground set is sampled at most once. This occurs at Line 3 in
SampleGreedy and at Line 4 in Algorithm 2. For each element ui 2 N , let bi 2 {0, 1} be the
corresponding random bit that takes the value 1 if ui is accepted in the sampling step and 0 if ui is
rejected. Because the random sampling at Line 3 in SampleGreedy and at Line 4 in Algorithm 2
are independent of the algorithms’ previous and current states, the bits b1, b2, . . . bn 2 {0, 1}n are
independent. Thus, we may assume for the sake of the proof that these bits are chosen before
the execution of the algorithms. Note also that, by definition of the sampling probabilities in the
algorithms, each bit bi takes the value 1 with probability q and 0 with probability 1� q.

We show below that conditioned on any fixed realization of the random bits b1, b2 . . . bn, the
two sequences u

1
1
, u

1
2
. . . u

1

k1
and u

2
1
, u

2
2
. . . u

2

k2
, produced by SampleGreedy and Algorithm 2 are

the same. We do this by induction on the index of the element in the sequence. In other words,
let us denote for every i 2 {1, 2} and 0  j  ki,

S
i

j
= {ui

1
, u

i

2
. . . u

i

j
} .

Then, we prove below by induction that j  k1 if and only if j  k2, and that S
1

j
= S

2

j
whenever

j  k1. Before starting the proof by induction, however, let us note that it implies the lemma
by the law of total probability, i.e., summing over all fixed realizations of the bits b1, b2, . . . bn.

Clearly, 0  k1, k2 and S
1
0

= S
2
0

= ?, which establishes the base of the induction. Assume
now that the induction hypothesis holds for some j�1 � 0, and let us prove it for j. If j�1 > k1,
then the induction hypothesis implies j > j�1 > max{k1, k2}, and there is nothing left to prove.
Thus, let us assume j � 1  k1, which by the induction hypothesis implies j � 1  k2 and
S
1

j�1
= S

2

j�1
. We denote the common value of the last two sets by A, i.e., A = S

1

j�1
= S

2

j�1
. We

note that SampleGreedy chooses its next element from the set of elements obeying u 2 N 0,
A + u 2 I and f(u | A) is positive and maximal. Since u 2 N 0 if and only if bu = 1, this implies
that SampleGreedy chooses uj to be the earliest element in the tie-breaking order from the set

arg max
ui2N
bi=1

A+ui2I

{f(u | A) | f(u | A) > 0} , (3)

whenever this set is non-empty. Otherwise, if the set is empty, then SampleGreedy terminates.
Now, consider the element which is chosen next by Algorithm 2. This element is chosen from the

2There are of course other natural ways in which the tie-breaking rule can be defined, and the proof can be
made to work with many of them. For example, the proof goes through if the tie-breaking rule picks at every step
a uniformly random element out of all the elements that can be picked at this point and maximize the marginal
gain.

10

set of elements obeying u 2 N 0, A + u 2 I and f(u | A) is positive and maximal. However, if
bu = 0, then the element is rejected and the algorithm continues to the next element in the set
(according to the tie-breaking order). Thus, Algorithm 2 also chooses the earliest element from
the set (3) if this set is non-empty; and terminates if the set is empty. Therefore, if the set (3) is
empty, then k1 = k2 = j � 1 < j, and if it is not empty, then j  min{k1, k2} and S

1

j
= S

2

j
. In

either case the induction step holds, which completes the proof by induction.

Now we return to the task of analyzing Algorithm 2. Let us explain the intuition behind
the auxiliary sets O, Ou and Su appearing in this algorithm. The set O begins as an optimal
solution and is updated throughout the algorithm to maintain independence. We say that an
element u 2 N is considered by Algorithm 2 if it is chosen in Line 3 at some iteration. An
element u 2 N is considered at most once, and perhaps not at all. If u is considered, then Su

is the solution at the iteration in which this happens and Ou is the subset of O which must be
removed at this iteration to maintain independence and a few other properties; otherwise, if u is
not considered, then Su and Ou are empty. More formally, Lemma 5 gives several key properties
of these auxiliary sets.

Lemma 5. The following three properties hold throughout Algorithm 2.

(P1) O is an independent set.

(P2) Every element of S is an element of O.

(P3) Every element of O \ S is an element not yet considered by Algorithm 2.

Proof. Proof It is clear that all three properties hold at the beginning of the algorithm when
O = OPT and S = ?. Let us now show that these properties are maintained throughout
Algorithm 2 by induction over the iterations of the algorithm. Suppose that u is the element
being considered at some iteration, S and O are the sets at the beginning of this iteration
(satisfying properties (P1), (P2), and (P3) by the inductive hypothesis) and S

0 and O
0 are these

sets at the end of the iteration.

Case 1 Suppose that u is chosen to be added to the current solution. By (P1) and (P2), O

is an extension of S, and by Line 3, S [{u} 2 I. Thus, the algorithm is able to find a set
Ou ✓ (O[{u})\ (S[{u}) such that O

0 = (O [{u})\Ou 2 I (Ou = O \ (S[{u}) is one possible
option). Thus, O

0 remains independent, and (P1) is maintained. We have that S ✓ O by (P2).
The element u is added to both S and O, and the only elements which are removed from O are
not in S. Thus, S

0 ✓ O
0 and so (P2) is maintained at well. By (P3), all elements in O\S had not

yet been considered by Algorithm 2 at the beginning of the iteration. The only element which
is considered in this iteration is u, and it is in both O

0 and S
0, so it is not in O

0 \ S
0. Hence,

the elements in O
0 \S

0 have still not been considered by Algorithm 2 at the end of iteration, and
(P3) is maintained.

Case 2 Consider now the case that u is not added to the current solution. In this case,
O

0 ✓ O, and therefore, it remains independent and (P1) is maintained. Because S ✓ O by
(P2), u /2 S

0 = S, and the only element which is possibly removed from O is u, we have that all
elements in S

0 belong to O
0, and thus, (P2) is maintained. Finally, by (P3), none of the elements

in O \ S were considered prior to this iteration. By Line 8, u does not appear in O
0 \ S

0. Since u

is the only element considered during the current iteration and O
0 \ S

0 = (O \ S) \ {u}, property
(P3) is maintained.

11

Throughout the remainder of this section, every expression involving S or O is assumed to
refer to the final values of these sets. The following lemma provides a deterministic lower bound on
f(S). Intuitively, this lemma follows from the observation that, when an element u is considered
by Algorithm 2, its marginal contribution is at least as large as the marginal contribution of any
element of O \ S.

Lemma 6. f(S) � f(S [OPT)�
P

u2N
|Ou \ S| · f(u | Su).

Proof. Proof We first show that f(S) � f(O), then we lower bound f(O) to complete the proof.
By (P1) and (P2) of Lemma 5, we have O 2 I and S ✓ O, and thus, S + v 2 I for all
v 2 O \ S because (N , I) is an independence system. Consequently, the termination condition
of Algorithm 2 guarantees that �f(v | S)  0 for all v 2 O \S. To use these observations, let us
denote the elements of O \ S by v1, v2, . . . , v|O\S| in an arbitrary order. Then

f(O) = f(S) +

|O\S|X

i=1

f (vi | S [{v1, . . . , vi�1})  f(S) +

|O\S|X

i=1

f (vi | S)  f(S) ,

where the first inequality follows by the submodularity of f , and the second inequality follows
from the termination condition.

It remains to prove the lower bound on f(O). By definition, O is the set obtained from OPT
after the elements of [u2NOu are removed and the elements of S are added. Additionally, an
element that is removed from O is never added to O again, unless it becomes a part of S. This
implies that the sets {Ou \ S}

u2N are disjoint, and that O can also be written as

O = (S [OPT) \ [u2N (Ou \ S) . (4)

Denoting the elements of N by u1, u2, . . . , un in an arbitrary order, and using the above, we get

f(O) = f(S [OPT)�
nX

i=1

f
�
Oui \ S | (S [OPT) \ [1ji(Ouj \ S)

�
(Equality (4))

� f(S [OPT)�
nX

i=1

f(Oui \ S | Sui)

� f(S [OPT)�
nX

i=1

X

v2Oui\S

f(v | Sui)

= f(S [OPT)�
X

u2N

X

v2Ou\S

f(v | Su) ,

where the first inequality follows from the submodularity of f because Sui ✓ S ✓ (S [OPT) \
[u2N (Ou \ S), and the second inequality follows from the submodularity of f as well.

To complete the proof of the lemma, we need one more observation. Consider an element u for
which Ou is not empty. Since Ou is not empty, we know that u was considered by the algorithm
at some iteration. Moreover, every element of Ou was also a possible candidate for consideration
at this iteration, and thus, it must be the case that u was selected for consideration because its
marginal contribution with respect to Su is at least as large as the marginal contribution of every
element of Ou. Plugging this observation into the last inequality, we get the following desired

12

lower bound on f(O).

f(O) � f(S [OPT)�
X

u2N

X

v2Ou\S

f(v | Su)

� f(S [OPT)�
X

u2N

X

v2Ou\S

f(u | Su)

= f(S [OPT)�
X

u2N
|Ou \ S| · f(u | Su) .

While the previous lemma was true deterministically, the next two lemmata are statements
about expected values. At this point, it is convenient to define some random variables. For every
element u 2 N , let Xu be an indicator for the event that u is considered by Algorithm 2 in one
of its iterations.

Lemma 7. Suppose that the sampling probability is q = 1

p+1
. Then, for every element u 2 N ,

E[|Ou \ S| · f(u | Su)]  p

p + 1
· E[Xuf(u | Su)] . (5)

Proof. Proof Let Eu be an arbitrary event specifying all random decisions made by Algorithm 2
up until the iteration in which it considers u if u is considered, or all random decisions made
by Algorithm 2 throughout its execution if it never considers u. By the law of total probability,
since these events are disjoint, it is enough to prove Inequality (5) conditioned on every such
event Eu. If Eu implies that u is not considered, then both |Ou| and Xu are 0 conditioned on
Eu, and thus, the inequality holds as an equality. Thus, we may assume in the rest of the proof
that Eu implies that u is considered by Algorithm 2. Notice that conditioned on Eu the set Su is
deterministic and Xu takes the value 1. Denoting the deterministic value of Su conditioned on
Eu by S

0
u
, Inequality (5) reduces to

E[|Ou \ S| | Eu] · f(u | S
0
u
)  p

p + 1
· f(u | S

0
u
) .

Since u is being considered, it must hold that f(u | S
0
u
) > 0, and thus, it su�ces to show that

E[|Ou \ S| | Eu]  p

p+1
. There are now two cases to consider.

Case 1 If Eu implies that u 2 O at the beginning of the iteration in which Algorithm 2 considers
u, then Ou = ? if u is added to S and Ou = {u} if u is not added to S. As u is added to S with
probability 1

p+1
, this gives

E[|Ou \ S| | Eu] =
1

p + 1
· |?| +

✓
1� 1

p + 1

◆
· |{u}| =

p

p + 1
,

and we are done.

