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LARGE GLOBAL SOLUTIONS FOR NONLINEAR SCHRODINGER
EQUATIONS I, MASS-SUBCRITICAL CASES

MARIUS BECEANU, QINGQUAN DENG, AVY SOFFER, AND YIFEI WU

ABSTRACT. In this paper, we consider the nonlinear Schrodinger equation,
0o+ Au = plulPu, (t,x) € R

with p = +1,p > 0.
In this work, we consider the mass-subcritical cases, that is, p € (0, %). We prove that

under some restrictions on d, p, any radial initial data in the critical space Hse (RY) with
compact support, implies global well-posedness.
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1. INTRODUCTION

We study the Cauchy problem for the following nonlinear Schrédinger equation (NLS)
on R x R%
10 + Au = plulPu,
u(0, ) = uo(x),

with 4 = +1,p > 0. Here u(t,z) : R x R? — C is a complex-valued function. The case
1 =1 is referred to the defocusing case, and the case © = —1 is the focusing case. The class
of solutions to equation ([L1]) is invariant under the scaling

(1.1)

u(t,z) — uy(t,x) = )\%u()\Qt, Az) for A >0, (1.2)
which maps the initial data as

u(0) — ux(0) == )\%uo()\x) for A > 0.

Denote
d 2
Se == — —.
C 2 p
Then the scaling leaves H*e norm invariant, that is,
[ll groe = Nuall groc

which is called critical reqularity s.. It is also considered as the lowest regularity for which
the problem (ILLI)) is well-posed for general H*(R¢)-data. Indeed, one can find some special
initial datum belonging to H*(R%), s < s, such that the problem (L)) is ill-posed.

The H'-solution of equation (LI)) also enjoys mass, momentum and energy conservation
laws, which read

M(u(t)) := / \u(t, x)|? de = M (ug),

P(u(t)) := Im/u(t,x)Vu(t, x)dr = P(up), (1.3)

E(u(t)) ::/|Vu(t,x)|2dx+]%/|u(t,x)|p+2dx:E(uo).

The well-posedness and scattering theory for Cauchy problem (L]) with initial data in
H*(R?) were extensively studied, which we here briefly review. The local well-posedness
theory follows from a standard fixed point argument, implying that for all uy € H*(R?),
there exists Ty > 0 such that its corresponding solution u € C([0,T;), H*(R%)). In fact, the
above Ty depends on |[ug|| gs(re)y When s > s. and also the profile of ug when s = s.. Some
of the results can be found in Cazenave and Weissler [10].

Such argument can be applied directly to prove the global well-posedness for solutions to

equation (LI)) with small initial data in H*(R?) with s > s.. In the mass-subcritical cases,
that is, p < g, if we consider the solution in L?(IR%) space, the local theory above, together
with the mass conservation laws (L3)), yields the global well-posedness for any initial data
ug € L*(R?). In the mass-supercritical, energy-subcritical cases, that is, % <p< d%zv
if we consider the solution in energy space H'(R?), the local theory above together with
conservation laws (L3) yields the global well-posedness for all initial data uy, € H*(R?) in

the defocusing case u = 1, and for any initial data ug € H'(R?) with some restrictions in the
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focusing case. Furthermore, the scattering under the same conditions were also obtained by
Ginibre, Velo [27] in the defocusing case and [24] in the focusing case. In the mass-critical and
energy-critical cases, since the conservation laws do not imply directly the global existence
of the solutions, the problem becomes much more complicated. In the energy-critical case,
the global well-posedenss and scattering in the defocusing case was first proved by Bourgain
[3] in the radial data case and then by Colliander, Keel, Takaoka, Staffilani and Tao [13]
in the non-radial data case; the global well-posedenss and scattering in the focusing case
was proved by Kenig and Merle [30] in the radial data case, then by Killip, Visan [42] in
the non-radial case when the dimensions are five and higher, and by Dodson [21] in four
dimensions, see also [43], [60) [61) [63] 64] for some previous works and simplified proofs. In
the mass-critical case, the global well-posedenss and scattering was first proved by Killip,
Tao, Visan [39] in the radial data case in dimension two, and Killip, Visan, Zhang [45] in
dimensions higher than two, then in the non-radial data case, the problem was solved in a

series of papers of Dodson [17], 18} [19] 20].

More complicated situation appears if one considers the general nonlinear Schrédinger
equations in the critical space H s¢(R?). Recently, conditional global and scattering results
with the assumption of u € L°(I, H*(R%)) (here I is the maximal lifespan) were considered
by many authors, which was started from [31], 32], and then developed by [5, 23] 25| 26,
33, 136, 37, [40, 411 142, 48| 149, 50} B1L 65] and cited references. That is, if the initial data

uy € H%(R%) and the solution has priori estimate

sup  [|ul| grze gy < +00, (1.4)
0<t<Tout(U0)

then T, (ug) = +oo and the solution scatters in H®(R?%), here [0, T,u(ug)) is the maximal
interval in positive direction for existence of the solution. Consequently, these results give
the blowup criterion which the lifetime depends only on the critical norm ||ul| e jrse (7 ra)-
However, it seems that no such large data global results are known, if only the initial data
uy € H* (R%). Furthermore, many authors considered the large global solutions for rough

data from a probabilistic point of view, that is, one may construct a large sets of initial data
of super-critical regularity which leads to global solutions, see [I], 2, 6] [7, 8, [14], 15| 16, 22|

38, 52, 53} 54 55 (56, 57, 158, 162].

In the first part of our series of works, we consider the global solution for the mass-
subcritical nonlinear Schodinger equation in the critical space H s¢(R%). Due to the mass
conservation law, L2-initial datum lead to the global solutions. It is known from Christ,
Colliander and Tao [12] and Kenig, Ponce, Vega [35] that the problem is ill-posed in some
sense for the non-radial datum in H $(R%),s < 0. However, for the radial data, due to
the better radial Strichartz estimates, one may establish the local well-posedness result in
negative regularity Sobolev spaces. Indeed, it was proved by Guo and Wang [28] that there
exists po(d) < 3, such that for any p € (po(d), ), if the initial datum are radial and small
in the critical space H*(R?), then the nonlinear solutions of (II)) are global and scatter.
Very recently, Killip, Masaki, Murphy and Visan [36] [37] proved a conditional result; that
in the defocusing' case, there exists po(d) < 3, such that for any p € (po(d), 5), if the radial
solution u € L H(I x R?), then I = R and the solution scatters, by using concentration-
compactness arguments. This is the first global result for large data theory in the critical
spaces for the mass-subcritical NLS.
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In this paper, we prove unconditional global well-posedness. We prove that for radial
initial data with compact support in space, and is in the critical space, there exists solution
global in time.

Theorem 1.1. Let d > 4, and p = £1. Then there exists po(d) € (0,5), such that for any

p € [po(d), ), the following is true. Suppose that uy € H*<(R%) is a radial function satisfying
supp ug C {zx : |z| < 1}

Then the solution u to the equation (LI)) with the initial data ug exists globally in time, and
u € C(RF; Ho(RY)) N L=(RT; H(RY) + L*(R?)). Moreover, for any t € R,

lu(®)]

Remark 1.2. We make several remarks regarding the above statements.

HSC(]Rd) S 1 + |t|

(1) Our conclusions are valid for both of the focusing and the defocusing cases. Further,
by scaling, one can extend the size of the radius 1 to an arbitrary large number. Moreover,
the compact support assumption on initial data are not necessary and can be replaced by
some weighted assumption.

(2) In the present paper, we are not going to give the sharp conditions on py(d) and d.

In the mass-subcritical cases, there is a new difficulty when we consider the global solution
in the negative Sobolev space. It is worth noting that in this case, we can not use the
mass, energy conservation laws, and Morawetz estimates. Moreover, the pseudo-conformal
conservation law has no good sign.

Further, because all of the conservation laws are beyond the critical scaling regularity,
we believe that analogous scattering result in H s¢(R%) is very hard to pursue in the mass-
subcritical case (it is similar to the energy-supercritical case in which all the conservation
laws are below the critical scaling regularity), even if the initial data is smooth enough.

Sketch of the proof:

First, in step 1, we show an improved (supercritical) Strichartz estimates for the initial
data localized in space under the linear flow. More precisely, we prove that for all N > 1,
there exist ag > 1, 5y > 0, such that

|t VD 91 (42 xcro(Pong) |

< .
Lng‘f% (RxR) HPZNgHHsC(Rd)

(a slight stronger estimate is needed, see Section [§ below). From this estimate, we gain the
regularity and time decay for ¢ 2 1.
In step 2, given small constant §y > 0, we break the initial data into two parts, ug =
vy + wo, with
Vo = XSIO(PZNUO) Wlth ”UOHHSC(]Rd) S (50, and Wo € L2<Rd)

Now, let v be the solution of the following time cut-off equation,

0 + Av = x<1(t)v[v,
{U(O, ) = vo(x).



