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LARGE GLOBAL SOLUTIONS FOR NONLINEAR SCHRÖDINGER
EQUATIONS II, MASS-SUPERCRITICAL, ENERGY-SUBCRITICAL

CASES

MARIUS BECEANU, QINGQUAN DENG, AVY SOFFER, AND YIFEI WU

Abstract. In this paper, we consider the defocusing mass-supercritical, energy-subcritical
nonlinear Schrödinger equation,

i∂tu+∆u = |u|pu, (t, x) ∈ Rd+1,

with p ∈ ( 4
d
, 4
d−2

). We prove that under some restrictions on d, p, any radial function in

the rough space Hs0(Rd), for some s0 < sc with the support away from the origin, there
exists an incoming/outgoing decomposition, such that the initial data in the outgoing part
leads to the global well-posedness and scattering forward in time; while the initial data in
the incoming part leads to the global well-posedness and scattering backward in time. The
proof is based on Phase-Space analysis of the nonlinear dynamics.

Contents

1. Introduction 2

2. Preliminary 7

2.1. Some notations 7

2.2. Some basic lemmas 8

2.3. Linear Schrödinger operator 9

2.4. Some lemmas about Fourier integral operators 10

3. The incoming/outgoing waves 11

3.1. Definitions of the incoming/outgoing waves 11

3.2. Basic properties of the incoming/outgoing functions 13

3.3. Boundedness of the incoming/outgoing projection operators 26

4. Estimates on the incoming/outgoing linear flow 39

4.1. “Incoming/outgoing” decomposition of the linear flow 39

4.2. Improved Strichartz’s estimates 46

5. Proof of the Theorem 1.3 48

5.1. Definitions of the modified incoming and outgoing components 48

5.2. Space-time estimates 51

5.3. Morawetz estimates 53

2010 Mathematics Subject Classification. Primary 35Q55.
Key words and phrases. Nonlinear Schrödinger equation, global well-posedness, scattering.

1

http://arxiv.org/abs/1811.04378v3


2 MARIUS BECEANU, QINGQUAN DENG, AVY SOFFER, AND YIFEI WU

5.4. Energy estimate 55

5.5. The proofs 57

Acknowledgements 58

References 59

1. Introduction

The aim of this work is the study of global existence and scattering theory for the inter-
critical nonlinear Schrödinger equation (NLS) in 3− 5 dimensions:

{
i∂tu+∆u = µ|u|pu,

u(0, x) = u0(x),
(1.1)

with µ = ±1, p > 0. Here u(t, x) : R×Rd → C is a complex-valued function. The case µ = 1
is referred to the defocusing case, and µ = −1 is referred to the focusing case. The class of
solutions to equation (1.1) are invariant under the scaling

u(t, x) → uλ(t, x) = λ
2
pu(λ2t,λx) for λ > 0, (1.2)

which maps the initial data as

u(0) → uλ(0) := λ
2
pu0(λx) for λ > 0.

Denote

sc =
d

2
−

2

p
.

Then the scaling leaves Ḣsc norm invariant, that is,

‖uλ(t)‖Ḣsc = ‖u(λ2t)‖Ḣsc , ‖u(0)‖Ḣsc = ‖uλ(0)‖Ḣsc ,

which is called critical regularity sc. It is also considered as the lowest regularity that problem
(1.1) is well-posed for general Hs(Rd)-data. Indeed, one can find some special initial datum
belonging to Hs(Rd), s < sc such that the problem (1.1) is ill-posed.

The H1-solution of equation (1.1) also enjoys the mass, momentum and energy conser-
vation laws, which read

M(u(t)) :=

∫
|u(t, x)|2 dx = M(u0),

P (u(t)) := Im

∫
u(t, x)∇u(t, x) dx = P (u0),

E(u(t)) :=
1

2

∫
|∇u(t, x)|2 dx+

µ

p+ 2

∫
|u(t, x)|p+2 dx = E(u0).

(1.3)

The well-posedness and scattering theory for Cauchy problem (1.1) with initial data in
Hs(Rd) were extensively studied, which we here briefly review. The local well-posedness
theory follows from a standard fixed point argument, implying that for all u0 ∈ Hs(Rd), s ≥
sc, there exists T0 > 0 such that its corresponding solution u ∈ C([0, T0), Hs(Rd)). In fact,
the above T0 depends on ‖u0‖Hs(Rd) when s > sc and also the profile of u0 when s = sc.
Some of the results can be found in Cazenave and Weissler [11].
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The fixed point argument used in local theory can be applied directly to prove the global
well-posedness for solutions to equation (1.1) with small initial data in Hs(Rd) with s ≥ sc.
In the mass-supercritical, energy-subcritical cases, that is, 4

d < p < 4
d−2 , if we consider the

solution in energy space H1(Rd), the local theory above together with conservation laws
(1.3), yields the global well-posedness for all initial data u0 ∈ H1(Rd) in the defocusing case
µ = 1, and for any initial data u0 ∈ H1(Rd) with some restrictions in the focusing case.
Furthermore, the scattering under the same conditions were also obtained by Ginibre, Velo
[22] in the defocusing case and Duyckaerts, Holmer and Roudenko [18] in the focusing case.

Recently, conditional global and scattering results for sc > 1 with the assumption of
u ∈ L∞

t (I, Ḣsc
x (Rd)) were considered by many authors, beginning with the major work

[25, 26], and then developed by [9, 17, 19, 20, 36, 37] and cited references. That is, if
the initial data u0 ∈ Ḣsc(Rd) and the solution has a priori estimate

sup
0<t<Tout(u0)

‖u(t)‖Ḣsc
x (Rd) < +∞, (1.4)

then Tout(u0) = +∞ and the solution scatters in Ḣsc(Rd), here [0, Tout(u0)) is the maximal
interval for existence of the solution. Consequently, these results give blowup criterion in
which the lifetime only depends on the critical norm ‖u‖L∞

t Ḣsc
x (Rd). However, no such large

global results are known for general initial data u0 ∈ Ḣsc(Rd).

In the case when sc < 1 the use of a priori estimates on the solution as a condition was
also developed. The work of Bourgain [6] on the NLS, made assumptions on the space-time
norm of the solution in space-time subsets, by deriving necessary conditions for blow-up. For
example, Kenig and Merle [25] proved that for the NLS in the intercritical case, in dimension
3 and cubic nonlinearity case, global existence and scattering hold under the condition

sup
0<t<Tout(u0)

‖u(t)‖
Ḣ

1
2 (Rd)

< ∞.

See also for examples some developments in [29, 49].

These conditional results, and other works, used the elaborate method introduced by
Kenig-Merle, involving profile decomposition, concentration compactness and the localized
Strichartz estimates. In contrast, our results use explicit conditions on the initial data alone.
A further new consequence of our analysis is that supercritical/rough solutions exist, which
are large and that in fact the standard assumption of initial data being in the space Hsc is
not required.

We follow here a new paradigm, based on phase space analysis and propagation estimates,
to give explicit conditions on the initial data, which implies global existence and scattering.
This will allow us to give explicit conditions on large and rough initial data, for which global
existence and scattering hold. Our method does not use the above techniques based on
profile decomposition and concentration compactness.

When the initial data is rough, s < sc, we do not have general global well-posedness.
Yet, as we will show, generic conditions for global existence and scattering allow such initial
data. So, we conclude that rough initial data does not guarantee blowup.

Rough data may appear naturally in some applications: initial data corrupted with noise
(as in nonlinear optics applications), and in the construction of invariant measures for the
NLS dynamics, see [4, 5] and further developments in [15, 16, 30, 40, 41, 46] and the cited
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references. In these last cases it is known that the relevant measure is supported on rough
spaces.

The phase-space analysis we use seeks to identify the initial data that can not move into
the origin and blow-up. So, naturally, this analysis requires the distinction between outgoing
waves under the free flow, which move away from the origin (for positive times), and the
incoming waves which move towards the origin.

In particular we show, that under some extra conditions, initial data which is outgoing,
will lead to global solution, even if it is rough, that is, the data belongs to the space Hs,
with s < sc, where sc is the critical Sobolev norm. While it looks unsurprising, it is in fact
a subtle result!

Under the free flow this initial data (radial) will move away from the origin, and therefore
will get smaller in L∞, by the assumption of radial symmetry, and some Hs regularity.
Moreover, since the speed depends on the frequency, it gets smaller and faster for higher
frequencies. Indeed, as an estimate essentially proved in Proposition 4.1 below, we show
that

∥∥χ≤1+Nte
it∆P≥Nfout

∥∥
H1 ! ‖f‖L2 . (1.5)

However, the property of being outgoing is not necessarily preserved by the nonlinearity.
Furthermore, in a major difference from the wave equation case (see [2, 3]), part of the
solution moves backward towards the origin, even under the free flow. Since the data is
rough, we do not have local existence (see the ill-posedness results in [13] and [27]), so, we
can not move a short time forward, in the usual perturbative way e.g., as in [38].

To counter these effects, we need optimal propagation estimates in space, frequency and
time. In particular we need to use the extra smoothing effect for waves which move in the
“wrong” direction, the classical forbidden regions, see (1.5). We also need gain of regularity
in the Strichartz estimate for radial functions, which allows us to show that in fact the
Duhamel part, contributed by the nonlinearity is essential in H1, which is based on the
following result. A more general result will be stated in Section 4.

