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Figure 2: Overview of CoCoNet’s workflow. First, a user expresses amachine learning algorithm in the DSL that contains both

computation (MatMul) and communication (AllReduce). Then, the autotuner applies transformations to optimize the program

while keeping the algorithmunchanged, such as fusingAllReduce andDropout into FusedAllReduce and overlapping thiswith

MatMul. Finally, CoCoNet generates custom communication and computation code, which is available through PyTorch.

1 Tensor w(FP16 , [H,H], Sliced (0), WORLD , RANK);

2 Tensor b(FP16 , [H], Replicated , WORLD);

3 Tensor in(FP16 , [B,S,H], Sliced (2), WORLD , RANK);

4 Tensor r(FP16 , [B,S,H], Replicated , WORLD);

5
6 // layer(FP16 , [B,S,H], Local , WORLD , RANK)

7 Var layer = MatMul(in, w);

8 // sum(FP16 , [B,S,H], Replicated , WORLD)

9 Var sum = AllReduce("+", layer);

10 // dropout(FP16 , [B,S,H], Replicated , WORLD)

11 Var dropout = Dropout(sum + b, 0.1);

12 // out(FP16 , [B,S,H], Replicated , WORLD)

13 Var out = dropout + r;

14
15 Execute self_attention ({w,in,b,r}, {out});

Figure 3: An example program in CoCoNet.

(B: batch size, S: sequence length, H: hidden dimension size)

across all ranks in a group where it has the same value on each

rank and it does not have a rank identifier. For example, the bias b

and the residual connection r are replicated as shown in Figure 3.

A local tensor has same shape on all ranks but different values on

all ranks. A local tensor requires RANK to identify the values. For

example, in Figure 3, layer is a local tensor that represents the

result of MatMul operation. A Scalar is a zero-dimensional tensor

that represents a variable available on all ranks. We discuss the

layout of intermediate tensors in the next section.

2.2 CoCoNet’s Operations

A CoCoNet program inherits the concept of data-flow graph (DFG)

from existing machine learning frameworks with operations as

vertices and data dependencies as edges. Operations in CoCoNet

can be classified as (i) local computations, such as pointwise compu-

tations, matrix multiplication, and convolution, and (ii) cross rank

communication operations, such as AllReduce, AllGather, and P2P

Send-Recv. Table 1 shows all operations supported by CoCoNet.

A Var represents the intermediate tensor obtained after perform-

ing an operation. For instance, Figure 3 describes the Megatron-

LM [47] model parallel logic of Self-Attention layer in CoCoNet.

In this example, the linear layer’s weight (w) and the input (in)

are sliced across all ranks while the bias (b) and residual (r) are

replicated on all ranks. A Var’s shape and distribution layout are

inferred based on the operation and inputs to the operation. For

example, line 7 performs a MatMul operation on the input (in) and

weights (w). Since MatMul between two sliced tensors produces a

Table 1: Operations supported byCoCoNet includes all com-

mon communication and computation operations.

Communication AllReduce, AllGather, ReduceScatter,

Operations Reduce, Broadcast, P2P Send-Recv

Layers Matrix Multiplication, Convolution

Activations Dropout, tanh, ReLU

Tensor +, −, ∗, ÷, Norm, ReduceTensor,

Operations Sqrt, Pow, Update

local tensor, layer represents the partial result with local layout.

At line 9, AllReduce computes the sum of layer of all ranks and

returns a replicated tensor with the same values on each rank. The

computations at lines 11ś13 add the bias, use dropout as an acti-

vation, and add the residual. At line 11, the addition of sum and

b follows PyTorch’s broadcast semantics2 by replicating b in all

dimensions of sum. Thus, the shape and layout of output of these op-

erations are same as sum. Finally, Execute defines the name, inputs,

and outputs of the program.

2.3 Fused Collective Communication
Operations

CoCoNet enables efficient computations on the output of com-

munication by providing fused collective communication opera-

tions, such as FusedAllReduce. Consider the AllReduce in Figure 3

followed by a Dropout (lines 9ś11). The abstraction in existing

machine learning frameworks requires the output of AllReduce to

be stored in memory and then re-loaded by Dropout. FusedAllRe-

duce avoids such stores and loads by directly passing the output

of communication to following computations through registers. In

addition to the argument of AllReduce, a FusedAllReduce takes

computations as extra arguments. Section 5.2 discusses the imple-

mentation of Fused Collective Communication Operations.

