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Abstract—Deep neural networks (DNNs) have become the es-
sential components for various commercialized machine learning
services, such as Machine Learning as a Service (MLaaS). Recent
studies show that machine learning services face severe privacy
threats - well-trained DNNs owned by MLaaS providers can be
stolen through public APIs, namely model stealing attacks. How-
ever, most existing works undervalued the impact of such attacks,
where a successful attack has to acquire confidential training data
or auxiliary data regarding the victim DNN. In this paper, we
propose ES Attack, a novel model stealing attack without any
data hurdles. By using heuristically generated synthetic data, ES
Attack iteratively trains a substitute model and eventually achieves
afunctionally equivalent copy of the victim DNN. The experimental
results reveal the severity of ES Attack: i) ES Attack successfully
steals the victim model without data hurdles, and ES Attack even
outperforms most existing model stealing attacks using auxiliary
data in terms of model accuracy; ii) most countermeasures are
ineffective in defending ES Attack; iii) ES Attack facilitates further
attacks relying on the stolen model.

Index Terms—Maodel stealing, deep neural network, knowledge
distillation, data synthesis.

1. INTRODUCTION

S ONE of the typical business models, Machine-Learning-
A as-a-Service (MLaaS) provides a platform to facilitate
users to use machine learning models [1]. Users can access
well-trained machine learning models via public APIs provided
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We show the synthetic images using OPT-SYN with the best substitute model.
We compare them with the victim’s training data in the SVHN, CIFAR-10,
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by MLaaS providers, without building a model from scratch.
MLaaS allows users to query machine learning models in
the form of pay-per-query and get responses of the model’s
predictions. Recent studies show that machine learning ser-
vices face severe privacy threats: model stealing attacks steal
functionally equivalent copies from MLaaS providers through
multiple queries [2]-[6]. Model stealing attacks exploit the
tensions between queries and their corresponding feedback, i.e.,
the output predictions. Tramer et al. extract machine learning
model’s parameters by solving equations derived from the model
architecture [2]. However, it requires the exact knowledge of
ML architectures and becomes difficult to scale up to steal deep
neural networks (DNNs) [7]. Existing model stealing attacks
against DNNs require specific knowledge of the model’s training
data: the exact training data [6], [8], seed samples from the
training data [9], and auxiliary data that shares similar attributes
as the training data or within the same task domain [3]-[5]. Most
existing model stealing attacks require the knowledge of training
data or auxiliary data regarding the victim deep neural networks,
which undervalued the impact of model stealing attacks. In
practice, these data are not always accessible. Due to recent regu-
lations on data protection (e.g., GDPR and CCPA), many types of
personal data are hard to acquire, such as health data and biomet-
ric data. In many domains, companies collect data for their own
business and are reluctant to share their data. Government and
other organizations usually lack resources and financial supports
to create open datasets. Often, the quality of public data is
out-of-date and questionable without updates and maintenance.
The availability of appropriate data protects the victim models
from being stolen by the existing model stealing attacks.

In this paper, we introduce ES Attack, a new class of model
stealing attacks against DNNs without data hurdles. ES Attack
heuristically generates synthetic data to overcome the limitations
of existing approaches. Fig. 1 illustrates the diagram of ES Az-
tack. The adversary queries the victim model with the synthetic
data = and labels the data using responses y via the MLaaS
provider’s APIs. The MLaaS provider may deploy defenses to
prevent model leakage. A substitute model is iteratively trained
using the synthetic data of & with corresponding labels y and
eventually approximates the functionality of the victim model.
There are two key steps in ES Attack: E-Step to Estimate the
parameters in a substitute model and S-Step to Synthesize the
dataset for attacking.

Compared to existing model stealing attacks, ES Attack does
not require i) information about the internals of the victim’s
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Fig. 1. Diagram of ES Attack.

model (e.g., its architecture, hyper-parameters, and parameters),
and ii) prior knowledge of the victim model’s training data. The
adversary only observes responses given by the victim model.

In summary, our contributions are fourfold:

1) We propose a novel model stealing framework ES Attack
that does not require any knowledge of the victim model’s
training data. Compared to model stealing using auxiliary
datasets, our proposed ES Attack improves the model
accuracy by 44.57%.

2) ES Attack generates better synthetic datasets compared
with the auxiliary datasets in terms of quality and diversity.

3) We demonstrate that the stolen model successfully fa-
cilitates black-box adversarial attacks against the victim
model.

4) Three investigated countermeasures are not effective in
preventing ES Attack.

II. PROBLEM STATEMENT

In this paper, we consider a typical service in Machine-
Learning-as-a-Service (MLaaS), i.e., image classification.
Given a task domain 7, an MLaaS provider (i.e., victim) collects
atraining dataset Dy, and a test dataset Dyeg, consisting of a set
of images and their corresponding labels {(x,1)}. Further, the
MLaaS provider trains a machine learning model (i.e., victim
model) f, on private training dataset Dy, and provides the im-
age classification services to the public using the victim model.
Normal users can access the trained model f, by querying data
sample x and get the response from the victim model regarding
the predicted probabilities of K classes y = f,(x).

The goal of model stealing adversaries is to build a model
(i.e., stolen model) f, thatis functionally equivalent to the victim
model f,. We assume that the adversary can query the victim
model by pretending themselves as normal users. Most model
stealing attacks assume that the adversary has full or partial prior
knowledge of the victim model’s training data Dyy,. In this
paper, we consider a more realistic scenario that the adversary
cannot access the victim’s private training data. Specifically, we
assume that the adversary does not know the victim’s training
data Dy,in or any auxiliary data related to Diyip .

To evaluate the risk of model stealing attacks, we leverage
the prediction accuracy on the test dataset Dyey. By mimicking
the behavior of the victim model, the adversary aims to achieve
good performance on the unknown test dataset Dy using the
stolen model f;.

III. ES ATTACK

In this section, we present the design of ES Attack, and propose
two heuristic approaches for data synthesis.

A. Design of ES Attack

Model stealing attacks aim to build a model f5 that is func-
tionally equivalent to the victim model f,. Theoretically, if the
adversary can train the substitute model on all the samples in
the input space of f,, the substitute model can achieve the same
performance as the victim model. However, it is infeasible to
query all the samples in the input space. Therefore, a critical
step for model stealing attacks is to explore the input sub-space
that represents the task domain 7. Adversaries will mimic
the behavior of victim models in the input sub-space. [3]-[5]
leverage public datasets as an auxiliary dataset to train the
substitute model to approximate the output of the victim model.
The auxiliary data share common attributes with Dy, Which
can be used to train the substitute model. However, these ap-
proaches are not practical due to many reasons: i) Data with
shared attributes is not always available. Confidential data such
as medical images, financial records are not publicly available.
The scarcity of data is still a critical problem in many domains.
ii) The relationship between the available auxiliary data on the
public domain and the task domain 7 is unclear, which brings a
challenge to select a proper auxiliary dataset. The rationale for
selecting a specific auxiliary dataset is missing in most of the
existing approaches. In the experiments, we show that using
a randomly generated dataset, a special case of an auxiliary
dataset, fails to steal the victim model. iii) The quality of data
used for training the substitute model cannot be improved during
model stealing. The data samples are fixed in the auxiliary
dataset.

