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ABSTRACT. In this paper, we consider the defocusing mass-supercritical, energy-subcritical
nonlinear Schrodinger equation,

i0pu + Au = |ulPu, (t,z) € R,
with p € (%, ﬁ). We prove that under some restrictions on d, p, any radial function in

the rough space H*°(R?), for some so < s. with the support away from the origin, there
exists an incoming/outgoing decomposition, such that the initial data in the outgoing part
leads to the global well-posedness and scattering forward in time; while the initial data in
the incoming part leads to the global well-posedness and scattering backward in time. The
proof is based on Phase-Space analysis of the nonlinear dynamics.
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1. INTRODUCTION

The aim of this work is the study of global existence and scattering theory for the inter-

critical nonlinear Schrédinger equation (NLS) in 3 — 5 dimensions:
10 + Au = plu|Pu,
t il (1.1)
u(0, ) = uo(x),

with g = 41,p > 0. Here u(t,z) : R x R? — C is a complex-valued function. The case = 1

is referred to the defocusing case, and p = —1 is referred to the focusing case. The class of
solutions to equation ([LI]) are invariant under the scaling
u(t,z) — ur(t,z) = )\%u()\2t, Az) for A >0, (1.2)

which maps the initial data as

w(0) = ux(0) := Arug(Ax) for A > 0.

Denote
d 2
Se = — — —.
2 p
Then the scaling leaves H* norm invariant, that is,
lua @l ree = [uO) | gees 10)]] e = [ur(0) e

which is called critical reqularity s.. 1t is also considered as the lowest regularity that problem
(LI is well-posed for general H*(R¢)-data. Indeed, one can find some special initial datum
belonging to H*(R%), s < s, such that the problem (LI)) is ill-posed.

The H'-solution of equation (L)) also enjoys the mass, momentum and energy conser-
vation laws, which read

M(u(t)) :== / lu(t, )|* doe = M(up),

P(u(t)) := Im/u(t, z)Vu(t,x) de = P(uy), (1.3)

BElu(t)) := %/\Vu(t,:c)|2dx+ ]ﬁ/w,xw” dz = E(up).

The well-posedness and scattering theory for Cauchy problem (LL]) with initial data in
H*(R?) were extensively studied, which we here briefly review. The local well-posedness
theory follows from a standard fixed point argument, implying that for all uy € H*(R%),s >
5., there exists Ty > 0 such that its corresponding solution u € C([0,Tp), H*(R?)). In fact,
the above Ty depends on |lug| gse) when s > s. and also the profile of ug when s = s,.
Some of the results can be found in Cazenave and Weissler .
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The fixed point argument used in local theory can be applied directly to prove the global
well-posedness for solutions to equation (LI)) with small initial data in H*(R%) with s > s..
In the mass-supercritical, energy-subcritical cases, that is, % <p< ﬁ, if we consider the
solution in energy space H'(R?), the local theory above together with conservation laws
([L3), yields the global well-posedness for all initial data uy € H'(R?) in the defocusing case
p = 1, and for any initial data uy € H'(R?) with some restrictions in the focusing case.
Furthermore, the scattering under the same conditions were also obtained by Ginibre, Velo

in the defocusing case and Duyckaerts, Holmer and Roudenko [18] in the focusing case.

Recently, conditional global and scattering results for s. > 1 with the assumption of
u € L¥(I,Hs<(R%)) were considered by many authors, beginning with the major work

[25, 26], and then developed by [9, 17, 19, 20, 36, B7] and cited references. That is, if
the initial data ug € H*(R?) and the solution has a priori estimate

sup  [[u(?)] rze gy < +00, (1.4)
0<t<Tout(u0)

then T, (ug) = +oo and the solution scatters in H% (R?), here [0, T, (ug)) is the maximal
interval for existence of the solution. Consequently, these results give blowup criterion in
which the lifetime only depends on the critical norm ||ul| e e gay. However, no such large

global results are known for general initial data ug € H® (R?).

In the case when s. < 1 the use of a priori estimates on the solution as a condition was
also developed. The work of Bourgain [6] on the NLS, made assumptions on the space-time
norm of the solution in space-time subsets, by deriving necessary conditions for blow-up. For
example, Kenig and Merle [25] proved that for the NLS in the intercritical case, in dimension
3 and cubic nonlinearity case, global existence and scattering hold under the condition

sup u(t)] ;1 < 0.
o 1 3 gy

See also for examples some developments in [29] 49].

These conditional results, and other works, used the elaborate method introduced by
Kenig-Merle, involving profile decomposition, concentration compactness and the localized
Strichartz estimates. In contrast, our results use explicit conditions on the initial data alone.
A further new consequence of our analysis is that supercritical /rough solutions exist, which
are large and that in fact the standard assumption of initial data being in the space H*¢ is
not required.

We follow here a new paradigm, based on phase space analysis and propagation estimates,
to give explicit conditions on the initial data, which implies global existence and scattering.
This will allow us to give explicit conditions on large and rough initial data, for which global
existence and scattering hold. Our method does not use the above techniques based on
profile decomposition and concentration compactness.

When the initial data is rough, s < s., we do not have general global well-posedness.
Yet, as we will show, generic conditions for global existence and scattering allow such initial
data. So, we conclude that rough initial data does not guarantee blowup.

Rough data may appear naturally in some applications: initial data corrupted with noise
(as in nonlinear optics applications), and in the construction of invariant measures for the

NLS dynamics, see [4, 5] and further developments in 16, 30, 40, 46] and the cited
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references. In these last cases it is known that the relevant measure is supported on rough
spaces.

The phase-space analysis we use seeks to identify the initial data that can not move into
the origin and blow-up. So, naturally, this analysis requires the distinction between outgoing
waves under the free flow, which move away from the origin (for positive times), and the
incoming waves which move towards the origin.

In particular we show, that under some extra conditions, initial data which is outgoing,
will lead to global solution, even if it is rough, that is, the data belongs to the space H?,
with s < s., where s, is the critical Sobolev norm. While it looks unsurprising, it is in fact
a subtle result!

Under the free flow this initial data (radial) will move away from the origin, and therefore
will get smaller in L*, by the assumption of radial symmetry, and some H*® regularity.
Moreover, since the speed depends on the frequency, it gets smaller and faster for higher
frequencies. Indeed, as an estimate essentially proved in Proposition [ below, we show
that

Ix<1ene€™ Pon fout|| o S IS Nz (1.5)

However, the property of being outgoing is not necessarily preserved by the nonlinearity.
Furthermore, in a major difference from the wave equation case (see |2, B]), part of the
solution moves backward towards the origin, even under the free flow. Since the data is
rough, we do not have local existence (see the ill-posedness results in [13] and [27]), so, we
can not move a short time forward, in the usual perturbative way e.g., as in [38].

To counter these effects, we need optimal propagation estimates in space, frequency and
time. In particular we need to use the extra smoothing effect for waves which move in the
“wrong” direction, the classical forbidden regions, see (L3). We also need gain of regularity
in the Strichartz estimate for radial functions, which allows us to show that in fact the
Duhamel part, contributed by the nonlinearity is essential in H', which is based on the
following result. A more general result will be stated in Section 4.

Proposition 1.1. Let d = 3,4,5. For any radial function f € L*(R?) satisfying
supp f C {x: |z| > 1},
there exists some suitable decomposition, says incoming and outgoing decomposition,
f=r+T7-
such that the following supercritical space-time estimate holds for any N > 1,

HeiitAPNfi ”L?oH%(R+ XR4)+LZL (R xRY) S HPNfHLQ'

Remark 1.2. In general, the standard Strichartz estimates (see [24]) imply
+itA d_q
He PNfHL%Lgo(Wde) SN: HPNfHL2’

which is scaling invariant and thus the index g—l is optimal. Hence, the decomposition above
presents a way in which we are able to obtain a kind of supercritical Strichartz estimates.

The proposition is based on the decomposition

L*n{f:supp f C{|lz| >1}} =L7 +L?,
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for which the spaces L% can be roughly described that if f € L3, then for any ¢ > 0,
APy f = xssvp F(t) + O(NT*(#)™"),  for some F(t) € L?

and if f € L?, then the equality above holds for any ¢t < 0. Here § > 0 is a small constant,
a>0and b > 0.

More precisely, if f is supported away from zero, then we can write f = f, + f_ + f
with fo € H', fy = Py f € L%, f_ = P_f € L?, where P, are incoming/outgoing projection
operators defined in Definition [3.4] The crucial step in the construction above is the proof we
give that the range of P, is almost invariant (in the sense above) under the free flow for ¢t > 0,
and similarly for P_,¢ < 0. Since the problem under study is energy subcritical, the solution
is stable under H' perturbations. We emphasize that P* are not completely invariant under
the free flow. There is always an H' correction. Moreover if it is true (invariance of the
range) at one time, it will not be true at later times. These present obstacles in the study
of the long time behavior of the solution.

These estimates together with the approximate energy identity are applied to the part
w of the solution. w is defined by the following decomposition for the nonlinear solution:

. itA
w=u-—e (PZ ~f ) )
(with a slight modification). Then, w satisfies the following equation:

0w + Aw = |u|"u.

Therefore, by showing that w is in H', we conclude that all the singular part, is carried
away as a free wave to infinity:.

Hence, since the problem is energy subcritical, we can control the effect of the nonlinear-
ity, even though it is large. One should note however, that better, supercritical smoothing
estimates only hold for outgoing waves.

Our construction of the projections on incoming/outgoing waves follows a similar ap-
proach of T. Tao [44]. We make a different decomposition near the origin.

A comparison to such in/out decompositions in scattering theory may be illuminating:
the problem of global existence is the exact dual in the phase space, of the scattering prob-
lem. For global existence we need to control short time behavior, near the origin in space, at
high frequency; the complete opposite of scattering. In scattering theory the decomposition
into in and out waves, which was inspired by Enss method, leads to various definitions of
such projections, beginning with the works of Mourre [39]. Mourre constructed the pro-
jection by taking the projection on the positive spectral part of the dilation generator A,
defined as - p+ p - x = 2A. Here x is multiplication by x in space and p, the momentum
operator in Quantum Mechanics, is defined by p = —iV,. He defined the projections on the
incoming /outgoing parts by P*(A), where P*(y) stand for the characteristic functions, in
y, of the positive/negative real axis.

Clearly A is a nice PDO, but not function of A.

Then, propagation estimates and other constructions, including estimates based on re-
placing A by v = f(x)x - p + p - f(z)x were developed by Sigal and Soffer [47]. Here
f(z) ~ 1/|z|,|x| > 1. In this construction, the “out” component of the solution still has
some small portion moving inward, but this portion decays fast in time. See however [48].
Unlike the constructions we use, which are adapted to the radial nonlinear problem, the
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scattering theory constructions above apply to non-radial functions, and so are the known
estimates.

However, the propagation estimates obtained are not suitable, as they stand, for the
dual space problem. They apply for general Hamiltonians, not just the Laplacian. It may
be used for short times as well, when the frequency is large; that is still not explicit in the
literature. The problem comes from the fact that near zero in space, the frequency can be
very large, and yet A and ~ remain bounded.

In the nonlinear context, this problem is far more severe, since the high frequency part
is not stable under nonlinear perturbations.

New constructions for in/out decomposition were first introduced by T. Tao [44]. They
are based on a decomposition in terms of spherical waves, of the form ¢**” /r, in three dimen-
sions.

Still the problem at zero remains, much work was done to deal with this part of the
phase-space. Further works in this direction, and others, sharp propagation estimates were
done in e.g. Killip, Tao, Visan [31], and Li and Zhang [28| 33, [34].

We follow, up to some modifications near the origin, similar constructions and estimates.

We will use them in a different way, to localize and propagate rough initial data in
particular, so as to get explicit conditions for global existence and scattering. Our strategy
is to show that in some sense the phase-space localization of the initial data is stable, up to
smooth corrections. So, we show that the solution is a sum of the linear, rough/supercritical
part plus a correction coming from the Duhamel term (the nonlinear part).

By using radial symmetry, we show there is a gain of regularity, and the Duhamel term
contributes essentially in H'! space, the correction w. It will also follow, that if the initial w
is small, then it can be controlled in the focusing case. For this we need only to have the
initial data small in H®, for some s < s..

Therefore, since the nonlinearity is inter-critical, and we have the Morawetz estimates
and energy estimates in hand, we can then get global existence theory as in the H! case,
after using also frequency cut-off and a continuity argument.

Similar improved smoothing for the Duhamel term was obtained before by Bourgain [7],
in cases where the data is subcritical and below H!.

In the defocusing case, we can then cover outgoing initial data of arbitrary size, and in
the focusing case small (but in the rough/supercritical norm!) data. Since the initial data is
supercritical, in general, there is no well-posedness; to achieve that, we need the initial data
to be supported at some positive distance away from the origin in space , together with the
outgoing condition.

Our main result is following, which we focus on the defocusing case.

Theorem 1.3. Let p =1, d = 3,4,5. Then there exist so < 1 and pi(d) < ﬁ, such that
for any p € [p1(d), d%“z), the following is true. Suppose that f is a radial function for which
there exists eg > 0 such that

X<eof € H'(RY), (1= x<s)f € H*(R. (1.6)
Then the solution u to the equation (LIl) with the initial data

ug = f+ (or wp=f-)
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exists globally forward (or backward) in time, and u is unique in C(RT; H*(R?)) N X, (or
u e C(R;H*(RY)) N X_), in which X+ are some auziliary space-time space. Moreover,
the solution depends continuously on the initial data in H*(R®). Here f, and f_ are the
modified outgoing and incoming components of f respectively, which are given in Proposition
[L1. Furthermore, there exists ut € H*(RY) (or u= € H*(RY)), such that when t — +o0
(ort — —00),

i {lu(?) et sy =0 (or Jimflu(t) — Au sy = 0). (L.7)

Remark 1.4. We make several remarks regarding the above statements.

(1). Note that sq is independent of p, hence sy < s. when p is close to ﬁ. Moreover,
since f = f, + f_, if f is not in H*(RY), at least one of f, and f_ is not in
H*:(RY). Therefore, we obtain a class of the global solutions for the defocusing
energy-subcritical nonlinear Schodinger equation in the supercritical space H* (R%).

(2). It is worth noting that there is no smallness restriction in Theorem Here we are
not going to pursue the sharp conditions on sy and p;(d) in this paper.

Moreover, the restriction on the dimensions d = 3,4,5 is not essential, and the
analogous results are valid in more general dimensions. However, for the sake of
readability, we will not go into details.