2.4 Overlapping Operations

CoCoNet supports overlapping multiple dependent computation

and communication operations using the Overlap construct. For

example, consecutive MatMul and AllReduce in Figure 3 (lines 7ś9)

2https://pytorch.org/docs/stable/notes/broadcasting.html
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can be overlapped to fully utilize both network and computation re-

sources. Section 5.3 discusses the implementation of this construct.

2.5 Custom Operations

In CoCoNet, the implementation of an operator needs to define

three key properties of the operator: (i) syntax, (ii) semantics, and

(iii) code generation. The syntax of an operator is defined using C++

constructors and the semantics are defined by implementing rules

to describe the layout and size of the output tensor based on the

input tensors. Finally, the code generation requires implementing a

function to generate a call to existing libraries or generate fused

GPU kernels. The implementation of syntax and semantics can

be achieved in a few lines of code, however, implementing the

code generation for complex operations like Matrix Multiplication

and Convolution can potentially take hundreds of lines of code.

Fortunately, in practice the code generation for complex operations

can call an optimized implementation of existing libraries.

3 COCONET TRANSFORMATIONS

CoCoNet provides four semantics preserving transformations to

optimize a program written in the DSL. All transformations are

valid based on rules described in the sections below. CoCoNet

automatically checks the validity of each transformation based on

these rules and throws an error for an invalid transformation.

We call an order of transformations a schedule. A user can man-

ually specify the schedule to optimize the program. Additionally, a

user can invoke the autotuner to automatically find the best per-

forming schedule for the given problem sizes and the underlying

architecture. Below we present each transformation by applying

them on the program from Figure 3 and show equivalent CoCoNet

programs generated after applying each transformation in Figure 4.

3.1 Splitting Communication

The split transformation breaks a collective communication op-

eration into two communication operations. One of the two split

policies supported by CoCoNet is

AllReduce Split RS-AG splits an AllReduce into a ReduceScat-

ter to produce a sliced tensor and an AllGather on the sliced tensor

to return a replicated tensor.

Running Example The AllReduce in Figure 3 is split into rsSum

that does a ReduceScatter on layer and agSum that does an All-
Gather on rsSum.

(rsSum , agSum) = split(layer , ARSplitRSAG );

The program 1 of Figure 4 is the implementation of this sched-

ule where the input to Dropout is replaced by agSum.

Validity Since an AllReduce can always be split to a ReduceScatter

and an AllGather, this transformation is always valid.

3.2 Reordering Operations

The reorder transformation swaps operations with an AllGather or

a Broadcast in the DFG of a program. We explain this transformation

for AllGather below:

AllGather Reorder reorders an AllGather with communication

and computation operations. This transformation changes the lay-

out of the operations, the input and output of operations, and the

input and output of the AllGather. We explain this transformation

below using the running example.

Running Example In Figure 4, applying the reorder transforma-
tion changes the program 1 to 2 by reordering AllGather (agSum)
with computations d and out. The reorder transformation replaces
these operations in the DFG with three new operations: scD and
scOut, both of which performs sliced computations, and agOut,
which gathers the final result of computations.

(scD , scOut , agOut) = reorder(d, out , agSum);

The new sliced computations perform the same operations as

original computations with two differences: (i) the output of All-

Gather used in the computation is replaced by the input of All-

Gather, and (ii) since the input of AllGather is sliced, all tensors

input to the computations are also sliced along the same dimension

as the input of AllGather. After reorder, scD performs the same com-

putation as d but scD takes rsSum and Slice(r) as input. Therefore,

the layout of scOut is also sliced while the computation is same

as out. Furthermore, the new AllGather is performed on the out-

puts of the computations, for example, after reorder, the AllGather

(agOut) is performed on scOut. Figure 5 shows the workflow of

this schedule.