LARGE GLOBAL SOLUTIONS FOR NLS, I 5

In this step, we prove that the analogous estimates in Step 1 hold true for the nonlinear
solution v. That is,

24 S [lvol
19L2L5 % ({M>1}xRxR?)

|t 191V e Py

Hse (]Rd) )

which we use later with ¢t 2 1.

In step 3, we prove the uniform in time boundedness of ||w(t)| ;2 ). Note that w obeys
the equation of

10w + Aw = |ulPu — x<1(t)|v[Pv.
We find that the nonlinearity obeys

[[ufPu = x<a(@®)[olv] S (lul” + [x<a(®)o]) (lw] + [xz21(E)v]).

Due to the good estimates on x>1(¢)v obtained in Step 2, we can prove the desired estimate
by the almost mass conservation of w.

2. PRELIMINARY

2.1. Notation. We write X <Y or Y 2 X to indicate X < CY for some constant C' > 0.
If C' depends upon some additional parameters, we will indicate this with subscripts; for
example, X <, Y denotes the assertion that X < C'(a)Y for some C(a) depending on a.
We use O(Y) to denote any quantity X such that |X| < Y. We use the notation X ~ Y
whenever X SY < X.

The notation |V|* = (—9?)%/2. We denote S(R?) to be the Schwartz Space in R, and
S'(R?) to be the topological dual of S(R?). Let h € S'(R*™"), we use ||hl| s;z to denote the

1

mixed norm (/ |R(, )], dt)a, and ||hf[a = [[h]|pa . Sometimes, we use the notation
=5

Throughout this paper, we use x<, for a € R* to be the smooth function

L, |z| <a,

a\T) = 11
X<a() 0. 12| > Lo

10

Moreover, we denote x>q = 1 — X<q and Xa<.<p = X<bp — X<a- We denote x, = X<24 — X<a
for short.

Also, we need some Fourier operators. For each number N > 0, we define the Fourier
multipliers P<y, P>y, Py as

Puf(€) == xn(6)f(6),

and similarly P.y and P> y. We will usually use these multipliers when N are dyadic numbers
(that is, of the form 2% for some integer k).
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2.2. Some basic lemmas. First, we need the following radial Sobolev embedding, see [61]
for example.

Lemma 2.1. Let o, q,p, s be the parameters which satisfy

d 1 1 1
a>——; —<-<-—+s 1<pg<oo; 0<s<d
q 9 P 9
with L1
a+s=d(-—-).
p g
Moreover, at most one of the equalities hold:

p=1 p=o0, ¢=1, ¢q=o0, ]—):—4—3.
Then
1] o gy S NV ]| o g

The second is the following fractional Leibniz rule, see [34] 4, [46] and the references
therein.

Lemma 2.2. Let 0 < s < 1, % <p < oo, and 1 < py,po,ps3,pa < 00 with % = p%ij%;

% = p%) + 1%4’ and let f,g € S(RY), then
V1D o S VEF o Nglzre + (191 o 1 £l 20

A simple consequence is the following elementary inequality.
Lemma 2.3. For anya>0,1<p<o00,0<7y< ]%l, and |V|'g € LP(R?),
11V (¢<a) || oy S N1V 179 o gay- (2.1)

Here the implicit constant is independent on a. The same estimate holds for x>.9.
Proof. The case v = 0 is trivial. Further, we may assume that 0 < v < 1. Otherwise, we
can use the standard Leibniz rule and the Holder inequality to reduce the derivatives.

From Lemma 2.2, the Holder and Sobolev inequalities, we have

H‘V|V(X<a9 HLp(Rd <H|V\7X<aH ng)HgHLd L () + HXSGHL‘X’(Rd)H|VPQHL2(R‘1)

SOV Px<all, 2 gy + Il e 9]

Ld p-y Rd)
Note that ||x<a| reo®ae) S 1 and
191 xzall £ oy = NP,y = 19Xl S 1
Hence we obtain (2.1]).
Note that

X>ad = 1 — X<a9:
then by (2.1]), we have

HXZagHHV(Rd) S HgHm(Rd) + ”Xﬁag”Hw(Rd) S HgHHW(Rd)'

Hence, the same estimate holds for x<,g. Thus we finish the proof of the lemma. U
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Moreover, we need the following mismatch result, which is helpful in commuting the
spatial and the frequency cutoffs.

Lemma 2.4 (Mismatch estimates, see [47]). Let ¢1 and ¢ be smooth functions obeying

|9;l <1 and  dist(suppgy, suppeps) > A,
for some large constant A. Then foro >0, M <1 and1<r <q < oo,

161917 Perr (2.0 guey + [ 61VIV I Para (025 oy S A~ lldf iy (2:2)
H¢1VP§M(¢2f)HLg(Rd) Son M AT fll paray, for any m > 0. (2.3)

Furthermore, we need the following elementary formulas.

Lemma 2.5. Let the vector function f € (S(RY))? and the scale function g € S(R?), then
for any integer N,

Ve (FVe) ' (fg) = 3 Clpe a2 [ O [ O g,

i, InERY I ERY,;
[151<g; 11|+ +|In [+ [=N

where we have used the notation

Ve = {851’ T 78&1}; aé - 8111 o aé];’ Jor any | = {ll’ T >ZN} e RY.
Proof. When N =1, it is directly followed from the Leibniz rule. Denote that
N-1
An(f,9)=Ve (fVe)" - (fa),

then we have
The identity is then followed from the induction. O

2.3. Linear Schrédinger operator. Let the operator S(t) = €2 be the linear Schrodinger
flow, that is,

The following are some fundamental properties of the operator e®®. The first is the explicit
formula, see for example Cazenave [9].

Lemma 2.6. For all $ € S(RY), t # 0,

S(t)o(r) = —

ilz—y|?
7 [ e ¢y)dy.
(4mit)z /Rd )

Moreover, for any r > 2,

1 1

”S<t)¢HL§(Rd) S |t‘7d(§7;)”¢”LT'(Rd)'

The following is the standard Strichartz estimates, see for example [29].

Lemma 2.7. Let I be a compact time interval and let uw : I x R? — R be a solution to the
inhomogeneous Schrodinger equation

g — Au+ F = 0.
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Then for any ty € I, any pairs (q;,7;),5 = 1,2 satisfying
2 d d
QJ227 7’]'22, and —+ — ==
4G T 2

Y

the following estimates hold,

HUHC(I;LQ(Rd)) + HUHLflLQ(Ide) S Hu(to)’ L2(R4) + HFHLféL;é(Ide)'

We also need the special Strichartz estimates for radial data, which was firstly proved
by Shao [59], and then developed in 28].

Lemma 2.8 (Radial Strichartz estimates). Let g € L2(RY) be a radial function, k be an
integer, then for any triple (q,r,~) satisfying

2 2d—1 2d-1 2 d_d
VER, ¢22,7>2, —+ < and o4+ T =047, (24)
q r 2 q r 2
we have that
itA
H|VP€ gHLgL;(Rde) N HgHLQ(Rd)'

Furthermore, let F' € L?LZ’ (R4TY) be a radial function in x, then

t t
i(t—s)A —y (tsA
e L R [ A (CLT FNEY o Py

where the triples (q,r,7), (4,7, —7) satisfy (2.4).

The following is a remark regarding the lemma above.

Remark 2.9. One may ask about the optimal smoothing effect one can gain from the radial
Strichartz estimates, corresponding to the supremum of v as above. In fact, from Lemma
2.8 fixing ¢ > 2, then we find

_ 2 d-1
TSy a1
On the other hand, for any ¢ > 2 and any v < % : 2dd -, there exists r such that (g,r,7)

verifies (2.4]), and thus the radial Strichartz estimates hold.

3. LINEAR FLOW ESTIMATES ON LOCALIZED FUNCTIONS

We begin with preliminary linear estimates we need. In this section, we give the following
estimates.

Proposition 3.1. Let r > 2, then for any t : [t| > 2, and any s satisfying

0<s<(@-2)(5 1)+

the following estimate holds,
H IV[* (e (x<10Psn9)) }

Moreover, let d > 3, (q,r,7) be the triple satisfying (2.4)) and

p <(d-1)(z—-). (3.2)

SJN_(d—Z)(%—%)+5—50|t|_(d_1)(%_%) ||P2Ng|
L7 (R4)

Hse(Rd) (3.1)
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Then there exist s, = s.(q) < 0, = a(q,7,7) > 1 and B. = Bi(q,7,7v) > 0, such that for
any a > a,, < Bi, and any s. € [s4,0), the following estimate holds,

&R S P g ey (3.3)

Sc+y (eitA

Xglo(PzNg)) LOLr (RxRY)
tHx

Remark 3.2. From the proof of Proposition B.1lbelow, it also follows that s.(¢) can be chosen
to be a decreasing function with s,(+o00) = 0.

The proof of the proposition is based on the following two lemmas. First of all, we show
the estimate in the local domain.