(3). The theorem implies that the incoming/outgoing solution has the “smoothing effect”.
Indeed, we can show that for initial data belonging to L?(RY), there exist some
s. > 0,79 > 2, such that the solution u(t) of (LI)) corresponding to such initial data,
is in W*T(RY) for any ¢ > 0, any r € (2,70] and any s € [0, s,], and moreover, the
L"-norm decays at infinite time in the sense that

|u()||r@ay — 0, as t— +oo.

(4). By rescaling, we only need to prove the theorem when g5 = 1.

Organization of the paper. In Section 2, we give some preliminaries, which include
some basic lemmas, some estimates on the linear Schrodinger operator and the Fourier
integral operators. In Section 3, we give the definitions of the incoming/outgoing waves,
their basic properties, the boundeness in H* (R%). In Section 4, we give some supercritical
spacetime estimates on the incoming/outgoing linear flow. In Section 5, we give the proof
of the main theorem.

2. PRELIMINARY

2.1. Some notations. We write X <Y or Y 2 X to indicate X < C'Y for some constant
C > 0. If C' depends upon some additional parameters, we will indicate this with subscripts;
for example, X <, Y denotes the assertion that X < C(a)Y for some C(a) depending on
a. We use O(Y") to denote any quantity X such that | X| < Y. We use the notation X ~ Y
whenever X SY < X.

The notation a+ denotes a + € for any small ¢, and a— for a —e. |V|* = (=A)*/2,
(Y= (1+]-]%)2. We denote S(R?) to be the Schwartz Space in RY, and &'(R%) to be the
topological dual of S(R?). Let h € S'(R*"), we use ||h]| sz to denote the mixed norm

1

</ |\h(, )|, dt)a, and ||hl|zs, == [|h[|pszs. Sometimes, we use the notation ¢’ = _1;.
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Throughout this paper, we use y<, for a € R* to be the smooth function

1, |z| <a,
a\T) = 101
X<a() 0.1z > 0L,
100

Moreover, we denote x>q = 1 — X<a, Xa<-<b = X<b — X<a a0d Yo = X<24 — X<q for short.

Also, we need some Fourier operators. For each number N > 0, we define the Fourier
multipliers P<y, P>y, Py as

Pon f(€) = x<n(€)f(9),
Pon (€)= xon (&) (€),
Prf(€) = xn(6)f(£)

We will usually use these multipliers when N are dyadic numbers (that is, of the form 2* for
some integer k).

2.2. Some basic lemmas. First, we need the following radial Sobolev embedding, see, e.g.,
[45].

Lemma 2.1. Let o, q,p, s be the parameters which satisfy

d 1 1 1
a>—— -<-<-—+4s5 1<pg<o 0<s<d
q q P (g
with -
a+s=d(-—-).
p q
Moreover, at most one of the equalities holds:
1 1
Z):l7 p:OO7 q:l’ q:OO, —:__|_8_
p q

Then for any radial function u such that |V|*u € LP(R?),
el saggay S N1Vl o -
The second is the following fractional Leibniz rule, see [8]32] and the references therein.

Lemma 2.2. Let 0 < s < 1,1 <p < oo, and 1 < py1,p2,ps3,pa < 0o with % — le + p%;
L= p%) + 1%4’ and let f,g € S(RY), then

IV o S NVEF o Ngllzee + V1G]] g 1l

A simple consequence is the following elementary inequality, see [I] for the proof.
Lemma 2.3. Foranya > 0,1 <p<o00,0<~v< g, and |V|'g € LP(RY),

H|V‘7(X§ag) }Lp(Rd) N H‘vr/gHLl)(Rd)' (2-1>

Here the implicit constant is independent of a. The same estimate holds for x>.g.

Moreover, we need the following mismatch result, which is helpful in commuting the
spatial and the frequency cutoffs.
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Lemma 2.4 (Mismatch estimates, see [33]). Let ¢1 and ¢ be smooth functions obeying
[¢;l <1 and  disi(suppey, suppgs) > A,

for some large constant A. Then foro >0, M >1,1<r <q< oo and for any m > 0,
16117 Por(@2) | 1o gy S M7 A0 g f | 1y e, (22)
Remark 2.5. In this paper, we will frequently used the following estimate from Lemma 2.4]
ey P 1) ey 20 1B () gy o sy m > 0
where Py is defined by e
pr(f) = X210N§-§210N(£>f(£>-
In the following, we shall slightly abuse notation and write Py by Py.

Furthermore, we need the following elementary formulas, see [1].

Lemma 2.6. Let f € S(RY) and g € S(R?), then for any integer N,
Ve (fV)N T (fg) = > Cly ety O f - O f L g,

Iy, IneN® I'eN?;
|51 <g; [l |+-+[In [+ |=N

where we have used the notations
d
1 d
Ve = {851’ T 78&1}; 8éf - Zojaél o .aédfj’ Jor any | = {l17 T ald} e N
j=1
Here Cy,... 1, C; are some absolute constants only depending on N and d.

2.3. Linear Schrédinger operator. Let the operator S(t) = €2 be the linear Schrodinger
flow, that is,

The following are some fundamental properties of the operator e®®. The first is the explicit
formula, see, e.g., Cazenave [10].

Lemma 2.7. For all ¢ € S(RY), t #0,

1 eyl
S0 = g [T o

Moreover, for any r > 2,

1

_q(l_1
1S ()|l £y may S [¢]742 r)HngLT/(Rd)'

The following is the standard Strichartz estimate, see for example [24].

Lemma 2.8. Let I be a time interval and let u : I x R? — R be a solution to the inhomo-
geneous Schrodinger equation
iy — Au+ F = 0.
Then for any ty € I, any pairs (¢;,7;),j = 1,2 satisfying
d d

2
qj 227 Tj 22, _+_:§7 and (QJarjvd)#(2a+0072)a

i T
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the following estimate holds,

HUHC(I;LQ(Rd)) + H“HL;HLQ (IxRd) S H“@O)‘ L2®d) T HFHLzéL;é(IXRd)'

We also need the special Strichartz estimates for radial data, which were firstly proved

by Shao [42], and then developed in [12] 23].

Lemma 2.9 (Radial Strichartz estimates). Let g € L*(RY) be a radial function, k be an
integer, then for any triple (q,r,~) satisfying
2 2d—1 - 2d —1 2 d d

76R,q22,r>2,5+ " 5 ,and§+;:§+’y, (2.3)

we have that '
H|V|velmgHLng(Rde) S HgHLQ(Rd)'

Furthermore, let F € L?L;’ (R4 be a radial function in x, then

t t
H / =R E(s) ds’ + H |V\“’/ e =2 P (5) ds’
0 LiLy(R*FT) 0

where the triples (q,r,7), (4,7, —) satisfy [2.3).

5 HF”L;?'LQ’(Rd-Q—l)u

L LZ(RHH1)

2.4. Some lemmas about Fourier integral operators. The following are some lemmas
related to the estimate of the Fourier integral operators, we refer to Stein for the proofs.
The first one is from the application of the “stationary phase” theory.

Lemma 2.10. Let ¢, be smooth functions defined in R and A € RY, and ¢ satisfies
¢(xo) = ¢'(x0) =0, and  ¢"(wo) # 0.
If ¥ is supported in a sufficiently small neighborhood of xq, then
/ M@ () dx = ah\ 7 + O()\_%), when A — 400,
R

with

ag = ¥(xo) (ﬁ) >

The second result is the estimate of the Fourier integral operator, which can be regarded
as an extension of the Plancherel identity. The following result can be found in [21].

Proposition 2.11. Let T' be the Fourier integral operator given by
715) = [ e ale, O (OF€) de (2.4
R

Suppose that a(x, &) € C°(R? x RY) and satisfies that for all multi-indices o € R,

sup <€>‘a| Haga(" g) HLoo(Rd) < +00.

£cRe r
Then the operator T defined in ([2.4]) satisfies that

T:LP(RY) — LP(RY), s bounded, for all 1 < p < cc.

As an immediate consequence of the proposition above, we have the estimates on the
following Fourier integral operators which are used in this paper.
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Corollary 2.12. Let § € R, N > 0, and let T be the Fourier integral operator given by
Tf) = [ rale Oxen(A(© d (25
R

Then there exists some C > 0 which is independent of N, 3, such that

_d
1T fllz2 < C1BI™ 2 Ix<n fll 2
The same estimate holds if x<i is replaced by x>1, X<1, X5 or X%, in ([2.9).

Proof. Since the operator T is scaling invariant in L?, we can use the rescaling argument.
Indeed, the result is obtained by changing to the new variables n = N,y = SNz, and
then applying Proposition [2.11] and the Plancherel identity. The cases of x<1, X%, x5, and
X2, can be treated in the same way. Since x>1(z - &) = 1 — x<i(x - £), combining with the
Plancherel identity, the analogous estimate when x<(z - £) is replaced by xs1(z - &) in ([2.5)
is also proved. O

3. THE INCOMING/OUTGOING WAVES

3.1. Definitions of the incoming/outgoing waves. First of all, we give the definitions
of the incoming/outgoing waves for the Schrodinger flow.

3.1.1. The deformed Fourier transform. We denote the standard Fourier transform by f or
F [ as

(Z (&) or ) f(€) = / 2 f (1) da,

Rd
and its inverse transform

(F ' f(x) or ) f(z) = / 2T f(€) de.

R4
Now we give a deformed Fourier transform, and its basic properties.

Definition 3.1. Let a € R, 8 € R, and let f € S(R?Y) with |z|° f € L} (RY). We define

loc

FFE) = [e° / 2|19 (o) de. (3.1)

e
R4
Then it is easy to see the following inverse transform, that is,

Lemma 3.2. Let f € S(RY), |z|°f € LL.(RY) and [|7°Ff € L} (RY), then for any
v e R\ {0},

Fla) = Lol * [ el e F ) de (32

Proof. From the definition,

el F 1) = 7 (12177 ) ©). (3.3)

Hence, by the inverse Fourier transform, we have

2l f(2) = 7 (1€ °F ) (@),
This gives the formula in (3.2)). O
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We give the following remark on the conditions in Lemma
Remark 3.3. If f € S(R?) is radial, and 8 > —d, then |z|°f € L}, (R?). Indeed,

loc

1
[t r@ e =) [ 57 ) dr S e
z|<1 0
Similarly, if & < d, we can prove that [|7Ff € L} (RY).

loc

We now give the radial version of the deformed Fourier transform and its inverse trans-
form. We note that if f is radial, so is Ff. Moreover,

+o0o )
.Ff(,O) pa/ / 6—27rzprw~0 d@f(?“)’l’ﬂ+d_1 dr
o Jig=1
+oo

o [ dalprart ey dr,
0

where £ = pw. Note that dw has radial symmetry, and

™

@(prw) = c/lc\u(pr) = /2 e~ 2miersing ¢ogd=20 49

jus
2

(It is equal to 27?(,07“)_% Ja—z (2mpr), where Ja—z is a bessel function.) Therefore,
2 2

oo 3 o
Ffp)=p~ / / e~ 2miprsing qoqd=2 g pBHd=1 £ (1) 46 dr. (3.4)
0 _

Similarly, we have
‘oo rg
f(r)= r_ﬁ/ / e?miersing oogd=2 g p=atd=1 T £( ) dfdp. (3.5)
0 J=3

3.1.2. Definitions. In this subsection, we define the incoming and outgoing components of
functions and present their properties. Our definition here is inspired by T. Tao [44]. For
convenience, we denote

jus

J(r) = /2 e?™irsing cogd=29 dp. (3.6)
0
Then we have o
J(—T’) — / e27ri7"sin9 COSd_2 ede
et 1 d-3
K(r) = xz2(r) [  2mir * (27mir)3

Definition 3.4. Let o < d, 3 > —d, and the function f € L} (R?) be radial. We define the
incoming component of f as

fin(r) =177 /0 +OO<J (—pr) + K (pr))p“”d‘lf f(p) dp;

the outgoing component of f as

for) =2 [ (H0r) = K o)) 5

], for d = 3,4, 5.
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Moreover, for any fized integer k, we define the frequency restricted incoming component of

f as
i) =17 [ () K@) xa ) 7 1)

correspondingly, the frequency restricted outgoing component of f as

foute(r) =177 /O W(J (pr) — K (/ff’)) Xz (p) p TV F f(p) dp

Remark 3.5. If we consider the higher dimensional version, then K (r) should be modified.
Here we use an appropriately modified Fourier transform in order to cancel the singularity
from r~! at origin and meanwhile to guarantee the boundedness of the incoming/outgoing
projection operators on L?.

In the whole of the present paper, we set the numbers in Definition [3.4] that
d—1
b= -2, and a=0.
(These numbers should be changed 1f one considers the cases when d # 3,4,5.)
From the definitions and (3.5)), we have

f(T) = fout<r> + fm(r>

Moreover,

fout/zn Z fout/znk

k=—00

Correspondingly, for kg € Z, we denote

fout/zn >ko Z fout/zn T

k=ko

3.2. Basic properties of the incoming/outgoing functions. First, we give the esti-
mates on the following oscillatory integrals. The first two can be regarded as some asymptotic
behaviors of the restricted forms of J(r).