Validity The reorder transformation is valid only if operations

being reordered with an AllGather can be sliced along the dimen-

sion the AllGather is performed. The rules of slicing an operation

depend on the type of operation and the dimensions of inputs to

the operations. For example, d and out can be sliced because the

computations have the same dimensions as agOut. Section 4 shows

how P2P Send can be reordered with an AllGather.

3.3 Fusing Operations

Fusing multiple computations is a common technique used by ex-

isting compilers [18, 20, 24, 27, 42]. CoCoNet extends this concept

to fuse multiple computations and communications in a single op-

eration and provides this capability using the fuse transformation.

Below we explain two fuse policies supported by CoCoNet:

Computation Fuse fuses a series of computations in a single

operation that performs all these operations.

AllReduce Fuse fuses a series of ReduceScatter, sliced compu-

tations, and AllGather operations in a single FusedAllReduce that

performs all these operations.

Running Example We can fuse ReduceScatter (rsSum), compu-
tations (scD and scOut), and AllGather (agOut) in program 2 of
Figure 4 into a FusedAllReduce to obtain program 3 .

fuseAR = fuse(rsSum , scOut , agOut , ARFuse );

The comp method of fusedAR specifies the computation to be

fused with FusedAllReduce and returned out is the output.

Validity Fusing multiple operations into one operation is valid

only if the dependencies in the DFG after fusion are preserved.
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Figure 7: Two different schedules of pipeline parallelism.

each rank performs pointwise computations over the replicated

output. Finally, the first group sends the result of computations to

the corresponding rank in the second group using point-to-point

(P2P) sends. (Line 2 in Figure 8a shows these computations but are

omitted in Figure 7 for simplicity). Since the output of AllReduce

in Figure 7a is replicated, redundant data is sent using P2P. We can

avoid this redundant communication by splitting the AllReduce

to ReduceScatter and AllGather and reordering the P2Ps with the

AllGather. Hence, the inter-group communication is reduced by the

group size. We can further optimize by overlapping all communi-

cation operations. Figure 7b shows that if the buffers are split into

multiple tiles (T0śT2 in the figure), intra-group and inter-group

communications can be overlapped.

Figure 8a is the original program, while Figure 8b optimizes

it by applying transformations. Line 1 fuses the P2P send with

computations. Line 2 splits the AllReduce and reorders the returned

AllGather with the fused P2P send at Line 4. Hence, P2P send and

computations are performed on only a slice of data on the next

group where the AllGather is also performed. Finally, all three new

operations get overlapped in Line 5.

5 THE COCONET CODE GENERATOR

CoCoNet generates CUDA kernels for computation and communi-

cation operations for running on a distributed system with NVIDIA

GPUs. For each operation, CoCoNet either generates (i) a call to a

collective communication operation, (ii) a CUDA kernel for fused

computations, (iii) a CUDA kernel for fused-collective communica-

tions (Section 5.2), or (iv) CUDA kernels for overlapping of com-

munication and computation operations (Section 5.3). Moreover,

CoCoNet generates code for performing operations on multiple

non-contiguous tensors (Section 5.4). After generating CUDA ker-

nels,CoCoNet traverses the program’s DFG to generate kernel calls.

CoCoNet wraps generated programs as custom operators and in-

tegrates them into PyTorch, so that, applications like Megatron-LM

can invoke them directly (Section 5.5). We now discuss how Co-

CoNet adapts NVIDIA Collective Communication Library (NCCL),

a widely-used hand-optimized high performance communication

library, into a runtime to execute above CUDA kernels.

1 Var sum = AllReduce("+", in);

2 Var send = Dropout(recv+b,0.1) + r;

3 Var output = Send(send ,

4 GroupRank(GROUP+1, RANK ));

5

6 Execute transformer ({in}, {output });

(a) Traditional implementation. Each rank of a group sends same

data to next group.

1 fuseSend = fuse(send , output , SendFuse );

2 (rsSum , agSum) = split(sum , ARSplitRSAG );

3 (scSend , agOut) = reorder(fuseSend , agSum ,

4 AGReorder );

5 overlapOut = overlap(rsSum , scSend , agOut);

(b) An Optimized Schedule. Each rank sends only a slice of data to

ranks in next group and all operations are overlapped.