Case 2 Consider now the case that Eu implies that u 62 O at the beginning of the iteration in
which Algorithm 2 considers u. Because u is being considered, S [{u} is independent and by
(P2) and (P1) of Lemma 5, O is an extension of S. This implies that Ou has size at most p

because (N , I) is p-extendible. As u is added to S with probability 1

p+1
, we get in this case

E[|Ou \ S| | Eu]  1

p + 1
· p +

✓
1� 1

p + 1

◆
· |?| =

p

p + 1
.

13

The next lemma relates the expected marginal gains of considered elements in individual
iterations to the final expected value of f(S) produced by the algorithm.

Lemma 8. q ·
P

u2N
E[Xuf(u | Su)]  E[f(S)].

Proof. Proof For each u 2 N , let Gu be a random variable whose value is equal to the increase
in the value of S when u is added to S by Algorithm 2. If u is never added to S by Algorithm 2,
then the value of Gu is simply 0. Clearly,

f(S) = f(?) +
X

u2N
Gu �

X

u2N
Gu ,

where f(?) � 0 follows from non-negativity of f . By the linearity of expectation, it su�ces to
show that

E[Gu] = q · E[Xuf(u | Su)] . (6)

As in the proof of Lemma 7, let Eu be an arbitrary event specifying all random decisions made
by Algorithm 2 up until the iteration in which it considers u if u is considered, or all random
decisions made by Algorithm 2 throughout its execution if u is never considered. By the law of
total probability, since these events are disjoint, it is enough to prove that Equality (6) holds
when conditioned on every such event Eu. If Eu is an event that implies that Algorithm 2 does
not consider u, then, by conditioning on Eu, we obtain

E[Gu | Eu] = 0 = q · E[0 · f(u | Su) | Eu] = q · E[Xuf(u | Su) | Eu] .

On the other hand, if Eu implies that Algorithm 2 does consider u, then we observe that Su is a
deterministic set given Eu. Denoting this set by S

0
u
, we obtain

E[Gu | Eu] = Pr [u 2 S | Eu] · f(u | S
0
u
) = q · f(u | S

0
u
) = q · E[Xuf(u | Su) | Eu] ,

where the second equality holds since an element considered by Algorithm 2 is added to S with
probability q.

With these lemmata, we are now ready to prove Theorem 1 in the case of submodular (not
necessarily linear) objectives.

4.1.1 Proof of Theorem 1, Submodular Objectives.

We prove the first part of Theorem 1 concerning submodular functions in this section. The
improved approximation guarantees for linear functions requires a few tighter lemmas, and so we
prove the case of linear functions in the next section (Section 4.1.2).

Theorem 1. As discussed earlier, Algorithms 1 and 2 have identical output distributions, and
so it su�ces to show that Algorithm 2 achieves the desired approximation ratios. Note that
q = 1

p+1
, and therefore,

E[f(S)] � E[f(S [OPT)]�
X

u2N
E[|Ou \ S| · f(u | Su)] (Lemma 6)

� E[f(S [OPT)]� p

p + 1

X

u2N
E[Xu · f(u | Su)] (Lemma 7)

� E[f(S [OPT)]� p · E[f(S)] . (Lemma 8)

14

If f is monotone, then by monotonicity we have that E[f(S [OPT)] � f(OPT). Substituting
this in the expression above yields

E[f(S)] � f(OPT)� p · E[f(S)]

and rearranging this expression yields the desired approximation ratio of p + 1. Suppose now
that f is non-monotone. Note that each element appears in S with probability at most q = 1

p+1
,

and hence, by Lemma 3, we have that E[f(S [OPT)] �
⇣
1� 1

p+1

⌘
f(OPT). Substituting this

into the inequalities above yields

E[f(S)] �
✓

1� 1

p + 1

◆
f(OPT)� p · E[f(S)] ,

and rearranging this expression yields the desired approximation ratio of (p + 1)2/p.
It remains to bound the number of oracle calls required by SampleGreedy. Because

E[|N 0|] = n · q, iterating over each u 2 N 0 and testing S + u 2 I and f(u | S) > 0 re-
quires O (nq) calls to the evaluation and independence oracle. Moreover, because |S| increases
at each iteration, the while loop (Line 6 in Algorithm 1) is repeated at most k times. Using that
q = O(p�1), we have shown that Algorithm 1 requires O(knq) = O (nk/p) calls to evaluation
and independence oracles in expectation.

4.1.2 Proof of Theorem 1, Linear Objectives.

The method for proving the improved approximation guarantees for linear objectives uses es-
sentially the same ideas as in the general submodular setting. However, further care is required
to obtain the p-approximation guarantee. In this section, we prove two lemmata which are
analogous to Lemmata 6 and 7, but tighter in the case of linear functions.

We begin with the following lemma, which corresponds to Lemma 6. For every u 2 N , let Yu

be a random variable which takes the value 1 if u 2 S and, in addition, u does not belong to O

at the beginning of the iteration in which u is considered. In every other case the value of Yu is
0.

Lemma 9. f(S) � f(OPT)�
P

u2N
[|Ou|� Yu]f(u).

Proof. Proof The proof of Lemma 6 begins by showing that f(S) � f(O). This part of the proof
is of course still true. Thus, we only need to show that

f(O) � f(OPT)�
X

u2N
[|Ou|� Yu]f(u) .

Recall that O begins as equal to OPT. Thus, to prove the last inequality it is enough to show
that the second term on its right hand side is an upper bound on the decrease in the value of O

over time. In the rest of the proof we do this by showing that [|Ou|� Yu]f(u) is an upper bound
on the decrease in the value of O in the iteration in which u is considered, and is equal to 0 when
u is not considered at all.

Let us first consider the case that u is not considered at all. In this case, by definition, Ou = ?
and Yu = 0, which imply together [|Ou| � Yu]f(u) = 0 · f(u) = 0. Consider now the case that
u is considered by Algorithm 2. In this case, O is changed during the iteration in which u is
considered in two ways. First, the elements of Ou are removed from O, and second, u is added

15

to O if it is added to S and it does not already belong to O. Thus, the decrease in the value of
O during this iteration can be written as

X

v2Ou

f(v)� Yu · f(u) .

To see why this expression is upper bounded by [|Ou| � Yu]f(u), we recall that in the proof of
Lemma 6 we showed that f(v | Su)  f(u | Su) for every v 2 Ou, which implies, since f is linear,
that f(v)  f(u) for every such element v.

We need one more lemma which corresponds to Lemma 7.

Lemma 10. Suppose that the sampling probability is q = 1

p
. Then, for every element u 2 N ,

E[|Ou|� Yu]  p� 1

p
· E[Xu] . (7)

Proof. Proof As in the proof of Lemma 7, let Eu be an arbitrary event specifying all random
decisions made by Algorithm 2 up until the iteration in which it considers u if u is considered, or
all random decisions made by Algorithm 2 throughout its execution if it never considers u. By
the law of total probability, since these events are disjoint, it is enough to prove Inequality (7)
conditioned on every such event Eu. If Eu implies that u is not considered, then |Ou|, Xu and
Yu are all 0 conditioned on Eu, and thus, the inequality holds as an equality. Thus, we may
assume in the rest of the proof that Eu implies that u is considered by Algorithm 2. Notice that,
conditioned on Eu, Xu takes the value 1. Hence, Inequality (7) reduces to

E[|Ou|� Yu | Eu]  p� 1

p
.

There are now two cases to consider.

Case 1 The first case is that Eu implies that u 2 O at the beginning of the iteration in which
Algorithm 2 considers u. In this case Yu = 0, and in addition, Ou is empty if u is added to S,
and is {u} if u is not added to S. As u is added to S with probability 1

p
, this gives

E[|Ou|� Yu | Eu]  1

p
· |?| +

✓
1� 1

p

◆
· |{u}| =

p� 1

p
,

and we are done.

Case 2 Consider now the case that Eu implies that u 62 O at the beginning of the iteration
in which Algorithm 2 considers u. In this case, if u is not added to S, then we get Yu = 0 and
Ou = ?. In contrast, if u is added to S, then Yu = 1 by definition and |Ou|  p as in the proof
of Lemma 7. As u is added to S with probability 1

p
, we get in this case

E[|Ou|� Yu| | Eu]  1

p
· (p� 1) +

✓
1� 1

p

◆
· |?| =

p� 1

p
.

We are now ready to prove the guarantee of Theorem 1 for linear objectives.

16

Proof. Proof of Theorem 1 for linear objectives. We prove here that the approximation ratio
guaranteed by Theorem 1 for linear objectives is obtained by Algorithm 1 for q = 1/p. As
discussed earlier, Algorithms 1 and 2 have identical output distributions, and so it su�ces to
show that Algorithm 2 achieves this approximation ratio. Since we assume q = 1

p
,

E[f(S)] � f(OPT)�
X

u2N
E[|Ou|� Yu]f(u) (Lemma 9)

� f(OPT)� p� 1

p

X

u2N
E[Xu]f(u) (Lemma 10)

� f(OPT)� (p� 1)E[f(S)] . (Lemma 8)

Rearranging the above inequality completes the proof, as the oracle complexity is unchanged.

4.2 Streaming Algorithm

In this section, we present Sample-Streaming, a subsampling algorithm for the streaming
setting. Sample-Streaming has two parameters: a sampling probability q 2 (0, 1] and an
acceptance parameter c > 0. At a given iteration i = 1, . . . , n, the arriving element ui is
considered for exchange with probability q, and rejected without being considered for an exchange
with probability 1� q. This step acts as an independent subsampling of elements in the stream,
in an analogous manner to the subsampling in SampleGreedy. If the element ui is considered
for exchange, a subroutine Exchange-Candidate3 produces a set Ui ✓ Si of low marginal
contribution such that (S \ Ui) [{ui} is independent. If the marginal contribution of adding
ui to the current solution is large enough compared to the value of the elements of U , then
u is added to the solution and the elements of U are removed. Sample-Streaming and the
subroutine Exchange-Candidate are presented here as Algorithms 3 and 4, respectively.

Algorithm 3: Sample-Streaming (q, f, I1, . . . , Im)

1 Let S0 ?.
2 for every arriving element ui do

3 Let Si Si�1.
4 with probability q do

5 Let Ui Exchange-Candidate(Si�1, ui).
6 if f(ui | Si�1) � (1 + c) · f(Ui : Si�1) then let Si (Si�1 \ Ui) [{ui}.
7 end

8 end

9 return Sn.