Therefore, we propose an ES Attack to heuristically explore
the potential input space related to task domain 7 by learning
from the victim model. We outline ES Attack in Algorithm 1.
First, ES Attack initializes a randomly synthetic dataset Ds(fg,
which may share few attributes with Dy.in, most likely fewer than
Daux- Second, ES Attack trains a substitute model f based on the
samples from the synthetic dataset and their predictions from the
victim model. Then, ES Atfack can generate a better synthetic
dataset using the improved substitute model; in the meanwhile,
the better synthetic dataset can help improve the substitute
model. In this way, ES Attack iteratively synthesizes the datasets
and trains the substitute model to improve the quality of the
synthetic dataset and the performance of the substitute model.
Eventually, the synthetic datasets will approximate the private
training dataset, and the substitute model will approximate the
victim model or steal the victim model.

Fig. 2 illustrates the progress of data synthesis during ES
Attack. In Fig. 2, we compare the synthetic datasets DSI)] (in
red) with the victim’s training dataset Dy, (in blue) and the
auxiliary dataset Dy (in green). D,y may share similar input
space with Dy, but in most cases, adversaries may not know the
distance between the distribution of D,,, and the distribution of
Dirain- Hence, Dy, may not be fully covered by D,,x. However,
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Fig.2. Progress of data synthesis during ES Attack. We compare the synthetic datasets DS(;,? (in red), generated by our proposed attack, with the victim’s training
dataset Dy,in (in blue) and the auxiliary dataset Dy, (in green). The auxiliary dataset D,,x may share similar input space with the victim’s training dataset Di,in,

p© 1O

but a large space of Dyin cannot be covered by the auxiliary dataset. In our attack, we first initial a randomly generated synthetic dataset Dgyy . Dgyyy share some

attributes with Di,in, Which might be less than D,,x. During our attacks, Ds(;g (t = 1,2, 3) get information from our substitute models and explore more space in
Dirain in each iteration. The goal of the attacks is to cover the input space of Dy, as much as possible. Note that the adversary trains the substitute model on a

synthetic dataset Ds(;g (t=0,1,..

., IN) in each stealing epoch. As a sum, the substitute model is trained on all the synthetic datasets. (a) Initial Steal (¢t = 0).

(b) The Ist Steal (¢ = 1). (c) The 2st Steal (¢t = 2). (d) The 3rd Steal (¢ = 3). (e) The 4th Steal (¢ = 4).

after initializing the synthetic dataset D§§’3 , ES Attack will iter-
atively improve the synthetic datasets Ds(;&,)l(t =1,2,3,4,...),
and explore more space in the training dataset Dyiy.

Two key steps in ES Attack, E-Step and S-Step, are described
as follows.

E-Step: Estimate parameters in the substitute model on the
synthetic dataset using knowledge distillation. The knowledge
distillation approach transfers the knowledge from f,, to fs with
minimal performance degradation:

S argming Tio (£ £ DGV) (@)

where fs(t) denotes the substitute model at iteration ¢ and Dg; D
denotes the synthetic dataset at the previous iteration ¢ — 1. The
objective function Lgyp is defined as knowledge distillation loss

to make fg(t) approximate the victim model f,:

LKD(fsva;Dsyn) ! Z LCE(fs(w)va(w»a 2)

|Dsyn | wEDsyn

where Lcg denotes the cross-entropy loss. We train the substitute
model by minimizing the objective function (1) for M epochs
using Adam [10].

S-Step: Synthesize the dataset D&), = {x} consisted of the
synthetic input samples.

B. Two Approaches for Data Synthesis (S-Step)

Data synthesis (S-step in ES Attack) aims to explore the
possible data that reveal the data distribution of the victim’s

Algorithm 1: ES Attack.

INPUT:
The black-box victim model f,,
Number of classes K
Number of stealing epochs N
Number of training epochs for each stealing epoch M
OUTPUT:
The substitute model fs(N)
1: Initialize a synthetic dataset Dgg by randomly
sampling « from a Gaussian distribution.
2: Construct an initial substitute model fs(o) by
initializing the parameters in the model.
fort < 1to N do
4: E-Step: Estimate the parameters in the substitute
model fs(t) using knowledge distillation for M

epochs on the synthetic dataset DS(;; 1).
(t)

5: S-Step: Synthesize a new dataset Dy, based on the
knowledge of the substitute model fs(t).
6: end for

7:  return fs(N).

W

training dataset and benefit the substitute model. The most
challenging problem in data synthesis is the lack of gradient
of the victim model. The adversary can only get the prediction
rather than the gradient from the victim model. Accordingly,
the data generated by the adversary cannot be tuned by the
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victim model directly. The existing approaches used in data-free
knowledge distillation fail to be applied in the model stealing
attacks, since they require to back-propagate the gradients from
the victim model. More discussion about the difference between
model stealing and data-free knowledge distillation can be found
in Section VI-C. To overcome this challenge, we propose two
data synthesis approaches that make use of the gradients of the
substitute model as a proxy for updating the synthetic input data.

Specifically, we introduce two approaches to generate the syn-
thetic data: namely, DNN-SYN and OPT-SYN. Both approaches
start with generating a set of random labels and initial data sam-
ples. Further the approaches update the data samples based on
the assigned labels and the gradients from the substitute model.
Once the substitute model is close to the victim model, the
synthetic data becomes close to the distribution of the victim’s
training dataset.

1) DNN-SYN: We design a DNN-based generator to synthe-
size images that can be classified by our substitute model with
high confidence. The design of image generator G follows the
major architecture of Auxiliary Classifier GAN (ACGAN) [11],
a variant of Generative Adversarial Network (GAN), which can
generate images with label conditioning. We refer to the data
generation approach using DNN as DNN-SYN.

We describe the procedure of DNN-SYN as follows:

1) Step 1: Randomly assign a set of labels [ =
{l1,12,...,1,}, where l; denotes a K -dimensional one-
hot vector.

2) Step 2: Train a DNN generator G with parameter wg
to generate data from a random latent vector z;. G is
optimized that the generated data can be classified by f;
as assigned labels L with high confidence:

min Ling(G.1) € Y Lep(fo(Glzo, 1)), 1) 3)

3) Step 3: Generate a synthetic dataset using the generator
trained in Step 2: Dy = {G(24,15)}.