Figure 8: Optimizing pipeline parallelism of Megatron-LM.

Input tensors: layer output in, bias b, and residual r.

5.1 NCCL Architecture

NCCL communicates data stored in the global memory of one

GPU to a memory location on another GPU using CUDA kernels.

NCCL’s CUDA kernels perform communication by directly copying

data from memory of one GPU to another GPU using GPUDirect

Remote Data Memory Access [5]. NCCL’s architecture defines four

key properties: (i) topology, (ii) protocols, (iii) channels, and (iv)

threads in a thread block of the CUDA kernel. NCCL automatically

sets key configuration values for these properties based on the size

of the input buffer, network architecture, and the size of WORLD.

To ensure good performance, CoCoNet’s code generation must

carefully reconfigure these properties when extending NCCL to

custom communication and computation. We now provide a high

level overview of these properties.

Topology NCCL creates logical topologies, such as ring and tree,

over the underlying interconnect network.

Channels NCCL maps copies of a logical topology on the under-

lying interconnect network. Each copy is called a channel and is

assigned to one CUDA thread block.

Protocols NCCL sends data using one of the three protocols: LL,

LL128, and Simple. These protocols make different tradeoffs be-

tween latency and bandwidth based on the type of inter-node syn-

chronization used: LL has the lowest latency and Simple provides

the highest bandwidth.

Number of Threads NCCL sets a fixed number of threads for

each channel (and thread block). NCCL’s kernels have high register

usage, which limits the number of thread blocks per SM to one.

NCCL Workflow After determining the topology, protocol, num-

ber of channels, and number of threads, NCCL calls its CUDA kernel

for communication. Each collective communication has three levels

of tiling to fully utilize the massive parallelism of GPUs. Data is

first divided into buffer tiles equal to the size of the communication
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buffer. Each buffer tile is further divided among all ranks and chan-

nels to obtain chunks. Each channel communicates a chunk of data

at a time. The threads in channels copy elements in and out of the

buffers and apply reduction operations (sum, min, max) if needed.

We now present details about CoCoNet’s code generation.

5.2 Fused Collective Communications

CoCoNet extends the code generation described in the previous

sections to support fused collective communication operations.

Fused Collective Communication extends NCCL’s existing kernels

to enable arbitrary pointwise computations and reductions (i.e.,

beyond min, max, and sum). We inspected more than 10K lines of

code in NCCL to identify where computations can be added to

pass intermediate values from communication to fused computa-

tions directly through registers. CoCoNet supports fusion of both

pointwise operations and reductions into NCCL collectives.

Each NCCL protocol utilizes a different mechanism for commu-

nication and CoCoNet generates code for all of them. The impor-

tant features of a protocol are the pack type (64-bit for LL, 128-bit

for LL128 and Simple) and the load/store access pattern (shared

memory for LL128, global memory for LL and Simple). CoCoNet

generates template code for all element types in NCCL, and dis-

patches accordingly at runtime. There are some subtleties in the

code generation worth discussing:

Mixed Precision When the element types of computations and the

input tensors are different, CoCoNet finds the largest element type

and based on the pack type of the protocol calculates how many

elements can be loaded at once. All code will then be generated to

operate on these many elements.

Sliced Tensor When a sliced tensor is used by a fused collective

communication, all memory accesses performed need to be mapped

to elements of the sliced tensor. CoCoNet generates code that

produces this mapping. To perform an AllGather on sliced tensors,

the inverse of this mapping is produced.

Tensor Reduction To reduce a sliced tensor, each rank reduces

locally and do an AllReduce. This AllReduce reuses already estab-

lished connections among ranks in the surrounding communication

kernel to avoid extra startup latency.

5.3 Overlapping of Communication and
Computation

Overlapping of computation and communication has been studied

in the context of executing stencil computations in a distributed

system [14ś16, 19, 20, 33, 36, 37, 44, 50, 51]. These works use non-

blocking MPI operations to communicate data and simultaneously

perform computations on CPUs. A similar approach for overlapping

of computation and communication operations for a GPU workload

would involve dividing all operations into sub-operations and en-

suring dependency between sub-operations using CUDA streams.