Sample-Streaming adds an element u to the current solution if two conditions are satisfied:
first, the element is randomly sampled from the stream in Line 4 and second, the element has
su�cient marginal contribution. These two conditions are checked in this order because it is
more computationally e�cient as it avoids unnecessary oracle calls. However, the order that
these conditions are checked may be swapped without a↵ecting the distribution of outcomes of
the algorithm. In fact, it is easier to analyze the algorithm when these conditions are reversed.
It is also convenient to assume that elements which have su�ciently large marginal contributions

3The subroutine Exchange-Candidate has appeared in a previous work [Chekuri et al., 2015] as a method
for exchanging in a p-matchoid.

17

Algorithm 4: Exchange-Candidate (S, u)

1 Let U ?.
2 for ` = 1 to m do

3 if (S + u) \N` 62 I` then

4 Let X` {x 2 S | ((S � x + u) \N`) 2 I`}.
5 Let x` arg minx2X` f(x : S).
6 Add x` to U .
7 end

8 end

9 return U .

but are not subsampled from the stream are put into a set R. We present Algorithm 5 with these
changes for the purpose of analysis.

Algorithm 5: Equivalent-Sample-Streaming (q, f, I1, . . . , Im)

1 Let S0 ? and R ?.
2 for every arriving element ui do

3 Let Si Si�1.
4 Let Ui Exchange-Candidate(Si�1, ui).
5 if f(ui | Si�1) � (1 + c) · f(Ui : Si�1) then

6 with probability q do Let Si (Si�1 \ Ui) [{ui}.
7 otherwise Add ui to R.
8 end

9 end

10 return Sn.

We now formally show that Sample-Streaming and Algorithm 5 have the same distribution
of returned sets. The proof of equivalence in the streaming setting is simpler than in the o✏ine
setting. This is due to the fact that an ordering of the ground set does not need to be chosen by
the algorithm—it is already determined by the order of the stream. We assume that the procedure
Exchange-Candidate uses a tie-breaking rule at Line 5 of Algorithm 4 which depends only
on the set S and the element u. For simplicity, we also assume that this rule is deterministic, so
that the set Ui is deterministic conditioned on the current solution Si�1 and the new element ui

which are given as input to Exchange-Candidate. This is useful because it implies that the
event f(ui | Si�1) � (1 + c) · f(Ui : Si�1) is also deterministic conditioned on Si�1 and ui. We
note, however, that the proof can be easily made to work also with a randomized tie-breaking
rule in the procedure Exchange-Candidate, as long as this rule only depends on the set S and
the element u.

Lemma 11. Let S
1

i
and S

2

i
be the random solution sets maintained by Sample-Streaming

and Equivalent-Sample-Streaming at iterations i = 0, 1, . . . , n, respectively. At each iteration
i = 0, 1, . . . , n, the random sets S

1

i
and S

2

i
have the same distribution.

Proof. Proof We prove the lemma by induction on the iteration i. For i = 0 the lemma is trivial
since both S

1
0

and S
2
0

are initialized to be empty. Suppose now that S
1

k
and S

2

k
have the same

distributions for all iterations k = 0, 1, . . . , i � 1 and let us prove that S
1

i
and S

2

i
also share

the same distribution. In fact, we show the even stronger property that for every set A ✓ N

18

such that Pr[S1

i�1
= A] = Pr[S2

i�1
= A] > 0, the sets S

1

i
and S

2

i
have the same distributions

conditioned on the events S
1

i�1
= A and S

2

i�1
= A, respectively.

Let ui be the ith element in the stream, encountered by both algorithms. Recall that since
we condition on S

1

i�1
= A or S

2

i�1
= A, the same set Ui is chosen by both algorithms (in the case

of Sample-Streaming, we mean here the set that is chosen if the algorithm decides to pick an
element in this iteration). Suppose now that A is such that f(ui | Si�1) � (1 + c) · f(Ui : Si�1).
Then in Sample-Streaming, the probability of updating S

1

i
 (A \ Ui) [{ui} is q and the

probability of keeping S
1

i
 S

1

i�1
is 1�q. This is also true for Algorithm 5; that is, the probability

of updating S
2

i
 (A \ Ui) [{ui} is q and the probability of keeping S

2

i
 S

2

i�1
is 1 � q. This

is due to the fact that sampling and exchange procedures are independent in both algorithms.
If A is such that f(ui | Si�1) < (1 + c) · f(Ui : Si�1), then both algorithms keep the current
solution (that is, Si Si�1) with probability 1. Thus, we have shown that for every A, B ✓ N ,
if Pr[S1

i�1
= A] > 0, then

Pr
⇥
S
1

i
= B

��S1

i�1
= A

⇤
= Pr

⇥
S
2

i
= B

��S2

i�1
= A

⇤
.

The lemma now follows by the law of total probability and the inductive hypothesis.

Now that the equivalence of Sample-Streaming and Algorithm 5 has been established,
we are guaranteed that any approximation guarantee for Algorithm 5 also holds for Sample-
Streaming. Accordingly, in the remainder of the section, we analyze Algorithm 5. The following
technical lemma shows that, for every two sets A and B, the sum of the marginal contributions
of the elements of B (as they arrive) to the already arrived elements of A is larger than the total
marginal contribution of B to A.

Observation 1. For every two sets A, B ✓ N , f(B | A \ B)  f(B : A).

Proof. Proof Let us denote the elements of B by ui1
, ui2

, . . . , ui|B| , where i1 < i2 < · · · < i|B|.
Then,

f(B | A \ B) =

|B|X

j=1

f(uij | (A [B) \ {uij , uij+1
. . . , ui|B|})


|B|X

j=1

f(uij | A \ {uij , uij+1 . . . , un})

=

|BX

j=1

f(uij | A \ {u1, u2, . . . , uij�1})

=

|B|X

j=1

f(uij : A)

= f(B : A) ,

where the inequality follows from the submodularity of f .

Let us denote from this point on by A the set of elements that ever appeared in the solution
maintained by Algorithm 5—formally, A =

S
n

i=1
Si. The following lemma and corollary show

that the elements of A \ Sn cannot contribute much to the output solution Sn of Algorithm 5,
and thus, their absence from Sn does not make Sn much less valuable than A.

Lemma 12. f(A \ Sn : Sn)  f(Sn)

c
.

19

Proof. Proof Fix an element ui 2 A, then

f(Si)� f(Si�1) = f(Si�1 \ Ui + ui)� f(Si�1)

= f(ui | Si�1 \ Ui)� f(Ui | Si�1 \ Ui)

� f(ui | Si�1)� f(Ui : Si�1)

� c · f(Ui : Si�1) ,

where the first inequality follows from the submodularity of f and Observation 1, and the second
inequality holds since the fact that Algorithm 5 accepted ui into its solution implies f(ui | Si�1) �
(1 + c) · f(Ui : Si�1).

Because every element of A \ Sn has been removed exactly once from the solution of Algo-
rithm 5, the sets Ui such that ui 2 A form a disjoint partition of A \ Sn. Thus,

f(A \ Sn : Sn) =
X

ui2A

f(Ui : Sn) 
X

ui2A

f(Si)� f(Si�1)

c
=

f(Sn)� f(?)

c
 f(Sn)

c
,

where the first inequality follows from the inequalities above, the second equality holds since
Si = Si�1 whenever ui 62 A and the second inequality follows from the non-negativity of f .

Corollary 13. f(A)  c+1

c
· f(Sn).

Proof. Proof Observe that

f(A) = f(A \ Sn | Sn) + f(Sn)  f(A \ Sn : Sn) + f(Sn)  f(Sn)

c
+ f(Sn) =

c + 1

c
· f(Sn) ,

where the first equality follows from Sn ✓ A, the first inequality follows from Observation 1, and
the second inequality follows from Lemma 12.

Our next objective is to show that the value of the elements of the optimal solution that
do not belong to A is not too large compared to the value of A itself. To this end, we need a
mapping from the elements of the optimal solution to elements of A. Such a mapping is given
by Proposition 14. However, before stating Proposition 14, we need to present a simplification
given by Reduction 1.

Reduction 1. For the sake of analyzing the approximation ratio of Algorithm 5, one may assume
that every element u 2 N belongs to exactly p out of the m ground sets N1,N2, . . . ,Nm of the
matroids defining the p-matchoid (N , I).

Proof. Proof For every element u 2 N that belongs to the ground sets of only p
0

< p out of
the m matroids (N1,N1), (N2,N2), . . . , (Nm, Im), we can add u to p � p

0 additional matroids
as a free element (i.e., an element whose addition to an independent set always keeps the set
independent). One can observe that the addition of u to these matroids does not a↵ect the
behavior of Algorithm 5 at all, but makes u obey the technical property of belonging to exactly
p out of the ground sets N1,N2, . . . ,Nm.

From this point on we implicitly make the assumption allowed by Reduction 1. In particular,
the proof of Proposition 14 relies on this assumption. To state the proposition, we still need
some additional notation. For every 1  i  n, we define

d(i) =

(
1 + max{i  j  n | ui 2 Sj} if ui 2 A ,

i otherwise .

20

In general, d(i) is the index of the element whose arrival made Algorithm 5 remove ui from its
solution. Two exceptions to this rule are as follows. If ui was never added to the solution, then
d(i) = i; and if ui was never removed from the solution, then d(i) = n + 1.

Proposition 14. For every set T 2 I which does not include elements of R, there exists a
mapping �T from elements of T to multi-subsets of A such that

• every element u 2 Sn appears at most p times in the multi-sets of {�T (u) | u 2 T}.

• every element u 2 A \ Sn appears at most p� 1 times in the multi-sets of {�T (u) | u 2 T}.

• every element ui 2 T \ A obeys f(ui | Si�1)  (1 + c) ·
P

uj2�T (ui)
f(uj : Sd(j)�1).

• every element ui 2 T \ A obeys f(ui | Si�1)  f(uj : Sd(j)�1) for every uj 2 �T (ui), and
the multi-set �T (ui) contains exactly p elements (including repetitions).

Because the proof of Proposition 14 is lengthy and detailed, we defer it to Section 4.2.2.
Instead, we prove now a useful technical observation. Let Z = {ui 2 N | f(ui | Si�1) < 0}.

Observation 2. Consider an arbitrary element ui 2 N .

• If ui 62 Z, then f(ui : Si0) � 0 for every i
0 � i � 1. In particular, since d(i) � i,

f(ui : Sd(i)�1) � 0.

• A \ (R [Z) = ?.

Proof. Proof To see why the first part of the observation is true, consider an arbitrary element
ui 62 Z. Then,

0  f(ui | Si�1)  f(u | Si0 \ {u1, u2, . . . , ui�1}) = f(u : Si0) ,

where the second inequality follows from the submodularity of f and the inclusion Si0\{u1, u2, . . . ,

ui�1} ✓ Si�1 (which holds because elements are only added by Algorithm 5 to its solution at
the time of their arrival).