Proposition 1.1. Let d = 3, 4, 5. For any radial function f ∈ L2(Rd) satisfying

supp f ⊂ {x : |x| ≥ 1},

there exists some suitable decomposition, says incoming and outgoing decomposition,

f = f+ + f−,

such that the following supercritical space-time estimate holds for any N ≥ 1,
∥∥e±it∆PNf±

∥∥
L∞
t H1

x(R
+×Rd)+L2

tL
∞
x (R+×Rd)

!
∥∥PNf

∥∥
L2 .

Remark 1.2. In general, the standard Strichartz estimates (see [24]) imply
∥∥e±it∆PNf

∥∥
L2
tL

∞
x (R+×Rd)

! N
d
2−1
∥∥PNf

∥∥
L2 ,

which is scaling invariant and thus the index d
2−1 is optimal. Hence, the decomposition above

presents a way in which we are able to obtain a kind of supercritical Strichartz estimates.

The proposition is based on the decomposition

L2 ∩
{
f : supp f ⊂ {|x| ≥ 1}

}
= L2

+ + L2
−,
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for which the spaces L2
± can be roughly described that if f ∈ L2

+, then for any t > 0,

eit∆PNf = χ≥δ〈Nt〉F (t) +O(N−a〈t〉−b), for some F (t) ∈ L2;

and if f ∈ L2
−, then the equality above holds for any t < 0. Here δ > 0 is a small constant,

a > 0 and b > 0.

More precisely, if f is supported away from zero, then we can write f = f+ + f− + f0
with f0 ∈ H1, f+ = P+f ∈ L2

+, f− = P−f ∈ L2
−, where P± are incoming/outgoing projection

operators defined in Definition 3.4. The crucial step in the construction above is the proof we
give that the range of P+ is almost invariant (in the sense above) under the free flow for t > 0,
and similarly for P−, t < 0. Since the problem under study is energy subcritical, the solution
is stable under H1 perturbations. We emphasize that P± are not completely invariant under
the free flow. There is always an H1 correction. Moreover if it is true (invariance of the
range) at one time, it will not be true at later times. These present obstacles in the study
of the long time behavior of the solution.

These estimates together with the approximate energy identity are applied to the part
w of the solution. w is defined by the following decomposition for the nonlinear solution:

w = u− eit∆
(
P≥Nf

)
+
,

(with a slight modification). Then, w satisfies the following equation:

i∂tw +∆w = |u|pu.

Therefore, by showing that w is in H1, we conclude that all the singular part, is carried
away as a free wave to infinity.

Hence, since the problem is energy subcritical, we can control the effect of the nonlinear-
ity, even though it is large. One should note however, that better, supercritical smoothing
estimates only hold for outgoing waves.

Our construction of the projections on incoming/outgoing waves follows a similar ap-
proach of T. Tao [44]. We make a different decomposition near the origin.

A comparison to such in/out decompositions in scattering theory may be illuminating:
the problem of global existence is the exact dual in the phase space, of the scattering prob-
lem. For global existence we need to control short time behavior, near the origin in space, at
high frequency; the complete opposite of scattering. In scattering theory the decomposition
into in and out waves, which was inspired by Enss method, leads to various definitions of
such projections, beginning with the works of Mourre [39]. Mourre constructed the pro-
jection by taking the projection on the positive spectral part of the dilation generator A,
defined as x · p + p · x ≡ 2A. Here x is multiplication by x in space and p, the momentum
operator in Quantum Mechanics, is defined by p ≡ −i∇x. He defined the projections on the
incoming/outgoing parts by P±(A), where P±(y) stand for the characteristic functions, in
y, of the positive/negative real axis.

Clearly A is a nice PDO, but not function of A.

Then, propagation estimates and other constructions, including estimates based on re-
placing A by γ ≡ f(x)x · p + p · f(x)x were developed by Sigal and Soffer [47]. Here
f(x) ∼ 1/|x|, |x| > 1. In this construction, the “out” component of the solution still has
some small portion moving inward, but this portion decays fast in time. See however [48].
Unlike the constructions we use, which are adapted to the radial nonlinear problem, the
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scattering theory constructions above apply to non-radial functions, and so are the known
estimates.

However, the propagation estimates obtained are not suitable, as they stand, for the
dual space problem. They apply for general Hamiltonians, not just the Laplacian. It may
be used for short times as well, when the frequency is large; that is still not explicit in the
literature. The problem comes from the fact that near zero in space, the frequency can be
very large, and yet A and γ remain bounded.

In the nonlinear context, this problem is far more severe, since the high frequency part
is not stable under nonlinear perturbations.

New constructions for in/out decomposition were first introduced by T. Tao [44]. They
are based on a decomposition in terms of spherical waves, of the form eikr/r, in three dimen-
sions.

Still the problem at zero remains, much work was done to deal with this part of the
phase-space. Further works in this direction, and others, sharp propagation estimates were
done in e.g. Killip, Tao, Visan [31], and Li and Zhang [28, 33, 34].

We follow, up to some modifications near the origin, similar constructions and estimates.

We will use them in a different way, to localize and propagate rough initial data in
particular, so as to get explicit conditions for global existence and scattering. Our strategy
is to show that in some sense the phase-space localization of the initial data is stable, up to
smooth corrections. So, we show that the solution is a sum of the linear, rough/supercritical
part plus a correction coming from the Duhamel term (the nonlinear part).

By using radial symmetry, we show there is a gain of regularity, and the Duhamel term
contributes essentially in H1 space, the correction w. It will also follow, that if the initial w
is small, then it can be controlled in the focusing case. For this we need only to have the
initial data small in Hs, for some s < sc.

Therefore, since the nonlinearity is inter-critical, and we have the Morawetz estimates
and energy estimates in hand, we can then get global existence theory as in the H1 case,
after using also frequency cut-off and a continuity argument.

Similar improved smoothing for the Duhamel term was obtained before by Bourgain [7],
in cases where the data is subcritical and below H1.

In the defocusing case, we can then cover outgoing initial data of arbitrary size, and in
the focusing case small (but in the rough/supercritical norm!) data. Since the initial data is
supercritical, in general, there is no well-posedness; to achieve that, we need the initial data
to be supported at some positive distance away from the origin in space , together with the
outgoing condition.

Our main result is following, which we focus on the defocusing case.

Theorem 1.3. Let µ = 1, d = 3, 4, 5. Then there exist s0 < 1 and p1(d) <
4

d−2 , such that
for any p ∈ [p1(d),

4
d−2), the following is true. Suppose that f is a radial function for which

there exists ε0 > 0 such that

χ≤ε0f ∈ H1(Rd),
(
1− χ≤ε0

)
f ∈ Hs0(Rd). (1.6)

Then the solution u to the equation (1.1) with the initial data

u0 = f+ (or u0 = f−)
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exists globally forward (or backward) in time, and u is unique in C(R+;Hs0(Rd)) ∩X+ (or
u ∈ C(R−;Hs0(Rd)) ∩ X−), in which X± are some auxiliary space-time space. Moreover,
the solution depends continuously on the initial data in Hs0(Rd). Here f+ and f− are the
modified outgoing and incoming components of f respectively, which are given in Proposition
1.1. Furthermore, there exists u+ ∈ Hs0(Rd) (or u− ∈ Hs0(Rd)), such that when t → +∞
(or t → −∞),

lim
t→+∞

‖u(t)− eit∆u+‖H1(Rd) = 0 (or lim
t→−∞

‖u(t)− eit∆u−‖H1(Rd) = 0). (1.7)

Remark 1.4. We make several remarks regarding the above statements.

(1). Note that s0 is independent of p, hence s0 < sc when p is close to 4
d−2 . Moreover,

since f = f+ + f−, if f is not in Hsc(Rd), at least one of f+ and f− is not in
Hsc(Rd). Therefore, we obtain a class of the global solutions for the defocusing
energy-subcritical nonlinear Schödinger equation in the supercritical space Hs0(Rd).

(2). It is worth noting that there is no smallness restriction in Theorem 1.3. Here we are
not going to pursue the sharp conditions on s0 and p1(d) in this paper.
Moreover, the restriction on the dimensions d = 3, 4, 5 is not essential, and the

analogous results are valid in more general dimensions. However, for the sake of
readability, we will not go into details.

(3). The theorem implies that the incoming/outgoing solution has the “smoothing effect”.
Indeed, we can show that for initial data belonging to L2(Rd), there exist some
s∗ > 0, r0 > 2, such that the solution u(t) of (1.1) corresponding to such initial data,
is in W s,r(Rd) for any t > 0, any r ∈ (2, r0] and any s ∈ [0, s∗], and moreover, the
Lr-norm decays at infinite time in the sense that

‖u(t)‖Lr(Rd) → 0, as t → +∞.

(4). By rescaling, we only need to prove the theorem when ε0 = 1.

Organization of the paper. In Section 2, we give some preliminaries, which include
some basic lemmas, some estimates on the linear Schrödinger operator and the Fourier
integral operators. In Section 3, we give the definitions of the incoming/outgoing waves,
their basic properties, the boundeness in Ḣsc(Rd). In Section 4, we give some supercritical
spacetime estimates on the incoming/outgoing linear flow. In Section 5, we give the proof
of the main theorem.