However, this approach would provide sub-optimal performance

because each sub-operation is performed on only a part of data,

which leads to in-efficient computation and under-utilization of

communication bandwidth.

Figure 9 shows how the fine-grained overlapping of CoCoNet

addresses this issue using the example of a MatMul followed by

a ring AllReduce. First, it schedules the MatMul kernel (based on

CUTLASS [4]) to produce chunks in the same order as the AllRe-

duce consumes them. Here, the 𝑛th rank sends chunks in the order

starting from the 𝑛th chunk. Hence, the MatMul kernel on 𝑛
th rank

produces chunks in the same order. Second, CoCoNet invokes both

kernels only once on different streams and synchronizes the AllRe-

duce with the MatMul using an efficient fine-grained spin-lock on

a memory buffer to ensure that the AllReduce wakes up as soon as

the MatMul produces a chunk. Third, to provide opportunities to

tune the 2-D tile sizes of the MatMul kernel, CoCoNet generates a

2-D AllReduce kernel that communicates 2-D chunks, while NCCL

AllReduce only supports 1-D continuous chunk.

The example in Figure 9 works as follows. At T = 1 , all ranks

invoke MatMul and AllReduce kernels. On rank 0, after computing

chunk 0, the MatMul kernel wakes the AllReduce kernel at T =

2 , which starts communicating chunk 0. While on rank 1, at T

= 2 the MatMul kernel wakes the AllReduce kernel to communi-

cate chunk 1. Concurrently, both MatMul kernels compute their

corresponding next chunk. At T = 3 , MatMul kernels finished

computing chunk 1 on rank 0 and chunk 2 on rank 1 and wakes

up corresponding AllReduce kernels to communicate these chunks.

This process continues until all chunks are processed.

This process allows the MatMul kernel and AllReduce to be over-

lapped in a fine-grained manner, which reduces the startup latency

of AllReduce. Since AllReduce communicates on the same chunk

sizes, it achieves maximum communication bandwidth. Further-

more, the MatMul kernel achieves maximum efficiency because

the kernel is invoked on the full matrix size. Figure 1 shows that

this overlapping provides up to 1.36× better performance and hides

more than 80% of the MatMul time.

5.4 Operations on Scattered Tensors

In data parallelism, communication and computation occur on

different layers of widely different sizes. Since machine learning

frameworks allocate parameters and gradients of layers in non-

contiguous buffers, gradients are copied to a large buffer to avoid

launching multiple AllReduce operations.

CoCoNet supports generating a single kernel for both compu-

tation and communication operations acting on non-contiguous

tensors. In this section, we show how CoCoNet modifies NCCL to

generate a single communication kernel for scattered tensors. This

code generation is non-trivial because NCCL has several design

decisions based on the assumption that it is communicating a single

contiguous buffer. For example, each thread of a NCCL channel

copies only a few elements in each iteration, and hence indexing the

correct tensor at a particular offset requires a linear search through

all non-contiguous tensors, which can lead to significant overhead.

CoCoNet solves this problem by first dividing each tensor into

buckets of size at most 210 elements and then assigning buckets

to warps in a round-robin manner. This mechanism allows each

thread to quickly find the offset in a tensor, since a warp can directly

index in its assigned bucket. CoCoNet pre-calculates the number

of buckets that belong to the same contiguous buffer and calculates

the offset for all of them once.

The process of breaking each tensor to buckets has computation

overhead and extra memory requirements. Since this bucketing is
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Table 5: Speedup in inference by CoCoNet’s implementa-

tion of pipeline parallelism for GPT-2 and GPT-3. Layers

per node were obtained by equally distributing layers on all

nodes. To evenly distribute layers of GPT-2, number of lay-

ers were increased to the nearest multiple of 16, i.e., 80.

Model
Layers

per node
Maximum

Micro Batch Size
Speedup

GPT-2 8.3B 5 16 1.77×

GPT-3 175B 6 2 1.33×

abstractions, CoCoNet preserves the layout information for each

tensor. The layout information enables CoCoNet to perform static

type checking of each operation, and automatically perform trans-

formations on the program, which is not possible with existing

abstractions.