In addition, mode collapse is one of the critical problems
for training GANSs. To avoid mode collapse in DNN-SYN, we
use a mode seeking approach to increase the diversity of data
samples [12]. Mode seeking has been shown simple yet effective
in mitigating mode collapse. We generate two images G(z; ) and
G(z2) using latent vectors z; and z? and maximize the ratio of
the distance of images to the distance of latent vectors. In other
words, we minimize the mode seeking loss Ly:

- d(z},22)

def
Lis(G, 1) = Z d(G(2},1:),G(22.1;))’ @

where d(-, -) denotes a distance metric. In this paper, we use (o
norm distance. We sum up the original objective function Lipyg
and the regularization term L,; and minimize the new objective
function:

Lpnn = Limg + )"Lmsa (5)

where A denotes the hyper-parameter to adjust the value of
regularization. In the experiment, we set A as 1.

Synthesized
Images

A

's

enerator

Fig. 3. DNN generator G in DNN-SYN.

Fig. 3 illustrates the architecture of DNN-based generator
in DNN-SYN. We follow the major design of ACGAN [11].
We feed a random latent vector z; and a generated one-hot
label [, into generator G. We concatenate these two vectors and
up-sample them using several transposed convolution layers.
Transposed convolution layers are parameterized by learnable
weights. Each transposed convolution layer is followed by a
batch normalization layer and a ReL.U activation function except
the last transposed convolution layer. 4 transposed convolution
layers are used in the model. In the final layer, we use a Tanh
function to output a synthesis image within (—1, 1).

2) OPT-SYN: Instead of training a generator to synthesize
the dataset, we propose an optimization-based data synthesis
approach, OPT-SYN, which operates on the input space directly
and does not suffer the problem of mode collapse. In addition,
OPT-SYN explores a more diverse label space compared to the
one-hot labels used in DNN-SYN. OPT-SYN first explores the
possible prediction vectors {y} in the task domain 7 and then
minimizes the cross-entropy loss between {y} and the substitute
model’s prediction on the synthetic data:

majn Lcg (fgt) (), y) , (6)

where f, s(t) denotes the substitute model at the ¢th stealing epoch.
In the experiments, we find that OPT-SYN performs better than
DNN-SYN does in most scenarios.

The proposed OPT-SYN approach is detailed in Algorithm 2.
First, to explore the possible prediction vectors, we sample each
random vector y = {y1,¥2,...,yx} from a K-dimensional
Dirichlet distribution with parameter . Dirichlet distribution
is commonly used as conjugate prior distribution of categori-
cal distribution. From the Dirichlet distribution, we can sam-
ple prior probabilities {y1,y2, ..., yx }, where y; € (0,1) and
Zfil y; = 1. « is referred to as the concentration parameter,

Authorized licensed use limited to: Michigan Technological University. Downloaded on March 28,2022 at 04:54:40 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YUAN et al.: ES ATTACK: MODEL STEALING AGAINST DEEP NEURAL NETWORKS WITHOUT DATA HURDLES 5

Algorithm 2: Data Synthesis of OPT-SYN.
INPUT:
The substitute model f! at iteration ¢
Number of synthetic data .S
Number of output classes K

Number of optimization iterations m
OUTPUT: A set of optimized data samples X’

1. X<+ 0
2: fori<« 1,Sdo
3: /I Generate a K -dimensional random parameter «

from a Gaussian distribution
4:  a~N(0,1)

5: /I Sample a prediction vector y from a Dirichlet
distribution

6: y~ DK, a)

7: // Initialize a data sample « from Gaussian
distribution

8 x~N(0,1)

9: // Minimize (6) for m iterations

10 a* < argmin, Lcg( S@(:c),y)

11: // Add x* to set X
12: X+~ Xux*

13:  end for

14: return: X.

which controls the distribution. The probability density function
of Dirichlet distribution Dir(K, ) can be calculated by:

K
1 .

= — a 7

f(ylay27 7yKaa) B(a)gyZ ) ( )

where B(a) denotes the gamma function and

> y1,Y2, ...,y = 1. In the experiment, we randomly sample

the parameter @ from a Gaussian distribution: o ~ N(0, 1) to
explore the possible Dirichlet distribution.

Given the prediction vector y, we synthesize data x by it-
eratively minimizing the objective function 6. The goal is to
generate a data sample x* that fs(t) predicts «* close to y. An
adaptive gradient-based optimization algorithm, Adam [10], is
applied to optimize the objective function iteratively.

IV. EVALUATION OF ES ATTACK

In this section, we evaluate our proposed ES Attack on three
different neural networks and four image classification datasets.
We compare our results with two baseline attacks. Moreover,
we investigate the data synthesized during the attacks in terms
of data quality and diversity.

A. Experiment Setup

1) Victim Models and Datasets: In our experiments, we eval-
uate model stealing attacks on four image classification datasets:
MNIST, KMNIST, SVHN, CIFAR-10. The MNIST dataset [13]
contains 70,000 28-by-28 Gy images of 10 digits. We use 60,000
images for training and 10,000 images for testing following the
original train/test split in the MNIST dataset. Kuzushiji-MNIST

(KMNIST) [14] is a similar dataset to MNIST, containing
70,000 28-by-28 grey images of 10 Hiragana characters. We use
60,000 images for training and 10,000 images for testing. The
SVHN [15] dataset consists of 60,000 32-by-32 RGB images
from house numbers (10 classes from 0 to 9) in the Google
Street View dataset. The CIFAR10 [16] dataset contains 60,000
32-by-32 RGB images with 10 classes.

We train three types of DNN models on four datasets and
use them as the victim models in our experiments. We train
LeNet5 [13] on the MNIST [13] and KMNIST [14] datasets. We
train ResNet18 [17] and ResNet34 [17] on the SVHN [15] and
CIFARI10 [16] datasets. LeNet5 is trained for 30 epochs using
an SGD optimizer with a learning rate of 0.1 on the MNIST
and KMNIST datasets. We train ResNet18 and ResNet34 for
200 epochs with an initial learning rate of 0.1 on the SVHN
and CIFAR10 datasets. We reduce the learning rate by 10 after
80 and 120 epochs. We select the models with the highest test
accuracies as the victim models.

2) Settings of ES Attack: For DNN-SYN, we input a 100-
dimensional random latent vector and a one-hot label vector
into DNN-based generator G. The substitute model f, and
DNN-based generator G is trained by an Adam optimizer with
a learning rate of 0.001. fs and G are trained alternatively for
2,000 epochs each on the MNIST, KMNIST, and SVHN dataset
(N = 2000, M = 1), and 15,000 epochs each on the CIFAR10
dataset (N = 15000, M = 1).

For OPT-SYN, we synthesize data for 30 iterations (M = 30)
in each stealing epoch using an Adam optimizer with a learning
rate of 0.01. We train the adversary model for 10 epochs on
the synthetic dataset (M = 10). We repeat the stealing for 200
epochs on the MNIST, KMNIST, and SVHN dataset (N = 200),
and 1,500 epochs on the CIFAR 10 dataset (N = 1500). To speed
up the stealing process, we augment the synthetic dataset by
random horizontal flip, horizontal shift, and adding Gaussian
noise.

