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ABSTRACT KEYWORDS

Recent trends towards large machine learning models require both
training and inference tasks to be distributed. Considering the huge
cost of training these models, it is imperative to unlock optimiza-
tions in computation and communication to obtain best perfor-
mance. However, the current logical separation between computa-
tion and communication kernels in machine learning frameworks
misses optimization opportunities across this barrier. Breaking this
abstraction can provide many optimizations to improve the per-
formance of distributed workloads. However, manually applying
these optimizations requires modifying the underlying computa-
tion and communication libraries for each scenario, which is both
time consuming and error-prone.

Therefore, we present COCoNET, which contains (i) a domain
specific language to express a distributed machine learning program
in the form of computation and communication operations, (ii) a set
of semantics preserving transformations to optimize the program,
and (iii) a compiler to generate jointly optimized communication
and computation GPU kernels. Providing both computation and
communication as first class constructs allows users to work on
a high-level abstraction and apply powerful optimizations, such
as fusion or overlapping of communication and computation. Co-
CoNET enabled us to optimize data-, model- and pipeline-parallel
workloads in large language models with only a few lines of code.
Our experiments show that COCoNET significantly outperforms
state-of-the-art distributed machine learning implementations.

CCS CONCEPTS

« Software and its engineering — Domain specific languages;
Compilers; - Computing methodologies — Parallel comput-
ing methodologies.
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1 INTRODUCTION

As the trend towards larger machine-learning models continue,
from BERT [21] with 340 million parameters, GPT-2 [41] with 1.5
billion parameters, to GPT-3 [17] with 175 billion parameters, model
training and inferencing have to be distributed. Moreover, as the
computations become resource hungry, optimizing for even the last
percentage can have huge benefits in terms of time, energy, and
money savings [10, 49].

In machine learning systems today, computation and communica-
tion are treated as independent abstractions implemented in differ-
ent libraries. For instance, computation libraries, such as cuBLAS [2]
and cuDNN [3], provide optimized tensor algebra operations, while
communication libraries, like NVIDIA Collective Communications
Library [8], provide high-performance implementations of collec-
tive communication, such as AllReduce. Machine learning frame-
works, such as PyTorch [40], call computation and communication
kernels from these libraries. Thus, in machine learning applications
built atop of such frameworks, the computation and communication
operations are invoked separately.

While this separation allows independent optimization of com-
putation and communication kernels, breaking this abstraction
boundary can unlock new optimizations that are otherwise not
feasible. These optimizations include the following. Interface opti-
mization eliminates a mismatch between the caller and the callee
of an abstraction. For example, a machine learning model’s param-
eters are stored in non-contiguous buffers, one buffer per layer
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Figure 1: Speedup of co-optimized overlapping over sequen-
tial MatMul and AllReduce (for model parallel GPT-2 Model
input matrix of [Bx1024, 768] and weights of [768, 3072]) on
16 Tesla V100 GPUs.

and hence, need to copy all buffers into a single buffer before call-
ing a collective communication like AllReduce. This copy can be
avoided if the communication operation takes a list of arrays as
input instead of requiring a single buffer. Fusion optimization de-
creases memory bandwidth usage by generating a single kernel
to perform multiple communication and computation operations.
Reorder optimization moves the computation before or after the
communication, thereby either distributing the computation or en-
abling new fusion possibilities. Finally, overlapping optimization
orchestrates multiple computation and communication operations
in a fine-grained manner to fully utilize both network and compute
resources. We elaborate on this possibility below.

In model parallelism, which is one of the distributed machine
learning approaches, each layer is distributed across multiple GPUs
[47] and the computation for each layer consists of a matrix mul-
tiplication (MatMul) on each node followed by an AllReduce. The
existing implementation of model parallelism calls individually op-
timized library functions for MatMul and AllReduce. However, the
implementation cannot utilize both network and computation re-
sources simultaneously because the network is idle during MatMul.
We can completely utilize both network and computation resources
simultaneously by overlapping the computation of MatMul with
the communication of AllReduce in a fine-grained manner. The idea
is to slice the output into smaller chunks and start the AllReduce
communication on a chunk as soon as the MatMul kernel has com-
puted it. To ensure minimum wait time for the AllReduce kernel,
we need to schedule the MatMul kernel to compute chunks in the
order the AllReduce kernel communicates them. For instance, in
the ring algorithm for AllReduce, the n' node sends the chunks
to the next node in the order starting from the n'® chunk. As such,
the MatMul kernel on the n'" node needs to generate the chunks
in this order. Furthermore, we need to invoke only one MatMul
kernel and AllReduce kernel to avoid the overhead of launching
multiple kernels. Figure 1 shows that this fine-grained overlapping
of MatMul with AllReduce can hide 80% of the execution time of
MatMul and provides 1.36x speedup.

However, manually writing these optimizations for each sce-
nario is unproductive, for example, the implementation of above
overlapping optimization contains ~2k lines of CUDA code. Thus,
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in this paper, we show that by carefully designing a language for
expressing combinations of computation and communication the
benefits of existing machine learning framework’s abstraction can
be maintained while simultaneously allowing a compiler to apply
powerful optimizations. To this effect, we propose COCONET' for
generating co-optimized custom computation and communication
kernels. Figure 2 presents the overview of COCONET. COCONET
includes a domain specific language (DSL) to express programs
containing both computation and communication operations. In-
spired by Halide [42], COCONET includes a scheduling language
to specify an execution schedule of the program using a set of
transformations. CoOCoNET’s autotuner automatically applies these
transformations to optimize a program by breaking the communica-
tion and computation boundary. Hence, COCONET enables users to
quickly generate optimized implementations for specific hardware,
topology, and data sizes. COCONET’s code generator automatically
generates high-performance computation and communication ker-
nels from a program and its schedule. We used CoCoNET to opti-
mize data-parallel training, model-parallel inference, and pipeline-
parallel inference. COCONET generated kernels for the Adam [32]
and LAMB [52] optimizers speeds up the training time of BERT
models by upto 1.68X and can train BERT 3.9 Billion parameter
models using only data parallelism, which is not possible with state
of the arts. COCoNET’s kernels for model parallelism speeds up
the inference in BERT 3.9 Billion and GPT-2 8.2 Billion parameter
models by upto 1.51X. COCoNET’s optimized pipeline parallelism
kernels speeds up inference times in GPT-2 8.2 Billion and GPT-3
175 Billion parameter models by upto 1.77X. Our implementation of
CoCoNET is available at https://github.com/parasailteam/coconet.

2 THE COCONET DSL

The CoCoNET DSL extends the data representation in existing ma-
chine learning frameworks and provides constructs to express both
computation and communication. The CoOCoNET DSL is embedded
in C++. Unifying the expression of computation and communication
for distributed machine learning in the same DSL is the foundation
to enable optimizations across computation and communication.

In this paper, we follow the MPI [22] terminology: RANK is the
process ID of a distributed process, GROUP is a set of concurrent
distributed processes, and WORLD is the GROUP that includes all pro-
cesses. COCoNET supports dividing consecutive ranks into one or
more process groups.

2.1 Tensor Layout

CoCoNET extends the concept of a tensor in machine learning
frameworks from a single device data into distributed forms. Be-
sides item datatype, like FP32 and FP16, and shape, a COCONET
tensor also includes a layout that describes the distributed alloca-
tion of tensor’s data across a set of ranks. There are three layouts
for a tensor: sliced, replicated, and local. A sliced tensor is equally
distributed among all nodes in a group along a specified dimension
with RANK identifying the slice for that process. For example, in Fig-
ure 3, w is sliced among all ranks in WORLD in the first dimension and
in is sliced in the third dimension. A tensor can also be replicated

!CoCoNET stands for "Communication and Computation optimization for neural
Networks.
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DSL Autotuner Schedule CUDA code
Transformations fuseOut = fuse(drop, Overlapped
Machine Learning | Tensor W, b; fuse, split out)
: Var layer = MatMul ’ ' (SumRS, sumAG) =
Algorithm reorder, overlap... 4 A
g (w, b); split(sum) PyTorch Library
Model Parallel N Var sum = AllReduce | DsL Best OUtAG, scOut = CodeGen Call torch.
Self Attention ("+", layer); Program Schedule” | reorder (sumAG, fuseOut) coconetFunc()
Var drop = fusedAR = fuse(sumRS,
Dropout(sum); scOut,outAG)
Var out = drop + r Dst 7 overlapOut = overlap(
|7 Schedules layer,fusedAR) [

Figure 2: Overview of COCONET’s workflow. First, a user expresses a machine learning algorithm in the DSL that contains both
computation (MatMul) and communication (AllReduce). Then, the autotuner applies transformations to optimize the program
while keeping the algorithm unchanged, such as fusing AllReduce and Dropout into FusedAllReduce and overlapping this with
MatMul. Finally, COCONET generates custom communication and computation code, which is available through PyTorch.