Lemma 3.6. Let d = 3,4,5. There exists constant ¢ € C only depending on d, such that
when r — +00,

s

/2 e2mrsinty o+ () cos?2 0 df = or~ TP O(T_%); (3.7)
0

6

and

SIE]

/ e~ 2mirsinby  + (0) cos® 20 df = T (Ee_er +c 27”7") + O( ) (3.8)

Remark 3.7. The estimates presented in this lemma are not sharp. For example, the first
estimate can be improved as the form of r—*2" (pK(l/r) mir 4 O(r~K71)) for any K € Z*,
where pg is some polynomial function of order K. However, the version presented in this
lemma is simpler and enough in this paper.
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Proof of Lemmal3.4. We only prove the first estimate, since the second one is the sum of

/ e2rir Sin(’XZ% (0) cos?20do and /2 e 2mir SinGXE% (9) cos? 26 de.
0

0
When d = 3,
CR L
/ 62mrs1n«9X2%(9) cos B df = / GQMTSXZ%(S) ds
0 0
I 4 1 4 Y
— 83( 27rzrs) ds = 2mir / 2mirs.| [/ ds.
2mir J, ¢ XZ%(S) s 27?2'7‘6 2mir J, ¢ X2%<8) 3
By integration-by-parts K times, we have
1
/ eQ’T"SX;%(s) ds = O(r ™).
0 >
Hence we obtain that
g 27ir sin 6 1 27ir —-K
= (6 0df = — @) )
/0 e x> (6) cos 5 +O0(r )
When d = 4, using the formula,
2ir cos B - 627rirsin0 — 80627rirsin9’ (39)
we have
3o 1 3 o
/ GQWZTSIHGXZ%(Q) COSZ 0do = — 60627mrsm9X2%(0) cos O db
0 mir Jo
1 Tir sin :
=5 /o e 9()(2%(0) sin ) — Xlzg(e) Ccos 9) do.
Note that

ol

x 1
2 .. .
/ >IN 1 (6) cosfdf = / e\ 1 (s)ds = O(r~F).
0 0 —2
Moreover, using Lemma 2.10]

SIE]

| I
(0)sin @ do = 5/ ezmrsmaxggsw (0)sin @ d
0

6

SR
/ 627rzrsmGX2
0
( 1 )é 27rir+0< f%)
= e r .
2mir

This gives the required estimate in dimension four.
When d = 5, we have

3
2mir sin 0
/ e2mirsin x>
0
1

1
= s (e%”’s> s)(1 — s?)ds.
el Xo1(5)(1— 57)
By integration-by-parts once and noting the zero boundary values, it is equal to
b 1 eerS( —xL1(8)(1 — 8% 4 21 (s)s) ds.
2mir J, 23 =2

SIE]

2%(s)(l —s%)ds

1
() cos® 0 df = / sy
0
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Now arguing similarly as above and integration-by-parts many times, we have

1 ' TITS -
2mer /0 e (5)(1 = 5%) ds = O(r™"),

1
1 .
2mirs
. € X>
2mir J, =

This obeys the form as claimed. Hence we finish the proof of the lemma.

and

=

(s)sds = (27;”)2 (1 ! )ezmr +O(r ).

2mr

Second, we have the following estimates.

Lemma 3.8. When r — +00,

™

ir i 1 d—3
27ir sin 0 d—2 _ _5
/0 e X<z () cos™0dl = —5— + Gy O(r=9).

Proof. Using the formula (3.9) and integration-by-parts,

Moreover,

12

eZWirsinGXS%(9> COSd_2 0do = O(T—lo).

VB

s

2 L
/ e27mr SmGXS% (9) COSd72 0 db
0
1 /2 60627rirsin9x<£(0) COSd_3 0 do
2mr J, -6
1 1

27ir sin 6
——— 0) o
2mir  2mir ¢ m(0) b,

where

m () = Oy (XS% (6) cos™™ 9) :
Note that 7,(0) = 7:1(5) = 0, then using the formula (8.9) and integration-by-parts again,
we have
R
/O e27mr SmGXS% (9) COSd72 0 do
1 1 T orirsing
_ TTLT S1Nn 0 d@
omir (27rir)2/ ‘ a(0) b,

0

where

m(0)
0) =0 < )
1e(6) = 9 cos
Note that |72(0)| < 1. Moreover, by a direct computation, we have

12(0) = —(d — 3), nz(g) —0.

15
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Then repeating the process above again, we obtain

us

/02 eZWirsinGXS%(e) COSd—Z 0do

1 d—3 1 T orirsing
I LT SIn 9 de.
2mir * (2mir)3 - (2m’r)3/0 ‘ s(6)
Here )
_a,(
ns(0) = ae(cos@)

Moreover, we note that 73(0) = n3(3) = 0. Then the same process gives

us

/02 eZWirsinGXS%(e) COSd—Z 0 do

1 d—3 1 2
= — Ny 0) do 3.10
Smir | (@rir)? | (2mir)s /0 T m(0) db, (3.10)
where the function 74 satisfies |[n4(0)] < 1. Then we obtain the desired result in the first
estimate.

The second one, because of the zero boundary values in every step, can be obtained by
integration-by-parts 10 times. U

As consequences of the lemmas above, we have the following variant forms of J(r)— K (r).
The first one is

Corollary 3.9. Let d = 3,4,5, then

x<1(r) (J(T) - K(r)) = x<1(r) /03 eZrirsing oqgd=2 0 qp), (3.11)

and

le(T)<J(r) — K(r)) = x>1(r) /0% 62””1“9)(2%(0) cos?2 6 db

™

> omirsing d—2 1 > omirsing ~
+ X1<.<2(7) i e X<z (0) cos™ "6 df + XZQ(T)W i e na(0) do, (3.12)
where 1M4,d = 3,4,5 are uniformly bounded functions.

Proof. From the definition of K(r), we have K(r) = 0 in the part of y<1(r). Hence, by the
definition of J(r) directly, we have (B.11J).

For ([B.12), we split J(r) into the following two parts,
/ e SIHGXZ% (0) cos™0df  and / e Smexgg (6) cos™2 6 db.
0 0

For the latter part, we use the identity (8.10) to obtain that

x> (T) /%62ﬂirsinex<ﬂ(9) COSd—Z 0do = K(T) + > (’I") 1 /% 627rirsin9n (9) do

= 0 -0 = (2mir)> Jo ! '
Hence, setting 77, = n4, we get ([B.12). Note that from the definitions in the proof of Lemma
.8, 14 are uniformly bounded functions whenever d = 3,4, 5. This proves the lemma. 0
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The following result shows the asymptotic behaviors of J(r) — K(r) and J(r) + J(—r).
Corollary 3.10. Let d = 3,4,5, then

uy

J(r)— K(r) = /2 62””51“9)(2%(9) cos™20do + O({r)~?) (3.13)

0
d—1

and

J(r)+ J(—r) = /2 e‘ZmTSiHHXZ%(Q) cos™20do + O((r)~1). (3.15)

us
2

Proof. Note that when r < 1, the following four functions: J(r) — K(r), J(r) + J(—r),

/2 627rirsino9ng<9) COsd72 ed‘g and /2 6727rirsin€X2%(9> COSd72 9d9

0 —

(SE]

are uniformly bounded. Hence, the estimates of (3.13)) and (B.15) hold when r < 1.
When r 2 1, from (B.12) ,

us

J(r)—K(r)= /2 e Sin(’XZ% (0) cos™% 6 db + O(r’5);
0

and from Lemma [3.8]

J(r)+ J(=r) = / 2 e 2Ty 2 (0) cos” 2 0df + O(r~ 7).

uy
2

Hence, we obtain (8.13) and (3.15). Combining with (8.13) and ([8.7), we obtain (8.14]). This

finishes the proof of the corollary. O

3.2.1. Matching estimates in frequency and physical spaces. In this subsection, we will show
that the incoming/outgoing projection would almost preserve the localization in both space
and frequency. The first result below is related to the preservation of frequency. Specifically,
if a function f has high frequency f = P f, then its incoming/outgoing component will
have almost the same frequency plus a smooth perturbation.

Proposition 3.11. Let ko > 0. Suppose that f € L*(R?) with suppf C {z : |z| > 1}, then
(P22’“0 f)out/in - (Pz2k0 f)out/m,zkoq +h
with
1Al rucr ey S 27 F |l =10 . (3.16)
Here p(d) =2 if d = 3,4, and u(5) = 3. Similarly,
(P§2’“0 f)out/in = (PSQ’“O f)out/m,gkoﬂ +h
with h verifying the same estimate to (3.10)).

Proof. We only give the estimate of the first part, since the second one can be treated in
the same manner. Moreover, considering the support of f, for simplifying the notations, we
write

J=xz1/
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To give the desired estimate, we use the Littlewood-Paley decomposition and write

+o0
PZQkOf - Z PQkf

k=ko
From (B.3)), we note that

F(Puf)p) = F (|2l P S ) ()
Accordingly, we decompose F(Py: f)(p) into the following two parts,

Xorto1(p) F (|27 Pocf ) () + Xeaos (0)F (|2l P ) ()

Now due to the support of f, we further decompose the expression above as
Xoztot(0) Z (1P f ) (0) + xeatot (0)F (Xsplol” - Poxon ) (0)

+ Xeoo 1 (0)F (Xey (@) al” - Pxaa f ) (p):
We denote

() 2] Pyxaaf ) (p);
(&) 2"+ Paxsaf ) ().

Then we have

F(Por f)(p) = Xzaro-1(p) F(Por f)(p) + 91 + g2.
From Definition 8.4, we have

(i) =2 [ (90001 = K o)) F (P ) .

thus using (B.17), we write

(P f) g =" / T (Hor) = KGor) ) a (0) F(P 1))
+rf /0 +OO<J (pr) — K (m“))pd‘1 g1(p) dp

w0 [ (or) = o)) o) .

Denote

hi(r) =r~" /O +OO(J (pr) — K (m“))pd‘1 91(p) dp

+r P /0 +OO(J (or) = K (pr) 9" g2(p) dp,

then
(PQkf)out - (szf)out,Zko—l + hk
Moreover, let

hir) = 3 hnlr),

k=ko

(3.17)

(3.18)
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then
(PEQkO f)out/in - (P22k0 f)out/in,zkofl +h.

Now we give the control of h;. To this end, we first claim that for any M € Z*,
lg1llzge + [lg2llree Sm 27MkHP2kaL2(Rd)' (3.19)
To prove this claim, we note that
q1(p) = ngko—l(P)cQ(Pz%—? (Xz%mﬁ) : szf) ().
Here we have used the fact k& > ky. Then by Hausdorff-Young’s inequality,
loiles S |7 (Pozs (o lal?) - Pt )|
P
S HP22’“‘2 (Xzémﬁ) 'P2’“fHL;(Rd)
S HP22’“‘2 (Xzé‘"ﬂﬁ) HL;(Rd)HP%fHLg(Rd)'
Note that
1Pz (x2 1 1217)

thus we obtain that

o S 27

g S 2 H(FA)F Pagiea (o4 lal)

lgtllzze S 27 Poc e
For g, we rewrite it as

92(0) = Xeoo 1 (0)F (Xe3 (@) al’ - X<3(2) Poxan f ) (p):

1
=2
Then

ozl S |7 (xey @) lol” - xes (@) Paxaaf )
< Ixci@) 217 - x<s (@) Poxe1 | 1y gy

< [lxey (@) 27|

HLgo

L2(R) HXS% PZkXElfHLg(Rd)'
: _ d-5 d
Since = %= > —5, we have
HXS% |x|5”L§(Rd) SL
Moreover, by the mismatch estimate given in Lemma 2.4] we have
s P sy <2 1Po
Hence, we obtain that

ool S 27 [ Poc | oy

This together with the estimate on g1, gives the claim (B3.19).
Based on ([8.19), we consider ||h|| 2re). Note that

|kl 2 gy =€l B (r)| 2
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Further,

+ 72 /:oo(J(pr) - K(m’))pd*l 92(p) dp-

We only consider the first term. Since the estimates for gy, go are the same, see (3.19), they
can be treated in the same way. To do this, we split it into the following two parts again,

r? /0 - J(pr)x<1(pr)p™ " g1(p) dp, (3.20a)

and
+oo
r? / (J(pr) = K(pr))x=1(or)p"" g1(p) dp. (3.20b)
0
Since |J(pr)| <1, (320a) can be controlled by

/O ” x<1(pr)p™? 91 (p)| dp.

Since d > 3,

@2l 5 [ xealone xemons0) as(o)] 0

L
400 4T

5/ P72 X o1 (p) |91 (p)| dp
0

20 DR By

Then, choosing M large enough, we have

G2 53 S 24P gy 321
For (3.20h), according to (3.13)), we split it into the following two parts,
too s
[ ) cost 0 b () on(o) d, (3.22-1)
o Jo
and
N A 5 d—1

r / O((pr) =) x=1(pr)p* ™" 91(p) dp. (3.22-2)

0

To estimate (3.22-1)), we use the formula

1 2 627rip7" sin 6

627rip7" sin@ __
(2mirsin )2 *

to reduce it as

oo ra 1 .
/ / i e Xz (0) cos 20X ()" g1 () dp.
0 0

By integration-by-parts, it is equal to

teora 1 o
L G e @ et 00 8 [aor) ! 1) do
0 0
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Then by Corollary R.12] we have

ez, 5 [ 5=

x> (#) cos’ %0 db
o (2msind)2

X>

SIE]

(o a5 + 110" Do), + 17" Br o) 5)-

Note that

d—3

12" 91 (P[] 2 SlIx<oro-1 (00" | 2 g e

2RO P £ ey S 27 P f [ oy

and furthermore, by the Plancherel identity,

de72 ale(/))HLg 52%@ p%XSZ’“O_l(p) Vgg(()(zém‘ﬁ) . P2kf> (/)>

XSQI@O—I(S) V. (P22k72 (XZ% |ZL‘|B) . szf> (5)

2
L3

d—
<95 ko

L2(RY)
$27H | Pogiea (xo o) - P
2T Pagioa (X
)

Moreover, using the following estimate instead,

|B+2) 9~ Mk

Y

szzk—Q (Xz%‘x HL‘X’(Rd) S

we also have
16" Agap 272 Por ] oy
Since 0/3 =A— d;plﬁp, by the estimates above, we get
6% Br(o) 5 < 22| Bt ] oy
Therefore,
|@22D)|,; < 27| Por ]y
For (8.22-2), it is bounded by

—+00
Pt / x>1(pr)p" g1(p)] dp.
0

Similar as (3.20a)),
1
1B.22-2) |22 < 2 2MkHP2’“JCHL2(R61)'
Combining the above two estimates for (8.22]), we obtain
1
||(m”L% S 2 2MkHP%JCHL?(RCO'
Then collecting the above two findings for ([3.20), we have

1
1| o ey S 272MF ‘PQkaLQ(Rd)'

21
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Now we consider the estimates of hj with the high-order derivatives. For |[Ahgl|p2(ra),
it is equivalent to

I Ol + 15 0]

Note that from the definition of h; in (B.18), both of T%ﬁwhk and T%_lﬁrhk are the
combination of the following three parts,

/0 +OO<J (pr) — K (m‘))/)d’1 9;(p) dp;

+oo
r/o OT(J(W) - K(pr))pd‘1 9;(p) dp; (3.23)

and

+o0o
o R L ) Vs
0
where j = 1,2. When d = 5, we also need to estimate ||VAhyg| 2gay, which is equivalent to

Hr%arrrhlc’

d—1_q

pat = T O]

L2 + HT%Q@rthL%.