3) Baseline Model Stealing Attacks: We compare ES Attack
with two baseline attacks - model stealing using randomly
generated data and auxiliary data. First, if the adversary has no
knowledge of the victim’s training data, randomly generated data
could be the only dataset the adversary can leverage. We form a
random dataset with the random data sampled from a Gaussian
Distribution NV'(0, 1) and their prediction from the victim model.
We train our substitute model using the random dataset itera-
tively. Second, we consider public data as an auxiliary dataset.
We use data samples from other public datasets and query the
victim model with them. We construct an auxiliary dataset and
train the substitute model on it. To make a fair comparison,
we make sure that all the model stealing attacks, including two
baseline attacks and two ES Attacks (DNN-SYN and OPT-SYN),
train their substitute models for the same epochs.

B. Performance Evaluation

We evaluate the performance of ES Aftacks using two data syn-
thesis approaches and compare them with two baseline attacks.
We report the accuracy of model stealing attacks in Table I. We
compare the results with two baseline attacks that use randomly
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TABLE I
PERFORMANCE COMPARISON OF MODEL STEALING ATTACKS

Dataset Model Victim Attacks Substitute
accuracy (%) accuracy (%)
Random 50.71
SVHN  ResNetl8 95.40 Auxiliary 74.84
DNN-SYN 93.95
OPT-SYN 93.97
Random 60.95
SVHN ResNet34 95.94 Auxiliary 82.00
DNN-SYN 93.34
OPT-SYN 93.19
Random 11.72
CIFARIO  ResNetl8 91.12 Auxiliary 4873
DNN-SYN 33.44
OPT-SYN 84.60
Random 14.45
CIFARI0  ResNet34 91.93 Auxiliary 38.55
DNN-SYN 12.69
OPT-SYN 80.79
Random 72.18
MNIST  LeNet5 99.10 Auxiliary 98.96
DNN-SYN 91.02
OPT-SYN 92.03
Random 56.39
KMNIST  LeNet5 95.67 Auxiliary 59.43
DNN-SYN 90.37
OPT-SYN 90.37

generated data (Random) and auxiliary data (Auxiliary) to steal
the victim model.

From the evaluation, we observe that OPT-SYN can suc-
cessfully steal the victim models over all the datasets and
model architectures. Our proposed attacks achieve better per-
formance compared with two baseline attacks. On average,
OPT-SYNimproves the best accuracy by 44.57 % compared to
the best results of two baseline attacks.OPT-SYN performs as
well as DNN-SYN onthe SVHN, MNIST, and KMNIST datasets.
However, DNN-SYN cannot achieve a good performance on
the CIFAR10 dataset, which is a more complex dataset and the
generator G in DNN-SYN may still cause the mode collapse
problem. Both our proposed attacks perform worse than the
attacks using auxiliary data (KMNIST) on the MNIST dataset,
which suggests that the auxiliary data can be used in the model
stealing if the auxiliary data well-represent the target task and
the data are available to the adversary. Note that we assume
that the adversary has no knowledge of any victim’s data, which
means the adversary cannot evaluate the substitute model on a
validation dataset and select the best substitute model during
the attack. If the performance of the stealing attacks fluctuates,
then the adversary cannot guarantee the best performance of the
substitute model. The convergence of the substitute model is
essential for stealing attacks without a validation dataset. Our
experiments show that the performance of the substitute model
converges after a few stealing epochs (Fig. 4). If the adver-
sary has the knowledge of a validation dataset or the victim’s
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Fig. 4. Substitute model accuracy during attacks. (a) ResNetl8 on SVHN.

(b) ResNet34 on SVHN. (c) ResNet18 on CIFAR10. (d) ResNet34 on CIFAR10.
(e) LeNet5 on MNIST. (f) LeNet5 on KMNIST.

test dataset Dy, the adversary will achieve the best accuracy.
Otherwise, the adversary will use the substitute model in the
last stealing epoch (t = N). We observe the subtle difference
between the best accuracy and the last accuracy achieved by the
substitute model (0.79% difterence on average for OPT-SYN and
1.53% for DNN-SYN). The stable convergence suggests that our
proposed attacks do not rely on a validation dataset.

We find that model stealing attacks do not require a large query
budget in real-world settings. The query to the victim model only
occurs in the E-Step, where the adversary uses the synthetic
data to get the model prediction. In our experiments, to steal
the victim model trained on the MNIST, KMNIST, and SVHN
dataset using OPT-SYN, the adversary only needs to pay $30 K
for all the required queries (around 120 M queries) according to
the pricing of Amazon AWS [18]. For for the CIFAR10 dataset,
it costs $187.5 K to steal the victim model (around 750 M
queries). The expenses are much less than hiring ML experts and
collecting data from scratch. This indicates that the adversary
can replicate the function of the existing MLaaS models with
much less cost than the victim’s actual cost of establishing a
machine learning service.
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TABLE I
ES ATTACK USING DIFFERENT DNN ARCHITECTURES

Victim Substitute Victim Substitute
Dataset

model model accuracy (%)  accuracy (%)
MNIST ResNetl8 LeNet5 99.31 97.28

LeNet5 ResNet18 92.03 98.13
SVHN ResNetl8 ResNet34 95.40 94.64

ResNet34  ResNet18 95.94 94.03
CIFAR10 ResNet18  ResNet34 91.12 82.54

ResNet34  ResNetl8 91.93 62.73

C. Sensitivity Analysis of DNN Architectures

In this section, we consider a more realistic scenario where
the adversary has no knowledge of the victim model’s archi-
tecture. The adversary may choose a different architecture of
the substitute model from that of the victim model. Thus, we
investigate when the adversary uses a different neural net-
work architecture from the victim. For the MNIST dataset, we
use ResNet18 for the victim model and LeNet5 for the substitute
model, and vise versa. For the SVHN and CIFAR 10 datasets, we
consider ResNet18 and ResNet34 as the victim model and the
substitute model’s architecture. Because OPT-SYN outperforms
DNN-SYN in most model stealing attacks, we use OPT-SYN to
evaluate the sensitivity of DNN architectures.

From Table II, we do not observe a significant performance
loss due to different DNN architectures for the MNIST and
SVHN dataset, compared with using the same architecture. For
the CIFAR 10 dataset, we observe subtle performance loss using
ResNet34 to steal ResNetl18 models. The only degradation of
performance occurs when the adversary uses a small model
ResNetl8 to steal a large model ResNet34. We believe the
degradation is due to the gap between the size of the victim
model and the substitute model. We find similar performance
degradation in many other tasks using knowledge distillation.
The performance of the student model (substitute model in
our paper) will be degraded if there is a gap between student
and teacher (victim) [19]. The adversary can easily avoid per-
formance degradation by selecting a large model. From our
experiments, if the adversary chooses a DNN model with the
same size or the large size compared with the victim model,
the adversary will be able to steal a substitute model with high
accuracy.