2. Preliminary

2.1. Some notations. We write X ! Y or Y " X to indicate X ≤ CY for some constant
C > 0. If C depends upon some additional parameters, we will indicate this with subscripts;
for example, X !a Y denotes the assertion that X ≤ C(a)Y for some C(a) depending on
a. We use O(Y ) to denote any quantity X such that |X| ! Y . We use the notation X ∼ Y
whenever X ! Y ! X .

The notation a+ denotes a + ε for any small ε, and a− for a − ε. |∇|α = (−∆)α/2.
〈·〉 = (1 + | · |2)

1
2 . We denote S(Rd) to be the Schwartz Space in Rd, and S ′(Rd) to be the

topological dual of S(Rd). Let h ∈ S ′(Rd+1), we use ‖h‖Lq
tL

p
x
to denote the mixed norm

(∫
‖h(·, t)‖qLp dt

) 1
q

, and ‖h‖Lq
xt
:= ‖h‖Lq

xL
q
t
. Sometimes, we use the notation q′ = q

q−1 .
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Throughout this paper, we use χ≤a for a ∈ R+ to be the smooth function

χ≤a(x) =






1, |x| ≤ a,

0, |x| ≥
101

100
a.

Moreover, we denote χ≥a = 1− χ≤a, χa≤·≤b = χ≤b − χ≤a and χa = χ≤2a − χ≤a for short.

Also, we need some Fourier operators. For each number N > 0, we define the Fourier
multipliers P≤N , P≥N , PN as

P̂≤Nf(ξ) := χ≤N(ξ)f̂(ξ),

P̂≥Nf(ξ) := χ≥N(ξ)f̂(ξ),

P̂Nf(ξ) := χN(ξ)f̂(ξ).

We will usually use these multipliers when N are dyadic numbers (that is, of the form 2k for
some integer k).

2.2. Some basic lemmas. First, we need the following radial Sobolev embedding, see, e.g.,
[45].

Lemma 2.1. Let α, q, p, s be the parameters which satisfy

α > −
d

q
;

1

q
≤

1

p
≤

1

q
+ s; 1 ≤ p, q ≤ ∞; 0 < s < d

with

α + s = d(
1

p
−

1

q
).

Moreover, at most one of the equalities holds:

p = 1, p = ∞, q = 1, q = ∞,
1

p
=

1

q
+ s.

Then for any radial function u such that |∇|su ∈ Lp(Rd),
∥∥|x|αu

∥∥
Lq(Rd)

!
∥∥|∇|su

∥∥
Lp(Rd)

.

The second is the following fractional Leibniz rule, see [8, 32] and the references therein.

Lemma 2.2. Let 0 < s < 1, 1 < p ≤ ∞, and 1 < p1, p2, p3, p4 ≤ ∞ with 1
p = 1

p1
+ 1

p2
,

1
p = 1

p3
+ 1

p4
, and let f, g ∈ S(Rd), then

∥∥|∇|s(fg)
∥∥
Lp !

∥∥|∇|sf
∥∥
Lp1

‖g‖Lp2 +
∥∥|∇|sg

∥∥
Lp3

‖f‖Lp4 .

A simple consequence is the following elementary inequality, see [1] for the proof.

Lemma 2.3. For any a > 0, 1 < p ≤ ∞, 0 ≤ γ < d
p , and |∇|γg ∈ Lp(Rd),

∥∥|∇|γ
(
χ≤ag

)∥∥
Lp(Rd)

!
∥∥|∇|γg

∥∥
Lp(Rd)

. (2.1)

Here the implicit constant is independent of a. The same estimate holds for χ≥ag.

Moreover, we need the following mismatch result, which is helpful in commuting the
spatial and the frequency cutoffs.
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Lemma 2.4 (Mismatch estimates, see [33]). Let φ1 and φ2 be smooth functions obeying

|φj| ≤ 1 and dist(suppφ1, suppφ2) ≥ A,

for some large constant A. Then for σ ≥ 0, M ≥ 1, 1 ≤ r ≤ q ≤ ∞ and for any m ≥ 0,
∥∥φ1|∇|σP≥M(φ2f)

∥∥
Lq
x(Rd)

! Mσ−mA−m+ d
q
− d

r ‖φ2f‖Lr
x(R

d). (2.2)

Remark 2.5. In this paper, we will frequently used the following estimate from Lemma 2.4,
∥∥χ≤ 1

4
PM

(
χ≥1f

)∥∥
L∞(Rd)

! M−m
∥∥P̃M

(
χ≥1f

)∥∥
L2(Rd)

, for any m ≥ 0,

where P̃N is defined by
̂̃PNf(ξ) := χ210N≤·≤210N(ξ)f̂(ξ).

In the following, we shall slightly abuse notation and write P̃N by PN .

Furthermore, we need the following elementary formulas, see [1].

Lemma 2.6. Let f ∈ S(Rd)d and g ∈ S(Rd), then for any integer N ,

∇ξ ·
(
f ∇ξ

)N−1
· (fg) =

∑

l1,··· ,lN∈Nd,l′∈Nd;
|lj |≤j;|l1|+···+|lN |+|l′|=N

Cl1,··· ,lN ,l′∂
l1
ξ f · · ·∂lNξ f ∂l

′

ξ g,

where we have used the notations

∇ξ = {∂ξ1 , · · · , ∂ξd}; ∂lξf =
d∑

j=1

Cj∂
l1

ξ1 · · ·∂
ld

ξd
fj, for any l = {l1, · · · , ld} ∈ Nd.

Here Cl1,··· ,lN ,l′, Cj are some absolute constants only depending on N and d.

2.3. Linear Schrödinger operator. Let the operator S(t) = eit∆ be the linear Schrödinger
flow, that is,

(i∂t +∆)S(t) ≡ 0.

The following are some fundamental properties of the operator eit∆. The first is the explicit
formula, see, e.g., Cazenave [10].

Lemma 2.7. For all φ ∈ S(Rd), t 0= 0,

S(t)φ(x) =
1

(4πit)
d
2

∫

Rd

e
i|x−y|2

4t φ(y) dy.

Moreover, for any r ≥ 2,

‖S(t)φ‖Lr
x(R

d) ! |t|−d( 12−
1
r
)‖φ‖Lr′(Rd).

The following is the standard Strichartz estimate, see for example [24].

Lemma 2.8. Let I be a time interval and let u : I × Rd → R be a solution to the inhomo-
geneous Schrödinger equation

iut −∆u+ F = 0.

Then for any t0 ∈ I, any pairs (qj, rj), j = 1, 2 satisfying

qj ≥ 2, rj ≥ 2,
2

qj
+

d

rj
=

d

2
, and (qj , rj, d) 0= (2,+∞, 2),
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the following estimate holds,
∥∥u
∥∥
C(I;L2(Rd))

+
∥∥u
∥∥
L
q1
t L

r1
x (I×Rd)

!
∥∥u(t0)

∥∥
L2
x(Rd)

+
∥∥F
∥∥
L
q′2
t L

r′2
x (I×Rd)

.

We also need the special Strichartz estimates for radial data, which were firstly proved
by Shao [42], and then developed in [12, 23].

Lemma 2.9 (Radial Strichartz estimates). Let g ∈ L2(Rd) be a radial function, k be an
integer, then for any triple (q, r, γ) satisfying

γ ∈ R, q ≥ 2, r > 2,
2

q
+

2d− 1

r
<

2d− 1

2
, and

2

q
+

d

r
=

d

2
+ γ, (2.3)

we have that ∥∥|∇|γeit∆g
∥∥
Lq
tL

r
x(R×Rd)

!
∥∥g
∥∥
L2(Rd)

.

Furthermore, let F ∈ Lq̃′

t L
r̃′
x (R

d+1) be a radial function in x, then
∥∥∥
∫ t

0

ei(t−s)∆F (s) ds
∥∥∥
Lq
tL

r
x(R

d+1)
+
∥∥∥|∇|−γ

∫ t

0

ei(t−s)∆F (s) ds
∥∥∥
L∞
t L2

x(R
d+1)

! ‖F‖
Lq̃′
t Lr̃′

x (Rd+1)
,

where the triples (q, r, γ), (q̃, r̃,−γ) satisfy (2.3).

2.4. Some lemmas about Fourier integral operators. The following are some lemmas
related to the estimate of the Fourier integral operators, we refer to Stein [43] for the proofs.
The first one is from the application of the “stationary phase” theory.

Lemma 2.10. Let φ,ψ be smooth functions defined in R and λ ∈ R+, and φ satisfies

φ(x0) = φ′(x0) = 0, and φ′′(x0) 0= 0.

If ψ is supported in a sufficiently small neighborhood of x0, then∫

R

eiλφ(x)ψ(x) dx = a0λ
− 1

2 +O(λ−
3
2 ), when λ→ +∞,

with

a0 = ψ(x0)
( 2π

iφ′′(x0)

) 1
2
.

The second result is the estimate of the Fourier integral operator, which can be regarded
as an extension of the Plancherel identity. The following result can be found in [21].

Proposition 2.11. Let T be the Fourier integral operator given by

Tf(x) =

∫

Rd

eix·ξa(x, ξ)χ≤1(ξ)f̂(ξ) dξ. (2.4)

Suppose that a(x, ξ) ∈ C∞(Rd × Rd) and satisfies that for all multi-indices α ∈ Rd,

sup
ξ∈Rd

〈ξ〉|α|
∥∥∂αξ a(·, ξ)

∥∥
L∞
x (Rd)

< +∞.