Note that 8 = 0 in this case, hence all of 2" O,pphy, 77 10, by, and 7z ~20,hy are the
combination of the following three parts,

/0 +008r (J (pr) — K (pr))pd‘1 95(p) dp;

+o0
e [ e (aen) — k(o) )t gy (0) d
0
and
+oo
r? / a; (J (pr) — K (m“))pd‘1 9;(p) dp.
0
(Note that there is no singularity in 7, due to § = 0.)
By the formulas given in Corollary 3.9, we have the explicit form of 9" (J (pr) — K (pr))

for | = 1,2,3, then similar argument can be used to estimate all the terms which can be
dominated by 2_%MkHP2kaL2(Rd)' For the sake of completeness, we take the term (B3.23) for

example and give the estimation. To do this, we split (8.23) into the following two parts,

+oo
r / ar((J (pr) — K (pr))Xgl(pr))pd’lgj(p) dp; (3.24a)
0
and
I d—1
e [ a0 = Klor)xsion)) 0" (o) . (3.24b)
0
For (3.24a), we use the following estimate which is from (B.11]),
0, ((I(or) = K(pr)xa(pr) ) | S pxc<a(or).
Then (B.24a) can be dominated by

+o00
/ x<1(pr)p®" |g;(p)| dp.
0
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Hence,

“+o00
_ 3
|EZm@)|e < / 74 |g;(0)| dp
_1 _1
52(d 2)k0||g]||L2° 5 2 2MkHP2kaL2(Rd)'

or (3.24Dh), we use the following estimate which is from (B.12),

O (le(/ff’) (J(p’r) - K(P”’))) = 2mip Xz1(p7“)/ 62”’”’51“9)(2%(9) sin 0 cos®2 6 dp
0

+xz1(pr) - O(p™'r 7).
Accordingly, (8.24h) can be split into the following two subparts again,

‘oo p5
27m’r/ / eZmiprsing,y 6(9)sm€cos 20.dox>1(pr)p” 9;(p) dp; (3.25-1)

and

+oo
r / O(p~ ") xza(pr)p™ g;(p) dp. (3.25-2)
0

Then the part (3.25-1) can be treated similarly as ([8.22-1)); the part (8.25-2]) can be treated
similarly as (8.22-2)), and thus we have

@240z < @D 2z + (EZED 2z S 2 | Pos o
Therefore, from the estimates on (3.24]), we get
1G22z S 27| Py [ ooy
Combining the estimates above, we establish that
1
Il gy 2| Py ]
Therefore, by summation in £ and choosing M suitably large, we obtain that
Hh’HH”(d)(Rd) rS 2ikOHfHH—1O(]Rd)'
This finishes the proof of the proposition. O
The following result shows that if f is supported outside of a ball, then f,, /i is also
almost supported outside of the ball.

Lemma 3.12. Let p(d) be defined in Proposition[3.11. Suppose that suppf C {x : |z| > 1},
then

Ix<1 (Porf)outin | gucor gy S 111y,
and for any k € Z7,
ngi (P2’€f)out/z‘n,2k—1 HH;L(d)(Rd) S, 272kHP2kaL2(Rd).
Proof. We only consider the estimates on the outgoing part f,,;, because the ones on the

incoming part can be proved in a similar way. Using the Littlewood-Paley decomposition,
we write

+o0
lef == Z P2kf
k=0
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Then
+oo

HXSi (lef)out/inHH“(d)(Rd) 5 Z HXSi (PQkf)outHH“(d)(]Rd)'
k=0

Using Proposition B.11] we have
(PQkf) = (sz‘f)out,Zk;—l + h7 with ||h||HH(d)(]Rd) 5 2_kHP2kaH—IO(Rd)'

out
Hence,
HXSi (P2kf)outHH#(d)(Rd) S HXSi (PQkf)out,ZkflHH#(d)(]Rd) + Hp2kaH—10(Rd)'

Therefore, we only need to consider H X<t (PQk f) We first consider the L2-

out,>k—1 HH“(‘” (R4)*
norm, which is equal to

HT%XSi (T) (P2kf)out,2k71 HL%

From the definition, we have

C P i =1 [ or) = K (o)) ees ) F(P o)

As in the proof of the previous proposition, we split it into the following two parts,

+o0
r? /0 (J(pr) = K(pr)) x<i(pr)xsae-1 (0)p* F (Por ) (p) dp; (3.26a)

and
r’ /0 N (J(or) = K (pr)) xz1(pr)xz2-1 (0)p" F (Pas f) () dp. (3.26D)
For (B.26a)), using the definition of F( Py f), we rewrite it as
[ et [ (90s) + =) s ) s
Using (3.15) and (B.6]), we split (3.26a)) into the following two subparts again,

too s
7,2 / / eQmpr sin 6 COSd_2 0 do XSl(pT)X22’€—1 <p)pd—1
0 0

+oo p5
/ /2 e_QWipSSing/ng(Ql) cos™2 0 d0'sP T Py f () dsdp, (3.27-1)
0 J=3
and
+o0 +oo
[ I (o [ O(ps) ) P (s dsdp. (3272
0 0

The term (3.27-1) can be rewritten as

2 5 +oo pfo0 . o
T2 / / / / e?mp(r sin —ssin 0 )Xgl(pT)XEQkfl (p)pdilSﬁerilPQkf(S) dep
o J-3Jo 0

s
2

x>z (0') cos™ 20 cos’ 20 db'dh.
When r < %, 5 > 1%, |sind’'| > %, we have

|rsinf — ssinf'| = r+ s. (3.28)

1
37
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Then using the formula,

627rip(7" sinf—ssin6’) _

1 X . Py,
) ( 2mip(r sin @—ssin 6 )) , 3.29
2mi(rsind — ssm@) \" o

and integration-by-parts 5 times, (3.27-1)) turns to

+o0 poo L 2mip(r sinO—ssin6) . d—1
/ // / [27i(r sin — 881n9’)]58/’ [XSl(pr)XZQk_l(p)p ]

- ST Py f(s) dpds x>z (0') cos® 0 cos™? 0'df' df. (3.30)

Note that rx’,(pr) < p~', we have that

)0§ [Xsl(PT)Xzzkfl(P)Pd_l} ‘ < x<i(pr)xsae-1 (p)p°.

Here and in the following, for simplicity, we regard x>; and its derivatives as the same. Then

this last estimate combining with (3.28) and (B.30]), gives the bound of (B.27-1)) as

+o0
/ / X<1(pr)X>o0- 1(p)p™ B0 Py f(s)] dpds.

Therefore,

IB2T=D) |21y S 2
Note that [J(pr)| < 1, thus (B.27-2) is also bounded by

+oo
/ / X<1(pr)xsoe-1(p)(ps) =0 p 2T Py f (5)| dpds.

2| Pt | sy

Hence, we get
”(Im) "L%({rﬁi}) 5 2(d712)kHP2kaL2(Rd)-
Combining these two estimates on (.27, we obtain that

@282 || Laqr<ty) S 27| Por f | oo (3.31)

Now we consider (3.26h), which is equal to
+o0
r? / (J(pr) = K (pr)) xz1(pr)xz26-1(p) "
0

+o0
) /0 (J(ps) + J(—ps))sﬁer_lPQkf(s) dsdp.

Using (B.15) again, we split (3.26b) into the following two subparts again,
+oo
r? / (J(pr) = K (pr) xz1(pr)xsam-1(p)p"™

“+oo
/ / ] e sy 1 (') cos? 2 0 d0' P Py f () dsdp, (3.32-1)

—+00

2 /;OZJ(/JT*) — K (pr)) xz1(pr) xs2x1 (p)pt /0 O((ps) ') "1 Py f () dsdp. (3.32-2)
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For (3.32-1), using the formula in (3.12]), we can write

x>1(pr) (J(pr) — K(p'r’)) = x>1(pr) /02 e*mrsOn(6, pr) de, (3.33)

where the function 7(0, pr) is defined as

XZ2<pT> 77, (9)

(0, pr) = x>z (0) cos™ 0 + x1<.<a(pr)x<z (6) cos”* 0 + i)

Then from (B.33), the term (3.32-T)) can be rewritten as

400 p+o00
/ / / / 627rzp(r51n9—551n0 )X21(pT)X22k*1(p)n(9’ p’l")
540 0

PSP Py £ () dsdp Xz (0') cos 20’ do'dh.
Now using (3.28)) and treating similarly as (3.27-1]), we obtain that
d—12)k
”(MDHLg({rSi}) 5 2( ) Hp2kaL2(Rd)'
For (8.32-2), applying (B.14]), we have that
_d-1
xe1(or) (J(or) = K (pr)) = O((pr)~™"), (3.34)

Hence,

+o0o
|(B.32-2)| <T2__/ / Xs2t-1(p){ps) 1% T P Py £ ()| dpds.

This gives that

d—19

? kHP2kaL2(Rd)'

1B.32-2) [ 1z (gr<tyy S 2

Therefore, we obtain that

1B26D) |2y S 277 )| P ] o

Combining the estimates above, we obtain that
HXSi (PQkf)out,zkleLQ(Rd) S 272kHP2kaL2(Rd)' (3.35)

Now similar argument (as in the proof of Proposition 3.11]) can be used to treat the functions
in the high-order derivatives. Thus we obtain the desired estimate in H*?(RY) space, and
prove the lemma. O

3.3. Boundedness of the incoming/outgoing projection operators. The main results
in this section are the boundedness of incoming/outgoing projection operator in L?(R%).

Proposition 3.13. Suppose that f € L*(R?), then for any k € 7+,
||fout/in,k||L2(Rd) 5 ||f||L2(Rd)-
Here the implicit constant is independent of k.
Remark 3.14. We remark here that we have a slightly stronger estimate read as
| fout/inll 2®ey S 11 fll 22 @ay-
The proof follows from the similar argument as in the proof of Proposition B.13] below, with a

further spatial cut-off on the function f. However, the log-loss is not essential in this paper,
so to simplify the proof we only present a slightly weaker estimate as in Proposition [3.13]
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Proof of Proposition[3.13 We only consider the estimates on fu,. k. Since fou is radial, we
have

||foutk||L2 R%) _CHT 2 foutk HL2

By Definition 3.4 we write
d—1 +oo
P () =1 / (Jpr) — K (pr) xar (o) F £ () dp
+o0
e / J(or)xer(pr)xas () F £(p) dp (3.361)
i / T (Tr) = K(or)xor(or)xas ()0 FF(p) dp. (3.36b)

Estimates on (3.36a). Note that

+o0 +o0

(B.36a) = r? T(pr)x<i(pr)xae(p)p™™ /0

0

(J(ps) + J(—ps))sB”Ld_lf(s) dsdp.
Accordingly, we further split it into the following two subparts again,
+00 +oo
[ arxaloria o™ [ (08) + =ps) ) xenlps)s (o) dsdps (3371
0 0
and
+oo +o0o
r? / J(pr)x<i(pr)xz(p)p™ ! / (J (ps) +J (—pS))leo(pS)SW‘lf (s)dsdp. (3.37-2)
0 0
For (B.37-1)), noting that |J(pr)|,|J(ps)| < 1, we have that
+o0o
@z < [ / X1 ()X (PP x10(p3)5 41| £ (5) | dsdp.

Thus,
+o0o p+o0o
IEED < [ [ s )]s snoos)s™ 4 s) sy
0 0 "
e _z _ a1
5/ X ()02 || x<10(p)s 2| o [|s 72 £ (5)| e
0
+oo
_ d-1
S [0 o |55 1) S e (3.3%)
0 S
Now we estimate (3.37=2)). From (B.13]), we write
_ 2 e e —27rzpssm6
B.372) =r J(or)x<1(pr)xa-(p

0
x>z (0) cos™™ 29d9X210(PS) i 1f( ) dsdp (3.39-)

—+00

+r? /0 +OOJ(W)Xg(/)’f’)w(p)pd*l /0 O((ps) ') xz10(ps)s” 4 f(s) dsdp.
(3.39-ii)
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The terms (3.39-1) is equal to

400 p+4oo
/ /W/ / 27rzp( ssin @ +rsln9)X (pT)X2k<P)X>10(pS>
2

p P (5) dpds x> (6) cos™ 0 cos™? 0 db'db). (3.40)

Note that the power 5+ d — 1 is too large to be integrable in s, but we can use integration-
by-parts to decrease the power of s, due to the non-resonance of the phase. Indeed, when
0'| > %, s > 5r, we have ([3.28). Thus using the formula (3.29) and integration-by-parts 10
times, (Imb can be controlled by

+oo
/ / X<1(pr)xar (p)xz1(ps)p s £ (s)] dpds.

Therefore, we obtain

1839122 S 112y
The term (3.39-11) can be controlled by

Foo d—1
[ catornetoshn ot P55 5 1(5) dsdp
Hence, similar as the estimate on (8.37-1)), we have

1B3%0) |22 < 1/ 1|2 (ma)-

Combining this last estimate with the estimate on (3.39-i), we get

IB3Z2) 2 S 11|22 (ra)-
This together with (3.38)), gives

1B.36a) 2 < || fllz2ra- (3.41)

Estimates on (3.36h). Note that
+o0o

(B.36L) = r* (J(pr) — K(pr)) x=1(pr)xa (p)

0
d I d
[ (09 4 ()57 5 dsdp
0
Note that for J(pr) — K(pr), we have the equality given in (B.13); and for J(ps) + J(—ps)

we have the equality given in (B.I5). Then we divide (3.36h) into the following four parts.
The first part is

ooy
i 0 cost 0 o (pr ()

+oo
/ / —27rzps smG’ (0/) COSd—Z 0’ delsﬁ-i-d—lf(s) dep; (342_1)
%

the second part is

too g
[ s 6)cos' 0 oo (o)
0 0

' /0+°° O((ps) ') f (s) dsdp; (3.42-2)
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the third part is
+o0 J
[0 et ()"
+o0
/ / e~ 2mips SmGIXZ% (0') cos™ 20" df’'s" T f(s) dsdp; (3.42-3)
%
and the fourth part is
+00 +oo
r? / O((pr) ) xz1(pr)xar (p)p™ / O((ps)~'%)s" =" f(s) dsdp. (3.42-4)
0 0
Estimate on (8.42-1). We split ([8.42-T) into the following two subparts again,
o [TF o ing, d—1
e 0) st 08 (o ()
+o0o
| / oy () cos™ 20 A8 (o x ,(5) + oo ()) S (5) dsdps (3.434)
3
and
too s
T 0 cost™ 0 e (o))
+oo
/ / e 2mipssind’ x>=(0) cos?? 0’d@’xl_%rgémr(s)s[ﬂd*lf(s) dsdp. (3.43-ii)
%

or (B.43:1), we rewrite it as

2 5[5 oo e 2mip(rsin@—ssin @) d—1
r e X1 (pr)xe (p)p" X2z (0)
oJ-zJo Jo
C

08" Ox> = (0) cos 2 0/ (X<, (s)+ X>10(5)) "7 f () dpdsdf'do.