D. Convergence of ES Attack

Fig. 4 illustrates the convergence of ES Attack. We observe
that the accuracy of the substitute model always converges at the
end of the stealing. We observe the subtle difference between the
best accuracy and the last accuracy achieved by the substitute
model (0.79% difference on average for OPT-SYN and 1.53%
for DNN-SYN). The stable convergence at the end of the attacks
suggests that our proposed attacks do not rely on a test dataset.
Hence, the adversary can successfully steal the victim model
even without knowing test data, which suggests the practicality

of ES Attack and substantially raises the severity of model
stealing attacks.

E. Quality Analysis of Synthetic Data

In this section, we investigate the quality of synthetic data.
Fig. 5 shows examples of the synthetic data used in model
stealing. We compare them with the victim’s training data.
Humans cannot recognize these images, yet our substitute model
can be well-trained using these synthetic data.

Therefore, we further investigate synthetic data in terms of
quality and diversity. Inspired by the measurements for GANSs,
we use Inception Score (IS) [20] and Fréchet Inception Distance
(FID) [21] to evaluate the synthetic data. In the experiments, we
observe that the synthetic data achieves better quality and higher
diversity compared to the auxiliary data.

Inception Score (IS) was originally proposed to measure the
quality of generated images using a pre-trained Inception-V3
network. In our experiments, we replaced the Inception-V3
network with the victim models. To be consistent with the
concept, we keep Inception Score as the name of our metric.
Given the prediction provided by the victim models, Inception
Score compares the conditional prediction distribution with the
marginal prediction distribution:

IS = exp(Ez Dkr (p(y )| p(y)), ®)

where Dyp, denotes the KL divergence. A high Inception Score
indicates: 1) generated images are meaningful and predictable to
the victim model, so that p(y|x) has low entropy; 2) generated
images are diverse, so that p(y) has high entropy.

Fréchet Inception Distance (FID) was proposed to improve
IS by comparing the intermediate features of the victim model.
FID models the real images and the synthesis data as two
multivariate Gaussian distributions and calculates the distance
between the two distributions:

FID = [|ue — ool + 77 (S0 + 2, - 2(22)%) @)

where (14, %) and (us, Xs) denote the mean and covariance
matrix of intermediate features predicted using training data and
synthesis data. T'r(-) denotes the trace of a matrix. A low FID
indicates better image quality and diversity. FID is shown to be
more consistent with human perception than IS [21] and more
robust to mode collapse [22]. In our experiments, we used the
features from the layer before the last linear layer and compared
our synthesis data with the training data using FID. These two
metrics are widely used to measure the quality of generated
images.

We compare the four types of data and report the average
values of IS and FID in Table III: 1) victim’s training dataset,
2) auxiliary dataset used in the baseline attack, 3) random data
generated in the first initialization epoch (¢ = 0), 4) the synthetic
data generated in the last stealing epoch (¢ = N). The value of
FID is evaluated by comparing the data with the victim’s training
data. From our analysis, we find that synthetic data usually
achieves better quality and high diversity than the auxiliary data
(higher IS value and lower FID value). On average over six

settings, synthetic data Dg,)n achieves 60.58% higher IS values
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plane

Fig. 5.

Victim’s training data vs. synthetic data. We synthesize images using OPT-SYN with the best substitute model. We compare them with the victim’s training

data. First row: images in the victim’s training dataset. Second row: images in the synthetic dataset. Third Row: corresponding labels of images. Other examples

are presented in Appendix (Fig. 10, 11, 12, 13).

TABLE III
ANALYSIS OF SYNTHETIC DATA USING IS AND FID

Dataset Model Victim Dyain | Auxiliary Daux | Random Dé?}n Synthetic Dﬁfy\’)
1S IS FID IS FID IS FID
MNIST LeNet5 9.86 | 4.22 274.80 | 1.22 500.16 | 4.63 257.55
KMNIST  LeNet5 996 | 475 107392 | 1.78 1498.75 | 4.70 962.47
CIFAR1I0  ResNetl8 6.89 | 2.58 534 | 345 5.82 | 4.32 3.31
CIFAR10  ResNet34 7.64 | 4.16 18.16 | 6.75 14.88 | 6.65 18.29
SVHN ResNet18 6.89 | 2.24 7.62 | 3.45 5.82 | 4.32 3.31
SVHN ResNet34 7.64 | 4.16 18.16 | 6.75 14.88 | 6.65 18.29

and 27.64% lower FID values than the auxiliary data D,,x, which
suggests better quality and higher diversity of synthetic images.
The victim’s training data always achieve the highest IS value:
the training data is the best representation of the input space
among data we investigate. The Random Data are always the
worst data due to the low IS values and high FID values.

F. Further Attacks: A Case Study on Black-Box Adversarial
Attacks

DNNSs are vulnerable to adversarial examples, a slight mod-
ification on the original data sample that can easily fool
DNNs [23]-[26]. Black-box adversarial attacks assume that
the adversary can only access the output of the model victim
instead of its internal information, which is an emerging topic
in adversarial attacks. After ES Attack, the adversary has full
knowledge of the stolen substitute model. Hence, in this section,
we try to answer the following question: Can the adversary
leverage the knowledge to conduct adversarial attacks against
the victim model?

Transferability is commonly used to conduct black-box adver-
sarial attacks, by training a surrogate model to transfer the adver-
sarial attacks [27], [28]. In the experiments, we demonstrate how
model stealing facilitates black-box adversarial attacks through
transferability. The evaluation of the black-box adversarial at-
tack is outlined as follows: 1) Steal the victim model using ES
Attack and get a substitute model; 2) Perform a white-box /.-
PGD attack against the substitute model and generate adversarial
examples; 3) Evaluate the generated adversarial examples on the
victim model.

We evaluate the black-box adversarial attack against the vic-
tim model using the substitute model. We implement a white-box
l~-PGD attacks [25] and leverage the transferability of adver-
sarial examples to conduct the attack. PGD attack is an iterative
gradient-based attack in a white-box setting and has been proven
effective in many machine learning models and tasks.

In the experiment, we use the test dataset D;.s; as our eval-
uation dataset. We follow the adversarial settings in [25] and
consider the untargeted adversarial attacks, where adversarial
examples can be classified as any classes other than the ground-
truth class. For the MNIST and KMNIST dataset, we run 40
iterations of /,,-PGD attack with a step size of 0.01. We set the
maximal perturbation size as 0.3. For the SVHN and CIFAR10
dataset, we run 20 iterations with a step size of 2/255. The
maximal perturbation size is set as 8/255.

We report the success rate of adversarial attacks against our
substitute model and the victim model (transferring attack) in Ta-
ble IV. We compare the success rate of three adversarial attacks:
1) white-box attacks against the victim model, 2) white-box
attacks against the substitute model, and 3) black-box attacks
against the victim model via transferring. For the third attack, we
evaluate the adversarial examples generated against substitute
model (white-box attacks) on the victim model. We show the
performance of the white-box ¢..-PGD attack against the victim
model as well.