Lemma 3.3. Let M > 1,7 >2 and s > 0, then for any t : [t| > 22, any K € Z*,

(199 G e (ccoPug)) |,y Semltl 6 M5 [ Prrgliegusy (34

Moreover, let (q,r,7) be the triple satisfying the same conditions as in Proposition[3.1, and
let o, B be the constants satisfying

1 1 1
>1 d=—-) > - 3.5
Then there exists s.1 = s.1(q) < 0 such that for any s. € [s.1,0), the following estimate

holds,

Set+y (

IEEN S IPuglleegsy (3:6)

N
X<igMlt€ (XSIOPMQ)) ) LILT (RxR)

Proof. First, we show that for any M > 1, ¢: [t| > X0 s € ZT U {0} and K € ZT,
}|V|S<X<iM\t| et (Xglong))

To show this, we use the formula in Lemma [2.6] to obtain

— [ [ ©a© dude. 63)

_d _
Skl ™2 M Pugll e oy (3.7)

P
(X<10 Mg) (4rit)

Fix z, &, and define the phase as

_ Ty P
then from (B.8)),
e 4t R
2 (x210Parg) (2) / [ o ©09(€) dyde. (3.9)
(4mit)z Jra/ra
Moreover, we have
y—x
Vyoly) = =5~ +¢ (3.10)
and
Ok .
yjyk¢( ) o’ ayjykyh¢(y) =0, forany j,k,he {17 T ad}- (3-11)
Note that 9 101 .
tIM > 100 > —M < — d < —M]t|,
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from (B.10) we have

Vo(y)l Z [€]- (3.12)
Then using the formula
. A v
¢ =V, et L ,
Vel
and integration by parts K times on right-hand side of (3.9), we obtain
ilz?
Cre = ;
X< Lt e (x<10Pug) = —— /Rd/Rd )
Vyo .
. dy - dg. 13
Vo (i ) (Z|Vy¢|2><<1< ) dy - xar(€)3(€) de (3.13)
We claim that
N K-1 Vo ‘ < |t-K
== ). 14
)vy <Z|Vy¢|2vy) <Z|Vy¢|2X<1 )) ~ ‘é“ X51< ) (3 )
Indeed, from Lemma [2.5] we expand the left-hand side of (3.14]) as
Vo V¢ /
, 1 Y . 1579 Yy ! D). 1
2 it (1) O (igp) & (xsn)- - 315

I, lg€R I eRY;
1| <gs|la] 4+l |+ |=K

Note that from (B.11I) and (B.12), we have that for any non-negative integer vectors [, I’,

(e | < g

and

Yy (Xgl('))) S Xgl(')-

Hence, using these two estimates,

(@I < 3 L L) Sl ).

b S e, T ]
151<g; |l [+l [ H V| =K

Therefore, we obtain (3.14]).
Inserting (B.14) into (B.13]), we obtain

e € (x<10Purg) | SIE- 2// X<t W)IE X (€)3(€) dy dg

S5 M Py g

’X<

— 10

Hse(Rd):

Note that when the derivatives hit the cut-off functions x L) and x<10, the estimates on

X<k Mt et (XglOPMg)

become better, hence by choosing K suitable large, we obtain that for any s € Z™,

191 (e gy (esaoPu) )| S [ xarle xan(©)ate) dude

IV
SIE 2 MR Parg | jree oy
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Replacing K by K — s. + d, we obtain (3.7]).

Further, using (8.7), Lemma 2.4l Holder’s inequality and interpolation when s is not an
integer, we obtain (B.4]).

Now we prove ([B.6). We write

Scty (

IEAEN

X< M\t|€ (XSlOPMg))) LIL; (RxR?)

Sty (

< [ 190191 (e gane™ (x<i0Parg))

L{LL({|t> 47 }xRY)

+ | @ ITDIZ (e g™ (10 Purg)

LIL7 ({|t|<10} xRe)

For the first term, using (B.4]), we have

H (t*|V])P|V [+ (Xg%MMeitA (x<10Pmg)) ‘

L{LL ({|t> 57 }xRY)

S H'WSM (X< 2 ape™® (x<10Purg))

100
Li Ly ({[tl> 57 }xR7)

A (e g arge® <x§1ong))

LILE ({2200} xR

(Hf 2o HLq {|t|>1001) + Ht 2o +QBHLQ({|t\ %}))MﬁKHPMgl Hse(R4) 5 HPM9| Hse(R4)
Here we have used the condition of d(3 — 1) > a3 + %.
For the second term, we have
[ 1D 98 e gan (aoPu) Ly, iy

S H@a'wﬁ'v P (X g e (XS“]PMQ))‘ LI L5 ({]1]< 120} xRa)
i H<t&|V|>ﬁ|V|SC+VPZ%M(Xél—loM\tlem (x<i0Pag)) LILy ({11200} x Ra)

< H'V (e € (XSNPMg))) P (3.16)
+ H|V|8C+WP (X< M\tle *(x<10Pug)) - (3.17)
- M‘“BMH VI Pea (X< are™ (ngPMg))‘ L9 (RxRd) (3.18)

Here we have used the condition o > 1 in the second step. Now we consider (3.16)—(3.18))
term by term.

For (8.16), if s. +~ > 0, then using Lemma 2.3] twice and Lemma 2.8 it is controlled by
| Prrgl| grse ®a)- I sc +7 <0, we further decompose it into the following two parts,

19715 Py (e g™ (xc10Pang)| (3.19)

LILy ({1t]< 20 ) xR

+H|V|SC+7P2%M(X§1_1()M|t\6itA (XngMg)) (3.20)

LI, ({1t <40} xR
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For (3.19)), using the Hélder and Sobolev inequalities, it is bounded by

M_% |V|SC+%P§%M(X§%M|t\6itA (Xglong))

L3°L2(RxRY)

Now we set s, > —% such that s. + % > 0, then using Lemma 2.4] twice, we obtain

BID < M) Prrgll e zay. (3.21)
For (8.20), since s, + v < 0, using Bernstein’s inequality, it is controlled by
Sc+y itA
M X<igMId® (XSIOPMQ)’ LILL (<30 xRe)

Then we decompose it into following two subparts again,

Mt

itA
X< L€ P<1M(X§10PM9)
swMi = LI Ly ({11/< 200} xRa)

L{LL ({|tI< P IxRY)

The first subpart, we treat similarly as (3.19), and conclude that it is bounded by M~"°|| Parg |l jyec (may;
the second subpart, we use Bernstein’s inequality and Lemma 2.8 and conclude that it is
bounded by || Pg|| s (ray- Hence, we obtain

B20) < [1Pu9ll o ey (3.22)
Combining ([3.21)) and (B.22]), we get
B16) < [|Pugl Hse(Rd) (3.23)
For (B.17) and (3.18]), using Lemma [2.4] twice and Lemma 2.8 we obtain
BID) + BI8) < M| Purgl
This last estimate combined with (3.23)) yields

H (t*|V])P|V [+ (Xg%MmeitA (x<10Prmg)) ‘

+ M3c+"/

XngoMmeitAPg%M (XSIOPMQ) ‘

Hsc(R4):

S 1Prgl grse may-
LILL({[t| <22} xRd) ™ 1Pargl e rety

Together with the estimates of the first and the second terms, we get (3.4). U

The second lemma shows the estimates of the linear flow in the domain far away from
the origin.

Lemma 3.4. Let M > 1, r > 2 and s > 0, then for any t : |t| 2 ﬁ,

, e (21 ) sy (a1 (22
|90 (s g ane™ (x10Purg)) A TRl G N TV (O

) (3.24)

Moreover, let (q,r,7y) be the triple satisfying the same conditions as in Proposition[3.1, and
let o, B be the constants satisfying o > 1,8 > 0 and

1 1 1
(@=1)(; -~ 3) > max{ad, —als.+ )} + o, (3.25)
Then there exists s,o = S.2(q) < 0 such that for any s. € [s.2,0), the following estimate

holds,

L (RY)

[ 19D IV (s e ™ (a0 Pug))|

) S ||PM9| Fse(Rd)- (3.26)

LIL7 (RxR4
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Proof. From the radial Sobolev embedding, we have

|

X L€ (X<10Pag) S(Mle) it H|V|2 re" (x<10Parg)

L (RY) L% (R%)
—(d—1 l—l ;_1
Sue) D 19 o), - 320)
Using Lemma 2.3 we have
1 1 1
S < k-
[I9R (zoPra)|, o M5 1Pug iz
This last estimate combined with ([3.27)) yields
itA —(d-2) (d—1
[ e GesroPug)| L, S PG U 1Pyl (329)

Similarly, we also obtain that for any s > 0, we have (3.24). Indeed, if the derivatives
hit the cut-off functions x> 1 (since M|t| Z 1) and x<jo, the analogous estimates become

better. Hence by the same way as (8.28)), we obtain the estimates above.
Now we prove (8.26). We decompose it into the following three terms.