Note that we have (3.28) in this situation. Thus treated similarly as the term (8.39-1), using
the formula (3.29) and integration-by-parts 10 times, (3.43-1) has the bound of

—+00
r*Xzo-i(r / / (r+5) "0 xax (p)p" s f ()] dpds.
Hence,

143D 22 S 112y (3.44)

or (B.4341), by dyadic decomposition, it is equal to

D X (r) - (B.43-i)

j=—k
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Note that x,;(r) - (8.43:11) can be written by

+o0
T ij / / 27rzpr sin 9

+o0
: / / e 2mPs sinG’ng (0) cos™2 0 A0 Xgi—2<.<oiv2(8)s" T4 f(5) dsdp (3.45)
0 _x

+ other terms.

> (0) cos™ 2 0d x1(pr)xar (p)p™

ml:\

Here the “other terms” can be treated in the same manner as (3.43-1) and thus we ignore
them. For (8.43]), from Lemma [B.6] we have the following two formulas,

/2 62””51“9)(2% (6) cos®2 0 dh = c(pr)_%e%ipr + O((pr)_%)é
0

and
/72;62””“1“9/)(27&(9') cos™ 20 df = (ps)~ 2 (éeﬁm’ps + 062””3> + O((ps)’%).
Accordianly, we divide ([8.43)) into four parts as ([B.42-1)—(B8.42-4)). The first part is
X (r) /0 o) s () ()
: /Jrozps)d21 (Ee’%ips + ce2ﬂps> Xoi—2<.<9it2(8)s" 1 f(s) dsdp; (3.46-iia)
0

the second part is
oo _d=1 oninr -
r2X2a'('r’)/ (pr) ™ = ™7 X1 (pr) Xk (p)p™
0

+o0 |
: / O((pS)_%)XW'—QS_SQj-Q—Q(S)Sﬁ—’—d_lf(S) dsdp; (3.46-iib)
0

the third part is
+oo
_dt1 _
xa(r) [ 0((r) il ()™
0

400
/ (ps)~ = <ce 2’”p8+062’”ps)x2] 2c.coir2(8)sP T f(s) dsdp; (3.46-iic)
0

and the fourth part is
400
_dt1 _
xar) [ 0((r) il (o)™
0

-/+OOO((/)S) d+1)X21 2c.coir2(8)sP T f(s) dsdp. (3.46-iid)
0

First, we consider (B.46-11a), which is equivalent to
+oo
—d=lyy TLPT
25 )]Xm(?“)/ e*™ x> 1(pr) X2+ (p)
0

—+00
/ <5€72m +Cezmps>><2f*2sé2f+2(S)Sd558 2 f(s) dsdp.
0



LARGE GLOBAL SOLUTIONS FOR NLS 31

d—=>5 —1

Then using Corollary .12 and Plancherel’s identity, we have
400
|B.AG-a) | 2 52¥] / (56—27%5 + 062mp8> Xoi—2<.<i+2(s)s 2 s 7 f(s)ds

0
-1

$2°7 X2 02(8)5 7 87 () 2 S I gy (3.47)

Using the relationship r ~ s, the term (3.46-iib))—(3.46-iid) can be treated in the similar way

as (B.42-2)-([B.42-4). We just take the term (3.46-iib)) for example. Indeed, by Corollary
2.12] we have

_d=1y|| _d=1 Y _d41 B
e AN B e T R L
0 b

Slx-zccom2(9)s T £l a S 15 aareany (348)
Similar as (8.42-3), (8.42-4)), we have
@A) |2 + BAETD 12 S || ]y (3.9
Combining with ([8.48), (8.49) and (3.47)), we obtain that
”M)"Lg rS HfHLQ({\x\AQJ})

2
L3

Hence, we have
Ixes (r) - @B 22 < 1] o apasy-
Therefore,

+00 +oo
”(M)H%g 5 Z ”X2j(r) ’ (Im)"%% 5 Z HinQ({‘x‘N2j}) SJ HinQ(Rd)

=k j=—k
This last estimate together with (3.44)), yields that

122Dz < | £ 12 g0y (3.50)
Now we consider the second part (3.42-2). Using the formula,
8p627rip7" sinf _ 2Qmirsin @ - 627rip7" sine’

and integration-by-parts, we reduce ([8.42-2) to

T2 s X2 (0) cos’2 0 -
/ / 2miorsing X2 a0 92 x=1(pr)xor ()"
0 0

“+o00

(2mi sin 0)?

: / O({ps)~1%)s" 1 f(s) ds] dp.

0

Then by Corollary 212 we have
< L a1 [ ~10Y B+d—1 cos®™? 0
1G22 s S | |02 [xor o) O((ps) )" f(s) ds| || xo2(0) > dt
0 0

Lz =0 sinz 6

g

e [ 0 ) )]

Here we regard x1, x7, x| as the same because they have the same properties we need. From
the explicit formula in (3.10), we note that

& [0((ps)~1%)] = O(s7(ps)™"?), for j=0,1,2.

.
L3
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Hence, we get that
+o0o
ot [ Ollps) )74 ) s
0

+00 +oo
< / Vot ()p™ {ps) 105254 f(s)| ds + / Yot ()P ps) 105541 £ (s)] ds

+00
_ _ _10 d=1
S [ o) [os) "+ (o)) o) "5 ()] d.
0
Therefore, by Holder’s inequality, we have
d—1
1BA2=2) [z S lls fllez S 1S llr2@a)- (3.51)

For the term (8.42-3), we split it into the following two subsubparts again,

400
r? / O((pr) ") xz1(pr)xar (p)p™"

“+oo
/ / 727rzps sm9 (9/) COSd72 9/ d@'XS2_k<3)36+d71f(s) dsdp7 (352—1)
and

r? / . O((pr) ") x=1(pr)x2x(p)p*

+o0
/ / e 2mipssind’y > (60) cos™ 20 df' x5 (5)s" T f () dsdp. (3.52-ii)
By Holder’s 1nequa11ty, we have
(BEZD] < e (er)xas (00|
P

s

2
_T
2

then by Plancherel’s identity, it is further bounded by

X<2-* (s)sd’?’s% f(s) ’

+oo
/ 6—27rzps sin 6,X§2—k (S)sﬁ-i—d—lf(s) ds L2X2% (9/) COSd—Z ' d@l,
0 b

P Xz ()20 72 7O

L2
Hence, since d > 3, we have

d—1
IB32=D ez S lIs 2 fllez S 1 1lz2ee- (3.53)
Now we consider ([3.52-11). From Lemma [3.6] we have

™

2 Ly - . .
/ €f2mpssm9 XE%(G/) COSdiQ 0 do = (pS)f% (Eef%rzps 4 Ce2mps> + O(( ) M).
-5

Accordingly, (B:52510) can be further divided into the following two sub®-parts again,

o0
7“2/0 O(('OT)_S)le(pT)XQk(p)pd—l

+o0
: / (ps)’% <Ee2mps + ce’z’””’s> Yo+ (8)s7 T4 f(s) dsdp; (3.54-iia)
0
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and
“+o0

r? O((pr) ") xz1(pr)xar (p)p"

0
+o0
/ O(( 2 ) xso-r(s )sP L f(s) dsdp. (3.54-iib)
0
Thanks to the power of (ps)_d% in the integral, we can deal with (3.54-1a) as in (3.52-),
which implies that

BT S 7 s (1209

Since d < 5, we have

IB.540a) | 2 S [l 22y (3.55)
The term (B3.54-1ib)) is controlled by

_ oo d—13 d—7 d
[ el s s (TS T SR )
Hence, by Holder’s inequality, we obtain that

@540 |2 S 111l 22y (3.56)
Therefore, together with (3.55) and (3.50]), we get

IBE2D) (2 < I f 1|2 ra)-

Hence, combining this last estimate with (3.53)), we get
1B42=3) |22 S 11f || 2mey- (3.57)

For the term (3.42-4), it can be controlled by

re? / +OO/ Xz1(pr)xar (p)(ps)~0p? 07T f(s) dsdp.
Similar as (3.54-iib)), we have that
1B22=A) |z S 11|22 @) (3.58)
This together with (8.51)), (8.57) and (B.58), gives
e P T

Hence, this last estimate above combined with (3.41]), yields the desired estimate. U

Based on Proposition B.13] we have the following estimate which can be regarded as the
extension of the Bernstein estimate.

Corollary 3.15. For any s € [0,4], and any integer k > 0, suppose that [ € Hs(Rd), then
| S 2% P (o) sy

Here the implicit constant is independent of k.

Xzi (P2’“ (lef))out/m,kqg-gkﬂ 15 (RY)
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Proof. We only consider the case when s = 4, since the other cases can be obtained by the
interpolation.

First, we give some reductions. Note that for the radial function g, we have the following
formula, for any integer s > 0,

s

(=A)Eg(a) =Y e/ *0lg(r),

J=0

where ¢; are the constants dependent on d and j, and r = |z|. Therefore,

X>1 (sz (lef))out/in,kflg-glwrl 74 (RY)

4
S Z Cj HXZI("’)T%& (PT“ (XZlf))out/m,kqg-ng (r) HLg
§=0

Hence, we only need to show that for any integer j < 4,

HXEIO“)T%% (P2’“ (lef))out/m,kqg-gkﬂ (T)’ L2 S 2ijP2’“ (XElf) HL?(Rd)' (3.59)
Furthermore, from Definition [3.4],

J
o] (P2’“ (lef))out/in,kflg-SkJrl(T) - Z Cﬁriﬁiﬁjl

j1=0

+oo
: /0 ol (J (pr) — K (pr)) Xor (p) ' F (Pox(x1)) (p) dp, (3.60)

where we have simplified the notation and denote

X2k (/7) = sz—lg-gzkﬂ(/?)a

and the constants ¢; may change line to line in the following. Moreover, we note that

o ((pr) — K (pr)) = ()03 (7(or) — K (pr).
Hence, (3.60) reduces to

J +oo

> e / 03 (T(pr) = K(pr)) xax (p) p* 9 F (P (x21)) () dp.

J1=0 0
Further, by integration-by-parts, it turns to
> e [ (or) = K(pr)) 0} [xan (o) 7 4 F (P (1 £) 0)] .
1=0 0

Therefore, we obtain that
0] ( Py (lef))out/in,k71§-§k+1<r>

J +oo
_ E B
= Cj T
0

L <J (pr) — K </”“>) oy [sz (p) phpd“]f (sz(lef))(p)] dp

J
+ Z le'f’ﬁj/
0

Jj1=0

—+00

(J(or) = K(pr)) xox (0) 503 | F (P (x211)) () dp:
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Therefore, to prove (8.59), we only need to show the following two estimates: For any j; < j,

|

)50 [ (o) = K (o)) 03 o)

< F (P (x210)) (p) dp|| |, S 2% | Por (x21 ) || 2y (3.61a)
and T
a5t [ () = K o)) s
OB [F (P (e 1) @) o, £ 2MPo (o )| sy (361D)

For (B.61al), note that r 2 1,k > 0, it thus reduces to show

+oo
HT‘B/ (J(fn“) - K(/”“)) o [)@k(p) p“pd‘l}F(Pak (x=1/))(p) dp
0
S [P (x=1f) HLQ(Rd)'
Then we can prove it in the same way as Proposition [3.13] Indeed, we can regard
o [ka (p) pjlpd‘l] as  xar(p)p™ ",

because they have the same properties used in the proof of Proposition [3.13]
For (3.61Dh), we first consider

L2(R%)

o1 [F(Pu(x11)) (0)].

which is equal to

too
/0 o (J(ps) + J(—ps)) sPT Py (X1 £) () ds.
Using the relationship
) Jio_.
03 ((ps) + I (=ps) ) = (g) 01 (J(ps) + J(=ps)).
we have

8 [P ern))0)] = o [ 00 (905) 4 T09)) 0 Py (e 5) s

Then by integration-by-parts, to prove (3.61h), it suffices to show the following two estimates.
The first one is

le(T

/ (J (por) — K (pr)) Xar (p)p"!

)T%T_ﬁ_j i
0
+oo
: / (T(05) + T (=p3) )5 Py (o) () dsdp|| | S [[Por (o) | i (3:62-1)
0 ™
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and the second one is

‘ le(r)r%r_ﬁ_j/
0

—+oco
() 2)) 702 [P () s
N QJkHPQ’“ (lef) HL?(Rd)' (3.62-2)

For (B:62-T), we drop x>1(r)r~7 and reduce the left-hand side of ([B.62=1) to

+OO(J (pr) — K (pﬂ) Xt (p)p"™!

s /0 +OO(J (pr) — K (pr)) Xar ()™

+oo
(9094 909) 5 P (o1 ) 5) sy
0
Note that by Definition [3.4] it is equal to

H (P2k (lef))out,k: HLQ(Rd)'
Thus the estimate (3.62-T)) follows from Proposition [3.13
For (3.62-2), we split its left-hand side term into the following two subparts again:

[tz |
0

. /0+°°(J(PS) + J(—ps)) 55+d71+11X§1(S)8§1 [ng (lef)] dsdp

Ly

T (0m) = Kr)) v 0)

(3.63-1)

)
2
LT

and
—+oco

(T(r) = K (pr)) xor ()"

|

)T
0
+OO . .
. / ( J(ps) + J(— p3)> ST ()00 [pzk (X1 f)} dsd,o”p. (3.63-ii)
0 2
By Definition B.4 again, (3.63-i)) is controlled by
H (Xgl(’f’)?“jlazl [sz (lef)])
Hence by Proposition 3.13] it is further bounded by
) x<1(r)r oy [sz (lef)]
Note that for any radial function g,

éﬁﬂﬂz(ﬁTVYE@) (3.65)

Therefore, using (3.64]) and the formula (3.65), we have that
(Im) SJ 2jlkHP2’C (XZlf) HLQ(Rd)'

L?(R?)

out,k

(3.64)

L2(Rd)
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or (3.63-11), we note that
+o0

BE3DD)° =) 27"
h=0

Xon (r)r T ™ B/OW(J(W) - K(pr)) Xar (p)p"!