Then the operator T defined in (2.4) satisfies that

T : Lp(Rd) 1→ Lp(Rd), is bounded, for all 1 < p < ∞.

As an immediate consequence of the proposition above, we have the estimates on the
following Fourier integral operators which are used in this paper.
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Corollary 2.12. Let β ∈ R, N > 0, and let T be the Fourier integral operator given by

Tf(x) =

∫

Rd

eiβx·ξχ≤1(x · ξ)χ≤N(ξ)f(ξ) dξ. (2.5)

Then there exists some C > 0 which is independent of N, β, such that

‖Tf‖L2 ≤ C|β|−
d
2 ‖χ≤Nf‖L2.

The same estimate holds if χ≤1 is replaced by χ≥1, χ′
≤1, χ

′
≥1 or χ′′

≥1 in (2.5).

Proof. Since the operator T is scaling invariant in L2, we can use the rescaling argument.
Indeed, the result is obtained by changing to the new variables η = N−1ξ, y = βNx, and
then applying Proposition 2.11 and the Plancherel identity. The cases of χ≤1,χ′

≤1,χ
′
≥1 and

χ′′
≥1 can be treated in the same way. Since χ≥1(x · ξ) = 1 − χ≤1(x · ξ), combining with the

Plancherel identity, the analogous estimate when χ≤1(x · ξ) is replaced by χ≥1(x · ξ) in (2.5)
is also proved. #

3. The incoming/outgoing waves

3.1. Definitions of the incoming/outgoing waves. First of all, we give the definitions
of the incoming/outgoing waves for the Schrödinger flow.

3.1.1. The deformed Fourier transform. We denote the standard Fourier transform by f̂ or
Ff as

(
Ff(ξ) or

)
f̂(ξ) =

∫

Rd

e−2πix·ξf(x) dx,

and its inverse transform
(
F

−1f(x) or
)
f̌(x) =

∫

Rd

e2πix·ξf(ξ) dξ.

Now we give a deformed Fourier transform, and its basic properties.

Definition 3.1. Let α ∈ R, β ∈ R, and let f ∈ S(Rd) with |x|βf ∈ L1
loc(R

d). We define

Ff(ξ) = |ξ|α
∫

Rd

e−2πix·ξ|x|βf(x) dx. (3.1)

Then it is easy to see the following inverse transform, that is,

Lemma 3.2. Let f ∈ S(Rd), |x|βf ∈ L1
loc(R

d) and |ξ|−αFf ∈ L1
loc(R

d), then for any
x ∈ Rd \ {0},

f(x) = |x|−β

∫

Rd

e2πix·ξ|ξ|−αFf(ξ) dξ. (3.2)

Proof. From the definition,

|ξ|−αFf(ξ) = F

(
|x|βf

)
(ξ). (3.3)

Hence, by the inverse Fourier transform, we have

|x|βf(x) = F
−1
(
|ξ|−αFf

)
(x).

This gives the formula in (3.2). #
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We give the following remark on the conditions in Lemma 3.2.

Remark 3.3. If f ∈ S(Rd) is radial, and β > −d, then |x|βf ∈ L1
loc(R

d). Indeed,
∫

|x|≤1

|x|βf(x) dx = c(d)

∫ 1

0

rβ+d−1f(r) dr ! ‖f‖L∞(Rd).

Similarly, if α < d, we can prove that |ξ|−αFf ∈ L1
loc(R

d).

We now give the radial version of the deformed Fourier transform and its inverse trans-
form. We note that if f is radial, so is Ff . Moreover,

Ff(ρ) = ρα
∫ +∞

0

∫

|θ|=1

e−2πiρrω·θ dθf(r)rβ+d−1 dr

= ρα
∫ +∞

0

d̂ω(ρrω)rβ+d−1f(r) dr,

where ξ = ρω. Note that d̂ω has radial symmetry, and

d̂ω(ρrω) = d̂ω(ρr) =

∫ π
2

−π
2

e−2πiρr sin θ cosd−2 θ dθ.

(It is equal to 2π(ρr)−
d−2
2 J d−2

2
(2πρr), where J d−2

2
is a bessel function.) Therefore,

Ff(ρ) = ρα
∫ +∞

0

∫ π
2

−π
2

e−2πiρr sin θ cosd−2 θ rβ+d−1f(r) dθ dr. (3.4)

Similarly, we have

f(r) = r−β

∫ +∞

0

∫ π
2

−π
2

e2πiρr sin θ cosd−2 θ ρ−α+d−1Ff(ρ) dθdρ. (3.5)

3.1.2. Definitions. In this subsection, we define the incoming and outgoing components of
functions and present their properties. Our definition here is inspired by T. Tao [44]. For
convenience, we denote

J(r) =

∫ π
2

0

e2πir sin θ cosd−2 θ dθ. (3.6)

Then we have

J(−r) =

∫ 0

−π
2

e2πir sin θ cosd−2 θ dθ.

Let

K(r) = χ≥2(r)
[
−

1

2πir
+

d− 3

(2πir)3

]
, for d = 3, 4, 5.

Definition 3.4. Let α < d, β > −d, and the function f ∈ L1
loc(R

d) be radial. We define the
incoming component of f as

fin(r) = r−β

∫ +∞

0

(
J(−ρr) +K(ρr)

)
ρ−α+d−1Ff(ρ) dρ;

the outgoing component of f as

fout(r) = r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
ρ−α+d−1Ff(ρ) dρ.



LARGE GLOBAL SOLUTIONS FOR NLS 13

Moreover, for any fixed integer k, we define the frequency restricted incoming component of
f as

fin,k(r) = r−β

∫ +∞

0

(
J(−ρr) +K(ρr)

)
χ2k(ρ) ρ

−α+d−1Ff(ρ) dρ;

correspondingly, the frequency restricted outgoing component of f as

fout,k(r) = r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ) ρ

−α+d−1Ff(ρ) dρ.

Remark 3.5. If we consider the higher dimensional version, then K(r) should be modified.
Here we use an appropriately modified Fourier transform in order to cancel the singularity
from r−1 at origin and meanwhile to guarantee the boundedness of the incoming/outgoing
projection operators on L2.

In the whole of the present paper, we set the numbers in Definition 3.4 that

β =
d− 1

2
− 2, and α = 0.

(These numbers should be changed if one considers the cases when d 0= 3, 4, 5.)

From the definitions and (3.5), we have

f(r) = fout(r) + fin(r).

Moreover,

fout/in(r) =
+∞∑

k=−∞

fout/in,k(r).

Correspondingly, for k0 ∈ Z, we denote

fout/in,≥k0(r) =
+∞∑

k=k0

fout/in,k(r).

3.2. Basic properties of the incoming/outgoing functions. First, we give the esti-
mates on the following oscillatory integrals. The first two can be regarded as some asymptotic
behaviors of the restricted forms of J(r).

Lemma 3.6. Let d = 3, 4, 5. There exists constant c ∈ C only depending on d, such that
when r → +∞,

∫ π
2

0

e2πir sin θχ≥π
6
(θ) cosd−2 θ dθ = cr−

d−1
2 e2πir +O

(
r−

d+1
2
)
; (3.7)

and
∫ π

2

−π
2

e−2πir sin θχ≥π
6
(θ) cosd−2 θ dθ = r−

d−1
2

(
c̄e−2πir + ce2πir

)
+O

(
r−

d+1
2
)
. (3.8)

Remark 3.7. The estimates presented in this lemma are not sharp. For example, the first
estimate can be improved as the form of r−

d−1
2

(
pK(1/r)e2πir + O(r−K−1)

)
for any K ∈ Z+,

where pK is some polynomial function of order K. However, the version presented in this
lemma is simpler and enough in this paper.
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Proof of Lemma 3.6. We only prove the first estimate, since the second one is the sum of
∫ π

2

0

e2πir sin θχ≥π
6
(θ) cosd−2 θ dθ and

∫ π
2

0

e−2πir sin θχ≥π
6
(θ) cosd−2 θ dθ.

When d = 3,
∫ π

2

0

e2πir sin θχ≥π
6
(θ) cos θ dθ =

∫ 1

0

e2πirsχ≥ 1
2
(s) ds

=
1

2πir

∫ 1

0

∂s
(
e2πirs

)
χ≥ 1

2
(s) ds =

1

2πir
e2πir −

1

2πir

∫ 1

0

e2πirsχ′
≥ 1

2
(s) ds.

By integration-by-parts K times, we have
∫ 1

0

e2πirsχ′
≥ 1

2
(s) ds = O(r−K).

Hence we obtain that
∫ π

2

0

e2πir sin θχ≥π
6
(θ) cos θ dθ =

1

2πir
e2πir +O(r−K).

When d = 4, using the formula,

2πir cos θ · e2πir sin θ = ∂θe
2πir sin θ, (3.9)

we have
∫ π

2

0

e2πir sin θχ≥π
6
(θ) cos2 θ dθ =

1

2πir

∫ π
2

0

∂θe
2πir sin θχ≥π

6
(θ) cos θ dθ

=
1

2πir

∫ π
2

0

e2πir sin θ
(
χ≥π

6
(θ) sin θ − χ′

≥π
6
(θ) cos θ

)
dθ.