[ 19D IV (s ™ (x10Pues)

LIL7 (RxRY)
<H {2V ])P| W]+ Pgyyy- (X> Mme (Xslong)))LfL;(Rde) (3.29)
+ )(ta\VDB\WSCMPzIt\* (X2 arg€™ (x<10Pug)) L < 3~ i) (3.30)
+ )(ta\V|>5‘V|sC+’Yp2|t‘_ (X> Mme (XglOPMg)) Lo (>33 ) xRy (3.31)

For the term (3.29), if s, + v > 0, then using Lemma and Lemma 2.8 we have

(19 DIV P (s g an€™ (10 Pung)|

LIL7 (RxRT)

S IPugl

S H VI (X 2 g™ (x<i0P Mg))’ LILE (RxRY)

Hse(R4):

If s.+v < 0, then setting s, > —%, using the homogeneous Littlewood-Paley decomposition
and treating similarly as (B.16]), we also get the bound of || Pyg|

For the term (3.30), since

Hsc(R4):

[t~ > 3M,

we have

|19 DIV Paja (s an €™ (x<10Parg)

LILE({|t|<(3M)~ & } xRe)

S H |22V Pogy (le_loMm@im (x<10Pum9))

LI ({lf]<(3M)™ @ }xRY)
< Mﬁﬁ”‘wscwﬂpzw (X & are™® (XSNPMQ))‘

Then using Lemma 2.4 twice, Lemma and Lemma 2.8 it is bounded by

LILT(RxRA)

MﬁlOHPMgHHSc(Rd)-
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Therefore, we obtain

- itA
[ IV D291 oy (s g ae™ (x<toParg) )|

For the term (3.31]), we have

< M710 P Ts .
LILL (< (3M)~ % pxra) P9 | rse (ray

o B Se itA
)@ IV IV Pojya (Xz%oMme (XswPMg))) LILE({|t/>(3M)~ % }xRd)
af sc+B itA
S EIVETT Popgo (s g™ (xz10Par)) 9L (> 3M) - E xra) (3:32)
If sc+ 5+~ >0, using (8.24)), (8.32)) is bounded by
M~(@=2DG=)+B+7||paB—(d-1)(5—3) Poallin o
L?(ﬂt\z(wré})” SELAD
Using the condition of (d —1)(3 — %) > a8 + %, it is dominated by
M ETDHED GO T3 Puyg] e gy (3.33)
Now we claim that
1 1 1 1.1 1
A=) (= =N+ (d=1)( =) == —+~<0. 3.34
[@=2(G-D+EA-DG=1) 1= +7< (334

Indeed, using (2.4), the left-hand side of (B.34) is equal to

20 —1 /1 1 1
(D)

« q 2 r

Note that o > 1, and from (3.25): % < (d— 1)(% - %), the last quantity above is negative.
Hence, ([3.34)) is valid. Using (3.34]), we have that (8.33) and then (B.32) are bounded by
| Prrgl Hse(R4)*

If s+ B+~ < 0, using the Bernstein inequality and then using (3.24]), (8.32]) is bounded
by

ch«sm) (6 g ame™ (xs10Pg)) ’

LILL ({[t]>(3M)~ & }xR4)

< MG e[| et -G

Pargll e may-
Lg(ﬂﬂZ(?»M)*é})H 9l (RY)

Then similarly as above, and using the condition of (d —1)(5 — %) + a(s. +7) > %, it is also
bounded by || Pyg|

frse(ra)y- Hence, we obtain that

VDAV 5 Py A (v 10 P ’ <P
H< VDIV Pejy-e (s e (<o Parg)) L aan- ey ~ 1019

Combining the three estimates above, we get (3.20)). O

Hse(R4):

Together with Lemma and Lemma [3.4] we are ready to prove Proposition [3.1l

Proof of Proposition[3.1. Using Littlewood-Paley’s decomposition, we have
|91 (z0Pena)) |, o S 2 (191 (xz10Pui9)|
M>N

~Y
L;(RY)

L;(RY)

< Z H |V|S(X§1_10M‘tleitA (X§10PM9)) HL;(Rd) + ]\;\/ H|V|8(X2%M|t\eim (XSlOPMg))) .

M>N
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Using Lemma [3.3], we get that for any K € Z™",

> H|V|s(Xsl—ngeitA(XsmPMg))

M>N

Using Lemma [3.4]

g1y
S |t GIN K| Pygl
Ly (Re)

Hse(R4):

< N-@D(3-1)+smsepy @0 (3-2) | py, gl
Lr(Rd) ™

> H‘WS(XZTIOMWM (x<10Pmg))

M>N

H3e (R9) -

Combining these estimates, we obtain (B.1]).

Now we prove ([B.3). Firstly, we give a reduction as following. Fix ¢ > 2, and let
g9 = ﬁ' Then to prove (B.3]), we only need to consider the estimates on the triples (¢, r,~)
when v > ¢¢. Indeed, if v < gy, then we only need to consider the case when r and v satisfy

1 1 2 &

S R = e,. 3.35

r 2 dg  d Y 0 ( )
The reason is that, the triple (¢, r,7) above satisfies the conditions in Proposition 3.1l when
d > 3, moreover, the estimates on the general cases can be followed by the estimate on this
case and the Sobolev inequality. Then using Littlewood-Paley’s decomposition,

| 192191 (€ (xernPong)|

LILE (RXRT)

Sety <€zm (x<10 Z PMg)) ‘

M>N

< (S [Jeron o @ (anpus))

S [=rwnae

LIL7 (RxRA)

r 1
o)

LI®R)

Since ¢ > 2,r > 2, it is dominated by

(3 [eerwniv

M>N

. ’ :
sety (eztA (XglOPMg)) Lirr (Rde)) 2

Therefore, we obtain

| 1917191 (€52 (e Pong))|

LIL7 (RxRA)

1
2 >§
LILT(RxRD)/

S (3 [19p9 ( (ceaoPus))

M>N

Now we check the conditions (B.5) and (3.25]). Setting
S, = max{—eq, Sx.1, Sx2},
then s. + v > 0. Hence, the conditions (B.5) and (B.25]) reduce to

1 1 1
(d—l)(§—;)>a5+a
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which is valid by choosing a3 small enough. Then by Lemma and Lemma [3.4] we have
| (#1917 1917 (2 (xeoPong))|

S (X IPugl

1
2
) S 1PNl e
M>N

LILT (RxRA)

This proves the proposition. O

4. NONLINEAR FLOW ESTIMATES ON LOCALIZED INITIAL DATA

In this section, we give some nonlinear estimates. Firstly, we give some local time and
small data estimates.

4.1. Local theory. Since uy € H* (R?), we have the following local and small data results,
the proofs are standard. However, we give the details for the sake of the completeness. The
first is essentially proved by Guo, Wang [28].
2(d—1)
2d—1) (p+1
holds. There exists 6 > 0, such that for radial function uy € H*(R%), there exists to =
to(ug,d) > 0, such that the Cauchy problem (1)) is well-posed on the time interval [0, o).
Moreover the solution u satisfies

Lemma 4.1. Let sg = m1n{2d R } then for any s. > sg, the following result

. . Sc+
sz coroerr S 1 V0 o goonpery S 5 (4.1)
Here the triple (q,r,~) verifies 2.4) and v € [—s., —So).

Remark 4.2. The result in this lemma improves the indeX obtained by Guo, Wang [28], who
proved the local well-posedness in H*(R?) when s, > —m for radial datum. In particular,
in this lemma, when d > 4, the restriction is s, > —-4=L (s > —0.275,—-0.388 when d = 2,3

2d—1
respectively).

Proof of Lemma 4.1 We only show (A1) for some ¢y = to(up) > 0. Then the local well-
posedness with the lifespan [0, ) is followed by the standard fixed point argument. In the
following, we prove (1)) by two cases: p < 1 and p > 1 separately.

If p <1, we denote the parameter r; as

1 1 1
1119
T 2 d d
Then for any s, > —; and v > —s,, by the Duhamel formula and Lemma 2.8, we have

IVl 2 1 ooty S VI € 0l 12121 o) ety + ([ IV

Sc+7(|u|p’u,) HL?ILQI([OJO} XRd)’

where (¢, 7) satisfies

Hence, by Lemma 2.2, we get

”‘V|SC+VUHL3L21([O,to]de) SV

Set+y LitA
Ve uo|| L2 111 ([0 0] xR

+ H|V|Sc+yuHL§LQI([Qto]de)HuHifL?([Qto]de)’
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where the parameter ry satisfies

T2 2 d d )
Then by the Sobolev inequality, we obtain that

H |V|86+WUHL§L”

< || p+1
< ([0,tg] X Rd) ~

VI ol zu ooy + 1V [z 2 g0 gy

Therefore, there exists ¢ > 0, if
[v[=rets <4 (42)

UOHLngl([o,to}de) =
then by the continuity argument,
Sct+

HW| ,YuHLfLQ([O,tO]X]Rd) S 0. (4.3)

Note that
H ‘v|sc+7€itAuOHL?L;1 (RxR?) ,S ”UoHHsc(Rd),
(4.2)) is verified when ty = to(up) is small enough, and thus we have (4.3)).
Similarly,
||u||L§°H§C([O,t0]><]Rd) SHeitAuOHLOOHSC([O to] xR4) + H|V|SC+7(|u|pu)HLg,L;/([OJO]XRd)
Sc p+1
<”u0HHSC(Rd + H\V| Ty HL2L”(0to]de)
Then by (4.3), we obtain that
||U||L§°H;C([o,to]de) S

Further, for general triple (g, r, ) verifying (2.4) and v € [—s,, %),

1191l IV g g osopern + 71 () g,

x,([ovtO]XRd)
+1
<”u0HHSC(Rd + H‘wscﬂ Hi?L”(Oto]de)

([O,to] XRd

Hence, we get

IV

Sct+
7u}}LgL;C([o,to]xRal) S 0.