,/;OO(J(ps) +J(_ps)) Brd=Ltiny_ (5)0 [PQk (X>1f ]

Due to this, we may split (B63-1)> into the following three subsubparts again. The first one
is

iowh (r)r = ? /0 +OO(J (pr) — K (pr)> Xar (p)p ! /O +OO<J (ps) +J (—,08))

. , 2
. $5+d_1+]1X21($)X2h72§.§2h+2(8)8§1 [sz (lef)} dsdeLQ; (3.66-ii-1)

the second one is

Zzﬂ w7 [ (m) = Kion) o™ [ (009) + I -09)

- §PFAIHI ) (5)xsgnia (5)O01 [PQk (X1 f)] (3.66-ii-2)

and the third one is

3 2 () 5 / +°°(J<pr> ~ K(pr)) xar ()" / +°°(J<ps> +J(=ps))

I (5) e -2(8)00 [P (o f) | dsdp | (3.66-i5-3)

Similar as (3.63-1), from Definition [3.4l and Proposition 3.13] we have

BRI . 2
EOETED) $ Y 27 -2z om0 (000 [P ()] |,
h=0

Rd)
Since j; < j, it is further dominated by

>

h=0

2 2

Xoh—2<.<oh+2 (T)le(r)ail [sz (X21f)}

3

x>1(r)07 [sz (X>1f)]

L2 Rd) L2 (]Rd) ’

Using (B.65) again, it is bounded by 2%'%|| Py (x>1f) H;(Rd).

For (3.66-1-2) and (B.66-1-3), we only consider the former, since they can be treated
in the same manner. From Corollary B.10] we split (8.66-1i-2) into the following two terms

again,
=t i Foo . .
Xah (T)’I“2’r5/ (J(p?“) — K(pr sz / / —2mipssin 0
" 3
2

+oo
> 2
h=0
x>z (0) cos™* 0 d955+d’1+11X21(S)X22h+2 (s)09" [PQk (Xz1f)]

(3.67-ii-2a)
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and

—+00

IERd I / () - K0 () / O((ps)™")

h=0

- X>1(8) Xzonta(s)s T gt [PQk(X>1f ]dsdp’

(3.67-ii-2b)

L2(Rd)

r ([B.67-11-2a)), due to the non-resonance of the phase, it can be treated similarly as
(.43-]). Indeed, from Corollary B.9] we write

us

Hor) = K(pr) = |7 s, o) ds,
0

where 7(0, pr) is defined as
0(0, pr) =x<i(pr) cos™ 0 + xz1(pr)xz7 (0) cos™ 0

7a(0).

+ Xa<<alpr)x<=(0) cos™ 6 + Xzﬂ/ﬂm

Therefore, (3.67-11-2a]) can be rewritten as

+oo ) 400 p4oo ,
Z2—jh ‘X2h( r\r 2 re // / / 27rzp(7"51n9 ssmG) d—1 (0 ,07“) X2k( )
h=0

| ' 2
CTHEII(8) X s (8)0 [sz (lef)} x>z (0) cos™ ' dpdeeldeHm

Note that we have (8.28). Thus using the formula (3.29]) and integration-by-parts 10 times,
we further control (B.67-11-2al) as

i”)@h /+OO/+OO Xk ()T Xz (8) Xsanta ()

Hence, by the Holder inequality, we get

GBS < ’X>1 ) [sz (X>1f)”

on [sz (x=>1/f) } ‘ dsdp)

L2(Rd)

L2(R%) S 22jlkHP2’“ (lef) Hi?(Rd)'

For (B.67-ii-2D)), thanks to the high-order decay of p and s, by Holder’s inequality, it is
controlled by

o 2
X22h+2(3)35+d’10“18g1 [PQk (lef)} L

ZQ ]h2(2 h2 9k’

Hence, it is also bounded by

2751 P (x21£) | 2 gy

Therefore, we obtain that

B.66-11-2) < 22°%| Py (w1 f) |2 -

Collecting the estimates above, we finish the proof of the corollary. O
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4. ESTIMATES ON THE INCOMING/OUTGOING LINEAR FLOW

In this subsection, we present some important properties on the incoming/outgoing linear
flow.

4.1. “Incoming/outgoing” decomposition of the linear flow. Let N > 1. First of
all, we show that the linear flow €2 (PsnX>1f)ouw is almost ”outgoing” with the frequency
dependent velocity. To do this, we use the Littlewood-Paley decomposition. Without loss of
generality, we may assume that N = 2% for some ky, € N, then

Ponxz1f = Z P (lef),

k=ko

and thus

[e.e]

(PENXZlf)out/in - Z (P2k (lef))out/in ’

k=ko

Now we consider (ng (le f))out Jin’ for which we only consider the outgoing part. First,
from Proposition B.11], we have

(Por (X211)) e = (P (X211)) stz + Pk (4.1)
where hy, satisfies the following estimate,
1Pkl i ety S 2_1OkHP2’“ (XZlf) HL2(]Rd)' (4.2)

Due to this estimate, we only need to consider (ng (le f)) Further, we write

out,k—1<-<k+1"

(PQ‘“ (XZlf))out,k—1§-§k+1
= X<1 (PT“ (XZlf))out,k—1§.gk+1 +X>1 (PQ‘“ (XZlf))out,k—1§-§k+1 :
From Lemma [3.12] we have

HXS% (Par (lef))out/in,k—lggk—f—lHH#(d)(Rd) N 2_2kHP2’“ (x=1f) HL?(Rd)' (4.3)

So it is left to consider X>1 (sz (lef))outk_1<_<k+1. The first estimate is

Proposition 4.1. Let k > 0 be an integer. Then there exists § > 0, such that for any triple
(v, q,7) satisfying that
2d—-1 2d-1
< Y
r 2

2
¢>2,r>20<y<1 ~+ (4.4)
q

the following estimate holds,

H v [X§5(1+2'€t)“3itA (XZi (P2’“ (lef))out,kflg-glwrl )} ’

<9 (5—d7(’7737§))kHP2k (lef)

LILT (R+ xRd)

2 gy

The same estimate holds when e A

and y are replaced by e~ and ;,, respectively.



40 MARIUS BECEANU, QINGQUAN DENG, AVY SOFFER, AND YIFEI WU

Proof. We only consider the estimates on the “outgoing” part, since the “incoming” part
can be treated in the same way.

First, from the definition,
(P2’“ (XZlf))out,kqg-gkﬂ(T)
+oo
= T‘ﬁ/o (J(pr) = K(pr) xar (p)p" ' F (Par (x211)) (p) dp.

Here we use the notation xox(p) = Xor-1<.<ov+1(p) again. We denote 7(6,7) as

(9) cos? 20 + ng(r)#ﬁd(e)-

7(0,7) = x<a(r)Xx< (2mir)s

Sk}

Then

Moreover, from Corollary [3.9]
J(T) _ K(r) _ /2 62m‘rsin0X2%(9) COSd—Z 0.do + /2 ezwirsinﬁﬁ(e’r) de.
0 0

Accordingly, we split (sz (le f)) (r) into two parts, which are denoted by F}

and F5, as follows:

too gy
Fulr) =7 [ [ o, or) db xu ()" F (P (o11)) (9) s
0 0

out,k—1<-<k+1

and
+oo g
Fo(r) =r~" / / XTIy~ 2 (0) cos 20 df xox (p)p" ' F (Por (x211)) () dp.
0 0

We consider F} first, and claim that for s € [0, 3],

5 27(57%78)]6 ’PQIC (XZlf) HL2(Rd)' (46)

||X2iF1| H#(RY)

To prove (6], we need the following lemma.
Lemma 4.2. Let d = 3,4,5, and f € L*(RY), then

Xz D) F (P (o) [y £ 2% 1P (210 o
Proof. Note that
X228 (0)F (Par (x211)) HLg =€ X200 (O)F (Por (x21f)) (5)HLg(Rd)
<2 THF (B (1) [z (4.7)

From (3.3)),
F (PQk (XZlf)) == 9’ (|ZL‘|[3P2k (XZlf)) .
Then by the Plancherel identity, we obtain

@D 227%1‘2“\545132’6 (lef)HLg(Rd)
—1

<27 M0l xey P (o1 gy + 277 1 X2 Pt (o) gy
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Note that 3 < d < 5, we have that —1 < < 0. Then it is further bounded by
_d-1 _d-1
272 Flxer P (X1 ) || ooy 272 [P (o1 ) [] 2 ay-

From Lemma [2.4] it is controlled by 2*%'?}}13% (X21f) HLQ(Rd)-
mate. U

This gives the desired esti-

By (4.5), Holder’s inequality and Lemma [4.2] we get
OIFONS 77 s (00| - e (0)F (Po (1) [
P

< T—5—52(d—%)k2_%k HPQk (lef) HL2(R‘1)
< 26k Py (21 f)

>1
23

(P

Therefore, we obtain

IX>1 Fillr2@ay S Q(g_S)kHsz (lef)HLz(Rd)-

For the estimate on the high-order derivatives, we note that for j = 1,2, 3,

[tz :
aﬂ/ / eZWZPrsmGﬁ(e’p,r) do = O(T’_Sp_5+]).
o Jo
Hence arguing similarly as above, we get that for s = 1,2, 3,

(5—d_
”XziFIHHS(Rd) S2767: )kHPQk(XZIf)HLQ(Rd)'
For general s € [0, 3], we obtain it by the interpolation. This proves (4.0]).
Using Lemma [2.3] we obtain that

< ztA ’
H|V| [X<6(1+2kt) (X>1F1)} ’ L9 L (R wR) H (XZiFl) Ly (R )
Then from Lemma 2.9] it can be controlled by
d 2 d
||X2§F1| ma®d),  with s = ) +7 - 5 T

Now applying (4.0), it gives

A R T E s L LT I
Now we consider e**4 (Xz 1Fy F: ) which is equal to
+oo 3 o
/ / ztA (T)627rzprsm0>x %(9) COSd 2 0 do
X2 (p )p 'F (P (x=1f)) (p) dp (4.9)

To give its estimate, we consider the following term,
itA ([ — 2mipr sin 6
et (T BXZi (7’)6 ipr sin ) )

Using the formula in Lemma 2.7, we have

eitA (Tfﬁle(,r)e%riprsinG) _ id/ ez\z y? +27r2p\y|sm9‘y‘ —B i(y) dy
t2 JRrd
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We expand the phase and rewrite it as

ie if/ o xyﬂ\y\ +2mp|y\s1n€|y| B l<y) dy
f;z
—e r / / o) pd=1-0 %( r)drdw, (4.10)
|w|=1
where ¢(r) = —52r + T —|— 27prsin@. Then
&' (r) = —% + — 5 + 27psinf.

Note that p ~ 2% r ~ 1 and sinf > 1 7, o choosing d small enough, we obtain that when
2| < §(1 + 2F¢),

1

o) = (5 + 7). (4.11)

Moreover,
1 )
" (r) = o and oY (r) =0, forj=3,4,---. (4.12)

Hence we can use the formula,

) 1 )

i¢(r) i(r)

=T )

and integrate by parts to obtain that for any K € Z*, there exists cx € C, such that

eztA <7, ﬁX> L (T)€27rzp7" sm@)

= _g il /|W| 1 /+OO T)&,)Kl [gb/b)rd_l_ﬁxzi(r)] drdw. (4.13)
Using Lemma 2.6, we have
O (ﬁ&«) - Lzs'%r)"’dlﬁxd )
S (o) () o)

I, lgeNJ eN;
Li<jgilit+Hlg+'=K

Since ¢V)(r) = 0 when j > 3, we find that for any integer [ > 0,

oLy (@)
% (50) = oy

w1 el 1Y (¢ ()t
* () # (55) ~wopee
This together with (4.11]), ([AI12]), gives

it implies that

s e (1L :
*Gw) 2 Go)ls e
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Moreover, we have

AP 0] £ )

Combining the above two estimates, and noting that Iy + - - -+ [, + ' = K, we obtain that

() () [ ]| €

r > 5 Krd7176XZl(T)'
Note that when 0 < ¢ < 1, it is bounded by

(5 +p)

£ d—1-8
r r);
TK+3pK_3 le( )7
when ¢ > 1, it is bounded by
L a1p
r r).
TKpK XZl( )

Hence, choosing K suitably large, we get

0 (552) [ e )| S 0 ).

Inserting this estimate into (4.13)), we obtain that

X<s(s2rpe™™ <7“_5X>1(7“)62m7"5m6)} <(Ep.

Hence, from this estimate and (4.9), we obtain that

RO / +07ka (0)p" M F (P (x211)) (p)| dp.
‘mmgmwm@mmmmyngﬁmmxmede
(1) L e 0)F (P 01 ) |-
Nmmymmmzznmmmmbmmémz
(1)~ 20 2R T P (xo f

X<s(irorne™™ (XE%FZ)

Xor (p) "M

) 22 gy
That is,

X<sasorpe™™ (XZiFQ)‘ S <t>_g2(g_10)kHP2k (xz1/) HL2(Rd)'

Note that the structure of e’ (XZ %Fz) does not essentially change when we consider the

estimates on the high-order derivatives, hence in the same manner, we obtain that for any
even integer § € [0, 10],

5 i _dd
"W [X§5(1+zkt)€tA(X2iF2)” S (1) 22z IO)kHPyc (lef)HLz(Rd)-
Therefore, by Holder’s inequality, if
1 d d
~+—-<g q22 r=2
qg r 2
(note that this condition is implied by (4.4])), then we have

190 ressaroe™ s sy S 2F P P 205)

12y
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Since d < 5, by the interpolation, we obtain that for any s € [0, 10],
H V|* [X§6(1+2kt)6itA (XZ%FZ)] ) —ok HPQ/C (X>1f) HL2 (Rd)" (4.14)

Now collecting the estimates in (4.8) and (4.14]), we prove the proposition. O

LILy (R+ de)

The following result is the incoming/outgoing linear flow’s estimate related to the outside
region.

Proposition 4.3. Let k > 0 be an integer. Moreover, let r,vi,v2,5 be the parameters
satisfying

1 1
s ’yl+$:d(§—;)

Rl
N | —

T>2a a’YlZ()) ’YQZOa s+ Z

Then for any t > 0,
H M [X>5(1+2’“t) <X> (P2’“ (XZlf))out,kqg-gkﬂ )] )
S (L4 257207 | Py (3 )

L7 (R9)
|2 gay
itA

The same estimate holds when e and . are replaced by e > and ;,, respectively.