Note that
∫ π

2

0

e2πir sin θχ′
≥π

6
(θ) cos θ dθ =

∫ 1

0

e2πirsχ′
≥ 1

2
(s) ds = O(r−K).

Moreover, using Lemma 2.10,
∫ π

2

0

e2πir sin θχ≥π
6
(θ) sin θ dθ =

1

2

∫ π

0

e2πir sin θχπ
6≤·≤ 5π

6
(θ) sin θ dθ

=
( 1

2πir

) 1
2
e2πir +O(r−

3
2 ).

This gives the required estimate in dimension four.

When d = 5, we have
∫ π

2

0

e2πir sin θχ≥π
6
(θ) cos3 θ dθ =

∫ 1

0

e2πirsχ≥ 1
2
(s)(1− s2) ds

=
1

2πir

∫ 1

0

∂s
(
e2πirs

)
χ≥ 1

2
(s)(1− s2) ds.

By integration-by-parts once and noting the zero boundary values, it is equal to

1

2πir

∫ 1

0

e2πirs
(
− χ′

≥ 1
2
(s)(1− s2) + 2χ≥ 1

2
(s)s

)
ds.



LARGE GLOBAL SOLUTIONS FOR NLS 15

Now arguing similarly as above and integration-by-parts many times, we have

1

2πir

∫ 1

0

e2πirsχ′
≥ 1

2
(s)(1− s2) ds = O(r−K),

and

1

2πir

∫ 1

0

e2πirsχ≥ 1
2
(s)s ds =

1

(2πir)2

(
1−

1

2πir

)
e2πir +O(r−K).

This obeys the form as claimed. Hence we finish the proof of the lemma. #

Second, we have the following estimates.

Lemma 3.8. When r → +∞,
∫ π

2

0

e2πir sin θχ≤π
6
(θ) cosd−2 θ dθ = −

1

2πir
+

d− 3

(2πir)3
+O

(
r−5
)
.

Moreover,
∫ π

2

−π
2

e2πir sin θχ≤π
6
(θ) cosd−2 θ dθ = O

(
r−10

)
.

Proof. Using the formula (3.9) and integration-by-parts,
∫ π

2

0

e2πir sin θχ≤π
6
(θ) cosd−2 θ dθ

=
1

2πir

∫ π
2

0

∂θe
2πir sin θχ≤π

6
(θ) cosd−3 θ dθ

= −
1

2πir
−

1

2πir

∫ π
2

0

e2πir sin θη1(θ) dθ,

where

η1(θ) = ∂θ
(
χ≤π

6
(θ) cosd−3 θ

)
.

Note that η1(0) = η1(
π
2 ) = 0, then using the formula (3.9) and integration-by-parts again,

we have
∫ π

2

0

e2πir sin θχ≤π
6
(θ) cosd−2 θ dθ

= −
1

2πir
+

1

(2πir)2

∫ π
2

0

e2πir sin θη2(θ) dθ,

where

η2(θ) = ∂θ
(η1(θ)
cos θ

)
.

Note that |η2(θ)| ! 1. Moreover, by a direct computation, we have

η2(0) = −(d− 3), η2(
π

2
) = 0.
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Then repeating the process above again, we obtain
∫ π

2

0

e2πir sin θχ≤π
6
(θ) cosd−2 θ dθ

= −
1

2πir
+

d− 3

(2πir)3
+

1

(2πir)3

∫ π
2

0

e2πir sin θη3(θ) dθ.

Here

η3(θ) = ∂θ
(η2(θ)
cos θ

)
.

Moreover, we note that η3(0) = η3(
π
2 ) = 0. Then the same process gives

∫ π
2

0

e2πir sin θχ≤π
6
(θ) cosd−2 θ dθ

= −
1

2πir
+

d− 3

(2πir)3
+

1

(2πir)5

∫ π
2

0

e2πir sin θη4(θ) dθ, (3.10)

where the function η4 satisfies |η4(θ)| ! 1. Then we obtain the desired result in the first
estimate.

The second one, because of the zero boundary values in every step, can be obtained by
integration-by-parts 10 times. #

As consequences of the lemmas above, we have the following variant forms of J(r)−K(r).
The first one is

Corollary 3.9. Let d = 3, 4, 5, then

χ≤1(r)
(
J(r)−K(r)

)
= χ≤1(r)

∫ π
2

0

e2πir sin θ cosd−2 θ dθ; (3.11)

and

χ≥1(r)
(
J(r)−K(r)

)
= χ≥1(r)

∫ π
2

0

e2πir sin θχ≥π
6
(θ) cosd−2 θ dθ

+ χ1≤·≤2(r)

∫ π
2

0

e2πir sin θχ≤π
6
(θ) cosd−2 θ dθ + χ≥2(r)

1

(2πir)5

∫ π
2

0

e2πir sin θη̃d(θ) dθ, (3.12)

where η̃d, d = 3, 4, 5 are uniformly bounded functions.

Proof. From the definition of K(r), we have K(r) = 0 in the part of χ≤1(r). Hence, by the
definition of J(r) directly, we have (3.11).

For (3.12), we split J(r) into the following two parts,
∫ π

2

0

e2πir sin θχ≥π
6
(θ) cosd−2 θ dθ and

∫ π
2

0

e2πir sin θχ≤π
6
(θ) cosd−2 θ dθ.

For the latter part, we use the identity (3.10) to obtain that

χ≥2(r)

∫ π
2

0

e2πir sin θχ≤π
6
(θ) cosd−2 θ dθ = K(r) + χ≥2(r)

1

(2πir)5

∫ π
2

0

e2πir sin θη4(θ) dθ.

Hence, setting η̃d = η4, we get (3.12). Note that from the definitions in the proof of Lemma
3.8, η4 are uniformly bounded functions whenever d = 3, 4, 5. This proves the lemma. #
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The following result shows the asymptotic behaviors of J(r)−K(r) and J(r) + J(−r).

Corollary 3.10. Let d = 3, 4, 5, then

J(r)−K(r) =

∫ π
2

0

e2πir sin θχ≥π
6
(θ) cosd−2 θ dθ +O

(
〈r〉−5

)
(3.13)

= O
(
〈r〉−

d−1
2
)
; (3.14)

and

J(r) + J(−r) =

∫ π
2

−π
2

e−2πir sin θχ≥π
6
(θ) cosd−2 θ dθ +O

(
〈r〉−10

)
. (3.15)

Proof. Note that when r ! 1, the following four functions: J(r)−K(r), J(r) + J(−r),
∫ π

2

0

e2πir sin θχ≥π
6
(θ) cosd−2 θ dθ and

∫ π
2

−π
2

e−2πir sin θχ≥π
6
(θ) cosd−2 θ dθ

are uniformly bounded. Hence, the estimates of (3.13) and (3.15) hold when r ! 1.

When r " 1, from (3.12) ,

J(r)−K(r) =

∫ π
2

0

e2πir sin θχ≥π
6
(θ) cosd−2 θ dθ +O

(
r−5
)
;

and from Lemma 3.8,

J(r) + J(−r) =

∫ π
2

−π
2

e−2πir sin θχ≥π
6
(θ) cosd−2 θ dθ +O

(
r−10

)
.

Hence, we obtain (3.13) and (3.15). Combining with (3.13) and (3.7), we obtain (3.14). This
finishes the proof of the corollary. #

3.2.1. Matching estimates in frequency and physical spaces. In this subsection, we will show
that the incoming/outgoing projection would almost preserve the localization in both space
and frequency. The first result below is related to the preservation of frequency. Specifically,
if a function f has high frequency f = P2kf , then its incoming/outgoing component will
have almost the same frequency plus a smooth perturbation.

Proposition 3.11. Let k0 ≥ 0. Suppose that f ∈ L2(Rd) with suppf ⊂ {x : |x| ≥ 1}, then
(
P≥2k0f

)
out/in

=
(
P≥2k0f

)
out/in,≥k0−1

+ h

with

‖h‖Hµ(d)(Rd) ! 2−k0‖f‖H−10(Rd). (3.16)

Here µ(d) = 2 if d = 3, 4, and µ(5) = 3. Similarly,
(
P≤2k0f

)
out/in

=
(
P≤2k0f

)
out/in,≤k0+1

+ h̃

with h̃ verifying the same estimate to (3.16).

Proof. We only give the estimate of the first part, since the second one can be treated in
the same manner. Moreover, considering the support of f , for simplifying the notations, we
write

f = χ≥1f.
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To give the desired estimate, we use the Littlewood-Paley decomposition and write

P≥2k0f =
+∞∑

k=k0

P2kf.

From (3.3), we note that

F(P2kf)(ρ) = F

(
|x|βP2kf

)
(ρ).

Accordingly, we decompose F(P2kf)(ρ) into the following two parts,

χ≥2k0−1(ρ) F

(
|x|βP2kf

)
(ρ) + χ≤2k0−1(ρ)F

(
|x|βP2kf

)
(ρ).

Now due to the support of f , we further decompose the expression above as

χ≥2k0−1(ρ) F

(
|x|βP2kf

)
(ρ) + χ≤2k0−1(ρ)F

(
χ≥ 1

2
|x|β · P2kχ≥1f

)
(ρ)

+ χ≤2k0−1(ρ)F
(
χ≤ 1

2
(x) |x|β · P2kχ≥1f

)
(ρ).