Distributed Neural Network Training Several works have im-

proved data-, model-, and pipeline-parallel techniques for both

training and inference. Mesh-Tensorflow [46] and GShard [34] cre-

ate shards of weights and model state that can be split among

ranks. Horovod [45] introduced the Tensor Fusion optimization

that copies all gradients to a single buffer of 64MB, calls AllRe-

duce on the buffer, and then copies the updated value to original

gradients. ZeRO [43] splits weights and model state among ranks

and uses ReduceScatter and AllGather to distribute computation.

FlexFlow [30] performs operator splitting as a way to represent

both data-parallelism and model-parallelism, but does not optimize

computation with communication. CoCoNet provides several op-

timizations over these works that are possible only by breaking

the abstraction: (i) scattered tensors that remove extra storage and

memory copy operations, (ii) fusion communication collectives, and

(iii) novel communication and computation overlapping techniques.

PyTorch’s DDP [35] overlaps AllReduce of gradients with the for-

ward and backward pass. However, unlike CoCoNet, PyTorch’s

DDP requires extra memory for overlapping, which can increase

training time for very large models [9] and do not support slicing

of optimizer parameter update that significantly decrease memory

usage. GPipe [26], Pipedream [38], and Narayanan et al. [39] pro-

posed pipeline training to improve model parallelism, by dividing

the forward and backward pass into several mini-batches, which

are then pipelined across devices. vPipe [53] improves these works

by providing higher GPU utilization. CoCoNet improves on these

works by overlapping inter and intra-node communication opera-

tions. BytePS [31] utilizes CPU in heterogenous clusters to improve

training, which is complementary to CoCoNet.

Optimizing Stencil Computations Prior works have proposed

several DSLs and optimizations for data-parallel stencil compu-

tations on CPUs, GPUs, and other accelerators. Halide [42] and

Fireiron [24] separate the algorithm and schedule, which describes

the optimizations like fusion, and loop tiling. TVM [18] extends

Halide for generating optimized compute kernels. Lift [25, 48] and

PolyMage [27] automatically optimize stencil computations for a

single GPU. Distributed-Halide [20] extends Halide with schedul-

ing primitives that allow distributing parallelizable dimensions of

loops. CoCoNet extends these works to reason about and compose

collective communication with computation, which is crucial for

distributed machine learning scenarios.

Overlapping Computation and Communication State-of-the-

art works on overlapping [14, 33, 36, 37, 50] use either pipelined exe-

cution to overlap communication and computation or non-blocking

MPI operations. Pencil [51] improves upon these works by per-

forming pipelining within a process and supports computations in

multiple connected iteration spaces. Several techniques distribute

tiles and automatically generate communication [16, 20, 44]. Basu

et. al. [15] uses overlapped tiling in each process to remove com-

munication between processes. Denis and Trahay [19] studied the

efficiency of overlap. dCUDA [23] provides hardware supported

overlap. These works for MPI+OpenMP are valid for CPU based

stencil computations that require sends and receives to share the

halo regions. However, unlike CoCoNet, these works do not sup-

port overlapping between collectives communication and complex

computations like convolutions and matrix multiplications. Co-

CoNet supports overlapping multiple computation and communi-

cation operations on GPUs without an accelerator.

8 CONCLUSION

This paper introduced CoCoNet, a language to describe distributed

machine learning workloads and optimize them across computation

and communication boundary. We show that CoCoNet generated

code significantly improves several training and inference times

of large language models. In the future we plan to automate the

optimizations through smart search.

9 DATA AVAILABILITY STATEMENT

The artifact for this paper [28] contains the source code of our

implementation of CoCoNet and the benchmarking infrastructure

to reproduce all the results in Section 6.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact appendix describes how to reproduce results for stan-

dalone experiments in Figure 10, 11, and 12 and integration results

in Section 6.1.2, 6.2.2, and 6.3.2. This artifact includes the CoCoNet

DSL and compiler, and CoCoNet’s generated code integrated with

PyTorch, Megatron-LM, and NVIDIA Bert. To reproduce the results,

the experiments should be executed on a system similar to our

experimental system. However, all experiments can be executed on

a system with more than one NVIDIA GPUs.