Proof. As before, we only consider the estimate on the “outgoing” part. Moreover, we only
need to consider the case of r < co. Indeed, when r = oo, then by the Sobolev inequality,

H Mk [X>5 1+2’“t) <X> (P2k (X>1f))out k—1<-<k+1 )] HLOO(Rd)

SJ H|V‘W2 > [X>5(1+2kt) (X> (P2’c (X>1f))outk: 1<-<k+1 )}

Hence we only need to consider the case of r < co, by replacing v, by 2+ if necessary.

HL°° (RY)

First, we split

V|7 [Xzé(uzkt)eiﬂ( >1 (P (X>1f))0“tvk_1§'§k+l )}

into the following three terms,

P4 |V|” [X>5 142kt €’ (Xzi (sz (X21f))0ut’k_1§,§k+1 )] (4.15a)
+ X§52(1+2kt)P21|V|72 |:X25(1+2kt)eitA <X21 (P2k (lef))out,k—1§~§k+l >] (4.15Db)
+ X352 (1428 P>1| V[ ™ [X>5 142k €" <X> (Pax (lef))out,kqg-gkﬂ )} . (4.15¢)

Now we consider the first term (dI5a). From Lemma 2.1 under the assumptions, we
have

|z g]

Hence, this last estimate combined with the Bernstein inequality and Lemma 2.8 gives that

H m‘ X>6(1+2k¢)€ <X> (Pas (lef))out,kflg-gkdrl) L7 (RY)
e (Xzi (Por (lef))out,k—lg-gkﬂ ) ’

X>1 (P2’“ (lef))out,k—1§~§k+1

L (Rd) 5 Hg”Hs(]Rd)

Lr Rd N‘

< (142%™

Hs(R4)

S(1+2q)"

H3(RD)
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Therefore, by Corollary B.13] we get
”m} L7 (R4) 5(1 + th)iflekHP?’“ (XZlf) HL2(Rd)'
For the second term (4.15b), by Lemma 2.4l we have that for any M > 0, K > 1,

Then using the inequality above and treating similarly as (4.15al), we obtain that

|@15D)|

X<sx P>1|V [ (x>K9) - Sor KM||x>x9| L (R

Lr(R4) SM(l + th)_M‘

X>a(112k0€ (Xzi (Por (X1 ))oum—lssw ) ‘
<pr (14 2k~ HXzi (P2’“ (XZlf))out,k—ls-SkJrl }
<m(1+2%) _M_MQSRHP% (x=1f) HL?(Rd)'

L7(R%)

Hs(RY)

For the third term (4.15d), we use the similar argument as above, and obtain that

H M)‘ X>5(1+2’€t) <X> (P2’“ (XZlf))out,kqg-ng) ‘
From Lemma and Lemma 2.8 it is further controlled by
(14 2kt)™n

Lr Rd N 1_'_ 2kt)

2 +s(Rd)

X>1 (P2’“ (XZlf))out,k—1g-§k+1
Now using Corollary B.I5l we get

H m’ 1+ 21@41 2(72+s)kHP2k (X21f) HL?(Rd)'
Combining the above estimates on m—m, we finish the proof of the proposition. [

Ho2ts(RA)

Lr Rd N

Now an easy consequence of this proposition is the following space-time estimate.

Corollary 4.4. Let (v,q,r) be the triple satisfying

1 1 1
>0 >1 >2 —<(d-=1)(=—~- 4.16
720, ¢21,r>2 - ( )(2 T), (4.16)

then the following estimate holds,

H v [)(2<5(1+2kt)‘3itA (le (P2’“ (XZlf))out,k—1g-§k+1 )}

S 25N Py (o1 f) | (4.17)

LILT (R xRY)

Moreover, for any § > 0,
‘V| |:X>5 1+2kt) <X> (PQk (lef))out,k—1§-§k+1 >] L2130 ([3,4-00) xR¥)

55 2(_%+’y+)kHPZk (XZl.f) HLQ(Rd)' (418)

—itA

The same estimate holds when e and .. are replaced by e and ;,, respectively.

Proof. From Proposition [4.3] we have
H ‘VP |:XZ5(1+2kt)eitA (le (PQk (lef))out J—1<-<k+1 >i| ’ LILL (Rt xRY)
<2 V+S+)kH L+ Qk HL‘!(R+ HPQ’“ (X>1f) HL2(]Rd (4.19)
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where the parameters

1 1 1 1
— IS = d-1)(: ).
LT ( )(2 T)
By the condition (4.16]), we have that % < 71, and thus
12y, S 2

Combining this estimate with (4.19), we prove (4.I7). Since

(142%™ S 27K,

HL‘! ([6,400))

we have (4.18). This finishes the proof of the corollary. O

4.2. Improved Strichartz’s estimates. Now we collect the estimates above, and obtain
the following results.

Proposition 4.5. Let N > 1,s9 > 0. Suppose that (s,q,r) is the triple satisfying that
(¢,7) = (00,2) or

1 1 1

2 q T
and
2 dy 1 1 1
yozso—s—max{(d—5)—(—+—), ————— }>O.
q r)' 2 q r
Then

H|V‘S e (PzN(lef))outHLng(R‘Fx]Rd) 5 N_,Y(H—”PENXZIJC|

Moreover, for any 9,

Hoo (R (4.20)

HveitA (PEN (lef))outHL%L%O([57+OO)>de) S N17507%+"P2NX21f| Hso(R%)- (4.21)

The same estimate holds when e and . are replaced by e™™> and ;,, respectively.

Remark 4.6. Now we list some triples (s, ¢, 7) which satisfy the conditions in Proposition [4.5]

and will be used later. First, for any r > 2(d 1) ,0<s<1,50>s— =, we have
H‘v|s e (PZN(lef))outhLr R+ x R4 S NS?SO?FJFHPZNXEJC‘ H?0 (Rd)" (4.22)
2L ) RS
Second, for any r > 2,59 > 3 — 1,
Heim (PZN (XZlf))outHLgoL;(Wde) S N_SOJF%_%JFHPZNXZJ} He0(Rd)* (4'23)
Third, for any p > max{1, 3} and any sy > 5 — %ﬁv
e (Poy (x51f)) outHL2pLdp(R+><Rd) < NSO+ §§§+HP>NX>1f} oo (Re)" (4.24)
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Proof of Proposition |4.5. Again, we only consider the estimates on the “outgoing” part, since
the “incoming” part can be treated in the same way. Moreover, by choosing s < sq, the case

of (¢,7) = (00, 2) follows from Corollary B. 15 Hence, we only consider the case when r > 2.
Let N = 2% for some k, € N.

First, we recall the reductions given at the beginning of Subsection 4.1l We write

ztA(P>NX>1f Out Z e”A (Pa X>1f))out

k=ko

Z RN ( sz (X>1f))out,k—1§.§k+1 + hk>

k=ko

+ Z ZtA( P2k (X>1f))out,k71§'§k+1 ) .

k=ko

Let (s, q,r) be the triple satisfying

2 2d—1 2d-1 d 2 d
>0, —+ < , s+ s — |-+ —) < ).
q r 2 2 q T

In particular, (s,q,7) = (2,2, 7° 2) verifies the condition above. Then we use Lemma [2.9]

(4.2) and ([43), to get

o0

2

k=ko

6itA|v|8< % (PQk (X>1f))out,k—1§~§k+1 + hk) ‘

LILL (R+ xRA)

Z (HX< PQk X>1f))outk 1<-<k+1 HHu(d) (R4) + Hh’fHHMd) ]Rd)>
k=ko

o0

S Z 27%HP2’“ (lef) HL?(Rd) S HPZNXZlfHH—l(Rd)' (4.25)
k=ko

Furthermore, we write

Zem( > (P2’“ (X>1f))out,k—1§'§k+1>
k=ko
= Z X<§(142+¢)€ <X> (P2’c (lef))out,kqg-gkﬂ)
k=ko

+ Z X26(1+2kt)eitA( >1 (P2’“ (X>1f))out,k—1§-§k+1 )

k=ko
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On one hand, from Proposition 4.1, we have that for any (s, ¢, r) satisfying (4.4) (note that
the condition (4.4]) is implied by the conditions in this proposition),

Z H V]? [X§<5(1+2‘“t)eitA (Xzi (P2’“ (XZlf))out,k—1§-§k+1 )}
k=ko

LILT (R xRd)

< 27(5%7(87%7%))]?“]3219 (1) ey S N7 Povxz1 f
k=ko

Hs0 (Rd)'
On the other hand, from Corollary [4.4] we obtain that

Z H V[* |:X26(1+2’“t)€itA (Xzi (PZI“ (XZlf))out,kqg-gkﬂ )] ’

k=ko

S Z 2<7%7%+%+£+)k”P2’c (x>1f) HL2(Rd) SN Ponxz1 f]
k=ko

LILE (R xRA)

H#0 (R4);
and similarly,
itA
Z Hv [X25(1+2‘“t)6 (Xzi (P2’“ (XZlf))out,k—1§~§k+1 )]
k=ko

d—2
SN Py 1 f || oo ray-

Then collecting the estimates above, we give the desired estimate and thus complete the
proof of the proposition. O

LFLg ([6,+00) xR9)

5. PROOF OF THE THEOREM [L.3

In this section, we are ready to prove Theorem [[.3l To do this, we need the following
preliminary.

5.1. Definitions of the modified incoming and outgoing components. With the
preparations in the previous sections, we can define the modified incoming and outgoing
components, say fi and f_, of the function f. First of all, we split the function f as follows,

[ =Pcnf+ Ponx<if + Ponxsuf

Definition 5.1. Let the radial function f € S(RY). We define the modified outgoing com-
ponent of f as

1 1

fo = 5 NS+ §P2NX§1f + (Pevxz1]) s
the modified incoming component of f as
1 1

fo= 9 NS+ §P2NXs1f + (Poxxz1f),,

From the definitions, we have
f=Te+ ]
Moreover, Definition [5.1] combining with Proposition gives the proof of Proposition [L.1]

To prove Theorem [L.3] we only consider the outgoing part, since the incoming part can
be treated in the same way. That is, initial data ug = f.
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Denote vy, = "4 (PZNlef)out- Let w = u — vy, then w obeys the equation

0w + Aw = |u|Pu,
(5.1)
w(0,z) = wo(x),

where

1 1
wo = s P<nf+ §PZNX§1JC-

2
Then by Bernstein’s inequality, and (L6l (in which €y = 1), we have
1-s
HwOHHl(Rd) 5 N 07 (52)

where the implicit constant depends on ||x<if||g1(re) and ||x>1f]

HS0 (Rd)'
The first result is the following local well-posedness theorem, in which the indices are
not sharp but enough for this paper.

Proposition 5.2. Let d = 3,4,5. Then there exists p(d) < ﬁ, such that for any so > 3
and any p € [p1, ﬁ), the following is true. Let f be the function under the same hypothesis
on Theorem [L.3 with ¢ = 1 and wy € HY(RY), then there exists Ty, > 0, such that the

Cauchy problem (B.1) is locally well-posed on [0, Tynas). Moreover, the blowup criterion holds:
If Thow < 00, then

t_lggw |w(t) || g (rey = +00.

Proof. 1t follows from the standard fixed point argument, and thus the proof is much brief.
According to the Duhamel formula, we denote

d(w)(t) = e wy +/0 e =92y (s) [Pu(s) ds.

For short, we further denote the parameters

1 1 3d — 2 e d—1
j:——i——7 821—7—
P2 d2d—1) d 2d — 1

g,
where ¢ is an arbitrary small positive constant. Fixing 7' > 0, we denote the norm
ol = llwll e rrz oy xmay + V)] 12 1z 0.7y et

From Lemma and Lemma [2.2] we have
lle@)| Shwollmye + (V)7 (Jul"u)]

2d
L2L3F2% ([0,T) xR9)

Slwoll ey + [[{V)*vr | 2 locll® +wl”
S0 H HLtL“” ([0.T) <R L?L%([O,T)xﬂ&d) L?Lgigg([O,T)de)
s p p

where 7, is the parameters satisfying



50 MARIUS BECEANU, QINGQUAN DENG, AVY SOFFER, AND YIFEI WU

Note that when p; (d) is suitably close to %5, we have 2 < 7, dfg < +%. From (4.22)-(4.24),
we have that for any sy > 3,

H#0(R%),

H<V>SULHL§L30(R+XR¢1) + ”ULHL?Lg%ggg(R-Fde) + HULHL?LgP(Rde) SJ ”f’

Hence, we get

H ULHL%OO (0.1)xRd) T HULHL Lﬁgg([o — + ||UL||L§PLgP([O7T)XRd) =r(T),

where r(T') — 0 when 7" — 0. Further, by the Sobolev inequality and interpolation, we have

Hw”LdeQ*dgg([o T)XRd)+||<V>§w||L;;°L;1([o,T)de) S ||w||L;;°H;([0,T)de)§
t x s

”wHLff’Li"([O,T)de) N
where § = 1(1 — s.) > 0. Hence, inserting these estimates into (5.3), we obtain that
lle )l Slwollsyee) +r(7) (1 + lwll”™).
Similarly, by choosing T' = T'(|| f || s (re), ||wo || 1 (rey) > 0 small enough, we have that for any
w; satisfying Mme < 2||lwo || g (ray for j = 1,2,
1
[l (wn) = @(wa)]| < 5flewr = well.

Then the proposition follows from the fixed point theory. O

In the following subsections, we will prove the boundedness of w in the energy space and
some space-time spaces. To this end, we define the working space as follows. We denote
Xn(I) for I C R* to be the space under the norms

1Al x ) =N~ ||h||L;>°H;(Ide) + Ne@pr o= ||h||L:g(1de)>

where the positive constants

3d
To(d— 2)

In the following, we restrict our attention to 3,4 and 5 dimensions. Moreover, fixing dy > 0,
we set N = N(dy) > 0, such that

and «a(d,p) =

toy 2
p d— )

P> n X1 oo ray < do- (5.4)

First of all, we have the uniform boundedness of the L®L2(I x R?) norm of w. Indeed,
choosing sg > 0, we have uy € L?(R?). Using the mass conservation law, we have

||U||L;>°Lg(1de) = ||u0||L2(]Rd)-

Moreover, by Proposition [3.13],

lvrllzperz(rxmray S Hf} o0 (RY)"

Hence, we obtain that

[0l e (xS Hf} Ho0(R4)" (5.5)
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5.2. Space-time estimates. In this subsection, based on the L;2-norm in [jw||x, ). we
shall prove the general space-time estimates we will use below.