We denote

g1(ρ) = χ≤2k0−1(ρ)F
(
χ≥ 1

2
(x) |x|β · P2kχ≥1f

)
(ρ);

g2(ρ) = χ≤2k0−1(ρ)F
(
χ≤ 1

2
(x) |x|β · P2kχ≥1f

)
(ρ).

Then we have

F(P2kf)(ρ) = χ≥2k0−1(ρ) F(P2kf)(ρ) + g1 + g2. (3.17)

From Definition 3.4, we have

(
P2kf

)
out

= r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
ρd−1F(P2kf)(ρ) dρ,

thus using (3.17), we write

(
P2kf

)
out

=r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
ρd−1χ≥2k0−1(ρ) F(P2kf)(ρ) dρ

+ r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
ρd−1 g1(ρ) dρ

+ r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
ρd−1 g2(ρ) dρ.

Denote

hk(r) =r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
ρd−1 g1(ρ) dρ

+ r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
ρd−1 g2(ρ) dρ, (3.18)

then (
P2kf

)
out

=
(
P2kf

)
out,≥k0−1

+ hk.

Moreover, let

h(r) =
+∞∑

k=k0

hk(r),
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then (
P≥2k0f

)
out/in

=
(
P≥2k0f

)
out/in,≥k0−1

+ h.

Now we give the control of hk. To this end, we first claim that for any M ∈ Z+,

‖g1‖L∞
ρ
+ ‖g2‖L∞

ρ
!M 2−Mk

∥∥P2kf
∥∥
L2(Rd)

. (3.19)

To prove this claim, we note that

g1(ρ) = χ≤2k0−1(ρ)F
(
P≥2k−2

(
χ≥ 1

2
|x|β

)
· P2kf

)
(ρ).

Here we have used the fact k ≥ k0. Then by Hausdorff-Young’s inequality,

‖g1‖L∞
ρ
!
∥∥∥F

(
P≥2k−2

(
χ≥ 1

2
|x|β

)
· P2kf

)∥∥∥
L∞
ρ

!
∥∥P≥2k−2

(
χ≥ 1

2
|x|β
)
· P2kf

∥∥
L1
x(Rd)

!
∥∥P≥2k−2

(
χ≥ 1

2
|x|β
)∥∥

L2
x(Rd)

∥∥P2kf
∥∥
L2
x(Rd)

.

Note that
∥∥P≥2k−2

(
χ≥ 1

2
|x|β

)∥∥
L2
x(Rd)

! 2−Mk
∥∥(−∆)

M
2 P≥2k−2

(
χ≥ 1

2
|x|β

)∥∥
L2
x(Rd)

! 2−Mk,

thus we obtain that

‖g1‖L∞
ρ
! 2−Mk

∥∥P2kf
∥∥
L2(Rd)

.

For g2, we rewrite it as

g2(ρ) = χ≤2k0−1(ρ)F
(
χ≤ 1

2
(x) |x|β · χ≤ 3

4
(x)P2kχ≥1f

)
(ρ).

Then

‖g2‖L∞
ρ
!
∥∥∥F

(
χ≤ 1

2
(x) |x|β · χ≤ 3

4
(x)P2kχ≥1f

)∥∥∥
L∞
ρ

!
∥∥χ≤ 1

2
(x) |x|β · χ≤ 3

4
(x)P2kχ≥1f

∥∥
L1
x(R

d)

!
∥∥χ≤ 1

2
(x) |x|β

∥∥
L2
x(R

d)

∥∥χ≤ 3
4
P2kχ≥1f

∥∥
L2
x(R

d)
.

Since β = d−5
2 > −d

2 , we have
∥∥χ≤ 1

2
|x|β

∥∥
L2
x(Rd)

! 1.

Moreover, by the mismatch estimate given in Lemma 2.4, we have
∥∥χ≤ 3

4
P2kχ≥1f

∥∥
L2
x(R

d)
! 2−Mk

∥∥P2kf
∥∥
L2(Rd)

.

Hence, we obtain that

‖g2‖L∞
ρ
! 2−Mk

∥∥P2kf
∥∥
L2(Rd)

.

This together with the estimate on g1, gives the claim (3.19).

Based on (3.19), we consider ‖hk‖L2(Rd). Note that

‖hk‖L2(Rd) =c
∥∥r

d−1
2 hk(r)

∥∥
L2
r
.
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Further,

r
d−1
2 hk(r) =r2

∫ +∞

0

(
J(ρr)−K(ρr)

)
ρd−1 g1(ρ) dρ

+ r2
∫ +∞

0

(
J(ρr)−K(ρr)

)
ρd−1 g2(ρ) dρ.

We only consider the first term. Since the estimates for g1, g2 are the same, see (3.19), they
can be treated in the same way. To do this, we split it into the following two parts again,

r2
∫ +∞

0

J(ρr)χ≤1(ρr)ρ
d−1 g1(ρ) dρ, (3.20a)

and

r2
∫ +∞

0

(
J(ρr)−K(ρr)

)
χ≥1(ρr)ρ

d−1 g1(ρ) dρ. (3.20b)

Since |J(ρr)| ! 1, (3.20a) can be controlled by
∫ +∞

0

χ≤1(ρr)ρ
d−3
∣∣g1(ρ)

∣∣ dρ.

Since d ≥ 3,

‖(3.20a)‖L2
r
!
∥∥∥
∫ +∞

0

χ≤1(ρr)ρ
d−3χ≤2k0−1(ρ)

∣∣g1(ρ)
∣∣ dρ
∥∥∥
L2
r

!

∫ +∞

0

ρd−
7
2χ≤2k0−1(ρ)

∣∣g1(ρ)
∣∣ dρ

!2(d−
5
2 )k0−Mk

∥∥P2kf
∥∥
L2(Rd)

.

Then, choosing M large enough, we have

‖(3.20a)‖L2
r
! 2−

1
2Mk

∥∥P2kf
∥∥
L2(Rd)

. (3.21)

For (3.20b), according to (3.13), we split it into the following two parts,

r2
∫ +∞

0

∫ π
2

0

e2πiρr sin θχ≥π
6
(θ) cosd−2 θ dθχ≥1(ρr)ρ

d−1 g1(ρ) dρ, (3.22-1)

and

r2
∫ +∞

0

O
(
〈ρr〉−5

)
χ≥1(ρr)ρ

d−1 g1(ρ) dρ. (3.22-2)

To estimate (3.22-1), we use the formula

e2πiρr sin θ =
1

(2πir sin θ)2
∂2ρe

2πiρr sin θ

to reduce it as
∫ +∞

0

∫ π
2

0

1

(2πi sin θ)2
∂2ρe

2πiρr sin θχ≥π
6
(θ) cosd−2 θ dθχ≥1(ρr)ρ

d−1 g1(ρ) dρ.

By integration-by-parts, it is equal to
∫ +∞

0

∫ π
2

0

1

(2πi sin θ)2
e2πiρr sin θχ≥π

6
(θ) cosd−2 θ dθ ∂2ρ

[
χ≥1(ρr)ρ

d−1 g1(ρ)
]
dρ.
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Then by Corollary 2.12, we have

∥∥(3.22-1)
∥∥
L2
r
!

∫ π
2

0

1

(2π sin θ)
5
2

χ≥π
6
(θ) cosd−2 θ dθ

·
(∥∥ρd−3 g1(ρ)

∥∥
L2
ρ
+
∥∥ρd−2 ∂ρg1(ρ)

∥∥
L2
ρ
+
∥∥ρd−1 ∂2ρg1(ρ)

∥∥
L2
ρ

)
.

Note that
∥∥ρd−3 g1(ρ)

∥∥
L2
ρ
!
∥∥χ≤2k0−1(ρ)ρd−3

∥∥
L2
ρ
‖g1‖L∞

ρ

!2(d−
5
2 )k0−Mk

∥∥P2kf
∥∥
L2(Rd)

! 2−
1
2Mk

∥∥P2kf
∥∥
L2(Rd)

;

and furthermore, by the Plancherel identity,
∥∥ρd−2 ∂ρg1(ρ)

∥∥
L2
ρ
!2

d−3
2 k0
∥∥∥ρ

d−1
2 χ≤2k0−1(ρ)∇ξF

((
χ≥ 1

2
|x|β

)
· P2kf

)
(ρ)
∥∥∥
L2
ρ

!2
d−3
2 k0
∥∥∥χ≤2k0−1(ξ)∇F

(
P≥2k−2

(
χ≥ 1

2
|x|β

)
· P2kf

)
(ξ)
∥∥∥
L2
ξ(R

d)

!2
d−3
2 k0
∥∥P≥2k−2

(
χ≥ 1

2
|x|βx

)
· P2kf

∥∥
L2(Rd)

!2
d−3
2 k0
∥∥P≥2k−2

(
χ≥ 1

2
|x|βx

)∥∥
L∞(Rd)

∥∥P2kf
∥∥
L2(Rd)

!2−
1
2
Mk
∥∥P2kf

∥∥
L2(Rd)

.