If p > 1, we denote the parameter r3 as

112 g

Then similarly as above, we obtain that for any s, >

H|V|SC+VUHLP+1 r3

_2(d-1)
(2d—1)(p+1)

xRd) ~ |||V|Sc+y6imuo||L§+1L;3([0,to]de) + H|v|sc+7(|u|pu)H

and v > —s,,

([0,to0] LILIA(0,t0] xR’

where r, satisfies

d d
T4 N 2 -
Hence, by Lemma and Sobolev’s inequality, we get
Sc Sc itA Se p+
H |V +VUHL§)+1L;3([O¢0]><Rd) g H ‘V| +'Ye t uo"Lf+lL;3([0,to]XRd) + H |V +'YUH p+1 T3([0 to]XRd)

Treating similarly as above, by choosing ¢y = to(ug) small enough, we obtain that

H |V|sc+“/uHLi)-HL;g([OiO]XRd) S 57
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and thus obtain (4.1]). O

For simplicity, we set to(ug) = 2. Moreover, let dy be some positive small constant
decided later, we set a number N = N(dy) such that

P> nuo| grse ey < do- (4.4)
To prove Theorem [LLI], we split the initial data wug into three parts as
Up = X<10 (PzNUo) + P<yug + X>10 (PzNUo)-
Accordingly, let
vo = x<10(P>nto),
and v be the solution of the following equation,
100 + Av = t)|v|Po,
: xa(®l .
v(0, ) = vy.
Moreover, let
Wo = X>10 (PzNUo) + P<nuo,
and w = u — v. Then w is the solution of the following equation,
{ 10w + Aw = |ulPu — x<1(t)|v[Pv,

w(0,x) = wy.

(4.6)

Then the second result is a global result with small data.

Lemma 4.3. For any s. > sg, the following result holds. Let uy € HSC(Rd) be radial, then
there ezist a small constant 6y and a large constant N wverifying (44), such that the Cauchy
problem (A3) is globally well-posed. In particular, the solution v satisfies

||U||L§°H;C(Rde) + H|V|Sc+’vaLgL;(RXRd) S ||v0| Hee(RY):

Here the triple (q,r,~) verifies 2.4) and v € [—s., —So).

Proof. We adopt the same notation and argue similarly as in the proof of Lemma [4.1l In

the case of p < 1, for any s, > _2651;_117

v

Set+y Hp+1
Ullz2 L3 (0,0 xR

Sct+ .
7UHL%LZ}([o,to]de) S HUOHHSC(W) + HW|
Hence, by the continuity argument and choosing ¢y small enough, we obtain
Se+ .
HW| vUHL%L;I([o,to]xw) S ”UOHHSC(R"Z)'
Using the estimate above, we have the desired results. In the case of p > 1, for any s. >
2(d—1)

@D (p+1)

IV

ot ) N Lan
’ 7vHL@’“L;S([O,tO}x]Rd) S HUOHHSC(W) + H‘Ws ,YUHLf“L;S([O,tO]XRd)'

Hence, arguing similarly as above, we obtain the desired estimates again. U
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4.2. Nonlinear estimates on v. In this subsection, we give the estimates on v. For con-
venience, we introduce some notation. We denote X (o, 5) be the space with the norm:

1l xas) = [V IV Pa £

l°°L2Ld > ({M>1}xRxR?)

Then the main result in this subsection is

Proposition 4.4. Let v be the solution of (A1), then there exist ag > 1,59 > 0 and s, < 0,
such that for any s. € [s.,0),

1] x(00.80) S 1v0ll 7sc ay:

Proof. We write
[V ) [V [ Py
l°°L2Ld 2({M>1}><]R><]Rd)
— [tV 1) | V| Py (4.7)
l;@LQL ({M>1}><{|t\<M ao}de)

se PMUH (4.8)

l°°L2Ld s {M>1)x{|t|>M "~ a6 JxRA)

+ ||(te vy v

Estimates on (4.7). Note that

¢ IV 2IV I Paro| S IV Pare

1 .
L2Ld 2({\t|<M a0 }xR%) L2Ld 2( xR%)

Then by Lemma [4.3] (where we choose the triple (¢,7,7) = (2, d2—_dQ, 0)), it is further controlled
by [[voll grse (gay- Therefore, we have the bound of (A1) as

[t VPV Pagol| e s S llvol

19 LALE ™2 ({M>1}x{[t|<M ™ %0 }xR9)

Hese(R4) (4.9)

Estimates on (4.8). It is controlled by
Ht0050|v|50+8cPM,UH

_2d_ .
L2 LT T (M1} ([t =M 70 JxRe)
We only consider the positive time, that is, £ > 0, the negative time being obtained in the
same way. Now we write

1
P _ itAP 2! i(t—s)A P Py d
MU =€ MU0 + e x<1(8)Pu(|v|Pv) ds
0

t
+ / =93y (5) Py ([ufPw) ds,

5t

then we need to consider the following three parts,

Htaoﬁo|V|ﬁ0+sceitAPMUQH 2d 1 X (410)

——= L )
199 LLE 2 ({M>1}x{[t|> M~ 0 } xR¢)

24 ; (4.11)
ISSL2LE2 ({M> 1y < {[t|>M ™~ a6 }xRA)

Ly
2 .
s porse [ 79 (5) Puol?o) s
0
and

(4.12)

t
taoﬁo‘v|50+sc/ ei(tis)AX§1<3)PM(|’U‘p’U) dSH
t

7d
IS9L2LA™2 ({M>1}yx{|t|>M "~ ao}de)

I
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Estimates on ([{.I0). Here we choose s, = s.(2), ap > (2, 2%, 0) and fy < B.(2, 2%,0),

where s, o, [, are the parameters obtained in Proposition B.] (we may narrow s, suitably
in the following if necessary). Then by Proposition B.1l we obtain that for any s. > s,

[£2070 || Pot e A Py | 2d_ a1 < lvol
I LALE T2 ({M>1}x{[t|> M~ 30 } xR¢)

Hse(R4):

Estimates on (411). From Lemma 2.6,

it
2 .
1*/0‘060\V|5°+8C/ e <1 (s) Par(Ju]v) dS’
0

2d
LFLE 2 ({|t1=M QO}XRd)

fun
~+

s [t = s a9 VP PP
0

2d ds‘

LT3 (Rd)

L2({jt|>M 70 })

-
LI (RY)

2
taoﬁol/o H|V|BO+SCPM(|'U|I)U)

L2({t|=M 20 })

where we have used the relationship |t — s| ~ [t|. We can choose agfy small enough, such
that apfy < % Then taking L? first and using Bernstein’s inequality, the inequality above is

bounded by
2
J

Now we consider the following two cases. The first case is s, + ﬁ < 0. Then (AI3) is

dominated by
[ ol g, s

Using the Holder inequality, it is further controlled by

/ ol S, s (4.14)

L d+2 )

Py([o[Po)|| e ds. (4.13)

LITZ(R4)

Let ¢ verify
1 1 d+2

o p Ap+1)
Then (g, 2dc(lf’:;1), —s.) verifies (2.4) (decreasing the distance between po(d) and 3 to satisfy
the conditions in (2.4]) if necessary).