Lemma 5.3. Let pi(d) > max{725,1}, then there ezists so € (0,1), such that for any
p € [pi(d), 755), there exist some constants oy (d,p) > 0, az(d, p) > 1 such that

HU’H 24, < 1+ Norldpri=so) ||y Hiﬁﬁ

2 (IxR4)

Proof. By Lemma 2.8 we have

2(R%) T H‘u‘puHLzLdﬂ(l Rd) <5'6>

HwOHLg(Rd) S (5.7)
Moreover, using u = w + vy, we have

el S [lloelPor] + [[lwlPwl]

L2Ld+2 (IxR4) L2L"l+2 (IxRd) L2L"l+2 (IxRd)

For the first term, we get

p < P
H|UL‘ ULHL%‘“Q(I R4) Hv HLQLd 2 (IxR4) HU HLOOLT(Ide).
Since % > 2, then by (£.22)—([.24) and (5.4]), we have
ol <o

L2Ld 2(1 R%)
and o,
< SN2 a0t

~

o]

Choosing 1 — sg small enough such that for any p € [1,4],

L¥L, ¥ (IxRd)

d+2 p
_ = 1-— 1) <0
we have that
H|’UL|p’ULH 2d S 1.

L2L3F2 (IxR4)
For the second term, when d = 3, we get

raeen |l
LO(IxR3) L L2 (IxR3)”

ol g, Sl
where the parameter

,
7“2:3(]9—1—1—50).

Since 2 < ry < 6, we further get

| b

o
L2T0(1xR3) Hw} Ly HL(IxR3)

Sl

L2LJ (IxR3)
[a(3,p) 2 +3(p+1—"2)](1—50) p+1
SN Vjw| Xn(D)"

Setting

T T
243(p+1—2), ax3,p)=p+1,

a1(37p) = a(?),p) 2 9
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we obtain that

el S 14 020 25

Therefore, we get

« S 7)
l0ll g rmsy S 1+ NEP O a0

and thus we get the desired estimate.

When d = 4, we have that

il Sl o]l
H|w| w Lng(IxR4 ~ L2LA(IxRY) O(IxR*) LgeL2(IXR?)

<Na(d,p)(1 $0) a2 HU}HL2L4([><]R4)HwHXN(I)

where the parameters

ro—2p— 1 ro(p — 1)
@=—— ag=—->

, az3=p+1—a —as.
ro — 3 o — 3 8P ! 2

Note that 0 < a; < é when p > % Hence, setting

a1(4,p) = a(4,p)az(l —ay)™,  aa(4,p) = ax(1 —ay) ™,

and by the Cauchy-Schwarz inequality, we get

e ((1—s az(4,p)
0[] s ey S 1+ NP0 | 207

When d = 5, similarly we have that

Sl

p
il ,, el o sy 101l
‘ | L%LSJ (IXRS L2LT(IXR5) L 0 IXR5 LOOL2 IXR5

Here the parameters
62—157’0 7’0(157’0—52)
= == 7 = 1 —a — ao.
T T —420 T iy —42 prizam—a

Note that 1 5 <ar <7} 3 when p > 1. Setting

a1(5,p) = a(5,p)az(l —ay) ™,  aa(5,p) = ax(l —ay)?,

and by the Cauchy-Schwarz inequality, we get

(5,
HwHLfL;TO(IXI[@) S L+ e H H?:Nifp
and thus we get the desired estimate. O

Remark 5.4. Taking p;(d) > 1, then we can roughly estimate that ay(d, p), as(d, p) < 20.
Hence, o (d,p), as(d, p) have a uniform upper bound when p;(d) is close to 5. Based on
these facts, the parameters as(d, p), as(d, p) defined later also have a uniform upper bound
when p;(d) is close to %5
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5.3. Morawetz estimates. In this subsection, we consider the Morawetz-type estimate of
Lin-Strauss [35], see also [14] for the interaction Morawetz estimates. For convenience, we
rewrite the equation of w in the following way,

0w + Aw = |wlPw + F(vp, w),

where F(vp,w) = |vp + w|P(v, + w) — \w|pw. Let

M(t) =Im -Vw(t, x)w(t, z) dx.

Rd |3j |
Then we have the following lemma.

Lemma 5.5. Under the same assumption as in Lemma [2.3, for any time interval I such
that 0 € I C RY,

t x |p+2 B 1+paz(d,
//Rd |«T‘ de dtg N3(1 ’ (Hw”XN(I "‘50”11]”)(;([2( p))

Proof. Note that

—1
M'(t) = Im/ (21 Vw + d—w)mda;. (5.8)
2] |z]
Since _
wy; = —iAw + i|w|Pw + i F (v, w),

we shall consider the following three terms,

d—1
Im/ - Vw + w ) (—tAw) dx; 5.9a
T L) ise) (5.9)

d—1
Im/ -Vw + ——w ) (i|w|Pw) dz; 5.9b
T o)) (5.9)

and
Im/ (2i -Vw + Ew) (z’F(vL,w)> dzx. (5.9¢)
|| ||

By a direct computation, we have

(E.9a) > 0. (5.10)

Indeed, by integration-by-parts,

o s[5

) dzx + G(w),

where
2r|w(t,0), if d =3,

G(w) = (—1)(d 3) /‘w|$\3 dr. Hd>3,

Hence, we obtain (5.10). Using 1ntegrat10n—by—parts again, we find

lw(t, z) |er2
. (5.11)
p+ 1 ||
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or (B.9¢), using the Holder inequality and the Hardy inequality, we have
d—1 —_
|(5.9¢)| S) / <2ﬁ -Vw + Tw) <iF(vL,w)> d:c)
x x
SUF G w) sz (19 e + | )

rSvaHL%(Rd)HF<UL7 w)”L%(Rd)

Hence, this last estimate combining (5.10) and (5.11)), and integrating in time in (5.8)), we
obtain that

p+2
//d \x| dxdt < max M(t +HVwHLDOL21X]Rd)||F(vL, Motz (5.12)
R

By the Holder inequality and (5.5), we have
mas M(t) S N3O0y . (5.13)

tel

Now we claim that by choosing sg close enough to 1,

s (d,
|F(vp,w)ln2rzmey S 1+ Sollwlle206. (5.14)

Indeed, we have
”F(Uva)”LtlLi(Ide) S H|UL|p+1HLt1L§([><Rd) + H|UL||w|pHL%L%(1de)
For the first term, by (4.20), we have that

p+l
HlUL| HLlLQ(IXRd ~ HULHLP“L?("*“(IXW) Sk

For the second term, when d = 3, noting that ro > 2p, we have that

(p—2)rg 2rg—4p

sl Pl s o rpsy SN0zl axe Il 8 g 10112 7 s
Note that by the interpolation and Lemma [5.3]
1 1
”wHLf}x(IxH@) S ”wHigoLg(IXRS)”wHing(IXRs) S+ NlEFzea@plA-s H H (5.15)
By ([@.22), we get
—s0+

Ll 2pee (1xra) S G0V

Therefore,

<5, N0+ (1 v (e s e 3.)) - ) w22 @P),

H‘UL||w‘pHLng(1xR3) Xn (1)

Choosing 1 — sg small enough such that for any p € (2, 4],
—2)r ro — 2p
(1= s0)(1+ L=2 3 p) + ST BraB)]) <1
o — 4 —4
we obtain (5.14). When d = 4,5, since 1 <p < 2, by (4.20) and Lemma [5.3] we have that

H|UL||w| HL1L2(I><]Rd Slvcl —Lm( IxRd) L2LI2% (IxR9)

<50( + N780+§+pa1(dyp)'(1*80)) Hw| I))?QECIISP)'
~ N
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Choosing 1 — sg small enough such that for any p € [2,4],

(1 s0)(1+ pon(d: ) < 3.

we obtain (B.14]) again.
Therefore, together with (5.12), (B.13) and (5.14]), we get

p+2 < AP3(1—s0) 5 1+paz(d.p)
d |x| dedt < N lwllxn(ry + dollwllx i)™ )
R

This finishes the proof of the lemma. U

The following is a consequence of the previous lemma.

Corollary 5.6. Under the same assumptions as in Lemma [0.3, there exists as(d,p) > 0
such that

1
16} S T 0 (0% d,
Hw”L:g(lde) SN () (1=e0 (H ”)?](vd(fi) + dg° ”wHXSI\(;(II;)>'

Proof. By the Holder inequality,

J[ro t x) |”+2
\w (t,x)|" dzdt < H\:c| 2 wHLw IxRY) dxdt.

From Lemma 2.1, we have
H|x‘TwHL°°(I><Rd ~ vaHLgoLg(lde) S N?’(l*sO)Hw”XN(I)-

From Lemma [5.5, we have

w(t, z)|PT o
/] b ol m' dudt S N ([lw ey + 8ol 57627,
R

Hence, we obtain

3d_()_g = «
fwt, 2)[" dedt SN0 (| T2, 4 6w ||XN Ip 2(dp)\
1 Jra v Y

Let

0 2

we have the desired estimate. This finishes the proof of the corollary. U

as(d, p) = Tl {d% +paz(d,p)} :

5.4. Energy estimate. In this subsection, we consider the energy estimate for w. Since
the energy of w is not conserved, the nonlinear estimates are needed in this subsection. The
main result in this subsection is the following H!(R%)-norm bound for w.

Lemma 5.7. There exists ay(d,p) > 1 such that for any 0 € I C RT,

< N0 (14 03 3247 (5.16)

sup [| V() ) <
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Proof. Let t € I. Denote that

- 1 1
B(#) = 5Vt [ + o5 1Ol gy

Then taking product with w; on the equation (5.1) and integrating in space and in time from
0 to t, we get

t
E(t) = E(0) - Im// V(|ulPu) - Vor dadt’.
0 Jra
Since p < 4, by (5.2), (£.23) and the Sobolev inequality, it follows that
E(0) < N®)(=s0) < N6(1=s0),
From ([L6), Proposition .5l and Lemma [2.8] we have that

itA <
[ Ve 2ug HLQLd s () Ix<1f |1 ey + [Ix=1f]

HS0 (Rd)'
Then it follows from the standard fixed point argument that there exists § > 0 depends only
on |[x<1f| g ey and [[x>1f| so(re), such that

Vu < +
[Vl 5y S Xl + o |

HSO(]Rd)' (517)

Accordingly, we write

¢ 5 ¢
Im// V(|ulPu)-Vor dedt’ = Im// V(|u|pu).Vdedt'+Im// V(|ulPu)-Vog, ddt'.
0 JRd 0 Jre 5 JRrd

For the first term, we have that

'Im// (JulPu) - Vg dedt!
Rd

By (4.22) and ([4.23)), we get
IVorll |, g, S ONTEE

L2LI72 (IxRY)

S Ve Ve

el

L2Ld 2([05 L2Ld 2(1 R4) L<><>L2

LooLT(Ide) S LN SO)HMHXN(I

Hence, by further (5.17]), it infers that

‘Im// (JulPu) - Vg dzdt!
R4

Choosing 1 — so small enough such that

(1— 50)(3p — 5) <

5
'Im// V(|uPu) - Vg dadt’
0 JRd

For the second term, we have that

¢
‘Im// V(|ulPu) - Vog dadt’
5 Jra

< 5 N1i=so— 2d +(1+N3p1 50 ||w||XN(I)

-2
2d

we obtain that

5 N6(1=s0) (1 + 50||w||§(1v(1))'

5 HquLfoL%(IXRd)HVULHLngO([&—I—oo]XRd)HuHifg(Ide)'




LARGE GLOBAL SOLUTIONS FOR NLS 57

By (4.20) and the interpolation,

, r%(?)p—g‘l) 4(37"0 2817)
p— X
HuHLfg([O#ﬂXRd) S.JHUHL:;)(EIXRd || || (() Rd)
4(rg—2p)
roEr=4) Fro®
Sl rotircne) (”“”L?"Hﬂ*“w) L T

« « . s s (d,
< (1 + NPla@p @)l (=s)y || poziee).

Further, by (£.21]),

HV’ULHLQLOO 16,400 xRY) ~> 50N1—50—%+.

Hence we have that

t
‘Im// V(lufu) - Vo
5 JRA

e (R e T P

Then choosing 1 — sg small enough such that

(p[a(d,p) + al(dap) + 3] - 2) ' (1 - SO) < %a

we obtain that

‘Im// (JulPu) - VoL
R4

0 (L Bolwll ).

Xn(I)
Setting
1

a4(d,p) = 5 max{p, 1 +pa2(d,p)},

we get that
’Im// (JulPu) - Vor, 601=s0) (1 + 50||w||2a4 ),
Rd

and thus

- _s 2au4(d,

B(t) SN0 (14 dolw] 32657,
Then we obtain the desired estimates. O

5.5. The proofs. Now we are ready to prove Theorem [LL.3] First, we show that for any [/
such that 0 € I C R*,

lwllxyay S 1. (5.18)
Indeed, from Corollary and Lemma [5.7, we have

N30 g | o gty + N 72070 ]| oo ey

d
S ol T+ 6 ol + 63l 245

XN(I XN(I
That is,
T r asz(d, a4(d,
lullny 1+ Tllg + 65 Teliges) + & Il 35
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We note that

L<1
T0<d—2) ’

Then using the Cauchy-Schwarz inequality, the second term can be absorbed by the term in
the left-hand side, and thus we have

a4(d,p) > 1

T as(d, aq(d,
1wl xy () <1+5°HU}HX3N(}) +5 | w HX4N(})

Furthermore, if a3(d, p) < 1, then choosing dy suitably small, we have

aq(d
ol S 1+ ¢ ]| 320,

Then using a continuity argument, we obtain (5.18]). If a3(d, p) > 1, then choosing dy suitably
small, and using a continuity argument, we also obtain (5.18)).

Since the estimate in (5.18)) is uniform in the time interval I, we have I = R*. This
proves the global existence in the forward time. Moreover,

|’U}HL§°H;(R+de) + |’wHL:2(R+de) < A(N), (5.19)

for some constant A depending on V.

Now we set
+oo ]
= fy +/ e "2 (|ufPu) ds.
0
Then we have
+o0
u(t) — eyt = / e I8 (|ufPu) ds.
t

Using Proposition and (5.19), we have (the details are omitted here since similar treat-
ment was presented above)

+oo
H/ ez(t’s)A(\u\pu) ds’
t

as t — 4o00. This proves the scattering statement.

< H(V)(\u\pu)H 2d —)0,

HY(RY) ™ L3 L2 ([t,400) xR)
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