Moreover, using the following estimate instead,
∥∥P≥2k−2

(
χ≥ 1

2
|x|β+2

)∥∥
L∞(Rd)

! 2−Mk,

we also have
∥∥ρd−1 ∆g1

∥∥
L2
ρ
!2−

1
2Mk

∥∥P2kf
∥∥
L2(Rd)

.

Since ∂2ρ = ∆− d−1
ρ ∂ρ, by the estimates above, we get

∥∥ρd−1 ∂2ρg1(ρ)
∥∥
L2
ρ
! 2−

1
2Mk

∥∥P2kf
∥∥
L2(Rd)

.

Therefore,
∥∥(3.22-1)

∥∥
L2
r
! 2−

1
2Mk

∥∥P2kf
∥∥
L2(Rd)

.

For (3.22-2), it is bounded by

r−1

∫ +∞

0

χ≥1(ρr)ρ
d−4 |g1(ρ)| dρ.

Similar as (3.20a),

‖(3.22-2)‖L2
r
! 2−

1
2Mk

∥∥P2kf
∥∥
L2(Rd)

.

Combining the above two estimates for (3.22), we obtain

‖(3.20b)‖L2
r
! 2−

1
2Mk

∥∥P2kf
∥∥
L2(Rd)

.

Then collecting the above two findings for (3.20), we have

‖hk‖L2(Rd) ! 2−
1
2Mk

∥∥P2kf
∥∥
L2(Rd)

.
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Now we consider the estimates of hk with the high-order derivatives. For ‖∆hk‖L2(Rd),
it is equivalent to ∥∥r

d−1
2 ∂rrhk

∥∥
L2
r
+
∥∥r

d−1
2 −1∂rhk

∥∥
L2
r
.

Note that from the definition of hk in (3.18), both of r
d−1
2 ∂rrhk and r

d−1
2 −1∂rhk are the

combination of the following three parts,
∫ +∞

0

(
J(ρr)−K(ρr)

)
ρd−1 gj(ρ) dρ;

r

∫ +∞

0

∂r
(
J(ρr)−K(ρr)

)
ρd−1 gj(ρ) dρ; (3.23)

and

r2
∫ +∞

0

∂2r

(
J(ρr)−K(ρr)

)
ρd−1 gj(ρ) dρ,

where j = 1, 2. When d = 5, we also need to estimate ‖∇∆hk‖L2(Rd), which is equivalent to
∥∥r

d−1
2 ∂rrrhk

∥∥
L2
r
+
∥∥r

d−1
2 −1∂rrhk

∥∥
L2
r
+
∥∥r

d−1
2 −2∂rhk

∥∥
L2
r
.

Note that β = 0 in this case, hence all of r
d−1
2 ∂rrrhk, r

d−1
2 −1∂rrhk and r

d−1
2 −2∂rhk are the

combination of the following three parts,
∫ +∞

0

∂r
(
J(ρr)−K(ρr)

)
ρd−1 gj(ρ) dρ;

r

∫ +∞

0

∂2r

(
J(ρr)−K(ρr)

)
ρd−1 gj(ρ) dρ;

and

r2
∫ +∞

0

∂3r

(
J(ρr)−K(ρr)

)
ρd−1 gj(ρ) dρ.

(Note that there is no singularity in r, due to β = 0.)

By the formulas given in Corollary 3.9, we have the explicit form of ∂lr

(
J(ρr)−K(ρr)

)

for l = 1, 2, 3, then similar argument can be used to estimate all the terms which can be
dominated by 2−

1
2Mk

∥∥P2kf
∥∥
L2(Rd)

. For the sake of completeness, we take the term (3.23) for

example and give the estimation. To do this, we split (3.23) into the following two parts,

r

∫ +∞

0

∂r
((

J(ρr)−K(ρr)
)
χ≤1(ρr)

)
ρd−1 gj(ρ) dρ; (3.24a)

and

r

∫ +∞

0

∂r
((

J(ρr)−K(ρr)
)
χ≥1(ρr)

)
ρd−1 gj(ρ) dρ. (3.24b)

For (3.24a), we use the following estimate which is from (3.11),
∣∣∣∂r
((

J(ρr)−K(ρr)
)
χ≤1(ρr)

)∣∣∣ ! ρχ≤1(ρr).

Then (3.24a) can be dominated by
∫ +∞

0

χ≤1(ρr)ρ
d−1
∣∣gj(ρ)

∣∣ dρ.
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Hence,

‖(3.24a)‖L2
r
!

∫ +∞

0

ρd−
3
2

∣∣gj(ρ)
∣∣ dρ

!2(d−
1
2 )k0‖gj‖L∞

ρ
! 2−

1
2Mk

∥∥P2kf
∥∥
L2(Rd)

.

For (3.24b), we use the following estimate which is from (3.12),

∂r
(
χ≥1(ρr)

(
J(ρr)−K(ρr)

))
= 2πiρ χ≥1(ρr)

∫ π
2

0

e2πiρr sin θχ≥π
6
(θ) sin θ cosd−2 θ dθ

+ χ"1(ρr) · O
(
ρ−4r−5

)
.

Accordingly, (3.24b) can be split into the following two subparts again,

2πir

∫ +∞

0

∫ π
2

0

e2πiρr sin θχ≥π
6
(θ) sin θ cosd−2 θ dθχ≥1(ρr)ρ

d gj(ρ) dρ; (3.25-1)

and

r

∫ +∞

0

O
(
ρ−4r−5

)
χ"1(ρr)ρ

d−1 gj(ρ) dρ. (3.25-2)

Then the part (3.25-1) can be treated similarly as (3.22-1); the part (3.25-2) can be treated
similarly as (3.22-2), and thus we have

‖(3.24b)‖L2
r
≤ ‖(3.25-1)‖L2

r
+ ‖(3.25-2)‖L2

r
! 2−

1
2Mk

∥∥P2kf
∥∥
L2(Rd)

.

Therefore, from the estimates on (3.24), we get

‖(3.23)‖L2
r
! 2−

1
2Mk

∥∥P2kf
∥∥
L2(Rd)

.

Combining the estimates above, we establish that

‖hk‖Hµ(d)(Rd) ! 2−
1
2Mk

∥∥P2kf
∥∥
L2(Rd)

.

Therefore, by summation in k and choosing M suitably large, we obtain that

‖h‖Hµ(d)(Rd) ! 2−k0
∥∥f
∥∥
H−10(Rd)

.

This finishes the proof of the proposition. #

The following result shows that if f is supported outside of a ball, then fout/in is also
almost supported outside of the ball.

Lemma 3.12. Let µ(d) be defined in Proposition 3.11. Suppose that suppf ⊂ {x : |x| > 1},
then

∥∥χ≤ 1
4
(P≥1f)out/in

∥∥
Hµ(d)(Rd)

! ‖f‖H−1(Rd),

and for any k ∈ Z+,
∥∥χ≤ 1

4
(P2kf)out/in,≥k−1

∥∥
Hµ(d)(Rd)

! 2−2k‖P2kf‖L2(Rd).

Proof. We only consider the estimates on the outgoing part fout, because the ones on the
incoming part can be proved in a similar way. Using the Littlewood-Paley decomposition,
we write

P≥1f =
+∞∑

k=0

P2kf.



24 MARIUS BECEANU, QINGQUAN DENG, AVY SOFFER, AND YIFEI WU

Then

∥∥χ≤ 1
4

(
P≥1f

)
out/in

∥∥
Hµ(d)(Rd)

!
+∞∑

k=0

∥∥χ≤ 1
4

(
P2kf

)
out

∥∥
Hµ(d)(Rd)

.

Using Proposition 3.11, we have
(
P2kf

)
out

=
(
P2kf

)
out,≥k−1

+ h, with ‖h‖Hµ(d)(Rd) ! 2−k
∥∥P2kf

∥∥
H−10(Rd)

.

Hence,
∥∥χ≤ 1

4

(
P2kf

)
out

∥∥
Hµ(d)(Rd)

!
∥∥χ≤ 1

4

(
P2kf

)
out,≥k−1

∥∥
Hµ(d)(Rd)

+
∥∥P2kf

∥∥
H−10(Rd)

.

Therefore, we only need to consider
∥∥χ≤ 1

4

(
P2kf

)
out,≥k−1

∥∥
Hµ(d)(Rd)

. We first consider the L2-

norm, which is equal to ∥∥r
d−1
2 χ≤ 1

4
(r)
(
P2kf

)
out,≥k−1

∥∥
L2
r
.

From the definition, we have

r
d−1
2
(
P2kf

)
out,≥k−1

=r2
∫ +∞

0

(
J(ρr)−K(ρr)

)
χ≥2k−1(ρ)ρd−1F(P2kf)(ρ) dρ.

As in the proof of the previous proposition, we split it into the following two parts,

r2
∫ +∞

0

(
J(ρr)−K(ρr)

)
χ≤1(ρr)χ≥2k−1(ρ)ρd−1F(P2kf)(ρ) dρ; (3.26a)

and

r2
∫ +∞

0

(
J(ρr)−K(ρr)

)
χ≥1(ρr)χ≥2k−1(ρ)ρd−1F(P2kf)(ρ) dρ. (3.26b)

For (3.26a), using the definition of F(P2kf), we rewrite it as

r2
∫ +∞

0

J(ρr)χ≤1(ρr)χ≥2k−1(ρ)ρd−1

∫ +∞

0

(
J(ρs) + J(−ρs)

)
sβ+d−1P2kf(s) dsdρ.