From the experimental results, the black-box adversarial at-
tacks using the substitute model can achieve the same success
rate as the white-box, which suggests that the substitute mod-
els can transfer the adversarial examples to the victim model
successfully. Almost all black-box adversarial attacks achieve
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TABLE IV
SUCCESS RATES OF ADVERSARIAL ATTACKS

Attack success rate (%)

Dataset Model white-box white-box black-box
victim model  substitute model  victim model
SVHN ResNet18 99.95 99.94 98.71
SVHN ResNet34 99.93 99.90 98.21
CIFAR10  ResNetl8 100.00 100.00 93.60
CIFAR10  ResNet34 100.00 100.00 100.00
MNIST LeNet5 86.07 99.57 92.14
KMNIST  LeNet5 66.44 99.72 98.99
100
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Fig. 6. Evaluation of rounding prediction on MNIST.

high accuracy rates (over 90%). We observe that the success
rates of the black-box attacks against the victim models are less
than that of the white-box attacks against the substitute models,
but the change is subtle. Hence, most adversarial examples can
be transferred from the substitute model to the victim model.
Surprisingly, the black-box attacks against the victim model
perform even better than the white-box attacks against the victim
model on the MNIST and KMNIST dataset.

V. COUNTERMEASURES OF MODEL STEALING

In this section, we discuss the defense strategies of MLaaS
providers and evaluate their effectiveness. Given the good per-
formance of OPT-SYN on all the datasets, we evaluate three
countermeasures against OP7-SYN. We find that the counter-
measures are ineffective in defending or detecting proposed
OPT-SYN.

A. Rounding Prediction

The MLaaS providers fix the decimals of the output prediction
and zero-out the rest to provide only the necessary information.
For example, if we round the prediction with 2 decimals, then
round(0.2474,r = 2) = 0.25. We deploy rounding predictions
with 2 decimals as a defensive strategy. Our experiments show
that none of the model stealing attacks are affected by rounding
to two decimals (Table V). On average, the best accuracy of the
substitute model even increases by 0.55% and the last accuracy
only decreases by 0.30%.

We further investigate the impact of rounding decimals on the
ES Attack. Figs. 6 and 7 show the results of experiments with
class probabilities rounded to 0-5 decimals. We compare the
after-rounding classification accuracy of the substitute model

100

95

90
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80

Classification Accuracy (%)

— KMNIST Victim Model
65 —— KMNIST Substitute Model Without Rounding
¢— KMNIST Substitute Model With Rounding
60
0 1 2 3 4 5
Rounding Decimals

Fig. 7. Evaluation of rounding prediction on KMNIST.

and the victim model. Class probabilities rounded to 2 to 5 dec-
imals have no effect on the adversary’s success. When rounding
further to 1 decimal, the attack is weakened, but still successful.
When we round the precision to O decimal - the victim model
only outputs 0 or 1 - the attack is further weakened, but still
can predict in most cases (over 80% accuracy). We observe that
rounded information brings the uncertainty of the prediction,
while this uncertainty sometimes will slightly improve the train-

ing.

B. Top-K Prediction

Instead of providing the predictions of all the classes, MLaaS
providers can provide partial information - predictions of K
classes with the highest probabilities. Since this defense can
be easily detected by the adversary, we assume the adversary is
aware of the top-K defenses equipped by the MLaaS provider
and will try to circumvent such defense. Therefore, the adver-
sary can slightly change the attack by making up the missing
probabilities of the rest classes. The adversary remains the
probabilities of the Top-K classes and fills up the rest classes with
the same probabilities. For example, given an prediction out-
put of [0.5,0.02,0.3,0.02,0.15,0.01], by using Top-2 defense,
MLaaS provider can hide the predictions of eight classes and
only respond with the prediction of [0.5, 0.0, 0.3,0.0,0.0,0.0].
By knowing the top-k defense, The adversary can then convert
the predictions to [0.5,0.05,0.3,0.05,0.05,0.05] and resume
ES Attack.

From the experiments, we observe that Top-1 prediction will
not affect much on most datasets (Table V). For the MNIST and
KMNIST datasets, we find that the accuracy of the substitute
model even gets improved. Top-1 prediction is only effective in
preventing model stealing on the CIFAR10 dataset. However,
we believe Top-1 prediction is a very strong defense, which will
also affect normal users by providing very limited information.
On average, the best accuracy of the substitute model with
Top-1 prediction is only decreased by 2.86%. In addition, we
investigate the impact of probabilities with different numbers
(K) of classes on our model stealing attacks (Figs. 8 and 9). The
performance of model stealing attacks is not decreased with
fewer classes providing probabilities (small K). We find our
attacks are minimally impacted by reducing the informativeness
of black-box predictions in the response.
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TABLE V
EVALUATION OF DEFENSES AGAINST MODEL STEALING

Dataset Model Accuracy without defense (%)  Accuracy with rounding (%)  Accuracy with Top-K (%)
SVHN ResNet34 93.19 92.58 88.76
CIFAR10 ResNet34 80.79 80.31 69.64
MNIST LeNet5 92.03 96.69 95.43
KMNIST  LeNet5 90.37 90.03 91.11
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Fig. 8. Evaluation of top-K prediction on MNIST.
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Fig. 9. Evaluation of top-K prediction on KMNIST.

C. Anomaly Detection

Anomaly detection identifies the abnormal queries sent from
users and detects the abnormal behavior that deviates from
normal ones. For example, PRADA assumes that the distance
between normal queries follows Gaussian distribution and de-
tects the abnormal queries [9]. By evaluating how deviated
the distance from Gaussian distribution, PRADA detects model
stealing attacks. For the details of PRADA, we refer readers
to [9]. We evaluate the effectiveness of anomaly detection using
PRADA against OPT-SYN We analyzed 300,000 image samples
from the first five stealing epochs on the MNIST dataset. None
of the synthetic images can be detected by PRADA. We believe
that because the images are generated starting from the Gaussian
distribution, the distances between queried images are too small
to be detected by PRADA. Moreover, we find it is not practical
for MLaaS providers to deploy a PRADA detector due to its
high response time. In our experiments, it takes about 33 hours
to process 300,000 images (2.46 images per second on average).
With more images to be detected, the average response time
will be further increased. Therefore, PRADA is ineffective and
infeasible to detect the proposed ES Attack.

VI. RELATED WORK
A. Model Stealing Attacks

Several studies have been proposed for model stealing at-
tacks. Tramer et al. investigated stealing model parameters using
equation solving [2]. However, this approach is hard to extend
to DNNSs, which contains a larger number of than conventional
machine learning models do. Papernot et al. proposed a similar
framework to steal DNNs by training a substitute model [7].
Their goal is to approximate the victim model’s decision bound-
aries to facilitate the adversarial attacks rather than to maximize
the substitute model’s accuracy. Thus their substitute model
achieves a much lower classification accuracy compared to
our work. In addition, to generate adversarial examples, their
approach requires a small set of inputs that represents the input
domain. In our work, we eliminate this requirement, where the
adversary does not need to have prior knowledge, making the
attacks more feasible in the real world. From the experimental
results, the stolen model from ES Aftack achieves a higher
accuracy compared to that from [7]. Existing model stealing
attacks against DNNs require an auxiliary dataset. Orekondy
et al. proposed stealing attacks that assume access to a large
dataset and use active learning to select the best samples to
query [3]. Correia-Silva et al. leveraged public datasets from
the same task domain but with different distributions to steal
DNNs. Different from these works, we assume the adversary
does not have any auxiliary data related to the task domain.
The experiments show that ES Attack can achieve compara-
ble performance, compared with the attacks using auxiliary
datasets.