It remains to prove the second part of the observation. Note that Algorithm 5 adds every
arriving element to at most one of the sets A and R, and thus, these sets are disjoint; hence, to
prove the observation it is enough to show that A and Z are also disjoint. Assume towards a
contradiction that this is not the case, and let ui be the first element to arrive which belongs to
both A and Z. Then,

f(ui | Si�1) � (1 + c) · f(Ui : Si�1) = (1 + c) ·
X

uj2Ui

f(uj : Sd(j)�1) .

To see why that inequality leads to a contradiction, notice that its leftmost hand side is neg-
ative by our assumption that ui 2 Z, while its rightmost hand side is non-negative by the
first part of this observation since the choice of ui implies that no element of Ui ✓ Si�1 ✓
A \ {u1, u2, . . . , ui�1} can belong to Z.

We are now ready to show that the value of the elements of the optimal solution that do not
belong to A is not too large compared to the value of A itself when the sampling parameter q is
chosen appropriately.

Lemma 15. If q = ((1 + c)p + 1)�1, then E[f(Sn)] � c

(1+c)2p
· E[f(A [OPT)].

21

Proof. Proof Since Si ✓ A for every 0  i  n, the submodularity of f guarantees that

f(A [OPT)  f(A) +
X

ui2OPT\(R[A)

f(ui | A) +
X

ui2(OPT\A)\R

f(ui | A)

 f(A) +
X

ui2OPT\(R[A)

f(ui | Si�1) +
X

ui2(OPT\A)\R

f(ui | Si�1)

 1 + c

c
· f(Sn) +

X

ui2OPT\(R[A)

f(ui | Si�1) +
X

ui2OPT\R

f(ui | Si�1) ,

where the third inequality follows from Corollary 13 and the fact that A\R = ? by Observation 2.
Let us now consider the function �OPT\R whose existence is guaranteed by Proposition 14 when
we choose T = OPT\R. The property guaranteed by Proposition 14 for elements of T \A implies

X

ui2OPT\(R[A)

f(ui | Si�1)  (1 + c) ·
X

ui2OPT\(R[A)

uj2�OPT\R(ui)

f(uj : Sd(j)�1) .

Additionally,

X

ui2OPT\(R[A)

uj2�OPT\R(ui)

f(uj : Sd(j)�1) + p ·
X

ui2OPT\A

f(ui | Si�1)


X

ui2OPT\R

uj2�OPT\R(ui)

f(uj : Sd(j)�1)

 p ·
X

uj2Sn

f(uj : Sn) + (p� 1) ·
X

uj2A\Sn

f(uj : Sd(j)�1)

 p · f(Sn) +
p� 1

c
· f(Sn)

=
(1 + c) · p� 1

c
· f(Sn) ,

where the first inequality follows from the properties guaranteed by Proposition 14 for elements
of T \A (note that the sets OPT\(R[A) and OPT \A are a disjoint partition of OPT\R by Ob-
servation 2), and the second inequality follows from the properties guaranteed by Proposition 14
for elements of A \ Sn and Sn because every element ui in the multisets produced by �OPT\R

belongs to A, and thus, obeys f(ui : Sd(i)�1) � 0 by Observation 2. Finally, the last inequality
follows from Lemma 12 and the fact that f(uj : Sd(j)�1)  f(uj : Sn) for every 1  j  n.
Combining all the above inequalities, we get

f(A [OPT)

 1 + c

c
· f(Sn) + (1 + c) ·

"
(1 + c) · p� 1

c
· f(Sn)� p ·

X

ui2OPT\A

f(ui | Si�1)

#
+

X

ui2OPT\R

f(ui | Si�1)

=
(1 + c)2 · p

c
· f(Sn)� (1 + c)p ·

X

ui2OPT\A

f(ui | Si�1) +
X

ui2OPT\R

f(ui | Si�1) .

By the linearity of expectation, to prove the lemma it su�ces to show that the expectation of
the last two terms is non-positive. We will show the stronger statement that the expectation of

22

the last two terms is zero. To this end, consider an arbitrary element ui 2 OPT. When ui arrives,
one of two things happens. The first option is that Algorithm 5 discards ui without adding it to
either its solution or to R. The other option is that Algorithm 5 adds ui to its solution (and thus,
to A) with probability q, and to R with probability 1 � q. The crucial observation here is that
at the time of ui’s arrival the set Si�1 is already determined, and thus, this set is independent of
the decision of the algorithm to add u to A or to R; which implies the following equality (given
an event E , we use here 1[E] to denote an indicator for it).

E[1[ui 2 A] · f(ui | Si�1)]

q
=

E[1[ui 2 R] · f(ui | Si�1)]

1� q
.

Rearranging the last equality, and summing it up over all elements ui 2 OPT, we get

1� q

q
· E
"

X

ui2OPT\A

f(ui | Si�1)

#
= E

"
X

ui2OPT\R

f(ui | Si�1)

#
.

By assumption, q = ((1 + c)p + 1)�1, which implies (1� q)/q = q
�1� 1 = (c + 1)p. Substituting

this into the equality above completes the proof.

Now we are ready to prove the approximation and e�ciency guarantees of Theorem 2.

4.2.1 Proof of Theorem 2.

We first prove that Algorithm 3 achieves the approximation ratios guaranteed by Theorem 2. As
discussed earlier, Algorithms 3 and 5 have identical output distributions, and so it su�ces to show
that Algorithm 5 achieves the desired approximation ratios. Recall that q = ((1 + c)p + 1)�1, so
by Lemma 15,

E[f(Sn)] � c

(1 + c)2p
· E[f(A [OPT)] . (8)

Suppose that f is monotone. Setting c = 1 yields c

(1+c)2p
= 1/4p. Additionally, the monotonicity

of f implies that E[f(A [OPT)] � f(OPT). Substituting these two observations into (8) yields

E[f(Sn)] � 1

4p
f(OPT) ,

which establishes the approximation guarantee in the monotone case. Consider now the more
general case in which f is not necessarily monotone. Note that each element appears in A

with probability at most q due to subsampling, thus, by Lemma 3, we have E[f(A [OPT)] �
(1� q) f(OPT). Substituting this into Inequality (8) and setting c =

p
1 + 1/p yields

E[f(Sn)] � (1� q)
c

(1 + c)2p
· f(OPT)

=

✓
1� 1

(1 + c)p + 1

◆
c

(1 + c)2p
· f(OPT)

=

1� 1

(1 +
p

1 + 1/p)p + 1

! p
1 + 1/p

(1 +
p

1 + 1/p)2p
· f(OPT)

=
1

2p + 2
p

p(p + 1) + 1
· f(OPT),

which yields the promised approximation guarantee for this case.

23

Now we verify that Sample-Streaming achieves the guaranteed memory and oracle com-
plexities. Algorithm 3 has to keep the following three sets in memory: Si, Ui and X`. Since Ui

and X` are subsets of Si�1, they are independent, and so is Si. Hence, each one of the three sets
Si, Ui and X` contains at most k elements. Thus, O(k) memory su�ces for the algorithm. When
an arriving element is not sampled (which happens with probability 1�q), no queries to the eval-
uation or independence oracles are required. A sampled element requires O(km) queries. Because
q = O(1/p), an arriving element requires q · O(km) = O(km/p) oracle queries in expectation.

4.2.2 Proof of Proposition 14.

In this section we prove Proposition 14. Before doing so, we introduce some terminology regarding
matroids which will be used in the proof. A circuit is a dependent set which is minimal with
respect to inclusion; that is, C /2 I is a circuit if A /2 I and A ✓ C imply C = A. An element u

is spanned by a set S if the maximum size independent subsets of S and S + u are of the same
size. Note that it follows from these definitions that every element of u of a circuit C is spanned
by C � u.

Let us also recall some of the sets involved in Algorithm 5. The sequence S1, . . . Sn are the
solutions constructed by the algorithm and Sn is the final returned solution. The set A = [n

i=1
Si

is the set of all elements which were added to some solution and the set R contains elements
which had su�ciently large marginal gain but were rejected with probability q. Lastly, d(i) is
the index of the element whose arrival made Algorithm 5 remove ui from its solution. Now, we
restate the proposition itself.

Proposition 14. For every set T 2 I which does not include elements of R, there exists a
mapping �T from elements of T to multi-subsets of A such that

• every element u 2 Sn appears at most p times in the multi-sets of {�T (u) | u 2 T}.

• every element u 2 A \ Sn appears at most p� 1 times in the multi-sets of {�T (u) | u 2 T}.

• every element ui 2 T \ A obeys f(ui | Si�1)  (1 + c) ·
P

uj2�T (ui)
f(uj : Sd(j)�1).

• every element ui 2 T \ A obeys f(ui | Si�1)  f(uj : Sd(j)�1) for every uj 2 �T (ui), and
the multi-set �T (ui) contains exactly p elements (including repetitions).

We begin the proof of Proposition 14 by constructing m graphs, one for each of the matroids
defining M. For every 1  `  m, the graph G` contains two types of vertices: its internal vertices
are the elements of A \ N`, and its external vertices are the elements of {ui 2 N` \ (R [A) |
(Si�1 +ui)\N` 62 I`}. Informally, the external elements of G` are the elements of N` which were
rejected upon arrival by Algorithm 5 and the matroid M` = (N`, I`) can be (partially) blamed
for this rejection.

The arcs of G` are created using the following iterative process that creates some arcs of G`

in response to every arriving element. For every 1  i  n, consider the element x` selected by
the execution of Exchange-Candidate on the element ui and the set Si�1. From this point
on we denote this element by xi,`. If no xi,` element was selected by the above execution of
Exchange-Candidate, or ui 2 R, then no G` arcs are created in response to ui. Otherwise,
let Ci,` be the single circuit of the matroid M` in the set (Si�1 + ui) \N`—there is exactly one
circuit of M` in this set because Si�1 is independent, but (Si�1 + ui)\N` is not independent in
M`. One can observe that Ci,` � ui is equal to the set X` in the above-mentioned execution of
Exchange-Candidate, and thus, xi,` 2 Ci,`. We now denote by u

0
i,`

the vertex out of {ui, xi,`}
that does not belong to Si—notice that there is exactly one such vertex since xi,` 2 Ui, which
implies that it appears in Si if Si = Si�1 and does not appear in Si if Si = Si�1 \ Ui + ui.

24

no arc is created

If no xi,` element was selected

xi,`

ui

...

Ci,` \ {xi,`}

If ui is added to Si

ui

xi,`

...

Ci,` \ {ui}

If ui is not added to Si

Figure 2: A sketch of how arcs are constructed in the graph G` at each iteration.

Regardless of the node chosen as u
0
i,`

, the arcs of G` created in response to ui are all the possible
arcs from u

0
i,`

to the other vertices of Ci,`. Observe that these are valid arcs for G` in the sense
that their endpoints (i.e., the elements of Ci,`) are all vertices of G` (for the elements of Ci,`�ui

this is true since Ci,` � ui ✓ Si�1 \ N` ✓ A \ N`, and for the element ui this is true since the
existence of xi,` implies (Si�1 + ui) \N` 62 I`). See Figure 2 for a sketch of how arcs are added
to G`.