Tensor
Tensor
Tensor
Tensor

w(FP16,
b(FP16,
in(FP16,
r(FP16,

[H,H], Sliced(@), WORLD,
[H], Replicated, WORLD);
[B,S,H], Sliced(2), WORLD,
[B,S,H], Replicated, WORLD);

RANK) ;

RANK) ;

// layer(FP16, [B,S,H],
Var layer MatMul (in, w);

// sum(FP16, [B,S,H], Replicated,
Var sum AllReduce ("+", layer);

// dropout(FP16, [B,S,H], Replicated,
Var dropout Dropout(sum + b, 0.1);

// out(FP16, [B,S,H], Replicated, WORLD)
Var out dropout + r;

Local, WORLD, RANK)

WORLD)

WORLD)

Execute self_attention({w,in,b,r}, {out});

Figure 3: An example program in COCoNET.
(B: batch size, S: sequence length, H: hidden dimension size)

across all ranks in a group where it has the same value on each
rank and it does not have a rank identifier. For example, the bias b
and the residual connection r are replicated as shown in Figure 3.
A local tensor has same shape on all ranks but different values on
all ranks. A local tensor requires RANK to identify the values. For
example, in Figure 3, layer is a local tensor that represents the
result of MatMul operation. A Scalar is a zero-dimensional tensor
that represents a variable available on all ranks. We discuss the
layout of intermediate tensors in the next section.

2.2 CoCoNET’s Operations

A CoCoNET program inherits the concept of data-flow graph (DFG)
from existing machine learning frameworks with operations as
vertices and data dependencies as edges. Operations in COCONET
can be classified as (i) local computations, such as pointwise compu-
tations, matrix multiplication, and convolution, and (ii) cross rank
communication operations, such as AllReduce, AllGather, and P2P
Send-Recv. Table 1 shows all operations supported by COCONET.
A Var represents the intermediate tensor obtained after perform-
ing an operation. For instance, Figure 3 describes the Megatron-
LM [47] model parallel logic of Self-Attention layer in COCONET.
In this example, the linear layer’s weight (w) and the input (in)
are sliced across all ranks while the bias (b) and residual (r) are
replicated on all ranks. A Var’s shape and distribution layout are
inferred based on the operation and inputs to the operation. For
example, line 7 performs a MatMul operation on the input (in) and
weights (w). Since MatMul between two sliced tensors produces a

Table 1: Operations supported by CoCoNET includes all com-
mon communication and computation operations.

Communication | AllReduce, AllGather, ReduceScatter,
Operations Reduce, Broadcast, P2P Send-Recv
Layers Matrix Multiplication, Convolution
Activations Dropout, tanh, ReLU
Tensor +, —, %, =, Norm, ReduceTensor,
Operations Sqrt, Pow, Update

local tensor, layer represents the partial result with local layout.
At line 9, AllReduce computes the sum of layer of all ranks and
returns a replicated tensor with the same values on each rank. The
computations at lines 11-13 add the bias, use dropout as an acti-
vation, and add the residual. At line 11, the addition of sum and
b follows PyTorch’s broadcast semantics? by replicating b in all
dimensions of sum. Thus, the shape and layout of output of these op-
erations are same as sum. Finally, Execute defines the name, inputs,
and outputs of the program.

2.3 Fused Collective Communication
Operations

CoCoNET enables efficient computations on the output of com-
munication by providing fused collective communication opera-
tions, such as FusedAllReduce. Consider the AllReduce in Figure 3
followed by a Dropout (lines 9-11). The abstraction in existing
machine learning frameworks requires the output of AllReduce to
be stored in memory and then re-loaded by Dropout. FusedAllRe-
duce avoids such stores and loads by directly passing the output
of communication to following computations through registers. In
addition to the argument of AllReduce, a FusedAllReduce takes
computations as extra arguments. Section 5.2 discusses the imple-
mentation of Fused Collective Communication Operations.

2.4 Overlapping Operations

CoCoNET supports overlapping multiple dependent computation
and communication operations using the Overlap construct. For
example, consecutive MatMul and AllReduce in Figure 3 (lines 7-9)

Zhttps://pytorch.org/docs/stable/notes/broadcasting html
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can be overlapped to fully utilize both network and computation re-
sources. Section 5.3 discusses the implementation of this construct.

2.5 Custom Operations

In CoCoNET, the implementation of an operator needs to define
three key properties of the operator: (i) syntax, (ii) semantics, and
(iil) code generation. The syntax of an operator is defined using C++
constructors and the semantics are defined by implementing rules
to describe the layout and size of the output tensor based on the
input tensors. Finally, the code generation requires implementing a
function to generate a call to existing libraries or generate fused
GPU kernels. The implementation of syntax and semantics can
be achieved in a few lines of code, however, implementing the
code generation for complex operations like Matrix Multiplication
and Convolution can potentially take hundreds of lines of code.
Fortunately, in practice the code generation for complex operations
can call an optimized implementation of existing libraries.

3 COCONET TRANSFORMATIONS

CoCoNET provides four semantics preserving transformations to
optimize a program written in the DSL. All transformations are
valid based on rules described in the sections below. CoOCONET
automatically checks the validity of each transformation based on
these rules and throws an error for an invalid transformation.

We call an order of transformations a schedule. A user can man-
ually specify the schedule to optimize the program. Additionally, a
user can invoke the autotuner to automatically find the best per-
forming schedule for the given problem sizes and the underlying
architecture. Below we present each transformation by applying
them on the program from Figure 3 and show equivalent COCONET
programs generated after applying each transformation in Figure 4.

3.1 Splitting Communication

The split transformation breaks a collective communication op-
eration into two communication operations. One of the two split
policies supported by CoCONET is

AllReduce Split RS-AG splits an AllReduce into a ReduceScat-
ter to produce a sliced tensor and an AllGather on the sliced tensor
to return a replicated tensor.
Running Example The AllReduce in Figure 3 is split into rsSum

that does a ReduceScatter on layer and agSum that does an All-
Gather on rsSum.

(rsSum, agSum) = split(layer, ARSplitRSAG);

The program (1) of Figure 4 is the implementation of this sched-
ule where the input to Dropout is replaced by agSum.

Validity Since an AllReduce can always be split to a ReduceScatter
and an AllGather, this transformation is always valid.

3.2 Reordering Operations

The reorder transformation swaps operations with an AllGather or
aBroadcast in the DFG of a program. We explain this transformation
for AllGather below:
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AllGather Reorder reorders an AllGather with communication
and computation operations. This transformation changes the lay-
out of the operations, the input and output of operations, and the
input and output of the AllGather. We explain this transformation
below using the running example.

Running Example In Figure 4, applying the reorder transforma-
tion changes the program (1) to (2) by reordering AllGather (agSum)
with computations d and out. The reorder transformation replaces
these operations in the DFG with three new operations: scD and
scOut, both of which performs sliced computations, and agOut,
which gathers the final result of computations.

(scD, scOut, reorder(d, agSum);

aglut) = out,

The new sliced computations perform the same operations as
original computations with two differences: (i) the output of All-
Gather used in the computation is replaced by the input of All-
Gather, and (ii) since the input of AllGather is sliced, all tensors
input to the computations are also sliced along the same dimension
as the input of AllGather. After reorder, scD performs the same com-
putation as d but scD takes rsSumand Slice(r) as input. Therefore,
the layout of scOut is also sliced while the computation is same
as out. Furthermore, the new AllGather is performed on the out-
puts of the computations, for example, after reorder, the AllGather
(agOut) is performed on scOut. Figure 5 shows the workflow of
this schedule.