Zhou et al. used the same assumption with our work - un-
known victim’s training data and leveraged a generative model
to synthesize the training data [29]. However, the goal of DaST
is to perform a successful adversarial attack, which is different
from ours. In this paper, we aim to improve the prediction
performance of the substitute model. Accordingly, the substitute
model trained by DaST achieves much lower accuracy than ES
Attack. MAZE investigated a similar problem with our work,
namely data-free model stealing attack [30]. To address the
problem of unknown victim’s training data, MAZE tried to solve
the same challenge as our work, that is in generating synthetic
data, the gradient for updating the synthetic data cannot be
backpropagated using the victim model. MAZE addressed this
issue by approximating the gradients from the victim model
using zeroth-order gradient estimation, which is widely used in
black-box adversarial attacks, whereas in our work, we generate
the gradients by using the substitute model as a proxy of the
victim model. Both approaches achieve comparable attacking
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Fig. 10. The SVHN dataset.

Fig. 11.  The CIFAR-10 dataset.

Fig. 12.  The MNIST dataset.

Fig. 13.  The KMNIST dataset.

performance. In addition, the two approaches are orthogonal and ~ B. Model Stealing Defenses
could be further integrated together for better performance. We
will explore the new approach benefiting from ES Attack and
MAZE in the future.

Several detection approaches have been proposed for model
stealing attacks. Juuti et al. detected the deviated distribution
of queries from normal behavior [9]. Similarly, Kesarwani
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et al. proposed a detection tool that uses information gain to
measure the model learning rate by users with the increas-
ing number of queries [31]. The learning rate is measured
to the coverage of the input feature space in the presence of
collusion. We evaluate [9] in our experiments and find that
the detection approach is ineffective for our model stealing
attacks.

C. Knowledge Distillation

In our model stealing attacks, we use distillation to trans-
fer knowledge from the victim model to the substitute model.
Knowledge distillation is widely used in model compression by
transferring the knowledge from one model (teacher model) to
another (student model) [32], [33]. Most knowledge distillation
approaches require the knowledge of training data. Recently,
knowledge distillation without training data has recently been
investigated [34]-[38] when the training data is infeasible due
to large data size or privacy concerns. However, these data-free
knowledge distillation approaches cannot be used for model
stealing since the adversary cannot acquire the required infor-
mation. For example, the model gradient is required to update
the parameters of the generator in [34]. Similarly, model pa-
rameters are required to calculate class similarity in [36] or to
calculate the feature map statistics in [37] and batch normal-
ization statistics in [38]. Therefore, beyond data-free knowl-
edge distillation, we introduce two data synthesis approaches
in ES Attack to construct a novel data-free model stealing
attack.

VII. CONCLUSION

We demonstrated that our attacks successfully stole various
DNNs from the MLaaS providers without any data hurdles.
Even without the knowledge on the victim’s dataset, ES Attack
outperforms the two baseline attacks by 44.57% on average of
four datasets in terms of best accuracy. Our experimental results
illustrated the better quality and higher diversity of the generated
synthetic data compared with the auxiliary data, which benefits
ES Attack. In addition, most existing defenses are ineffective
to prevent ES Attack, where new countermeasures should be
provided. Moreover, the stolen model can be used to conduct
black-box adversarial attacks against the victim model, and
sometimes the black-box attack achieves higher success rates
compared with the white-box attack. In this paper, we only target
image classification tasks and small datasets. We will extend our
work to other machine learning tasks and more complex datasets
such as image segmentation and ImageNet in the future.

Further, this paper investigated a critical challenge in the
existing machine learning services. By successfully launching
the model stealing attack, the adversary can provide the same
machine learning service with a much lower price compared to
MLaaS provider due to the low cost of model stealing attacks.
Moreover, model stealing attacks may facilitate further serious
attacks that have been found in recent machine learning security

research. We hope the severity of model stealing attacks can at-
tract the attention of the community and encourage researchers in
academia and industry to investigate effective countermeasures.

REFERENCES

[1] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel,

“Chiron: Privacy-preserving machine learning as a service,” 2018,

arXiv:1803.05961.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing

machine learning models via prediction apis,” in Proc. 25th USENIX Secur:

Symp., 2016, pp. 601-618.

T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing func-

tionality of black-box models,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., 2019, pp. 4954-4963.

[4] J.R. C. da Silva, R. E. Berriel, C. Badue, A. F. de Souza, and T. Oliveira-

Santos, “Copycat CNN: Stealing knowledge by persuading confession

with random non-labeled data,” in Proc. Int. Joint Conf. Neural Netw.,

2018, pp. 1-8.

S. Pal, Y. Gupta, A. Shukla, A. Kanade, S. K. Shevade, and V. Ganapathy,

“A framework for the extraction of deep neural networks by leveraging

public data,” 2019, arXiv:1905.09165.

[6] H. Yu, K. Yang, T. Zhang, Y. Tsai, T. Ho, and Y. Jin, “CloudLeak:
Large-scale deep learning models stealing through adversarial examples,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2020.

[7]1 N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and A.

Swami, “Practical black-box attacks against machine learning,” in Proc.

ACM Asia Conf. Comput. Commun. Secur., 2017, pp. 506-519.

B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learning,”

in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 36-52.

M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “PRADA: Protecting

against deep neural network model stealing attacks,” in Proc. IEEE Eur.

Symp. Secur. Privacy, 2019, pp. 512-527.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. 3rd Int. Conf. Learn. Representations, 2015.

A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with

auxiliary classifier gans,” in Proc. 34th Int. Conf. Mach. Learn., 2017,

pp. 2642-2651.

Q. Mao, H. Lee, H. Tseng, S. Ma, and M. Yang, “Mode seeking generative

adversarial networks for diverse image synthesis,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2019, pp. 1429-1437.

Y. LeCun et al., “Gradient-based learning applied to document recogni-

tion,” Proc. IEEE, Nov. 1998, vol. 86, no. 11, pp. 2278-2324.

T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto,

and D. Ha, “Deep learning for classical japanese literature,” 2018,

arXiv:1812.01718.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,

“Reading digits in natural images with unsupervised feature learning,”

NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011.

A. Krizhevsky et al., “Learning multiple layers of features from tiny

images,” Tech. Rep., 2009.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,

pp. 770-778.