Some properties of G` are given by the following observation. Given a graph G and a vertex
u, we denote by �+

G
(u) the set of vertices to which there is a direct arc from u in G.

Observation 3. For every 1  `  m,

• every non-sink vertex u of G` is spanned by the set �+
G`

(u).

• for every two indexes 1  i, j  n, if u
0
i,`

and u
0
j,`

both exist and i 6= j, then u
0
i,`
6= u

0
j,`
.

• G` is a directed acyclic graph.

Proof. Proof Consider an arbitrary non-sink node u of G`. Since there are arcs leaving u, u

must be equal to u
0
i,`

for some 1  i  n. This implies that u belongs to the circuit Ci,`, and
that there are arcs from u to every other vertex of Ci,`. Thus, u is spanned by the vertices of
�
+

G`
(u) ◆ Ci,` � u because the fact that Ci,` is a circuit containing u implies that Ci,` � u spans

u. This completes the proof of the first part of the observation.
Let us prove now a useful technical claim. Consider an index 1  i  n such that u

0
i,`

exists,
and let j be an arbitrary value i < j  n. We will prove that u

0
i,`

does not belong to Cj,`. By
definition, u

0
i,`

is either ui or the vertex xi,` that belongs to Si�1, and thus, arrived before ui and
is not equal to uj ; hence, in both cases, we have that u

0
i,`
6= uj . Moreover, combining the fact

that u
0
i,`

is either ui or arrived before ui and the observation that u
0
i,`

is never a part of Si, we
get that u

0
i,`

cannot belong to Sj ◆ Cj,`�uj , which implies the claim together with the previous
observation that u

0
i,`
6= uj .

The technical claim that we proved above implies the second part of the lemma, namely that
for every two indexes 1  i, j  n, if u

0
i,`

and u
0
j,`

both exist and i 6= j, then u
0
i,`
6= u

0
j,`

. To see
why that is the case, assume without loss of generality i < j. Then, the above technical claim
implies that u

0
i,`
62 Cj,`, which implies u

0
i,`
6= u

0
j,`

because u
0
j,`
2 Cj,`.

At this point, let us assume towards a contradiction that the third part of the observation
is not true, i.e., that there exists a circuit L in G`. Since every vertex of L has a non-zero out
degree, every such vertex must be equal to u

0
i,`

for some 1  i  n. Thus, there must be indexes
1  i1 < i2  n such that L contains an arc from u

0
i2,`

to u
0
i1,`

. Since we already proved that
u
0
i2,`

cannot be equal to u
0
j,`

for any j 6= i2, the arc from u
0
i2,`

to u
0
i1,`

must have been created in
response to ui2

, hence, u
0
i1,`
2 Ci2,`, which contradicts the technical claim we have proved.

25

One consequence of the properties of G` proved by the last observation is given by the following
lemma. A slightly weaker version of this lemma was proved implicitly by Badanidiyuru [2011],
and was stated as an explicit lemma by Chekuri et al. [2015].

Lemma 16. Consider an arbitrary directed acyclic graph G = (V, E) whose vertices are elements
of some matroid M0. If every non-sink vertex u of G is spanned by �+

G
(u) in M0, then for every set

S of vertices of G which is independent in M0 there must exist an injective function S : S ! V

such that, for every vertex u 2 S, S(u) is a sink of G which is reachable from u.

Proof. Proof Let us define the width of a set S of vertices of G as the number of arcs that appear
on some path starting at a vertex of S (more formally, the width of S is the size of the set
{e 2 E | there is a path in G that starts in a vertex of S and includes e}). We prove the lemma
by induction of the width of S. We begin by considering the base case where S is of width
0. In this case, the vertices of S cannot have any outgoing arcs because such arcs would have
contributed to the width of S, and thus, they are all sinks of G. Thus, the lemma holds for the
trivial function S mapping every element of S to itself. Assume now that the width w of S is
larger than 0, and assume that the lemma holds for every set of width smaller than w. Let u be
a non-sink vertex of S such that there is no path in G from any other vertex of S to u. Notice
that such a vertex must exist since G is acyclic. By the assumption of the lemma, �+(u) spans
u. In contrast, since S is independent, S � u does not span u, and thus, there must exist an
element v 2 �+(u) \ S such that the set S

0 = S � u + v is independent.
Let us explain why the width of S

0 must be strictly smaller than the width of S. First,
consider an arbitrary arc e which is on a path starting at a vertex u

0 2 S
0. If u

0 2 S, then e

is also on a path starting in a vertex of S. On the other hand, if u
0 62 S, then u

0 must be the
vertex v. Thus, e must be on a path P starting in v. Adding uv to the beginning of the path
P , we get a path from u which includes e. Hence, in conclusion, we have got that every arc e

which appears on a path starting in a vertex of S
0 (and thus, contributes to the width of S

0) also
appears on a path starting in a vertex of S (and thus, also contributes to the width of S); which
implies that the width of S

0 is not larger than the width of S. To see that the width of S
0 is

actually strictly smaller than the width of S, it only remains to find an arc which contributes to
the width of S, but not to the width of S

0. Towards this goal, consider the arc uv. Since u is a
vertex of S, the arc uv must be on some path starting in u (for example, the path including only
this arc), and thus, contributes to the width of S. Assume now towards a contradiction that uv

contributes also to the width of S
0, i.e., that there is a path P starting at a vertex w 2 S

0 which
includes uv. If w = v, then this leads to a contradiction since it implies the existence of a circuit
in G. On the other hand, if w 6= v, then this implies a path in G from a vertex w 6= u of S to
u, which contradicts the definition of u. This completes the proof that the width of S

0 is strictly
smaller than the width of S.

Using the induction hypothesis, we now get that there exists an injective function S0 mapping
every vertex of S

0 to a sink of G. Using S0 , we can define S as follows. For every w 2 S,

 S(w) =

(
 S0(v) if w = u ,

 S0(w) otherwise .

Since u appears in S but not in S
0, and v appears in S

0 but not in S, the injectiveness of S

follows from the injectiveness of S0 . Moreover, S clearly maps every vertex of S to a sink of G

since S0 maps every vertex of S
0 to such a sink. Finally, one can observe that S(w) is reachable

from w for every w 2 S because S(u) = S0(v) is reachable from v by the definition of S0 , and
thus, also from u due to the existence of the arc uv.

26

For every 1  `  m, let T` be the set of elements of T that appear as vertices of G`. Since
T is independent and T` contains only elements of N`, Observation 3 and Lemma 16 imply
together the existence of an injective function T` mapping the elements of T` to sink vertices of
G`. We can now define the function �T promised by Proposition 14. For every element u 2 T ,
the function �T maps u to the multi-set { T`(u) | 1  `  m and u 2 T`}, where we assume
that repetitions are kept when the expression T`(u) evaluates to the same element for di↵erent
choices of `. Let us explain why the elements in the multi-sets produced by �T are indeed all
elements of A, as is required by the proposition. Consider an element ui 62 A, and let us show
that it does not appear in the range of T` for any 1  `  m. If ui does not appear as a vertex
in G`, then this is obvious. Otherwise, the fact that ui 62 A implies u

0
i,`

= ui, and thus, the arcs
of G` created in response to ui are arcs leaving ui, which implies that ui is not a sink of G`, and
hence, does not appear in the range of T` .

Recall that every element u 2 N belongs to at most p out of the ground sets N1,N2, . . . ,

Nm, and thus, is a vertex in at most p out of the graphs G1, G2, . . . , Gm. Since T` maps every
element to vertices of G`, this implies that u is in the range of at most p out of the functions
 T1

, T2
, . . . , Tm . Moreover, since these functions are injective, every one of these functions

that have u in its range maps at most one element to u. Thus, the multi-sets produced by �T

contain u at most p times. Since this is true for every element of N , it is true in particular for
the elements of Sn, which is the first property of �T that we needed to prove.

Consider now an element u 2 A \ Sn. Our next objective is to prove that u appears at most
p�1 times in the multi-sets produced by �T , which is the second property of �T that we need to
prove. Above, we proved that u appears at most p times in these multi-sets by arguing that every
such appearance must be due to a function T` that has u in its range, and that the function
 T` can have this property only for the p values of ` for which u 2 N`. Thus, to prove that
u in fact appears at most p � 1 times in the multi-sets produced by �T , it is enough to argue
that there exists a value ` such that e 2 N`, but T` does not have u in its range. Let us prove
that this follows from the membership of u in A \ Sn. Since u was removed from the solution of
Algorithm 5 at some point, there must be some index 1  i  n such that both u 2 Ui and ui

was added to the solution of Algorithm 5. Since u 2 Ui, there must be a value 1  `  m such
that u = xi,`, and since ui was added to the solution of Algorithm 5, u

0
i,`

= xi,`. These equalities
imply together that there are arcs leaving u in G` (which were created in response to ui). Thus,
the function T` does not map any element to u because u is not a sink of G`, despite the fact
that u 2 N`.

To prove the other guaranteed properties of �T , we need the following lemma.

Lemma 17. Consider two vertices ui and uj such that uj is reachable from ui in G`. If ui 2 A,
then f(ui : Sd(i)�1)  f(uj : Sd(j)�1), otherwise, f(xi,` : Si�1)  f(uj : Sd(j)�1).

Proof. Proof We begin by proving a weaker version of this lemma that makes the following two
simplifying assumptions: (i) ui 2 A, and (ii) there is a direct arc from ui to uj . The existence of
the last arc implies that there is some value 1  h  n such that u

0
h,`

= ui and uj 2 Ch,`. Since
ui 2 A is an internal vertex of G`, it cannot be equal to uh because this would have implied that
uh was rejected immediately by Algorithm 5, and is thus, not internal. Thus, ui = xh,`. Recall
now that Ch,`� uh is equal to the set X` chosen by Exchange-Candidate when it is executed
with the element uh and the set Sh�1; and let us consider two cases.

Case 1 In the case of uj 6= uh, the fact that ui = xh,` and the way xh,` is chosen out of X`

imply
f(ui : Sd(i)�1) = f(ui : Sh�1)  f(uj : Sh�1)  f(uj : Sd(j)�1) ,

27

where the equality holds since u
0
h,`

= ui implies d(i) = h and the last inequality holds since
f(uj : Sr�1) is a non-decreasing function of r when r � j and the membership of uj in Ch,`

implies j  h  d(j).