Note that ¢g; > p+1 when s, is close enough to zero (indeed, if s, = 0, then ¢; = 2(p+1)),
and thus (4.14)) is bounded by

p+1
ol 2apen -
LA L, 2 (RxR4)
Using Lemma [4.3] it is bounded again by HUOHZE R . Hence, we obtain
1
tozoﬁo \V/ B(H-Sc/ i(t—s)A P Py) d ) < p.+1 .
v 0 xsi(s)Pur(uo) ds L?L%({\tle’%o}de) ~ HUO|H50(Rd)

> 0. Then (4.13]) is bounded by

[ oo g,

Le d+2 (Rd

The second case is s, + — S
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Then using Lemma and the Hoélder inequality, it is further controlled by

2 1
/ H‘v|sc+2a0UH 2d(p+1) ”UHp 2d(p+1) dS- (415)
0 L, ™2 (R p, 9FT (Rd)

Let g verify Ly ' L
+

=4 _ ’
© 4 4oy 4(p+1)

then for suitable large ag and small |s,|, (g, ngf;l), —ﬁ) verifies ([2.4]). Moreover, we have
1
4Py,
@2 ¢

(In particular, if s, = 0,9 = 400, then ¢ = ¢ = 2(p + 1), hence the conclusions verify
when we choose |s,| small enough and «q large enough). Hence, (4.15)) is bounded by

VPl wgn ol g
L2p, 2 (RxR?) qlL o (RxR)

Using Lemma [.3] again, it is bounded by [lvoll;, Hence, we also obtain

Ra)"

1y
2 .
v 50*“"“/ e =92y 1 (s) Py (|v]Pv) ds < ARSI
v [ @ PP ds| S Tl
Therefore, we get
1y
2 .
taofo V5°+SC/ ellt=s)a Py (Jv[Pv) dsH < ol lBHE
v [T @b Sl
(4.16)
Estimates on (4.12). By the Sobolev and the Bernstein inequalities, we have
t
teobo|yy 5°+S°/ lt=9)A s) Py (JvPo ds‘
‘ | lt XSI( ) M(| ‘ ) L2de2({|t‘>M ao}XRd)
2
t
< MPotse / e =92y 1 (5)s% Py (|v[Pv) ds 24 (4.17)
1y - r2rd? 2(R><Rd)
Now we split it into two cases: p < 1 and p > 1.
If p <1, using Lemma 2.7 and (4.17), (4.12) is further bounded by
MPotse )% Py (|v|Po)|| = : 4.18
X Pl e (1.18)
where 7y is the parameter satisfying
1 1 1-p
1 a 2 d
Now we consider the term
Pl
We write
HPM(|’U|pU)} L;i(]Rd) SHPM(|P§MU|pP§M’l}) L;i(]Rd) (419)
+ || Pu (JvPv = | P<prvfP P<prv) | 2wy (4.20)
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We choose s, < 0 suitably close to 0 such that for any s. € (s, 0),
Se + BO > 0.
Then for (4.19), by Bernstein’s inequality, we have

HPM(|P§MU|pP§M’U)
g M*(Sc+50+€)

L (R)
\V|SC+B°+€PM (|P§MU‘pP§MU) ’

L ()
where € is a small positive constant such that s. + 5y + ¢ < p+ 1. Then by Lemma 2.2] we
further obtain

HPM(‘PSMUV)PSM’U)}
< N (setPote)

L} (R)
|v|sc+5o+eP MUH

1P<aro]” ao

IO S 1)
Now by Littlewood-Paley’s decomposition, we write

H‘v|sc+5o+ep MUH ., < H|V8c+50+€P UH + Z M

d
(R (R ) 1<M1<M

A%

Sc+5OPM UHLd 2(Rd).

Note that by Lemma
H |V|sc+ﬁo+ep<1vH

LooLd 2(]R Rd) < H|V|SCP§11)HL§°L§(R><R‘1) 5 ||’Uo| Hee(Rd):

Hence, we obtain that

MPortse XS1<t>ta06OPM(‘PSMU|pPSMU)’ L%LTi (RxR4)
SM™¢|Ix<i(t )ta060(||1’0| foe(me) T Z Mi|[IVP*® Pyo| 7% d)
1<M <M Le™™ (®9)
Peopyv
LT
SM ™o HSc(Rd)HUHp dp_

L2L27P (RxR4)
# (X Ml ]
1<M <M
Now by Lemma and the definition of X (ay, 5y), we have

Aoll” - a - (421)

L2L27P (RxRY)

2 (R Rd)>

< .
ol o S ol
and
[t |V [t Pypv)| o S 1911 X (a0.60)-

L2LE72 (RxRY)
Inserting these two estimates into (4.21]), then (4.21]) is controlled by
—€ 1 —€ €
Mool o + M7 M lolxtaonsr - 000y g
1<Mi<M

Taking summation, we obtain

Mﬁo+sc Xgl(t)ta()ﬁoPM(|P§MU|pP§MU)’

2
LmL’"ll (RxRd)

S vl ey + 1001 e g 101 0,60 (4.22)
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or (4.20), by Bernstein’s inequality, we have
HPM(|U|pU — |P§MU|pP§M’U)‘

L (r)
p
=3 LTI TN L
R LI (RY)
Py P
S 3 1Pl g g ol
(sc+B +8 P
$ 3 T pal] g, ol
My>M P (RY)
Hence, we obtain that
Bo+se aofo Py _ P
M (% Py (jol?o = | Pearo Png)] e
SMﬁo—f—sc N (setBo) X< taoﬁo |v|8c+BoPMU P, L
papl H [P L e
< p\fBotse M—(Sc+50) $0Bo v setbo p
S > LB I H AP
Similar as above, it is further bounded by
e c+Bo)
Mo M 0] g, 0) 10001
My>M
Taking summation, we obtain that
N Botse +\txobo p Py — |P Pp P
x<i(t) w (|00 — | P<arvl” P<arv) LT ek
S Mvoll e gy 12l x 0,50 (4.23)

Now, together with (4I8), (£.19), (4.20), (4.22) and (4.23]), we obtain the estimates on
(4.12) in the case of p <1 as

t
$20Bo |V|5o+sc/

1
5t

Sllvol

_2d_ 1
L2LE2 ({|t|=M ™ %0 }xR4)

IR () Pur([o]v) ds|

1
AR 20 (AR [ PP (4.24)

Next, we consider the case when p > 1 (now d = 2, 3), which can be treated similarly as

above. Then using Lemma 2.7 and (4.17), (4.12) is bounded by

Mﬁo +sec

X1 (O Pyy(fof)

) (4.25)
L1L2(RxR?)

Arguing similarly as the case of p < 1, and based on the Holder inequality,

H|‘f|p‘fHL%L%(R><Rd) S ||f||L%L;}2fd2(R><Rd)||f||ifﬁLgp(RXRd)’

we also obtain (£.24) when p > 1.
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Now collecting the estimates in (4.10), (416) and ([{.24]), we get the estimates on (48]
that
9P
l,ongQLd 2({M>1}><{|t\>M ao}de)
1
< ol ey + 10015 g + 0002 g [ 0

Combining this estimate with (4.9]), we obtain that

1
ey + 10015 gy + 100 g 101 00

1] x@0,50) S llol

Using (4.4) and choosing dy suitably small, we give the proof of the proposition. U

As a consequence, we have

Corollary 4.5. There exists s, < 0, such that for any s. € [s.,0), the following result holds.
Let (q,7,s) be the triple satisfying

2 2d-1 2d — 1 2 d d
s€[se,0, q=>22, 7r>2, —+ < ,cmd—jt—:5
r

— 4.2
- q s ()

and q < qo for some qy = qo(S.), then it holds that
||v||Lng([%,+oo)><Rd) S ||v0||HSc(Rd)-

Remark 4.6. This corollary implies that v has the smoothing effect when the time is away
from zero. Moreover, one may note that go(s.) — +oo if s, — 0.

Proof of Corollary|4.5. For the low frequency part, by Lemma we have
||P§1U||L§L;(Rxmd) S ||P§1|V|_S+SCU||L§L5(Rde) N ||U0||H8c(Rd)-

For the high frequency part, from Proposition [£.4 and Sobolev’s inequality, we have that for
any M > 1,

[¢2250 |7 |Potse Py S llvoll zrse gay-

L2Ld 2([2 +00) xR®)
This implies that

< —(Bo+sc) .
2 S

Choosing s, small enough such that gy + s. > 0, then the last estimate interpolating with
the following estimates from Lemma for any the triple (g, r,~) verifies (2.4)),

”UHLOOHSC(RX]Rd + H|V SCHUHLqLT(Rde S lvol Hse(Rd)s
gives that
HPZlUHLfL’" RxR%) 5 ||UO||HSc(Rd)
Hence, we obtain the desired estimates. O

5. THE PROOF OF THEOREM [L.T

In this section, we prove Theorem [LII
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5.1. Nonlinear estimates on w. In this subsection, we give some nonlinear estimates of
the solution with the low frequency initial data.

The first we need is the following local estimates of w in more regular spaces. First, for
ug € H*(R?),s. < 0 with supp ug C {z : |x| < 1}, we claim that

wy € L*(RY)  and [woll L2(ray S N”° s (R (5.1)
Indeed, by the mismatch estimate in Lemma 2.4,
HX210 (PENuO) HL?(Rd) SN 10Hu0’ Hse(Rd)?

and by the Bernstein estimate,

HPSNUOHL2(Rd) SN Hse(Rd)’

This gives (B.1]).

Lemma 5.1. Under the same assumption in Lemmal4.1), the Cauchy problem (4.6) is locally
well-posed in L*(R?) in the time interval [0,2]. In particular, the solution w satisfies that

HwHLgL;([o,z]de) + H|V|SwHL§L;([O,Q}de) S 1A [lwoll z2rey.
Here the triples (q,r,s), (¢, 7,0) verify [426]) or (q,r,s) = (00,2,0).