A.2 Artifact Check-list (meta-information)
• Program: CoCoNet DSL and compiler written in C++.

• Compilation:A C++ compiler (g++ or clang) to compile CoCoNet.

A C++ compiler with MPI support (mpicxx) and CUDA compiler

(nvcc) to compile generated programs.
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• Binary: Each CoCoNet program compiles to a binary that gener-

ates an MPI program containing CUDA kernels.

• Data set: BERT, GPT-2, and GPT-3 training datasets for integration

experiments.

• Run-time environment: Ubuntu 20.04 with Python 3.7+, CUDA

11.0+, and OpenMPI 4.0+.

• Hardware:We performed experiments on 16 NVIDIA DGX-2 nodes,

i.e., a total of 256 NVIDIA Tesla V100 GPUs. However, the experi-

ments can be executed on any system with two or more GPUs.

• Run-time state: Python, MPI, and CUDA.

• Execution: Use mpirun to run the experiments.

• Metrics: Decrease in execution time of benchmarks.

• Output: Execution time of each experiment and CoCoNet speedup

over baselines.

• Experiments: Execution of standalone experiments and training

and inference tasks of BERT, GPT-2, and GPT-3 models.

• How much disk space required (approximately)?: 100 GB in

total. 90% of the space usage is required for storing dataset.

• Howmuch time will be spent in preparing the workflow (ap-

proximately)?: 1 hour.

• Howmuch time is needed to complete experiments (approx-

imately)?: 5 hours.

• Publicly available?: Yes.

A.3 Description

A.3.1 How to Access. TheCoCoNet implementation and the bench-

marking infrastructure used in our evaluation are publicly available

as the artifact [28]. This artifact contains a zip file with two di-

rectories: (i) coconet, which is the implementation of CoCoNet,

and (ii) coconet-experiments, which is the benchmarking in-

frastructure. Latest versions of these directories are available at

https://github.com/parasailteam/coconet and https://github.com/

parasailteam/coconet-experiments.

A.3.2 Hardware Dependencies. All benchmarks can be executed

on a distributed system with two or more NVIDIA GPUs. However,

our results will be reproducible on the evaluation system described

in Section 6.

A.3.3 Software Dependencies. Our experiments require a system

running Ubuntu 20.04 with Python 3.8+ and CUDA 11.0+. Prereq-

uisites and their installation procedure is described in README.md

files of coconet and coconet-experiments directories.

A.3.4 Data Sets. The standalone benchmarks (Figure 10, 11, and 12)

do not require any dataset. Datasets required for executing experi-

ments in Section 6.1.2, 6.2.2, and 6.3.2 can be obtained by following

Dataset section of README.md in coconet-experiments.

A.4 Installation

Following instructions have been tested with Ubuntu 20.04.

Standalone Experiments Dependencies. Install dependencies by

following the Prerequisites section in README.md file of coconet

directory.

Integration Experiments Dependencies. Follow the Prerequisites

section in README.md file of coconet-experiments directory to

build PyTorch and install all dependencies for Megatron-LM and

NVIDIA Bert.

A.5 Experiment Workflow

A.5.1 Standalone Experiments. This section describe how to exe-

cute standalone experiments of Section 6 and produce results for

Figure 10, Figure 11, and Figure 12. All of these experiments will

take 1 hour combined.

(1) Install all CoCoNet prerequisites in coconet/README.md.

(2) The experiments/ directory contains all scripts for stan-

dalone experiments.

$ cd c o c o n e t / e x p e r i m e n t s /

(3) Since all our experiments uses MPI to run the executable on

all GPUs, set the environment variable NPROC to the number

of GPUs in the system. In our experiments, we set NPROC to

256 as follows:

$ export NPROC=256

Note: Setting NPROC to a value more than the number of

GPUs in a system can lead to failed experiments.

(4) If the experiments are performed on a system with multiple

nodes then additional arguments to mpirun can be passed

by setting the MPI_ARGS environment variable.

Data-Parallel Experiments.