Case 2 It remains to consider the case uj = uh. In this case, the fact that uj = uh is accepted
into the solution of Algorithm 5 implies

f(uj : Sd(j)�1) � f(uj : Sj�1) = f(uj | Sj�1 \ {u1, u2, . . . , uj�1}) = f(uj | Sj�1)

= f(uh | Sh�1) � (1 + c) · f(Uh : Sh�1) � f(Uh : Sh�1)

� f(xh,` : Sh�1) = f(ui : Sh�1) = f(ui : Sd(i)�1) ,

where the first inequality holds since d(j) � j by definition, the last equality holds since u
0
h,`

= ui

implies d(i) = h and the last two inequalities follow from the fact that the elements of Uh ✓ A do
not belong to Z by Observation 2, which implies (again, by Observation 2) that f(u : Sh�1) � 0
for every u 2 Uh. This completes the proof of the weaker version of the lemma.

We begin the proof of the full version of the lemma by showing that no arc of G` goes from
an internal vertex to an external one. Assume this is not the case, and that there exists an arc
uv of G` from an internal vertex u to an external vertex v. By definition, there must be a value
1  h  n such that v belongs to the circuit Ch,` and u

0
h,`

= u. The fact that u is an internal
vertex implies that uh must have been accepted by Algorithm 5 upon arrival because otherwise
we would have gotten u = u

0
h,`

= uh, which implies that u is external, and thus, leads to a
contradiction. Consequently, we get Ch,` ✓ A because every element of Ch,` must either be uh

or belong to Sh�1. In particular, v 2 A, which contradicts our assumption that v is an external
vertex.

We are now ready to prove the lemma for ui 2 A. Consider some path P from ui to uj , and
let us denote the vertices of this path by ur0

, ur1
, . . . , ur|P | . Since ui is an internal vertex of G`

and we already proved that no arc of G` goes from an internal vertex to an external one, all the
vertices of P must be internal. Thus, by applying the weaker version of the lemma that we have
already proved to every pair of adjacent vertices along the path P , we get that the expression
f(urk : Sd(rk)�1) is a non-decreasing function of k, and in particular,

f(ui : Sd(i)�1) = f(ur0
: Sd(r0)�1)  f(urk : Sd(rk)�1) = f(uj : Sd(j)�1) .

It remains to prove the lemma for ui 62 A. Let uh denote the vertex immediately after ui

on some path from ui to uj in G`. Since ui 62 A, we get that u
0
i,`

= ui, which implies that
the arcs of G` that were created in response to ui go from ui to the vertices of Ci,` � ui. Since
Observation 3 guarantees that ui = u

0
i,`
6= u

0
j,`

for every value 1  j  n which is di↵erent from
i, there cannot be any other arcs in G` leaving ui, and thus, the existence of an arc from ui

to uh implies uh 2 Ci,` � ui. Recall now that Ci,` � ui is equal to the set X` in the execution
of Exchange-Candidate corresponding to the element ui and the set Si�1, and thus, by the
definition of xi,`, f(xi,` : Si�1)  f(uh : Si�1). Additionally, as an element of Ci,` � ui, uh

must be a member of Si�1 ✓ A, and thus, by the part of the lemma we have already proved,
we get f(uh : Sd(h)�1)  f(uj : Sd(j)�1) because uj is reachable from uh. Combining the two
inequalities we have proved, we get

f(xi,` : Si�1)  f(uh : Si�1)  f(uh : Sd(h)�1)  f(uj : Sd(j)�1) ,

where the second inequality holds since the fact that uh 2 Ci,` � ui ✓ Si�1 implies d(h) � i.

Consider now an arbitrary element ui 2 T \A. Let us denote by ur` the element ur` = T`(ui)
if it exists, and recall that this element is reachable from ui in G`. Thus, the fact that ui is not

28

in A implies

f(ui | Si�1)  (1 + c) ·
X

u2Ui

f(u : Si�1) = (1 + c) ·
X

1`m

(Si�1+ui)\N` 62I`

f(xi,` : Si�1)

 (1 + c) ·
X

1`m

(Si�1+ui)\N` 62I`

f(ur` : Sd(r`)
) = (1 + c) ·

X

uj2�T (ui)

f(uj : Sd(j)) ,

where the second inequality follows from Lemma 17 and the last equality holds since the values
of ` for which (Si�1 + ui) \ N` 62 I` are exactly the values for which ui 2 T`, and thus, they
are all also exactly the values for which the multi-set �T (ui) includes the value of T`(ui). This
completes the proof of the third property of �T that we need to prove.

Finally, consider an arbitrary element ui 2 A\T . Every element uj 2 �T (ui) can be reached
from ui in some graph G`, and thus, by Lemma 17,

f(ui | Si�1) = f(ui | Si�1 \ {u1, u2, . . . , ui�1}) = f(ui : Si�1)

 f(ui : Sd(i)�1)  f(uj : Sd(j)�1) ,

where the first inequality holds since d(i) � i by definition and f(ui : Sr�1) is a non-decreasing
function of r for r � i. Additionally, we observe that ui, as an element of T \ A, belongs to
T` for every value 1  `  m for which ui 2 N`, and thus, the size of the multi-set �T (ui) is
equal to the number of ground sets out of N1,N2, . . . ,Nm that include ui. Since we assume by
Reduction 1 that every element belongs to exactly p out of these ground sets, we get that the
multi-set �T (ui) contains exactly p elements (including repetitions), which completes the proof
of Proposition 14.

5 Experimental Results

In this section, we compare the performance of our proposed o✏ine and streaming algorithms with
the state-of-the-art methods for maximizing non-monotone submodular functions on real-world
datasets . We empirically demonstrate that by using the subsampling technique, our algorithms
return solutions with similar utility values as other methods, but at a fraction of computational
cost. We first compare the performance of SampleGreedy with other competitive o✏ine al-
gorithms. Then, we evaluate the e↵ectiveness of Sample-Streaming in terms of utility and
scalability.

5.1 O✏ine Algorithms

In this section, we compare the performance of SampleGreedy with two other o✏ine algo-
rithms: Fantom [Mirzasoleiman et al., 2016a] and RepeatedGreedy [Feldman et al., 2017],
both of which are repeated greedy techniques requiring O(nkp) and O(nk

p
p) oracle queries,

respectively. In order to improve the performance of SampleGreedy in terms of utility, we
also consider a boosted version of SampleGreedy by taking the best of four runs, denoted
Max-SampleGreedy. We test these algorithms on a personalized movie recommendation sys-
tem and find that while SampleGreedy and its boosted variant return comparable solutions to
RepeatedGreedy and Fantom, they run orders of magnitude faster.

In the movie recommendation system application, we observe movie ratings from users, and
our objective is to recommend movies to users based on their reported favorite genres. In par-
ticular, given a user-specified input of favorite genres, we would like to recommend a short list

29

of movies that are diverse, and yet representative, of those genres. The similarity score between
movies that we use is derived from user ratings similar to the methods used in [Lindgren et al.,
2015]. Next, we describe the experiment setting in more detail.

Let N be a set of movies, and G = {G1, . . . Gp} be the set of all movie genres, where each
genre is a subset Gi ✓ N . Note that each movie may be identified with multiple genres. Let
si,j be a non-negative similarity score between movies i, j 2 N , and suppose a user u seeks a
representative set of movies from genres Gu ✓ G. Note that the set of movies from these genres
is Nu = [Gi2GuGi. A reasonable utility function for choosing a diverse yet representative set of
movies S for u is

fu(S) =
X

i2S

X

j2Nu

si,j � �
X

i2S

X

j2S

si,j , (9)

for some parameter 0  �  1. Observe that the first term is a sum-coverage function that
captures the representativeness of S, and the second term is a dispersion function penalizing
similarity within S. When � > 0, this function is non-monotone and for � = 1, this utility is the
usual cut function.

The user may specify an upper limit k on the number of movies in his recommended set S,
as well as an upper limit ki on the number of movies from each genre Gi appearing in S (we call
the parameters k1, . . . kp genre limits). One can show that these constraints on the recommended
movie set S form a p-extendible system.

For our experiments, we use the MovieLens 20M dataset, which features 20 million ratings
of 27,000 movies by 138,000 users. To obtain a similarity score between movies, we take an
approach developed in [Lindgren et al., 2015]. First, we fill missing entries of an incomplete
movie-user matrix M 2 Rn⇥m via low-rank matrix completion [Candés and Recht, 2008, Hastie
et al., 2015], where m is the total number of users. Then we randomly sample to obtain a matrix
M̃ 2 Rn⇥` where `⌧ m and the inner products between rows is preserved. The similarity score
between movies i and j is then defined as the inner product of their corresponding rows in M̃ .
In our experiment, we set the total recommended movies limit to k = 10. The genre limits kg

are set to be equal across genres, and we vary them from 1 to 6. For all experiments, we use
� = 0.9. Finally, we set our favorite genres Gu to be Adventure, Animation and Fantasy ; thus,
the corresponding constraint set is 3-extendible. For each algorithm and test instance, we record
the function value of the returned solution S and the number of evaluations of the objective f ,
which is a machine-independent measure of run-time.

The result of this experiment is depicted in Figure 3. First, Figure 3a shows the utility value
of the solution sets for the various algorithms. As we see from Figure 3a, Fantom consistently
returns a solution set with the highest function value. However, SampleGreedy and Max-
SampleGreedy return solution sets with similarly high function values. Even for four runs,
Max-SampleGreedy noticeably increases the utility of the returned solution. Both Sample-
Greedy and Max-SampleGreedy return solutions with larger utility than Greedy. Figure 3b
shows the number of function calls made by each algorithm as the genre limit kg is varied. For
each algorithm, the number of function calls appears roughly constant as kg is varied—this is
likely due to the lazy greedy implementation and also to the small values used for kg. We observe
that SampleGreedy runs roughly two orders magnitude faster than RepeatedGreedy and
three orders of magnitude faster than Fantom. Moreover, even after we boost SampleGreedy
by executing it a few times, its computational cost remains much lower than that of the other
algorithms.

To better analyze the trade-o↵ between the utility of the solution value and the computa-
tional cost, in Figures 3c and 3d, we compare the ratio of these measurements for the various
algorithms using Fantom as a baseline. For both cases of kg = 1 and kg = 3, we see that
Max-SampleGreedy provides nearly the same utility as Fantom, while only incurring around

30

1 2 3 4 5 6

Genre Limit (kg)

5000

10000

15000

20000

25000

30000

35000

40000

45000

F
u
n
c
t
io

n
 V

a
lu

e
 f

(s
)

GREEDY

FANTOM

REPEATED GREEDY

SAMPLE GREEDY

Max SAMPLE GREEDY (4)

(a) Solution Quality

1 2 3 4 5 6

Genre Limit (kg)

102

103

104

F
u
n
c
t
io

n
E
v
a
lu

a
t
io

n
s

(
lo

g
s
c
a
le

)

GREEDY

FANTOM

REPEATED GREEDY

SAMPLE GREEDY

Max SAMPLE GREEDY (4)

(b) Run Time

(c) Ratio Comparison kg = 1 (d) Ratio Comparison kg = 3

Figure 3: Performance Comparison. 3a shows the function value of the returned solutions for
tested algorithms with varying genre limit kg. 3b shows the number of function evaluations on
a logarithmic scale with varying genre limit kg. 3c and 3d show the ratio of solution quality and
cost with Fantom serving as a baseline.