Validity The reorder transformation is valid only if operations
being reordered with an AllGather can be sliced along the dimen-
sion the AllGather is performed. The rules of slicing an operation
depend on the type of operation and the dimensions of inputs to
the operations. For example, d and out can be sliced because the
computations have the same dimensions as agOut. Section 4 shows
how P2P Send can be reordered with an AllGather.

3.3 Fusing Operations

Fusing multiple computations is a common technique used by ex-
isting compilers [18, 20, 24, 27, 42]. CoCoNET extends this concept
to fuse multiple computations and communications in a single op-
eration and provides this capability using the fuse transformation.
Below we explain two fuse policies supported by CoOCoNET:

Computation Fuse fuses a series of computations in a single
operation that performs all these operations.

AllReduce Fuse fuses a series of ReduceScatter, sliced compu-
tations, and AllGather operations in a single FusedAlIReduce that
performs all these operations.

Running Example We can fuse ReduceScatter (rsSum), compu-
tations (scD and scOut), and AllGather (agOut) in program (2) of
Figure 4 into a FusedAllReduce to obtain program (3).

fuseAR = fuse(rsSum, ARFuse);

scOut, aglut,

The comp method of fusedAR specifies the computation to be
fused with FusedAllReduce and returned out is the output.

Validity Fusing multiple operations into one operation is valid
only if the dependencies in the DFG after fusion are preserved.
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sum = AR(layer);  split rsSum = RS(layer); reorder sSum = AR(layer);

d = Dropout(sum+b)1—>agsum = AG(rsSum); scb = X

out = d + r: d = Dropout(agSum+b); scOut = scD + Slice(r);
' out =d + r; agout = AG(scOut);
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ASPLOS °22, February 28 — March 4, 2022, Lausanne, Switzerland

layer = MM(in, w);
fuseAR = FusedAR(layer);
overlap scout = Dropout (fusedAR+b)+
—_
Slice(r);
fuseOut = fuseAR.comp(scOut);
out = Overlap(layer, fuseOut);

@

layer = MM(in, w);

fusedAR = FusedAR(layer);
Dropout(fusedAR+b)+
Slice(r);

out = fuseAR.comp(scOut)

®

Figure 4: COCONET programs produced by performing transformations on the program of Figure 3. Each schedule can be repre-
sented as a standalone program. Lines in red highlights changes at a step. (AR: AllReduce, AG: AllGather, and RS: ReduceScatter)

GPU 1

1
C ReduceScatter )

!

|
( AllReduce )

1
C AllGather
T
|
output | output

Figure 5: Equivalent programs (from Figure 3) using AllRe-
duce (on left) or using ReduceScatter + AllGather (on right).

3.4 Overlapping Operations

CoCoNET provides the overlap transformation to overlap a series
of producer-consumer operations to utilize multiple resources of
hardware simultaneously.

Running Example In the program (3) of Figure 4 we overlap the
matrix multiplication (layer) with FusedAllReduce (fuseAR) to
obtain program in (5).

layerWithAR = overlap(layer, fusedAR);
Validity Overlapping multiple operations is valid only when all

operations have a producer-consumer relationship between them.

3.5 Automatic Exploration of Schedules

CoCoNET provides an autotuner to automatically explore the space
of all schedules of a program and return the schedule that provides
the best performance for the underlying architecture and input
sizes. First, the autotuner fuses all pointwise computations up to a
pre-defined threshold to decrease the search space and then exhaus-
tively explores the schedule space in a breadth first search manner.
Finally, the autotuner generates code for all schedules in its search
space, executes all programs, and returns the schedule with mini-
mum execution time. Table 3 shows that the autotuner takes only
a few seconds to explore the schedule space for all workloads.

4 DISTRIBUTED WORKLOADS IN COCONET

We additionally optimized two distributed machine learning work-
loads using CoCoNET: (i) parameter update using Adam [32], and
(ii) point-to-point communication in pipeline parallelism.

Adam in Data Parallel Training: Figure 6a shows the traditional
implementation of parameter update using Adam. First, all ranks
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Var avg = AllReduce("+", g);

Var m_ = Update(m, (mxbetal+(1-betal)xavg));

Var v_ = Update(v, (vxbeta2+(1-betal)*avgx*xavg));
Var m1 = m_/(1-Pow(betal, t));

Var vl = v_/(1-Pow(beta2, t));

Var p_ = Update(p, (p - 1lr * m1/(Sqrt(v1))));

Execute adam({g,p,v,m,1lr}, {p_1});

(a) Traditional implementation where tensors g is local to each rank
and p,m, and v are replicated on all ranks.

fuse(m_, v_, ml, vl, p_,

ComputationFuse);

split(avg, ARSplitRSAG);

agM, agV) = reorder(agG, comps,
AGReorder);

dead (agM); dead(agV);

agP, AllReduceFuse);

comps =

(rsG, agG) =
(scComp, agP,

asSlice(m); asSlice(v);
fuseAR = fuse(rsG, scComp,

(b) An Optimized Schedule. Tensors g is local, p is replicated on all
ranks, while m and v are sliced among all ranks.

Figure 6: Optimizing parameter update using Adam in Co-
CoNEeT. The implementation takes four input tensors: pa-
rameters (p), gradients (g), momentum (m), and velocity (v).

average the gradients using AllReduce and then perform computa-
tions to update the optimizer state and model parameters. Update
updates the values of a tensor and reflects the new values in that
position in the DFG (lines 2-3). Figure 6b presents a schedule that
optimizes this by distributing the computation on all ranks in a
single kernel. Line 2 fuses all computations in comps. Line 3 splits
the AllReduce into a ReduceScatter and an AllGather, such that
computations take output of AllGather (agG) as input. Line 5 re-
orders AllGather with computations, such that, each rank performs
computations on a slice of tensors. Line 6 slices optimizer states on
all ranks to decrease memory usage and removes corresponding
AllGather. Finally, line 7 fuses all operations in a single kernel.

Point-to-Point Communication in Pipeline Parallelism: Fig-
ure 7a shows a scenario of pipeline parallelism in Megatron-LM
with two transformer layers assigned to two groups each with two
ranks. Rank i in group j is shown by (j, i). Each group uses model
parallelism within its transformer layer. Pipeline parallelism in
Megatron-LM works as follows. First, all ranks in the first group
reduce their input using AllReduce to get replicated output. Then
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GPU (0,0)
GPU (0,1)
(0,0)->(1,0) [
(0,1)->(1,2) [

P2P ]
P2P ]
» Time

(a) In Megatron-LM each GPU sends redundant data.

6PU (00)
RS,

GPU (0,1)

(0,0)->(1,0)

(0,1)->(1,1)

GPU (1,0) AG, 2
GPU (1,1)

» Time

(b) Communication operations can be overlapped at the granularity
of each communication buffer tile of data in single kernel call.

Figure 7: Two different schedules of pipeline parallelism.

each rank performs pointwise computations over the replicated
output. Finally, the first group sends the result of computations to
the corresponding rank in the second group using point-to-point
(P2P) sends. (Line 2 in Figure 8a shows these computations but are
omitted in Figure 7 for simplicity). Since the output of AllReduce
in Figure 7a is replicated, redundant data is sent using P2P. We can
avoid this redundant communication by splitting the AllReduce
to ReduceScatter and AllGather and reordering the P2Ps with the
AllGather. Hence, the inter-group communication is reduced by the
group size. We can further optimize by overlapping all communi-
cation operations. Figure 7b shows that if the buffers are split into
multiple tiles (TO-T2 in the figure), intra-group and inter-group
communications can be overlapped.