Amazon, “Amazon rekognition pricing,” 2020. [Online]. Available: https:

/laws.amazon.com/rekognition/pricing/

S. Mirzadeh, M. Farajtabar, A. Li, and H. Ghasemzadeh, “Improved

knowledge distillation via teacher assistant: Bridging the gap between

student and teacher,” 2019, arXiv:1902.03393.

T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and

X. Chen, “Improved techniques for training gans,” in Proc. Adv. Neural

Inf. Process. Syst., 2016, pp. 2234-2242.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,

“Gans trained by a two time-scale update rule converge to a local nash

equilibrium,” in Proc. Adv. Neural Inf. Process. Syst.,2017, pp. 6626—6637.

M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are GANs

created equal? A large-scale study,” in Proc. Adv. Neural Inf. Process. Syst.,

2018, pp. 700-709.

C. Szegedy et al., “Intriguing properties of neural networks.” in Proc. 2nd

Int. Conf. Learn. Representations, 2014.

N. Carlini and D. A. Wagner, “Towards evaluating the robustness of neural

networks,” in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 39-57.

2

[

[3

—

[5

—

[8

—_—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Authorized licensed use limited to: Michigan Technological University. Downloaded on March 28,2022 at 04:54:40 UTC from IEEE Xplore. Restrictions apply.


https://aws.amazon.com/rekognition/pricing/
https://aws.amazon.com/rekognition/pricing/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YUAN et al.: ES ATTACK: MODEL STEALING AGAINST DEEP NEURAL NETWORKS WITHOUT DATA HURDLES 13

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]
[35]

[36]

(371

(38]

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in Proc. 6th Int.
Conf. Learn. Representations, 2018.

X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 9, pp. 2805-2824, Jan. 2019.

N. Papernot, P. D. McDaniel, and 1. J. Goodfellow, “Transferability in
machine learning: From phenomena to black-box attacks using adversarial
samples,” 2016, arXiv:1605.07277.

Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adver-
sarial examples and black-box attacks,” in Proc. 5th Int. Conf. Learn.
Representations, 2017.

M. Zhou, J. Wu, Y. Liu, S. Liu, and C. Zhu, “Dast: Data-free substitute
training for adversarial attacks,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 234-243.

S. Kariyappa, A. Prakash, and M. K. Qureshi, “MAZE: Data-free model
stealing attack using zeroth-order gradient estimation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2021, pp. 13814—-13823.

M. Kesarwani, B. Mukhoty, V. Arya, and S. Mehta, “Model extraction
warning in MLaaS paradigm,” in Proc. 34th Annu. Comput. Secur. Appl.
Conf., 2018, pp. 371-380.

G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv:1503.02531.

C. Bucilud, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proc. 12th ACM Int. Conf. Knowl. Discov. Data Mining, 2006,
pp. 535-541.

H. Chen et al., “Data-free learning of student networks,” in Proc. [EEE
Int. Conf. Comput. Vis., 2019, pp. 3513-3521.

R. G. Lopes, S. Fenu, and T. Starner, “Data-free knowledge distillation for
deep neural networks,” 2017, arXiv:1710.07535.

G. K. Nayak, K. R. Mopuri, V. Shaj, V. B. Radhakrishnan, and A.
Chakraborty, “Zero-shot knowledge distillation in deep networks,” in
Proc. 36th Int. Conf. Mach. Learn., 2019, pp. 4743-4751.

H. Yin et al,, “Dreaming to distill: Data-free knowledge transfer via
deepinversion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 8712-8721.

M. Haroush, I. Hubara, E. Hoffer, and D. Soudry, “The knowledge within:
Methods for data-free model compression,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2020, pp. 8491-8499.

Xiaoyong Yuan (Member, IEEE) received the B.S.
degree from Fudan University, Shanghai, China, in
2012, the M.E. degree from Peking University, Bei-
jing, China, in 2015, and the Ph.D. degree from the
University of Florida, Gainesville, FL, USA, in 2020.

Dr. Yuan is currently an Assistant Professor with
the College of Computing, Michigan Technological
University, Houghton, MI, USA. His research inter-
ests mainly include the fields of machine learning,
deep learning, security and privacy, and cloud com-
puting.

Leah Ding (Member, IEEE) received the Ph.D. de-
gree in electrical engineering from the University
at Buffalo, Buffalo, NY, USA, in 2013. She is cur-
rently an Associate Professor with the Department of
Computer Science, American University, Washing-
ton, DC, USA. Her research interests include cyber
security, machine learning, wireless and emerging
networks.

Lan Zhang (Member, IEEE) received the B.S. and
M.S. degrees from the University of Electronic Sci-
ence and Technology of China, Chengdu, China, in
2013 and 2016, respectively, and the Ph.D. degree
from the University of Florida, Gainesville, FL, USA,
in 2020.

Dr. Zhang is currently an Assistant Professor with
the Department of Electrical and Computer Engineer-
ing, Michigan Technological University, Houghton,
MI, USA. Her research interests mainly include wire-
less communications and distributed machine learn-
ing in various cyber-physical systems and Internet of Things applications.

Xiaolin Li received the Ph.D. degree in computer en-
gineering from Rutgers University, New Brunswick,
NJ, USA.

Dr. Liis a Partner of Tongdun Technology, heading
the AI Institute, a Chair Professor and the Chief
Scientist of IBMC, Chinese Academy of Sciences.
He was a Professor with the University of Florida,
Gainesville, FL, USA, and founding Center Director
of NSF Center for Big Learning. His research interests
include deep learning, cloud computing, security &
privacy, IoT, and intelligent medicine.

Dapeng Oliver Wu (Fellow, IEEE) received the
Ph.D. degree in electrical and computer engineering
from Carnegie Mellon University, Pittsburgh, PA,
USA, in 2003. He is currnetly a Professor with the
Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL, USA, and the
Director of NSF Center for Big Learning. His research
interests include networking, communications, signal
processing, computer vision, machine learning, smart
grid, and information and network security. He was
the recipient of the University of Florida Term Profes-
sorship Award in 2017, University of Florida Research Foundation Professorship
Award in 2009, AFOSR Young Investigator Program (YIP) Award in 2009, ONR
Young Investigator Program (YIP) Award in 2008, NSF CAREER award in 2007,
the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best
Paper Award for Year 2001, and the best paper awards in IEEE GLOBECOM
2011 and International Conference on Quality of Service in Heterogeneous
Wired/Wireless Networks (QShine) 2006.

He was the Editor in Chief of IEEE TRANSACTIONS ON NETWORK SCIENCE
AND ENGINEERING, Editor-at-Large for IEEE OPEN JOURNAL OF THE COM-
MUNICATIONS SOCIETY, founding Editor-in-Chief of Journal of Advances in
Multimedia and an Associate Editor for IEEE TRANSACTIONS ON CLOUD COM-
PUTING, IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE TRANSACTIONS
ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, [EEE Signal
Processing Magazine, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR
VIDEO TECHNOLOGY, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
and IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Authorized licensed use limited to: Michigan Technological University. Downloaded on March 28,2022 at 04:54:40 UTC from IEEE Xplore. Restrictions apply.