1% of the computational cost. For the case of kg = 3, SampleGreedy achieves 76.6% of the
utility of Fantom, while incurring only 0.3% of the computational cost. Thus, we may conclude
that our algorithm provides solutions whose quality is on par with current state-of-the-art, and
yet they run in a small fraction of the time.

While Greedy may commit to poor solutions early on which may not be improved, Sample-
Greedy avoids this (in expectation) by only considering a fraction of the ground set. Fortunately,
the movie recommendation system has a very interpretable solution so we can observe this phe-
nomenon in a qualitative manner. See Figure 4 for the movies recommended by the di↵erent
algorithms. Because kg = 1, we are constrained here to have at most one movie from Adventure,
Animation and Fantasy. As seen in Figure 4, Fantom and SampleGreedy return maximum
size solution sets that are both diverse and representative of these genres. On the other hand,
Greedy gets stuck choosing a single movie that belongs to all three genres, precluding any other
choice of movie from the solution set.

31

Figure 4: Solution sets: the movies in the solution sets for kg = 1 returned by Fantom, Sample
Greedy, Repeated Greedy and Greedy are listed here, along with genre information. The favorite
genres (Gu) are in red.

5.2 Streaming Algorithms

In this section, we investigate the performance of our proposed streaming algorithm on two data
summarization applications. We demonstrate that by subsampling elements of a stream, it is
possible to dramatically reduce the computational cost while providing solutions with similar
utility as state-of-the-art algorithms.

For the first task, in Section 5.2.1, we replicate the experiment of Mirzasoleiman et al. [2018]
and compare the performance of our algorithm (Sample-Streaming) with the performance of
the algorithm of Mirzasoleiman et al. [2018]. Unfortunately, to allow such a comparison we had
to resort to the relatively small datasets that existing algorithms can handle. Despite the small
size of these datasets, we could still observe the superiority of our method against this state-
of-the-art. In Section 5.2.2, we investigate the scalability of our algorithm to larger datasets in
a location summarization task where the other streaming algorithms are not applicable due to
their larger computational cost.

5.2.1 Video Summarization.

We evaluate the performance of Sample-Streaming on a video summarization task and com-
pare it with seqDPP [Gong et al., 2014]4 and Local-Search [Mirzasoleiman et al., 2018].5 For
our experiments, we use the Open Video Project (OVP) and the YouTube datasets, which have
50 and 39 videos, respectively [De Avila et al., 2011].

Determinantal point process (DPP) is a powerful method to capture diversity in datasets
[Macchi, 1975, Kulesza and Taskar, 2012]. Let N = {1, 2, · · · , n} be a ground set of n items. A

DPP defines a probability distribution over all subsets of N , distributed as Pr[Y = S] = det(LS)

det(I+L)

for every set S ✓ N , where L is a positive semidefinite kernel matrix, LS is the principal sub-
matrix of L indexed by S, and I is the n⇥n identity matrix. The most diverse subset of N is the
one with the maximum probability in this distribution. Although finding this set is NP-hard [Ko
et al., 1995], the function f(S) = log det(LS) is a non-monotone submodular function [Kulesza
and Taskar, 2012].

We follow the experimental setup of [Gong et al., 2014] for extracting frames from videos,
finding a linear kernel matrix L and evaluating the quality of produced summaries based on their
F-score. Gong et al. [2014] define a sequential DPP, where each video sequence is partitioned
into disjoint segments of equal sizes. For selecting a subset St from each segment t (i.e., set Pt),
a DPP is defined on the union of the frames in this segment and the selected frames St�1 from

4https://github.com/pujols/Video-summarization
5https://github.com/baharanm/non-mon-stream

32

https://github.com/pujols/Video-summarization
https://github.com/baharanm/non-mon-stream

the previous segment. Therefore, the conditional distribution of St is given by, Pr[St|St�1] =
det(LSt[St�1

)

det(It+L)
, where L is the kernel matrix defined over Pt [St�1, and It is a diagonal matrix

of the same size as Pt [St�1 in which the elements corresponding to St�1 are zeros and the
elements corresponding to Pt are 1. For the detailed explanation, please refer to [Gong et al.,
2014]. In our experiments, we focus on maximizing the non-monotone submodular function
f(St) = log det(LSt[St�1

). We remark that this function can take negative values, violating the
non-negativity condition required for our theoretical guarantees.

We first compare the objective values (F-scores) of Sample-Streaming and Local-Search
for di↵erent segment sizes over YouTube and OVP datasets. In each experiment, the values are
normalized to the F-score of summaries generated by seqDPP. While seqDPP has the best per-
formance in terms of maximizing the objective value, in Figures 5a and 5b, we observe that both
Sample-Streaming and Local-Search produce summaries with very high qualities. Figure 6
shows the summary produced by our algorithm for OVP video number 60. Mirzasoleiman et al.
[2018] showed that their algorithm (Local-Search) runs three orders of magnitude faster than
seqDPP [Gong et al., 2014]. In our experiments (see Figure 5c), we observed that Sample-
Streaming is 40 and 50 times faster than Local-Search for the YouTube and OVP datasets,
respectively, which demonstrates the power of subsampling in reducing the computational cost.
Note that for di↵erent segment sizes the number of frames remains constant; therefore, the time
complexities for both Sample-Streaming and Local-Search do not change.

In the second experiment, we study the e↵ect of imposing di↵erent constraints on video
summarization task for YouTube video number 106, which is a part of the television series,
“Britain’s Got Talent”. We consider a constraint on the faces which appear in the summary’s
frames, using the same methods as described by Mirzasoleiman et al. [2018] for face recognition.
Note that a frame may contain more than one face. In the first set of constraints, we restrict to
3 the number of appearances in the summary of each face, which results in a 6-matchoid since
there are six unique faces in the video. Figure 7(a) shows the summary produced for this task.
We also produce a summary limiting the number of frames which contain each judge. Such a
constraint forms a 3-matchoid and this summary is shown in Figure 7(b). Finally, Figure 7(c)
shows a summary with a constraint allowing only the singer’s face.

5.2.2 Location Summarization.

In the second task, we consider a massive ridesharing dataset, for which current state-of-the-art
streaming algorithms are infeasible to run. Given a dataset of 504,247 Uber pick ups in Man-
hattan, New York in April 2014 UberDataset, our goal is to find a set of the most representative
locations. This dataset allows us to study the power of subsampling and the e↵ect of p and k

(the size of the largest feasible solution) on the performance of our algorithm.
To do so, the entire area of the given pick ups is covered by m = 166 overlapping circular

regions of radius r (the centers of these regions provided a 1km-cover of all the area, i.e., for each
location in the dataset there was at least one center within a distance of 1km from it), and the
algorithm was allowed to choose at most ` locations out of each one of these regions. One can
observe that by using a single matroid for limiting the number of locations chosen within each
one of the regions, the above constraint can be expressed as a p-matchoid constraint, where p is
the maximum number of regions a single location can belong to (notice that p could be much
smaller than the total number m of regions).

In order to find a representative set S, we use the following monotone submodular objective
function: f(S) = log det(I + ↵KS,S), where the matrix K encodes the similarities between
data points, KS,S is the principal sub-matrix of K indexed by S and ↵ > 0 is a regularization
parameter [Herbrich et al., 2003, Seeger, 2004, Krause and Guestrin, 2005]. The similarity of

33

(a) YouTube videos (b) OVP videos

10 12 14 16 18 20

Segment Size

10
4

10
5

N
u
m

b
e
r

o
f
O

r
a
c
le

C
a
ll
s

Sampling-OVP

Sampling-YouTube

Local-OVP

Local-YouTube

(c) Running time

Figure 5: Comparing the normalized objective value and running time of Sample-Streaming
and Local-Search for di↵erent segment sizes.

Figure 6: Summary generated by Sample-Streaming for OVP video number 60.

two location samples i and j is defined by a Gaussian kernel Ki,j = exp (�d
2

i,j
/h

2), where the
distance di,j (in meters) is calculated from the coordinates and h is set to 5000.

In the first location summarization experiment, we set the radius of regions to r = 1.5km.
In this setting, we observed that a point belongs to at most 7 regions; hence, the constraint
is a 7-matchoid. For ` = 5, it took 116 seconds6 (and 693,717 oracle calls) for our algorithm
to find a summary of size k = 153. Additionally, for ` = 10 and ` = 20 it took 294 seconds
(and 1,306,957 oracle calls) and 1004 seconds (and 2,367,389 oracle calls), respectively, for the
algorithm to produce summaries of sizes 301 and 541, respectively.

In the second location summarization experiment, we set the radius of regions to r = 2.5km
to investigate the performance of our algorithm on p-matchoids with larger values of p. In this

6In these experiments, we used a machine powered by Intel i5, 3.2 GHz processor and 16 GB of RAM.

34

Figure 7: Summaries generated by Sample-Streaming for YouTube video number 106: (a) a
6-matchoid constraint, (b) a 3-matchoid constraint and (c) a partition matroid constraint.

setting, we observed that a point belongs to at most 17 regions, which made the constraint a
17-matchoid. This time, for ` = 5, it took only 35 seconds (and 296,023 oracle calls) for our
algorithm to find a summary of size k = 54. Additionally, for ` = 10 and ` = 20 it took 80
seconds (and 526,839 oracle calls) and 176 seconds (and 958,549 oracle calls), respectively, for
the algorithm to produce summaries of sizes 106 and 198, respectively. As one can observe, our
algorithm scales well to larger datasets. Also, for p-matchoids with larger p (which results in a
smaller sampling probability q) the performance gets even better.

6 Conclusion

We presented subsampling as an alternative algorithmic technique for constrained submodular
maximization. We argued that subsampling provides a unified framework for achieving tight
or nearly-tight approximation guarantees for both monotone and non-monotone objectives in
several computational settings. To this end, we proposed two algorithms which use the subsam-
pling technique: SampleGreedy for submodular maximization under a p-extendible system in
the o✏ine setting, and Sample-Streaming for submodular maximization under a p-matchoid
constraint in the streaming setting. Our theoretical analysis shows that subsampling can be
used to achieve state-of-the-art approximation guarantees for these settings at significantly lower
computational cost than previous methods. Our experimental results demonstrate that for a
variety of practical problems, algorithms featuring the subsampling technique produce solutions
with similar quality to other existing algorithms at a fraction of the computational cost. This
work shows that subsampling is a powerful technique which can be used to scale submodular
optimization to larger problem instances with more complex constraints.

Acknowledgments.

This work was supported in part by NSF (IIS- 1845032), ONR (N00014-19-1-2406), and AFOSR
(FA9550-18-1-0160) awarded to Amin Karbasi and an NSF Graduate Research Fellowship (DGE1122492)
awarded to Christopher Harshaw.