Figure 8a is the original program, while Figure 8b optimizes
it by applying transformations. Line 1 fuses the P2P send with
computations. Line 2 splits the AllReduce and reorders the returned
AllGather with the fused P2P send at Line 4. Hence, P2P send and
computations are performed on only a slice of data on the next
group where the AllGather is also performed. Finally, all three new
operations get overlapped in Line 5.

5 THE COCONET CODE GENERATOR

CoCoNET generates CUDA kernels for computation and communi-
cation operations for running on a distributed system with NVIDIA
GPUs. For each operation, COCONET either generates (i) a call to a
collective communication operation, (ii) a CUDA kernel for fused
computations, (iii) a CUDA kernel for fused-collective communica-
tions (Section 5.2), or (iv) CUDA kernels for overlapping of com-
munication and computation operations (Section 5.3). Moreover,
CoCoNET generates code for performing operations on multiple
non-contiguous tensors (Section 5.4). After generating CUDA ker-
nels, COCONET traverses the program’s DFG to generate kernel calls.
CoCoNET wraps generated programs as custom operators and in-
tegrates them into PyTorch, so that, applications like Megatron-LM
can invoke them directly (Section 5.5). We now discuss how Co-
CoNET adapts NVIDIA Collective Communication Library (NCCL),
a widely-used hand-optimized high performance communication
library, into a runtime to execute above CUDA kernels.
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Var
Var
Var

sum = AllReduce("+", in);
send = Dropout(recv+b,0.1) + r;
output = Send(send,

GroupRank (GROUP+1, RANK));

Execute transformer ({in}, {output});

(a) Traditional implementation. Each rank of a group sends same
data to next group.

fuseSend =
(rsSum,
(scSend,

fuse(send, output, SendFuse);

agSum) = split(sum, ARSplitRSAG);

agOut) = reorder(fuseSend, agSum,
AGReorder);

overlapOut = overlap(rsSum, scSend, agOut);

(b) An Optimized Schedule. Each rank sends only a slice of data to

ranks in next group and all operations are overlapped.

Figure 8: Optimizing pipeline parallelism of Megatron-LM.
Input tensors: layer output in, bias b, and residual r.

5.1 NCCL Architecture

NCCL communicates data stored in the global memory of one
GPU to a memory location on another GPU using CUDA kernels.
NCCL’s CUDA kernels perform communication by directly copying
data from memory of one GPU to another GPU using GPUDirect
Remote Data Memory Access [5]. NCCL’s architecture defines four
key properties: (i) topology, (ii) protocols, (iii) channels, and (iv)
threads in a thread block of the CUDA kernel. NCCL automatically
sets key configuration values for these properties based on the size
of the input buffer, network architecture, and the size of WORLD.
To ensure good performance, CoOCoNET’s code generation must
carefully reconfigure these properties when extending NCCL to
custom communication and computation. We now provide a high
level overview of these properties.

Topology NCCL creates logical topologies, such as ring and tree,
over the underlying interconnect network.

Channels NCCL maps copies of a logical topology on the under-
lying interconnect network. Each copy is called a channel and is
assigned to one CUDA thread block.

Protocols NCCL sends data using one of the three protocols: LL,
LL128, and Simple. These protocols make different tradeoffs be-
tween latency and bandwidth based on the type of inter-node syn-
chronization used: LL has the lowest latency and Simple provides
the highest bandwidth.

Number of Threads NCCL sets a fixed number of threads for
each channel (and thread block). NCCL’s kernels have high register
usage, which limits the number of thread blocks per SM to one.

NCCL Workflow After determining the topology, protocol, num-
ber of channels, and number of threads, NCCL calls its CUDA kernel
for communication. Each collective communication has three levels
of tiling to fully utilize the massive parallelism of GPUs. Data is
first divided into buffer tiles equal to the size of the communication
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buffer. Each buffer tile is further divided among all ranks and chan-
nels to obtain chunks. Each channel communicates a chunk of data
at a time. The threads in channels copy elements in and out of the
buffers and apply reduction operations (sum, min, max) if needed.
We now present details about COCONET’s code generation.

5.2 Fused Collective Communications

CoCoNET extends the code generation described in the previous
sections to support fused collective communication operations.
Fused Collective Communication extends NCCL'’s existing kernels
to enable arbitrary pointwise computations and reductions (i.e.,
beyond min, max, and sum). We inspected more than 10K lines of
code in NCCL to identify where computations can be added to
pass intermediate values from communication to fused computa-
tions directly through registers. CoCoNET supports fusion of both
pointwise operations and reductions into NCCL collectives.

Each NCCL protocol utilizes a different mechanism for commu-
nication and CoCoNET generates code for all of them. The impor-
tant features of a protocol are the pack type (64-bit for LL, 128-bit
for LL128 and Simple) and the load/store access pattern (shared
memory for LL128, global memory for LL and Simple). CoOCoNET
generates template code for all element types in NCCL, and dis-
patches accordingly at runtime. There are some subtleties in the
code generation worth discussing:

Mixed Precision When the element types of computations and the
input tensors are different, COCoNET finds the largest element type
and based on the pack type of the protocol calculates how many
elements can be loaded at once. All code will then be generated to
operate on these many elements.

Sliced Tensor When a sliced tensor is used by a fused collective
communication, all memory accesses performed need to be mapped
to elements of the sliced tensor. COCONET generates code that
produces this mapping. To perform an AllGather on sliced tensors,
the inverse of this mapping is produced.

Tensor Reduction To reduce a sliced tensor, each rank reduces
locally and do an AllReduce. This AllReduce reuses already estab-
lished connections among ranks in the surrounding communication
kernel to avoid extra startup latency.

5.3 Overlapping of Communication and
Computation

Overlapping of computation and communication has been studied
in the context of executing stencil computations in a distributed
system [14-16, 19, 20, 33, 36, 37, 44, 50, 51]. These works use non-
blocking MPI operations to communicate data and simultaneously
perform computations on CPUs. A similar approach for overlapping
of computation and communication operations for a GPU workload
would involve dividing all operations into sub-operations and en-
suring dependency between sub-operations using CUDA streams.
However, this approach would provide sub-optimal performance
because each sub-operation is performed on only a part of data,
which leads to in-efficient computation and under-utilization of
communication bandwidth.

Figure 9 shows how the fine-grained overlapping of CoCONET
addresses this issue using the example of a MatMul followed by
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a ring AllReduce. First, it schedules the MatMul kernel (based on
CUTLASS [4]) to produce chunks in the same order as the AllRe-
duce consumes them. Here, the nth rank sends chunks in the order
starting from the n'h chunk. Hence, the MatMul kernel on ' rank
produces chunks in the same order. Second, CoCoNET invokes both
kernels only once on different streams and synchronizes the AllRe-
duce with the MatMul using an efficient fine-grained spin-lock on
a memory buffer to ensure that the AllReduce wakes up as soon as
the MatMul produces a chunk. Third, to provide opportunities to
tune the 2-D tile sizes of the MatMul kernel, COCONET generates a
2-D AllReduce kernel that communicates 2-D chunks, while NCCL
AllReduce only supports 1-D continuous chunk.

The example in Figure 9 works as follows. At T = (1), all ranks
invoke MatMul and AllReduce kernels. On rank 0, after computing
chunk 0, the MatMul kernel wakes the AllReduce kernel at T =
(2), which starts communicating chunk 0. While on rank 1, at T
= (2) the MatMul kernel wakes the AllReduce kernel to communi-
cate chunk 1. Concurrently, both MatMul kernels compute their
corresponding next chunk. At T = (3), MatMul kernels finished
computing chunk 1 on rank 0 and chunk 2 on rank 1 and wakes
up corresponding AllReduce kernels to communicate these chunks.
This process continues until all chunks are processed.

This process allows the MatMul kernel and AllReduce to be over-
lapped in a fine-grained manner, which reduces the startup latency
of AllReduce. Since AllReduce communicates on the same chunk
sizes, it achieves maximum communication bandwidth. Further-
more, the MatMul kernel achieves maximum efficiency because
the kernel is invoked on the full matrix size. Figure 1 shows that
this overlapping provides up to 1.36X better performance and hides
more than 80% of the MatMul time.