(1) To execute standalone data parallel experiments execute

data-parallel-exp.py. This script takes a directory to

store the results as an argument. Additionally, the script

requires MASTER_ADDR and MASTER_PORT to be passed as

MPI_RUN_ARGS. If the experiments are done on a single sys-

tem, then it is common to set MASTER_ADDR=127.0.0.1 and

MASTER_PORT=10000.

$ export MPI_ARGS= "−x ␣ MASTER_ADDR = 1 2 7 . 0 . 0 . 1 "

$ export MPI_ARGS= " $MPI_ARGS ␣ −x ␣ MASTER_PORT=10000 "

$ python data − p a r a l l e l −exp . py r e s u l t s /

The above execution of script will execute all data parallel

executables and store the results in the results directory.

(2) Generate both graphs of Figure 10 by executing the script

gen-data-parallel-graphs.py. This script takes the di-

rectory with results generated in the previous step as an

argument.

$ python gen−data − p a r a l l e l −graphs . py r e s u l t s /

Graphs are stored in two files of experiments directory:

results-adam-fp16.pdf and results-lamb-fp16.pdf.

Model-Parallel Experiments.

(1) To execute standalone model-parallel experiments execute

model-parallel-exp.py. Similar to the previous script, this

script also takes a directory to store results as its argument.

$ python model− p a r a l l e l −exp . py r e s u l t s /

The script will execute all model parallel executables and

stores the results in the results directory.

(2) Generate Figure 11 by executing following script. This script

will take above results directory as its argument.

$ python gen−model− p a r a l l e l −graphs . py r e s u l t s /

Graph is stored as results-model-parallel.pdf.
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Pipeline-Parallel Experiments.

(1) To execute standalone pipeline-parallel experiments execute

pipeline-parallel-exp.py. This script also requires a di-

rectory to store results as its command line argument.

$ python p i p e l i n e − p a r a l l e l −exp . py r e s u l t s /

Above execution of the script will execute all pipeline parallel

executables and store the results in results directory.

(2) To generate Figure 12 execute the script

gen-pipeline-parallel-graphs.py. This script takes the

directory containing above results as its argument.

$ python gen− p i p e l i n e − p a r a l l e l −graphs . py r e s u l t s /

The graph is stored in results-model-parallel.pdf.

A.5.2 Integration Experiments. In this section, we will execute the

integration experiments of Section 6.1.2, 6.2.2, and 6.3.2.

Prerequisites. Install prerequisites and obtain dataset by follow-

ing the steps in coconet-experiments/README.md.

Data-Parallel Training. Go to Nvidia-Bert directory and exe-

cute coconet-experiments.py.

$ cd NV−BERT

$ python coconet − e x p e r i m e n t s . py

This script will execute data parallel training experiments and

then print Table 4. This experiment will take 1 hour to complete.

This script contains maximum batch sizes supported by each imple-

mentation for our evaluation system of 256 Tesla V100 GPUs. It is

possible that for a different system the maximum batch size will be

different. The batch size dictionary in coconet-experiments.py

can be modified to find maximum batch size for underlying system.

Model-Parallel Inference. Go to MegatronLM-Model-Parallel
directory and execute coconet-experiments.py.

$ cd MegatronLM−Model− P a r a l l e l

$ python coconet − e x p e r i m e n t s . py

This script will execute model parallel inference experiments

and then print the values in Section 6.2.2. This experiment will take

less than 30 minutes to complete.

Pipeline-Parallel Inference. Execute coconet-experiments.py
in the directory MegatronLM-Pipeline-Parallel.

$ cd MegatronLM− P i p e l i n e − P a r a l l e l

$ python coconet − e x p e r i m e n t s . py

This script will execute pipeline parallel inference experiments

and then print the table in Section 6.3.2. This experiment will take

3 hour to complete.

A.6 Evaluation and Expected Results

Standalone Experiments. The figures generated by the experi-

ments of Section A.5.1 can be matched with the figures: 10, 11, and

12.

Integration Experiments. The results generated in experiments of

Section A.5.2 can be matched with the results in Section 6.1.2, 6.2.2,

and 6.3.2.
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