Proof. Note that when s = s., the estimates follow directly from Lemmas [4.1] and Now
we consider the case when s = 0, then the general cases s € (s.,0) can be obtained by
interpolation. By Lemma 2.8 we have

||w||L§L£([O,2]><Rd) S ||w0||L2(Rd) + H |u|pu - XSl(t)|'U|p'UH 2;r44([0 2] Rd)

where (¢, 7,0) verifies (2.4]) or (¢,7,0) = (00, 2,0). Next, we consider

[ lulPu = x<1(8)[v[Po]] L (02

Note that
| [ulPu — x<1 () [v[Po] < (Jul” + [X<1(B)v]?) (Jw] 4 [X=1(t)0]).

1

Here we denote the time-dependent functions y<i(¢t) = x2i' (¢) and \>1(t) = 1 — x<i1(t).
Hence, -

2d+4
L2 ([0,2]xR9)

[lulPu = x<i(t) v]”

- P
S (HUHI;;“L;I ([0,2] xR4) + HXSl (t)v HLflLQ([O,Q} de))

- (lwll o 2 o 2gxray + X210l o1 72 0.2y xa)) (5.2)
where 2d 1 2)
+
e |

and rq, 9 satisfy
2 d+4 11 d+4
roodp dd+2)(p+1) 2 dd+2)(p+1)
Narrowing suitably the distance between py(d) and % such that

(q1,72,0) and (g1, 71, —sc) verify @24), ¢ <qo, 1=2=>2, (5.3)




26 MARIUS BECEANU, QINGQUAN DENG, AVY SOFFER, AND YIFEI WU

where ¢y is the parameter obtained in Corollary [4.5] (thanks to the radial Strichartz estimates
in Lemma 2.8 the conditions (5.3]) verify and are not attained the borderline when p = %,
hence the conditions (5.3)) also verify when p is around %), then from Lemma [4.1]

Jull Lo 1 o2 xmey S 1-
Without loss of generality, we may assume that

||u||L;“L;1([O,2}><Rd) < do. (5.4)
Otherwise, we may split the time interval [0,2] into K (dy) ~ d, ** parts such that each part
verifies (5.4]), and then consider each part separately.

Moreover, from Lemma and Corollary [4.5]

Hféﬁl(t)vHLglL;l([O,Q]X]Rd) + ||>221(t)UHLflL;?([o,z]de) S [Jvol Hse (Rd) < o

Hence, combining this estimate with (£.4]) and (5.2]), we obtain

Py p < &P ™
| Ju[Pu — x<1(2)]v] UHLt2£++44([0,2]de) < 50(Hw”Lgle2([0,Q]XRd) + do).

Therefore, we obtain that for any triple (¢, 7,0) verifies (2.4)),
lwll Loz 0. 2xrey S llwollz2mey + G llwll Lo 172 (0,2 xma)- (5.5)
Note that (g1, 79,0) verifies (2.4]), thus a consequence of (5.3]) is
lwll o 2 o2gxrey S 1+ lwollzeeay + G 1wl Lo 172 (0,2 xa)-

Choosing ¢y suitably small, we obtain

[wll o 172 o,21xrey S 1+ [[woll 2 way.-
Inserting this estimate into (5.5]), we get that

lwllzocz o2xre) S 1+ llwoll L2 me)-
This finishes the proof of the lemma. U
~ Next, we give the global estimates of w. The following is a modified mass estimate for
H#(RY)-datum.

Proposition 5.2. Let ug € HSC(Rd) and I be the lifespan of the solution u, then there exists
s, < 0, such that for any s. € (s, 0), the following estimate holds,

_ 2
||w||%§°L§(I><Rd) SN 2o UOHH8c(Rd)'

Proof. For simplicity, we denote
Fo,w) = Jw+v[P(w +v) = x<1 () ]v]"v.
Then from the equation (4.6]), we have

8tHwH%% = QIm/F(v,w)wdx.

Integrating in time, we obtain that for any t € I,

t
()2 = [Jwp|l2s + 2Im / / F(v, w)mdeds,
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We may assume ¢t > 2, otherwise, the estimate has been included in Lemma [5.1l Then we

further write

2 t
lw(@®)|32 = |Jwol|32 + QIm/ / F(v,w)wdzxds + QIm/ / F(v,w)wdzds.
¢ 0 JRd 2 JRrd

First, we consider

2
QIm/ / F(v,w)wdzds,
0 Jre

HF U ’LU H 2d+4 ||w|| 2d+4
LA ([0,2] xR9) L., % ([0,2]x xRd)

which is bounded by

Then from the proof of Lemma 5.1, we have

<
[, wl LT (02)xRe) Nl ey
Moreover, by Lemma (5.1l we have
< N Se .
Hw”Lf:f([o,z]xm ~ N Hoe @)’
Hence, we get
2
_ P 2
‘21111/0 /Rd F(v,w)wdzds| < N o oo (R

Second, we consider

¢
QIm// F(v,w)wdxds.
2 JRrd

1

(5.6)

(5.7)

To do this, we denote the time-dependent functions y<i(¢) = X? (t) and x>1(t) = 1—x<1(t)

as before, and write
F(o,w) = [ulPw + [ul"v — [x< (D)o X< ()v.
Note that
2Im /t |u|Pww dzds = 0.
2 JRd

Moreover, because of the time support, we find

t
2Tm / / er ()0 K ()0 @ dixds = 0.
2 R4

Hence,

t t
QIm/ / F(v,w)wdzxds = QIm/ |ulPv w dxds,
2 JRre 2 JRe

t
’21m// F(v,w)wdxds
2 Jrd
t t
5// |w\p+1\v|da:ds+// lwl|v[PT dxds.
2 JRd 2 JRd

and thus

(5.8)
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For the first term in (5.8)), we write

// |w|p+1|v|dxds—2// lw|PH | dads, (5.9)

J=Jo

where jy, J are some numbers with 150N =2 ~ 1, pigJ N2 ~ t, 1o is a small constant decided
later, and

L = [juoN"2,(j + poN 2.
Since d > 4, we find p < 1. Now we denote some parameters a, 01,01, 02, 02, which satisfy

I " a 1 1 a 1 a 1 1—p+a
Q1_27 0'1—2 d’ QQ— 2’ 0'2_ 2 d’
and a <1 is a positive parameter decided later. Then by Holder’s inequality, we get
[ [ oot avas < 3 Wl m i ol ool (510
J=jo

For the second term in (5.8)), we have

[ [ ol deds € ol sz I oy G211

To continue, we need the following three lemmas. The first is related to some fixed length
spacetime estimates.

Lemma 5.3. Suppose that w exists on [0,T) with T € I and T > 2, and

1wl £oe 2 0,1y xrey S N7
Then there exists an absolute constant po ~ 1, such that for any ty € [2,T),

w S 1+ ||w|pee . 5.12
ol S Il (512)

Proof. By the Duhamel formula,
t

w(t) = 02y (t) + / AP (v, w) ds,

to

and by Lemma 2.7 we have for any t < to + poN 2,
+ HF v, w H 2d+4

L4+ ([to,t]de)'

<
||w||L2de2([t xR Hw(tO)HLg(Rd)
Treating similarly as (5.2) (using the same notations there), we obtain

Pl e

p
S (101 sy + 101 2 )
: (HU}HL?L;?([tO,t]de) + H>~<21(t)UHLglLQZ([tO,t]de))3

Hence, by Lemma and Corollary [4.5] we further obtain that

< P P
IF ol e s S (Il 21y g+ 9%)

: (Hw”LflL;?([tO,t}de) + 50)'
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Let go be the parameter satisfying
1 Se 1
N _'_ — ,
41 2 a2
then q% + % = %l. Hence, by Holder’s inequality, we get

2d+4 (luONscp
* ([to,t)xR9)

P
w”ngLﬁ ([to,t] x R¥) +50>

. (HwHLZlLQQ([to,t]XRd) + 50)

Note that by interpolation, there exist some 6, € (0,1),60, € (0,1), such that

< 1-61 .
||w||Lq2LT1([tO7 }XRd ||w||LooL2([0 T)X]Rd ||w||L%Lg2Td2([t0’t]XRd)7

and
< 1—62 .
Hw”quLrg([tm xRd) Hw”LooLQ([QT)XRd) ”wHLfL;TdQ([to,t]XRd)

Then by Cauchy-Schwartz’s inequality we obtain that there exist 0 < p; < p+ 1 and
fo ~ pf 4 0f, such that

IFewl s SUF I lmzomsmn + 8lll 20
+ N w”itolmpb T)de)Hprl 2 :
L2L.372 ([to, ) xR)
For convenience, we denote
Altos?) = N* w”L2Ld 2 ([to,t] x Rd); fo = A OIS
Then
| 2dt4 SN (N + Ao + S5A(to; 1) + fioAE T PEA(to; )P,

L,g™* (to,t]xRY)
and thus for any ¢ < min{to + poN 2,7},
A(to;t) S N* + Ao+ 6P A(to; t) + oART PH A (tg; )P
Choosing 1y and dy suitably small and using the continuity argument, we have that
A(to; min{ty + poN 2, T}) < NP+ Ag.
This finishes the proof of the lemma. O