5.4 Operations on Scattered Tensors

In data parallelism, communication and computation occur on
different layers of widely different sizes. Since machine learning
frameworks allocate parameters and gradients of layers in non-
contiguous buffers, gradients are copied to a large buffer to avoid
launching multiple AllReduce operations.

CoCoNET supports generating a single kernel for both compu-
tation and communication operations acting on non-contiguous
tensors. In this section, we show how CoCoNeT modifies NCCL to
generate a single communication kernel for scattered tensors. This
code generation is non-trivial because NCCL has several design
decisions based on the assumption that it is communicating a single
contiguous buffer. For example, each thread of a NCCL channel
copies only a few elements in each iteration, and hence indexing the
correct tensor at a particular offset requires a linear search through
all non-contiguous tensors, which can lead to significant overhead.
CoCoNET solves this problem by first dividing each tensor into
buckets of size at most 2!° elements and then assigning buckets
to warps in a round-robin manner. This mechanism allows each
thread to quickly find the offset in a tensor, since a warp can directly
index in its assigned bucket. COCONET pre-calculates the number
of buckets that belong to the same contiguous buffer and calculates
the offset for all of them once.

The process of breaking each tensor to buckets has computation
overhead and extra memory requirements. Since this bucketing is
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Figure 9: Workflow of CoOCoNET’s overlapping of MatMul with AllReduce for a Float 16 matrix [8192, 3072] on 8 ranks (R¢ to
Ry) with 1 channel (Cy) and 16 MB buffer size. Size of each 2-D chunk (By to B;s) is [1024, 1024]. CoCoNET’s AllReduce and
MatMul enables overlapping without decreasing the communication bandwidth and the efficiency of computation kernels.

Table 2: Time to perform parameter update of all 360 tensors
of BERT using Adam/LAMB on 256 Tesla V100 GPUs with
scattered tensors implementation and a single contiguous
tensor of size equal to the sum of size of all tensors.

Optimizer | Scattered Tensor | Single Tensor
Adam 33.89 ms 33.21 ms
LAMB 37.04 ms 36.71 ms

done only once on the CPU and training tasks run for thousands
of iterations on the same tensors, the computation overhead is
negligible. Each bucket is represented by a pair of 64-bit tensor
address and a 32-bit offset into the associated tensor, leading to
x|
However, this memory overhead is negligible for large models.
For example, for BERT model with 334M elements, the memory

requirement is 0.6%. Table 2 shows that the overhead of scattered
tensors is insignificant over contiguous tensors.

] bytes of extra memory for a tensor with N elements.

5.5 PyTorch Integration

We integrated COCONET generated code as a function to PyTorch’s
torch.distributed module. This design allows us to re-use the
logic for initializing NCCL and provide compatibility with models
already using torch.distributed. We added wrapper functions
for calling CoCoNET generated operations. These wrapper func-
tions prepare the arguments for calling CoOCoNET’s operations,
which includes pre-calculating pointers to the buckets for scattered
tensors and clearing the spin-lock buffers for overlapping. Machine
learning models can invoke COCoNET functions using PyTorch.

6 EVALUATION

This section evaluates the effectiveness of CoCoNET through stan-
dalone experiments and end-to-end distributed machine learning
scenarios of data, model, and pipeline parallelism.

Our experiments are performed on a cluster of 16 NVIDIA DGX-
2 nodes where each node contains dual 24-core Intel Xeon CPUs
and 16 NVIDIA Tesla V100 (32GB) GPUs. Each GPU within a node
is connected to six NVSwitches with six NVLinks (25 GBps per
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NVLink). Nodes are connected with 8 non-blocking EDR Infini-
Band (100 Gbps) network. All nodes run Ubuntu 20.04, CUDA 11.3,
cuDNN 8.2 and PyTorch 1.10.

6.1 Data Parallel Training

In data parallelism, communication involves an AllReduce of gradi-
ents among all ranks. The output is used by the optimizer to update
the model parameters. We evaluate COCONET generated code for
two widely-used optimizers, Adam and LAMB. All our experiments
in this section were performed on all 16 DGX-2 nodes in our cluster.

6.1.1 Standalone Experiments. We first perform standalone exper-
iments to explore different COCONET schedules over a range of
input tensors from 210 to 239 elements. The autotuner generates and
executes implementations with different configurations, including
all NCCL protocols and all channels from 2 to 64. For each tensor,
the autotuner reports the best average result of 1000 iterations.

Baselines The baselines perform parameter update by first doing
AllReduce over gradients and then call FusedAdam or FusedLAMB
from NVIDIA Apex [6]. Both FusedAdam and FusedLAMB fuses
all the parameter update computations.

CoCoNET Schedules The autotuner generates following three
schedules of Adam and LAMB by applying different COCONET
transformations for each input size and reports the best schedule
to the user for each input size:

(1) AR-Opt (Opt = Adam/LAMB) refer to the traditional param-
eter update technique, i.e., an AllReduce over gradients and
then each GPU individually performs the optimizer computa-
tion. These schedules fuse all computations into a single kernel,
thereby simulating the baseline implementations of FusedAdam
and FusedLAMB.

(2) GShard-Eq or RS-Opt-AG (Opt = Adam/LAMB) are generated
from AR-Opt by first splitting the AllReduce into ReduceScatter
and AllGather, and then reordering AllGather with the fused
optimizer computations. Hence, these schedules distribute pa-
rameter update across all ranks, similar to GShard [34] and
ZeRO [43]. Since GShard does not support execution on GPUs,
we refer to this schedule as GShard-Eq in our results.

(3) fuse(RS-Opt-AG) (Opt = Adam/LAMB) are generated by fus-
ing all operations of RS-Opt-AG into FusedAllReduce.
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Figure 10: CoCoNET speedup on 256 GPUs. For each size, Co-
CoNET chooses the best schedules. UB (upper bound) takes
AllReduce-only as max achievable speedup.

Results. Figure 10 shows the speedup of CoCoNET schedules
over the baseline for several tensor sizes. The results are shown
for mixed-precision [12] using Float 16, and the results for Float 32
are qualitatively similar. In these figures, UB represents the cost of
AllReduce alone without doing any computation, and thus is the
upper bound of possible speedups.

Even though the AR-Opt schedules emulate the baseline im-
plementations, they are faster on smaller tensors. This is because
the baseline implementations perform additional preprocessing to
optimize the amount of thread-parallelism and instruction-level
parallelism per invocation. While this preprocessing cost hurts
smaller tensors, its benefit shows up for larger tensors where AR-
Opt performs worse.

Since GShard-Eq and fuse(RS-Opt-AG) schedules distribute the
optimizer computation, they perform better than the baseline for
large tensors. The performance of fuse(RS-Opt-AG) shows the ad-
vantage of fusing computation and communication kernels as these
schedules achieve near optimal speedups for large tensors. These

410

ASPLOS °22, February 28 — March 4, 2022, Lausanne, Switzerland
Table 3: Lines of code of implementation of distributed ma-
chine learning workloads in CUDA and CoCoNET, and time

taken by the autotuner to find the best schedule.

(a) Data Parallel optimizer update using Adam and LAMB

schedule  Sgpued Trgrmin duouner
AR-Adam 16 12
RS-Adam-AG 24 16 9 secs
fuse(RS-Adam-AG) 150 17
AR-LAMB 80 15
RS-LAMB-AG 140 17 10 secs
fuse(RS-LAMB-AG) 220 18

(b) Model Parallel Self Attention and Multi Layer Perceptron

Generated Programin Autotuner
Schedule CUDA CoCoNET Time
MM-AR-C 20 10
MM-RS-C-AG 140 13 12 secs
ol(MM,fuse(RS-C-AG)) ~ 2k 14

(c) Pipeline Parallel Transformer Layer

Copgied Toogramin Aanner
AR-P2P-C-AG 20 10
RS-P2P-C-AG 140 13 11 secs
ol(RS, fuse(P2P-C),AG)) ~ 2k 14

schedules are respectively 13% and 14% faster than GShard-Eq for
Adam and LAMB.