35

References

Ashwinkumar Badanidiyuru. Buyback problem - approximate matroid intersection with cancel-
lation costs. In ICALP, pages 379–390, 2011.

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular
functions. In SODA, pages 1497–1514, 2014.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
Streaming submodular maximization: massive data summarization on the fly. In KDD, pages
671–680, 2014.

Ashwinkumar Badanidiyuru, Amin Karbasi, Ehsan Kazemi, and Jan Vondrak. Submodular max-
imization through barrier functions. In Advances in Neural Information Processing Systems,
pages 524–534, 2020.

Eric Balkanski, Baharan Mirzasoleiman, Andreas Krause, and Yaron Singer. Learning sparse
combinatorial representations via two-stage submodular maximization. In Proceedings of The
33rd International Conference on Machine Learning, pages 2207–2216, 2016.

Niv Buchbinder and Moran Feldman. Submodular functions maximization problems., 2018.

Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsymmetric
technique. Math. Oper. Res., 44(3):988–1005, 2019. URL https://doi.org/10.1287/moor.
2018.0955.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular Maximization
with Cardinality Constraints. In SODA, pages 1433–1452, 2014.

Niv Buchbinder, Moran Feldman, and Roy Schwartz. Online submodular maximization with
preemption. In SODA, pages 1202–1216, 2015.

Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing Apples and Oranges: Query
Trade-o↵ in Submodular Maximization. Mathematics of Operations Research, 2016.

Niv Buchbinder, Moran Feldman, Yuval Filmus, and Mohit Garg. Online submodular maximiza-
tion: Beating 1/2 made simple. In IPCO, pages 101–114, 2019.

Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

E. Candés and B. Recht. Exact matrix completion via convex optimization. In Foundations of
Computational Mathematics, 2008.

Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: matchings,
matroids, and more. Math. Program., 154(1-2):225–247, 2015.

Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for submodular
function maximization. In ICALP, pages 318–330, 2015.

Sandra Eliza Fontes De Avila, Ana Paula Brandão Lopes, Antonio da Luz Jr, and Arnaldo
de Albuquerque Araújo. VSUMM: A mechanism designed to produce static video summaries
and a novel evaluation method. Pattern Recognition Letters, 32(1):56–68, 2011.

36

https://doi.org/10.1287/moor.2018.0955
https://doi.org/10.1287/moor.2018.0955

Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin. Turning down the noise in
the blogosphere. In international conference on Knowledge discovery and data mining (KDD),
pages 289–298, 2009.

Alina Ene and Huy L. Nguyen. Constrained submodular maximization: Beyond 1/e. In FOCS,
pages 248–257, 2016.

Alina Ene and Huy L. Nguyen. Towards nearly-linear time algorithms for submodular maximiza-
tion with a matroid constraint. CoRR, abs/1811.07464, 2018. URL http://arxiv.org/abs/
1811.07464.

Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm for
submodular maximization. In FOCS, pages 570–579, 2011a.

Moran Feldman, Joseph Naor, Roy Schwartz, and Justin Ward. Improved approximations for
k-exchange systems - (extended abstract). In ESA, pages 784–798, 2011b.

Moran Feldman, Christopher Harshaw, and Amin Karbasi. Greed is good: Near-optimal sub-
modular maximization via greedy optimization. In COLT, pages 758–784, 2017.

Moran Feldman, Amin Karbasi, and Ehsan Kazemi. Do less, get more: Streaming submodular
maximization with subsampling. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 730–740, 2018.

M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maximizing
submodular set functions – II. Mathematical Programming Study, 8:73–87, 1978.

Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of di↵usion
and influence. In international conference on Knowledge discovery and data mining (KDD),
2010.

Boqing Gong, Wei-Lun Chao, Kristen Grauman, and Fei Sha. Diverse sequential subset selection
for supervised video summarization. In NIPS, pages 2069–2077, 2014.

Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-Optimal Sensor Placements in
Gaussian Processes. In International Conference on Machine Learning (ICML), 2005.

Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained Non-monotone
Submodular Maximization: O✏ine and Secretary Algorithms. In WINE, pages 246–257, 2010.

Ran Haba, Ehsan Kazemi, Moran Feldman, and Amin Karbasi. Streaming submodular maxi-
mization under a k-set system constraint. In International Conference on Machine Learning,
2020.

Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Rexa Zadeh. Matrix completion and low-rank
svd via fast alternating least squares. In Journal of Machine Learning Research, 2015.

Ralf Herbrich, Neil D Lawrence, and Matthias Seeger. Fast sparse gaussian process methods:
The informative vector machine. In Advances in neural information processing systems, pages
625–632, 2003.

Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Scalable Deletion-Robust Submod-
ular Maximization: Data Summarization with Privacy and Fairness Constraints. In ICML,
pages 2549–2558, 2018.

37

http://arxiv.org/abs/1811.07464
http://arxiv.org/abs/1811.07464

Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and Amin Karbasi.
Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory and Low
Adaptive Complexity. In International Conference on Machine Learning (ICML), pages 3311–
3320, 2019.

Ehsan Kazemi, Shervin Minaee, Moran Feldman, and Amin Karbasi. Regularized submodular
maximization at scale. arXiv preprint arXiv:2002.03503, 2020.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a
social network. In international conference on Knowledge discovery and data mining (KDD),
pages 137–146, 2003.

Katrin Kirchho↵ and Je↵ Bilmes. Submodularity for data selection in statistical machine trans-
lation. In Proceedings of EMNLP, 2014.

Chun-Wa Ko, Jon Lee, and Maurice Queyranne. An exact algorithm for maximum entropy
sampling. Operations Research, 43(4):684–691, 1995.

Nitish Korula, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online submodular welfare
maximization: Greedy beats 1/2 in random order. SIAM J. Comput., 47(3):1056–1086, 2018.
URL https://doi.org/10.1137/15M1051142.

Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graphical
models. In UAI ’05, Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence,
Edinburgh, Scotland, July 26-29, 2005, pages 324–331, 2005.

Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. Foundations
and Trends in Machine Learning, 5(2–3), 2012.

Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing non-
monotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete
Math., 23(4):2053–2078, 2010a.

Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular Maximization over Multiple Matroids
via Generalized Exchange Properties. Math. Oper. Res., 35(4):795–806, 2010b.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and
Natalie Glance. Cost-e↵ective outbreak detection in networks. In international conference on
Knowledge discovery and data mining (KDD), pages 420–429, 2007.

Maxwell W. Libbrecht, Je↵rey A. Bilmes, and William Sta↵ord Noble. Choosing non-redundant
representative subsets of protein sequence data sets using submodular optimization. Proteins:
Structure, Function, and Bioinformatics, 2018. ISSN 1097-0134.

Hui Lin and Je↵ A. Bilmes. A Class of Submodular Functions for Document Summarization. In
HLT, pages 510–520, 2011.

Erik M Lindgren, Shanshan Wu, and Alexandros G Dimakis. Sparse and greedy: Sparsifying sub-
modular facility location problems. In NIPS Workshop on Optimization for Machine Learning,
2015.

Odile Macchi. The coincidence approach to stochastic point processes. Advances in Applied
Probability, 7(1):83–122, 1975.

38

https://doi.org/10.1137/15M1051142

Julián Mestre. Greedy in Approximation Algorithms. In European Symposium on Algorithms
(ESA), pages 528–539. 2006.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier Than Lazy Greedy. In AAAI Conference on Artificial Intelligence, pages 1812–
1818, 2015.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast Constrained
Submodular Maximization: Personalized Data Summarization. In ICML, pages 1358–1367,
2016a.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed Submod-
ular Maximization. Journal of Machine Learning Research, 17:238:1–238:44, 2016b.

Baharan Mirzasoleiman, Stefanie Jegelka, and Andreas Krause. Streaming Non-Monotone Sub-
modular Maximization: Personalized Video Summarization on the Fly. In AAAI Conference
on Artificial Intelligence, 2018.

Marko Mitrovic, Mark Bun, Andreas Krause, and Amin Karbasi. Di↵erentially private submod-
ular maximization: Data summarization in disguise. In International Conference on Machine
Learning, pages 2478–2487. PMLR, 2017.

Marko Mitrovic, Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Data Summa-
rization at Scale: A Two-Stage Submodular Approach. In ICML, pages 3593–3602, 2018.

Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, and Amin Karbasi. Adaptive
sequence submodularity. In Advances in Neural Information Processing Systems, pages 5352–
5363, 2019.

Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Conditional gradient method for stochastic
submodular maximization: Closing the gap. In AISTATS, pages 1886–1895, 2018.

G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Mathematics of Operations Research, 3(3):177–188, 1978.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions—i. Mathematical Programming, 14(1):265–294, 1978.

Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In
SODA, pages 1098–1116, 2011.

Mehraveh Salehi, Amin Karbasi, Dustin Scheinost, and R. Todd Constable. A Submodular
Approach to Create Individualized Parcellations of the Human Brain. In MICCAI, pages
478–485, 2017.

Matthias Seeger. Greedy forward selection in the informative vector machine. Technical report,
Technical report, University of California at Berkeley, 2004.

Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy, and Thorsten Joachims. Temporal
corpus summarization using submodular word coverage. In International Conference on In-
formation and Knowledge Management, (CIKM), pages 754–763, 2012.

Serban Stan, Morteza Zadimoghaddam, Andreas Krause, and Amin Karbasi. Probabilistic Sub-
modular Maximization in Sub-Linear Time. In International Conference on Machine Learning
(ICML), pages 3241–3250, 2017.

39

Ehsan Tohidi, Rouhollah Amiri, Mario Coutino, David Gesbert, Geert Leus, and Amin Karbasi.
Submodularity in action: From machine learning to signal processing applications. IEEE
Signal Processing Magazine, 37(5):120–133, 2020.

Sebastian Tschiatschek, Rishabh K. Iyer, Haochen Wei, and Je↵ A. Bilmes. Learning mixtures
of submodular functions for image collection summarization. In NIPS, pages 1413–1421, 2014.

UberDataset. Uber pickups in new york city, 2014. URL https://www.kaggle.com/
fivethirtyeight/uber-pickups-in-new-york-city.

Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM J.
Comput., 42(1):265–304, 2013.

Justin Ward. A (k+3)/2-approximation algorithm for monotone submodular k-set packing and
general k-exchange systems. In STACS, pages 42–53, 2012.

40

https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Main Results
	4.1 Offline Algorithm: SampleGreedy
	4.1.1 Proof of Theorem 1, Submodular Objectives.
	4.1.2 Proof of Theorem 1, Linear Objectives.

	4.2 Streaming Algorithm
	4.2.1 Proof of Theorem 2.
	4.2.2 Proof of Proposition 14.

	5 Experimental Results
	5.1 Offline Algorithms
	5.2 Streaming Algorithms
	5.2.1 Video Summarization.
	5.2.2 Location Summarization.

	6 Conclusion