Lemma 5.4. There exist s, < 0 and p(a) > 1, such that for any s. € (s4,0), the following

estimate holds.
ca7—2\ —H(a)
||v||Lf2Lg2(1ijd) 550(,“0]]\] 2) L

Proof. By the Duhamel formula and the Sobolev inequality, we have

t
V]l 22 may ,SHe“AUOHLgQ(Rd) +/0 Hei(t*tlmxgl(t')\v|pUHLgQ(Rd) dt’. (5.13)

From Proposition B.1I], we get

i —(d—2)(B—2)—g. |4 — B,Q
€ 0] 2y S N85 DD g ., (5.14)
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From Lemma 2.6, we have

e B ey N S (U PN

Since t > 2, it is further bounded by

t
|55 / Xt @lloPe] o A

/|wmwm v

1_ a
q 2(1+p)

Let g be the parameter satisfying

— Se,

such that

Note that if
d—1
_@-ne
2d(p+1)
then (q, (p + 1)1/, —s.) satisfies (2.4) and thus by Lemma 3]

(5.15)

1911 e ey S 00l ety

Therefore, choosing a suitable small such that ¢ > p+ 1 (¢ = +00 when a = 0), we have

+1 p+1 +1
J R T RO T o

Hence, we obtain that

i _dp .
/ He(t ) (t")|v]? UHLQ(Rd dt’ <tz ol
This together with (5.14)) yields

5—%)—sc 5—= p a
19]] g2 uay SN DET D700t ~EDED g | o gy + £ 7 0ol

p+1
Hse (R9)"

bt (5.16)

Hse(Rd)'

Note that when p is suitable close to 5 and a is suitable small, —(d —2)(% — %) — s. < 0 and
the right-hand side of the inequality above is integral in time from 2 to co. Moreover, by

E4),

1ol gz 2221, mey 550(“”\’“*1)(%*%

s

L{2(I;) LfQ(Ij))
o\ —(d—1)(B—-2 o=
550((/~LOJN 2) (=D d)+(/~LOJN 2) 2 )

Let p(a) = min{(d — 1)(§ — 9), %p — a}. Then we can choose s, and a suitable small, such

that (B.153]) is valid and p(a) > 1. This finishes the proof of the lemma. O

The second lemma we need is the following.
Lemma 5.5. There exists s, < 0, such that for any s. € (s.,0), the following estimate holds.

HvHLfHLi(p“)([Zt)de) 5 50-
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Proof. By the Duhamel formula, we have

l'tAU H
0 L€+1Li(p+l) ([2,t) xR

t
o T e
0

HU”LfHLi(”“)([Zt)XRd) 5“‘3

Ly ()
From Proposition B.1] we get

. (d=2)p (d=1)p
itA e T
UO}}Lf+1Li(p+1)([2,t)><Rd) 5 N~ 2G+D) |t| 2(p+1)

e voll e gty S G0, (5.17)

LY ([2,400))
when s, is suitable close to 0.

From Lemma [2.6] we have

H / €22 x <1 () [P 2 gay ds‘ L ([2.)
__dp
5”/ It — s 2<pi1)x<1 ) |[[vfPol| éf;i—}( R) 5 L ([2,0)
2
<H|t‘ 20 LPY([2,400)) / H ’pt(lp“)Q(Rd)dsg/O HUHZJ%lﬁ(Rd)dS.

Setting ¢ such that
I 1 d2p+1)

g p 4lp+1)?*

then if s, is close to 0, then (g, 2(2];111)2, —s.) satisfies (2.4]) and ¢ > p+ 1. Hence, by Holder’s

inequality and Lemma [£3] we have

[ L
Ly P (RxRY)

p+1
Hse(Rd)'

Hence, we obtain that

t
| [ e xa el o g 5
0

This last estimate combined with (5.17)), gives the proof of the lemma. O

< dp.

~

LYY ([2,t)

Now we continue to prove the proposition.

From Lemma 5.1l we have that there exists some absolute constant C' > 0, such that
1wl Leo L2 (0,2) xRy < C(1+ [Jwollr2).
Suppose that there exists a time T with 2 < T € I, such that
Jwl| oo r2 0,y xray < 2C (14 [lwol|12)

(note that by continuity, it is valid when T is suitable close to 2). Then using Lemma
and interpolation, we have

||w||Lfngl(1ijd) S+ ||w||L;>°Lg([0,T)de),
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for any j = jo, -+, J with pgjoN 2 ~ 1, uoJ N2 ~ T. Hence, using (5.10), the last estimate
above and Lemma [5.4] we obtain

T J
car—2\ —i(a)
[ [ ol el deds o001+ ollesz o) [0l gy D (0dN2)

Jj=Jjo
. _9\ —u(a)
=do(1+ lwll g2, T)XRd))”wHigoLg([z,T)de)(/‘OJON ?) '
SO0 (L + w2 2 0.y ze)- (5.18)

Moreover, using Lemma [5.5 and (5.11]), we have
T
| wllelr ™ deds S Sl 2o . (5.19)
2 Jr
Now together with the estimates (L.18]), (5.19) and (5.8)), we obtain that

T
’21m/ / F(v,w)wdxds
2 JRre

< 50 (1 + ||w||L°°L2 ([2,7)xR4) + ||w||lztolL2 0T)><]Rd)>
This together with (5.6]) and (5.7) yields that for any ¢ < T,
lw®)I72 <llwollz. + CN7*

uo‘ Hse(Rd)

1
+ C4, (1 + [[wll Lo 2 (2,7) xrey + ||w||I[),—£>—°L%([O,T)><Rd)>'

Note that p < 1, then choosing dy suitable small and N suitable large, by the Cauchy-
Schwartz inequality, we obtain

sup [w(t)||z2 < 2(1+ [[wollz:).
t€[0,T]

Hence, by the bootstrap argument, we can extend 7" = sup /. By (G.1]), we obtain the desired
estimate. This finishes the proof of the proposition. O
5.2. Global existence. Now we prove I = R. It follows from the standard bootstrap
argument. Fixing any 2 <ty € [ and § > 0, then by Lemma 2.8 we have

1wl Lo 2z (10 t0+8) ey + Hvaw“Lng([to,to+5]><Rd)

2 ,
Ltz ([to,t0+(ﬂ><]Rd)

< Nw(to)ll pegray + || [ufPu — x<1(t)

where (q,7,0), (g, r,v) verify (2.4]). Similar as the estimation in (5.2), we have

ulPu — t)|v[Pv
H‘ ‘ Xgl( )‘ | H ngf([to to+0]xR4)

P
5(HwHL;“L;l([to7to+6]><]Rd) T H HL‘“L*1 Rde)>
) (||w||LflL;2([to,to+6}XRd) + [Ix>1( )v||L§1L;2([2,+oo)de))- (5.20)

Here ¢q, 71,79 are the parameters defined in the proof of Lemma [5.1l From Lemma and

Corollary (4.5,

HUHLglLQI(Rde) + H>~<21(t)v”LflL;Q([ZJroo)de) S lvol Hse(Rd) < o
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Setting ¢» such that
1 1 —S.

g e 2

then the triples (go,71,0), (q1,72,0) verify (2.4). Hence, from (5.20) and by the Holder
inequality, we obtain

Y

HwHL?L;l([to,tow]de + ”wHquL?([to,toJré}de)

ScPp

< o)l et (57 F N0l o s + ) (1901228225 gy + ).

Hence, there exists & = 0(||w(to)||r2(re)) such that

1
1wl 22 173 (10 0 +8)xre) T W1 51 172 (16 048] xR S 5+ [w(to)l 2 (ma)-

Using Proposition 5.2} [|w(to)||.2(re) is only dependent on N, but not dependent on #,. Hence
d = 0(N). This extends the lifespan to R and thus proves the global well-posedness.

Lastly, we prove that w(t) € H*(R?) for any t € R. Suppose that for some t, € R,
w(ty) € H*(R?), then arguing similarly as the proof of Lemma [3, we obtain that for
T > to,

p+1
HwHLgoH;CergLQI([tO,T]de) N ||w(t0)| Hoe(R9) + HuHLngl([to,T}de)’ (5'21)

where we denote the parameter r; as

I 1 1 s

T n d d )

Note that from Proposition and Lemma [5.3] we have
||w||L;“L;1(([to,to-i-;mN*?])de) SN

where ¢ = . Hence, combining the last estimates and Lemma E3] for T = ¢y + o N2,

HuHLngl([to,T}de) SHUHLfLQI([tO,T]de) + HwHLngl([to,T}de)
oo+ (T —to) TN~
Sho+ 4ty

This last estimate combining with (B.21), yields that if w(ty) € H#¢(R%), then for any
t € [to,to + poN 2], w(t) € H*(R?), and

Juto + o) £y

frse ety < N0 (t0) | groe ety + €80 + 11 *

Since to = 0, w(ty) € H%(RY), the inductive sequence t; = jioN~=22* can extend from 0 to
any t € R*, and thus proves that w(t) € H*(R?) for any ¢t € R*. Further,

Hw@)} Hsc(R4) Sﬁo,uo,N 14+t

The negative direction can be treated similarly. This finishes the proof of Theorem [l
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