For smaller tensor sizes, multiple kernel calls are required for
GShard-Eq schedules significantly hurt performance. Interestingly,
fuse(RS-Opt-AG) schedules are slower than AR-Opt schedules for
smaller tensor sizes though they require one less kernel call because
the fused kernels have a higher register usage, thereby restricting
the thread-level parallelism. This demonstrates that the fusion of
communication and computation is not always a good idea.

Table 3a shows that the lines of generated code for each schedule
are significantly more than the implementation in CoCoNET and
the autotuner explored all schedules in 10 seconds. In summary,
CoCoNET provides performance improvements over baselines with
fewer lines of code. The AR-Opt and the fuse(RS-Opt-AG) reach close
to optimal performance for smaller and larger tensors respectively.
This amounts to a speedup of 1.2X to 1.7x for Adam and 1.35X to
2.0x for LAMB. There is no schedule that performs best for all sizes,
which demonstrates the need for the autotuner.

6.1.2 Integeration with BERT. We use COCONET generated opti-
mizers to train three large BERT models from NVIDIA [7]. We use
mixed precision training with both Adam with 8192 global batch
size and LAMB with 65536 global batch size.
Baselines We consider three baselines for this experiment:
e NV BERT [7] is the NVIDIA BERT Script. It copies gradients
of each layer into a single buffer, calls AllReduce on the buffer,

and copy back the results into original gradients. Finally, it
calls either FusedAdam or FusedLAMB.
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e PyTorch DDP [35] stores all gradients in buckets of 25MB
and overlaps the AllReduce on each gradient bucket with
computations during training. After reducing all gradients
it calls FusedAdam or FusedLAMB.

e ZeRO [43] copies gradients into a contiguous buffer and
then distributes Adam’s computation similar to RS-Opt-AG
schedules above. The ZeRO implementation of LAMB does
not support distributing optimizer state among GPUs be-
cause significant engineering efforts are required to imple-
ment reduction over distributed gradients and weights in a
distributed LAMB implementation [11].

CoCoNET Integeration We integrated the scattered tensors im-
plementation of fuse(RS-Opt-AG) schedule for both Adam and LAMB
in PyTorch. These implementations provide three benefits over the
baselines: (i) the scattered tensor implementation avoids copying
all gradients to a single buffer and allocating this buffer, (ii) the
fused schedule performs best for the tensor sizes used in BERT,
and (iii) the fused schedule distributes memory of optimizer state
among all GPUs.

Results Table 4 shows the speedup provided by COCONET in train-
ing three BERT models over baselines. For Adam optimizer, Co-
CoNET provides speedup over all baselines in training BERT 336M
because COCoNET’s fused schedules perform better than other im-
plementations. COCoNET provides even higher speedup on larger
BERT models because the fused schedules decrease memory usage
by distributing Adam’s state over all GPUs, which improves the
efficiency of matrix multiplication GPU kernels by enabling higher
batch size per iteration. For example, for BERT 1.2B CoCoNET pro-
vides 1.53x speedup over NV BERT and PyTorchDDP because of
the optimized fused schedule and higher batch size enabled by Co-
CoONET. On 3.9B parameter model, NV BERT and PyTorch go Out of
Memory. ZeRO also supports higher batch size for BERT 1.2B and
3.9B but CoCoNEr still gives speedup because of the advantages of
scattered tensor implementation of fused schedules.

Results for LAMB are similar. COCONET provides up to 1.64x
speedup over all baselines. For LAMB, the speedup over ZeRO is
higher than Adam because ZeRO does not support distributing
LAMB optimizer state, and hence, supports smaller batch sizes as
compared to CoOCONET.

In summary, COCONET significantly improves data-parallel train-
ing time of BERT models. COCONET’s schedules can be automati-
cally generated and COCoNET’s scattered tensors implementation
can support a wide range of optimizers. Not only does the fusion of
computation and communication lead to performance improvement
over the baselines of PyTorch DDP and ZeRO, it also decreases the
memory usage, which helps in increasing the batch size to train
models faster.

6.2 Model Parallelism

Megatron-LM [47] uses a model parallel approach for inference
and training of transformer models, such as BERT [21] and GPT-
2 [41]. A transformer layer contains a self-attention block and a
multi-layer perceptron (MLP) block. Last few operations of a self-
attention block are the same computations as shown in Figure 3. An
MLP block’s last operations are similar to Figure 3 with the input
tensor and weight sizes as [B, S,4 x H| and [4 X H,H] (B, S, and
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Overlap+Fuse

1.05x

Times normalized to
MegatronLM

[B, S, H/16] x [H/16, H]

[B, S, 4¥H/16] x [4*H/16, H]

Figure 11: Times of COCoNET’s schedules of model parallel
self-attention and multi-layer perceptron of GPT-2 normal-
ized to corresponding Megatron-LM’s implementation.

H are batch size, sequence length, and hidden size, respectively).
Since model parallelism is applied within one node, all experiments
in this section are performed on a single NVIDIA DGX-2 node.

6.2.1 Standalone Experiments. We first perform standalone experi-
ments to evaluate different schedules generated by the autotuner.
We compare following schedules for model parallel self-attention
code of Figure 3 and similar operations of multi-layer perceptron:

(1) Megatron-LM is the baseline implementation of Figure 3 in
Megatron-LM.

(2) MM-AR-C improves the Megatron-LM implementation by fus-
ing all pointwise computations into one kernel.

(3) GShard-Eq or MM-RS-C-AG uses the same techniques as

GShard. It is generated from MM-AR-C by splitting the AllRe-

duce into a ReduceScatter and an AllGather, and reorders All-

Gather with computations. This schedule represents GShard

because GShard is not available for GPUs.

ol(MM, fuse(RS-C-AG) is generated from the previous sched-

ule by fusing the ReduceScatter, computation, and AllGather

into a FusedAllReduce and then overlapping it with the Mat-

Mul. The autotuner returned this as the best schedule and hence

represents COCONET in our results.

(4)

Results We evaluate these schedules with sizes of GPT-2 8.3 Billion
parameter model (i.e., S = 1024, H = 3072) for 8 and 16 batch sizes.
Figure 11 shows the times of all schedules normalized to the time
of implementation in Megatron-LM. MM-AR-C schedule provides
speedup over Megatron-LM’s implementation because this schedule
fuses all pointwise computations in a single GPU kernel. GShard-Eq
(MM-RS-C-AG) provides 1.15X to 1.29% speedup over Megatron-
LM by distributing computations on all ranks. COCONET’s best
schedule (ol(MM,fuse(RS-C-AG))) provides 1.42X to 1.70X speedup
over Megatron-LM and 1.21X to 1.34X over GShard-Eq because it
overlaps FusedAllReduce with the matrix multiplication. Table 3b
shows that the lines of generated CUDA code for each schedule are
significantly more than the implementation in CoCoNET and the
autotuner explored all schedules in 12 seconds.
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Table 4: Maximum Micro Batch Size supported by all implementations and speedup of COCoNET over the baselines when
training BERT with three parameter configurations using Adam and LAMB optimizer. OOM represents Out of Memory.

Optimizer # of Parameters Maximum Micro Batch Size Speedup of CoCoNET over
NV BERT PyTorch DDP ZeRO CoCoNer NV BERT PyTorch DDP ZeRO
336 M 32 32 32 32 1.18X 1.22X 1.10x
Adam 1.2B 8 8 32 32 1.53X 1.52X 1.10x
39B OOM OOM 8 8 - - 1.22x
336M 64 64 64 128 1.20x 1.20x 1.15X
LAMB 1.2B 8 8 8 64 1.67X 1.68X 1.64X
3.9B OOM OOM OOM 8 - - -
6.2.2 Integration with Megatron-LM. After integrating CoCONET’s - P2P c AG mm RS Overlap+Fuse
overlap schedule in Megatron-LM, we found that COCONET im- l
proved inference times of BERT 3.9B parameter model by 1.51x and o N 3 _ %
GPT-2 8.3B parameter model by 1.48x. Hence, overlapping matrix %E N g
multiplication with fused collective communication significantly ég x x Ix g x
improves inference times. §§w g 5 W - -
= Hi:
= X X O (O & O (O &
6.3 Pipeline Parallelism © 5 ¢ &0%2;?%,@0 g“ﬁ‘zgf’?@z
CoCoNET can decrease inference times in pipeline parallelism by N & & ce e KSR o e
fusing computation and communication and overlapping multiple B=2 B=4 B=6 B=8

communication operations. We evaluate COCONET on computa-
tions of model and pipeline parallelism in Megatron-LM for GPT-2
8.3B and GPT-3 175B parameter models. A transformer layer con-
tains several operations but the operations of interest for this ex-
periment are presented in Figure 8a. All experiments in this section
are performed on all 16 NVIDIA DGX-2 nodes.

6.3.1 Standalone Experiments. We first perform standalone experi-
ments to evaluate different schedules generated by the autotuner.
We compare the following schedules for pipeline parallelism code
of Figure 8a:
(1) Megatron-LM is the implementation of Figure 8a in Megatron-
LM and serves as a baseline for this experiment.
(2) AR-C-P2P-AG is generated by slicing the output of AllReduce
to perform sliced P2P sends and computations, and finally an
AllGather to collect the output of computations. This schedule
improves over Megatron-LM by slicing the P2P sends and fusing
all the computations.
GShard-Eq or RS-C-P2P-AG is generated from the previous
schedule by splitting the AllReduce into a ReduceScatter and
an AllGather, then reordering the AllGather with P2P send
and computations. Since this schedule is similar to GShard, it
represents GShard-Eq in our results.
ol(RS,fuse(C-P2P),AG) is generated from previous schedule
by fusing computations with P2P sends, and overlapping all
three communication operations (Figure 7b). This schedule is
returned by the autotuner as the best schedule and hence, rep-
resents COCONET in our results.

(3

=

—
N
=

Results Figure 12 shows the breakdown of each operation with
one transformer layer assigned to each node. The sequence length
(S = 2048) and the hidden size (H = 12288) are of GPT-3 175B model.
CoCoNET’s best schedule 0l(RS,fuse(C-P2P),AG) is 11.75X-12.21X
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Figure 12: Times of three schedules for GPT-3 175B in Co-
CoNEeT for pipeline and model parallelism normalized to
Megatron-LM’s corresponding implementation.

faster than Megatron-LM’s implementation, 2.84x faster than AR-
C-P2P-AG, and 1.66x-1.72x faster than GShard (RS-C-P2P-AG). The
speedups are because: (i) sliced P2P reduces cross node communica-
tion volume, (ii) fusing communication and computation operations
improves memory bandwidth utilization, and (iii) overlapping com-
munication using different connections (NVLink within node and
InfiniBand across nodes) improves network bandwidth utilization,
while other schedules utilize only one stack at a time. Table 3c
shows that the lines of generated CUDA code for each schedule are
significantly more than the implementation in CoCoNET and the
autotuner explored all schedules in 11 seconds.

6.3.2 Integration with Megatron-LM. We evaluated the inference
throughput of GPT-2 8.3B and GPT-3 175B parameter models by in-
tegrating CoCoNET’s ol(RS,fuse(C-P2P),AG) schedule in Megatron-
LM. Table 5 shows the speedups achieved by CoOCoNET.

CoCoNET significantly improves inference throughput of GPT-3
and GPT-2 due to its fusion and fine-grained overlapping of multiple
communication operations.

7 RELATED WORK

Distributed Machine Learning Abstractions Existing machine
learning frameworks [1, 13, 29, 40, 45] and DSLs [18, 20] provide
abstractions for writing distributed machine learning workloads.
Similar to CoCoNET, in these abstractions, a distributed machine
learning program takes input tensors, performs operations on ten-
sors, and returns tensors as the output. However, unlike these
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Table 5: Speedup in inference by COCoNET’s implementa-
tion of pipeline parallelism for GPT-2 and GPT-3. Layers
per node were obtained by equally distributing layers on all
nodes. To evenly distribute layers of GPT-2, number of lay-
ers were increased to the nearest multiple of 16, i.e., 80.

Layers Maximum

Model per node  Micro Batch Size Speedup
GPT-2 8.3B 5 16 1.77x
GPT-3 175B 6 2 1.33%x

abstractions, COCONET preserves the layout information for each
tensor. The layout information enables CoOCoNET to perform static
type checking of each operation, and automatically perform trans-
formations on the program, which is not possible with existing
abstractions.

Distributed Neural Network Training Several works have im-
proved data-, model-, and pipeline-parallel techniques for both
training and inference. Mesh-Tensorflow [46] and GShard [34] cre-
ate shards of weights and model state that can be split among
ranks. Horovod [45] introduced the Tensor Fusion optimization
that copies all gradients to a single buffer of 64MB, calls AllRe-
duce on the buffer, and then copies the updated value to original
gradients. ZeRO [43] splits weights and model state among ranks
and uses ReduceScatter and AllGather to distribute computation.
FlexFlow [30] performs operator splitting as a way to represent
both data-parallelism and model-parallelism, but does not optimize
computation with communication. COCoNET provides several op-
timizations over these works that are possible only by breaking
the abstraction: (i) scattered tensors that remove extra storage and
memory copy operations, (ii) fusion communication collectives, and
(iii) novel communication and computation overlapping techniques.
PyTorch’s DDP [35] overlaps AllReduce of gradients with the for-
ward and backward pass. However, unlike CoCoNET, PyTorch’s
DDP requires extra memory for overlapping, which can increase
training time for very large models [9] and do not support slicing
of optimizer parameter update that significantly decrease memory
usage. GPipe [26], Pipedream [38], and Narayanan et al. [39] pro-
posed pipeline training to improve model parallelism, by dividing
the forward and backward pass into several mini-batches, which
are then pipelined across devices. vPipe [53] improves these works
by providing higher GPU utilization. COCONET improves on these
works by overlapping inter and intra-node communication opera-
tions. BytePS [31] utilizes CPU in heterogenous clusters to improve
training, which is complementary to COCONET.

Optimizing Stencil Computations Prior works have proposed
several DSLs and optimizations for data-parallel stencil compu-
tations on CPUs, GPUs, and other accelerators. Halide [42] and
Fireiron [24] separate the algorithm and schedule, which describes
the optimizations like fusion, and loop tiling. TVM [18] extends
Halide for generating optimized compute kernels. L1rT [25, 48] and
PolyMage [27] automatically optimize stencil computations for a
single GPU. Distributed-Halide [20] extends Halide with schedul-
ing primitives that allow distributing parallelizable dimensions of
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loops. CoOCoNET extends these works to reason about and compose
collective communication with computation, which is crucial for
distributed machine learning scenarios.

Overlapping Computation and Communication State-of-the-
art works on overlapping [14, 33, 36, 37, 50] use either pipelined exe-
cution to overlap communication and computation or non-blocking
MPI operations. Pencil [51] improves upon these works by per-
forming pipelining within a process and supports computations in
multiple connected iteration spaces. Several techniques distribute
tiles and automatically generate communication [16, 20, 44]. Basu
et. al. [15] uses overlapped tiling in each process to remove com-
munication between processes. Denis and Trahay [19] studied the
efficiency of overlap. dCUDA [23] provides hardware supported
overlap. These works for MPI+OpenMP are valid for CPU based
stencil computations that require sends and receives to share the
halo regions. However, unlike CoOCoNET, these works do not sup-
port overlapping between collectives communication and complex
computations like convolutions and matrix multiplications. Co-
CoNET supports overlapping multiple computation and communi-
cation operations on GPUs without an accelerator.

8 CONCLUSION

This paper introduced CoCoNET, a language to describe distributed
machine learning workloads and optimize them across computation
and communication boundary. We show that COCONET generated
code significantly improves several training and inference times
of large language models. In the future we plan to automate the
optimizations through smart search.

9 DATA AVAILABILITY STATEMENT

The artifact for this paper [28] contains the source code of our
implementation of COCoNET and the benchmarking infrastructure
to reproduce all the results in Section 6.
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A ARTIFACT APPENDIX
A.1 Abstract

This artifact appendix describes how to reproduce results for stan-
dalone experiments in Figure 10, 11, and 12 and integration results
in Section 6.1.2, 6.2.2, and 6.3.2. This artifact includes the CoOCoNET
DSL and compiler, and CoCoNET’s generated code integrated with
PyTorch, Megatron-LM, and NVIDIA Bert. To reproduce the results,
the experiments should be executed on a system similar to our
experimental system. However, all experiments can be executed on
a system with more than one NVIDIA GPUs.

A.2 Artifact Check-list (meta-information)

e Program: CoCoNET DSL and compiler written in C++.

o Compilation: A C++ compiler (g++ or clang) to compile CoOCONET.
A C++ compiler with MPI support (mpicxx) and CUDA compiler
(nvcc) to compile generated programs.
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e Binary: Each CoOCoNET program compiles to a binary that gener-

ates an MPI program containing CUDA kernels.

Data set: BERT, GPT-2, and GPT-3 training datasets for integration

experiments.

¢ Run-time environment: Ubuntu 20.04 with Python 3.7+, CUDA
11.0+, and OpenMPI 4.0+.

e Hardware: We performed experiments on 16 NVIDIA DGX-2 nodes,

i.e., a total of 256 NVIDIA Tesla V100 GPUs. However, the experi-

ments can be executed on any system with two or more GPUs.

Run-time state: Python, MPI, and CUDA.

Execution: Use mpirun to run the experiments.

Metrics: Decrease in execution time of benchmarks.

Output: Execution time of each experiment and CoCoNET speedup

over baselines.

e Experiments: Execution of standalone experiments and training
and inference tasks of BERT, GPT-2, and GPT-3 models.

o How much disk space required (approximately)?: 100 GB in
total. 90% of the space usage is required for storing dataset.

e How much time will be spent in preparing the workflow (ap-
proximately)?: 1 hour.

e How much time is needed to complete experiments (approx-

imately)?: 5 hours.

Publicly available?: Yes.

A.3 Description

A.3.1 How to Access. The COCoNET implementation and the bench-
marking infrastructure used in our evaluation are publicly available

as the artifact [28]. This artifact contains a zip file with two di-
rectories: (i) coconet, which is the implementation of CoCoNET,

and (ii) coconet-experiments, which is the benchmarking in-
frastructure. Latest versions of these directories are available at

https://github.com/parasailteam/coconet and https://github.com/

parasailteam/coconet-experiments.

A.3.2 Hardware Dependencies. All benchmarks can be executed
on a distributed system with two or more NVIDIA GPUs. However,
our results will be reproducible on the evaluation system described
in Section 6.

A.3.3  Software Dependencies. Our experiments require a system
running Ubuntu 20.04 with Python 3.8+ and CUDA 11.0+. Prereq-
uisites and their installation procedure is described in README . md
files of coconet and coconet-experiments directories.

A.3.4  Data Sets. The standalone benchmarks (Figure 10, 11, and 12)
do not require any dataset. Datasets required for executing experi-
ments in Section 6.1.2, 6.2.2, and 6.3.2 can be obtained by following
Dataset section of README . md in coconet-experiments.

A.4 Installation

Following instructions have been tested with Ubuntu 20.04.

Standalone Experiments Dependencies. Install dependencies by
following the Prerequisites section in README . md file of coconet
directory.

Integration Experiments Dependencies. Follow the Prerequisites
section in README . md file of coconet-experiments directory to
build PyTorch and install all dependencies for Megatron-LM and
NVIDIA Bert.
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A.5 Experiment Workflow

A.5.1 Standalone Experiments. This section describe how to exe-
cute standalone experiments of Section 6 and produce results for
Figure 10, Figure 11, and Figure 12. All of these experiments will
take 1 hour combined.

(1) Install all CoCoNET prerequisites in coconet/README . md.
(2) The experiments/ directory contains all scripts for stan-
dalone experiments.

$ cd coconet/experiments/

Since all our experiments uses MPI to run the executable on
all GPUs, set the environment variable NPROC to the number
of GPUs in the system. In our experiments, we set NPROC to
256 as follows:

$ export NPROC=256

Note: Setting NPROC to a value more than the number of
GPUs in a system can lead to failed experiments.

If the experiments are performed on a system with multiple
nodes then additional arguments to mpirun can be passed
by setting the MPI_ARGS environment variable.

Data-Parallel Experiments.

(1) To execute standalone data parallel experiments execute
data-parallel-exp.py. This script takes a directory to
store the results as an argument. Additionally, the script
requires MASTER_ADDR and MASTER_PORT to be passed as
MPI_RUN_ARGS. If the experiments are done on a single sys-
tem, then it is common to set MASTER_ADDR=127.0.0.1 and
MASTER_PORT=10000.
$ export MPI ARGS="-x_ MASTER ADDR=127.0.0.1"

$ export MPI_ARGS="$MPI_ARGS_-x_MASTER PORT=10000"
$ python data-parallel -exp.py results/

The above execution of script will execute all data parallel
executables and store the results in the results directory.
Generate both graphs of Figure 10 by executing the script
gen-data-parallel-graphs.py. This script takes the di-
rectory with results generated in the previous step as an
argument.

$ python gen-data-parallel -graphs.py results/

Graphs are stored in two files of experiments directory:
results-adam-fp16.pdf and results-lamb-fp16.pdf.
Model-Parallel Experiments.

(1) To execute standalone model-parallel experiments execute
model-parallel-exp.py. Similar to the previous script, this
script also takes a directory to store results as its argument.

$ python model-parallel -exp.py results/

The script will execute all model parallel executables and
stores the results in the results directory.

(2) Generate Figure 11 by executing following script. This script
will take above results directory as its argument.

$ python gen-model-parallel -graphs.py results/

Graph is stored as results-model-parallel. pdf.
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Pipeline-Parallel Experiments.

(1) To execute standalone pipeline-parallel experiments execute
pipeline-parallel-exp.py. This script also requires a di-
rectory to store results as its command line argument.

$ python pipeline -parallel —exp.py results/

Above execution of the script will execute all pipeline parallel
executables and store the results in results directory.

To generate Figure 12 execute the script
gen-pipeline-parallel-graphs.py. This script takes the
directory containing above results as its argument.

@

$ python gen-pipeline -parallel ~graphs.py results/
The graph is stored in results-model-parallel.pdf.

A.5.2 Integration Experiments. In this section, we will execute the
integration experiments of Section 6.1.2, 6.2.2, and 6.3.2.

Prerequisites. Install prerequisites and obtain dataset by follow-
ing the steps in coconet-experiments/README . md.

Data-Parallel Training. Go to Nvidia-Bert directory and exe-
cute coconet-experiments.py.
$ cd NV-BERT
$ python coconet-experiments.py

This script will execute data parallel training experiments and
then print Table 4. This experiment will take 1 hour to complete.
This script contains maximum batch sizes supported by each imple-
mentation for our evaluation system of 256 Tesla V100 GPUs. It is
possible that for a different system the maximum batch size will be
different. The batch size dictionary in coconet-experiments.py
can be modified to find maximum batch size for underlying system.

Model-Parallel Inference. Go to MegatronLM-Model-Parallel
directory and execute coconet-experiments.py.

$ cd MegatronLM-Model-Parallel
$ python coconet-experiments.py

This script will execute model parallel inference experiments
and then print the values in Section 6.2.2. This experiment will take
less than 30 minutes to complete.

Pipeline-Parallel Inference. Execute coconet-experiments.py
in the directory MegatronLM-Pipeline-Parallel.

$ cd MegatronLM-Pipeline -Parallel
$ python coconet-experiments.py

This script will execute pipeline parallel inference experiments
and then print the table in Section 6.3.2. This experiment will take
3 hour to complete.

A.6 Evaluation and Expected Results

Standalone Experiments. The figures generated by the experi-
ments of Section A.5.1 can be matched with the figures: 10, 11, and
12.

Integration Experiments. The results generated in experiments of
Section A.5.2 can be matched with the results in Section 6.1.2, 6.2.2,
and 6.3.2.
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