Using (3.15) and (3.6), we split (3.26a) into the following two subparts again,

r2
∫ +∞

0

∫ π
2

0

e2πiρr sin θ cosd−2 θ dθ χ≤1(ρr)χ≥2k−1(ρ)ρd−1

·

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′sβ+d−1P2kf(s) dsdρ, (3.27-1)

and

r2
∫ +∞

0

J(ρr)χ≤1(ρr)χ≥2k−1(ρ)ρd−1

∫ +∞

0

O
(
〈ρs〉−10

)
sβ+d−1P2kf(s) dsdρ. (3.27-2)

The term (3.27-1) can be rewritten as

r2
∫ π

2

0

∫ π
2

−π
2

∫ +∞

0

∫ +∞

0

e2πiρ(r sin θ−s sin θ′)χ≤1(ρr)χ≥2k−1(ρ)ρd−1sβ+d−1P2kf(s) dsdρ

· χ≥π
6
(θ′) cosd−2 θ cosd−2 θ′ dθ′dθ.

When r ≤ 1
3 , s ≥

9
10 , | sin θ

′| ≥ 2
5 , we have

|r sin θ − s sin θ′| " r + s. (3.28)
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Then using the formula,

e2πiρ(r sin θ−s sin θ′) =
1

2πi(r sin θ − s sin θ′)
∂ρ
(
e2πiρ(r sin θ−s sin θ′)

)
, (3.29)

and integration-by-parts 5 times, (3.27-1) turns to

r2
∫ π

2

0

∫ π
2

−π
2

∫ +∞

0

∫ +∞

0

e2πiρ(r sin θ−s sin θ′)

[2πi(r sin θ − s sin θ′)]5
∂5ρ

[
χ≤1(ρr)χ≥2k−1(ρ)ρd−1

]

· sβ+d−1P2kf(s) dρds χ≥π
6
(θ′) cosd−2 θ cosd−2 θ′dθ′dθ. (3.30)

Note that rχ′
≤1(ρr) ! ρ−1, we have that

∣∣∣∂5ρ
[
χ≤1(ρr)χ≥2k−1(ρ)ρd−1

]∣∣∣ ! χ≤1(ρr)χ≥2k−1(ρ)ρd−6.

Here and in the following, for simplicity, we regard χ≥1 and its derivatives as the same. Then
this last estimate combining with (3.28) and (3.30), gives the bound of (3.27-1) as

∫ +∞

0

∫ +∞

0

χ≤1(ρr)χ≥2k−1(ρ)ρd−8sβ+d−6|P2kf(s)| dρds.

Therefore,

‖(3.27-1)‖L2
r({r≤

1
4})

! 2(d−
15
2 )k‖s

d−1
2 P2kf‖L2

s
! 2(d−7)k

∥∥P2kf
∥∥
L2(Rd)

.

Note that |J(ρr)| ! 1, thus (3.27-2) is also bounded by
∫ +∞

0

∫ +∞

0

χ≤1(ρr)χ≥2k−1(ρ)〈ρs〉−10ρd−3sβ+d−1|P2kf(s)| dρds.

Hence, we get
‖(3.27-2)‖L2

r({r≤
1
4})

! 2(d−12)k
∥∥P2kf

∥∥
L2(Rd)

.

Combining these two estimates on (3.27), we obtain that

‖(3.26a)‖L2
r({r≤

1
4})

! 2−2k
∥∥P2kf

∥∥
L2(Rd)

. (3.31)

Now we consider (3.26b), which is equal to

r2
∫ +∞

0

(
J(ρr)−K(ρr)

)
χ≥1(ρr)χ≥2k−1(ρ)ρd−1

·

∫ +∞

0

(
J(ρs) + J(−ρs)

)
sβ+d−1P2kf(s) dsdρ.

Using (3.15) again, we split (3.26b) into the following two subparts again,

r2
∫ +∞

0

(
J(ρr)−K(ρr)

)
χ≥1(ρr)χ≥2k−1(ρ)ρd−1

·

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′sβ+d−1P2kf(s) dsdρ, (3.32-1)

and

r2
∫ +∞

0

(
J(ρr)−K(ρr)

)
χ≥1(ρr)χ≥2k−1(ρ)ρd−1

∫ +∞

0

O
(
〈ρs〉−10

)
sβ+d−1P2kf(s) dsdρ. (3.32-2)
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For (3.32-1), using the formula in (3.12), we can write

χ≥1(ρr)
(
J(ρr)−K(ρr)

)
= χ≥1(ρr)

∫ π
2

0

e2πiρr sin θη(θ, ρr) dθ, (3.33)

where the function η(θ, ρr) is defined as

η(θ, ρr) = χ≥π
6
(θ) cosd−2 θ + χ1≤·≤2(ρr)χ≤π

6
(θ) cosd−2 θ +

χ≥2(ρr)

(2πiρr)5
η̃d(θ).

Then from (3.33), the term (3.32-1) can be rewritten as

r2
∫ π

2

0

∫ π
2

−π
2

∫ +∞

0

∫ +∞

0

e2πiρ(r sin θ−s sin θ′)χ≥1(ρr)χ≥2k−1(ρ)η(θ, ρr)

· ρd−1sβ+d−1P2kf(s) dsdρ χ≥π
6
(θ′) cosd−2 θ′ dθ′dθ.

Now using (3.28) and treating similarly as (3.27-1), we obtain that

‖(3.32-1)‖L2
r({r≤

1
4})

! 2(d−12)k
∥∥P2kf

∥∥
L2(Rd)

.

For (3.32-2), applying (3.14), we have that

χ≥1(ρr)
(
J(ρr)−K(ρr)

)
= O

(
(ρr)−

d−1
2
)
. (3.34)

Hence,

|(3.32-2)| ! r2−
d−1
2

∫ +∞

0

∫ +∞

0

χ≥2k−1(ρ)〈ρs〉−10ρ
d−1
2 sβ+d−1|P2kf(s)| dρds.

This gives that

‖(3.32-2)‖L2
r({r≤

1
4})

! 2
d−19

2 k
∥∥P2kf

∥∥
L2(Rd)

.

Therefore, we obtain that

‖(3.26b)‖L2
r({r≤

1
4})

! 2
d−19

2 k
∥∥P2kf

∥∥
L2(Rd)

.

Combining the estimates above, we obtain that
∥∥χ≤ 1

4

(
P2kf

)
out,≥k−1

∥∥
L2(Rd)

! 2−2k
∥∥P2kf

∥∥
L2(Rd)

. (3.35)

Now similar argument (as in the proof of Proposition 3.11) can be used to treat the functions
in the high-order derivatives. Thus we obtain the desired estimate in Hµ(d)(Rd) space, and
prove the lemma. #

3.3. Boundedness of the incoming/outgoing projection operators. The main results
in this section are the boundedness of incoming/outgoing projection operator in L2(Rd).

Proposition 3.13. Suppose that f ∈ L2(Rd), then for any k ∈ Z+,

‖fout/in,k‖L2(Rd) ! ‖f‖L2(Rd).

Here the implicit constant is independent of k.

Remark 3.14. We remark here that we have a slightly stronger estimate read as

‖fout/in‖L2(Rd) ! ‖f‖L2(Rd).

The proof follows from the similar argument as in the proof of Proposition 3.13 below, with a
further spatial cut-off on the function f . However, the log-loss is not essential in this paper,
so to simplify the proof we only present a slightly weaker estimate as in Proposition 3.13.
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Proof of Proposition 3.13. We only consider the estimates on fout,k. Since fout,k is radial, we
have

‖fout,k‖L2(Rd) =c
∥∥r

d−1
2 fout,k(r)

∥∥
L2
r
.

By Definition 3.4, we write

r
d−1
2 fout,k(r) =r2

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1Ff(ρ) dρ

=r2
∫ +∞

0

J(ρr)χ≤1(ρr)χ2k(ρ)ρ
d−1Ff(ρ) dρ (3.36a)

+ r2
∫ +∞

0

(
J(ρr)−K(ρr)

)
χ≥1(ρr)χ2k(ρ)ρ

d−1Ff(ρ) dρ. (3.36b)

Estimates on (3.36a). Note that

(3.36a) = r2
∫ +∞

0

J(ρr)χ≤1(ρr)χ2k(ρ)ρ
d−1

∫ +∞

0

(
J(ρs) + J(−ρs)

)
sβ+d−1f(s) dsdρ.

Accordingly, we further split it into the following two subparts again,

r2
∫ +∞

0

J(ρr)χ≤1(ρr)χ2k(ρ)ρ
d−1

∫ +∞

0

(
J(ρs) + J(−ρs)

)
χ≤10(ρs)s

β+d−1f(s) dsdρ; (3.37-1)

and

r2
∫ +∞

0

J(ρr)χ≤1(ρr)χ2k(ρ)ρ
d−1

∫ +∞

0

(
J(ρs) + J(−ρs)

)
χ≥10(ρs)s

β+d−1f(s) dsdρ. (3.37-2)

For (3.37-1), noting that |J(ρr)|, |J(ρs)| ! 1, we have that

|(3.37-1)| ! r2
∫ +∞

0

∫ +∞

0

χ≤1(ρr)χ2k(ρ)ρ
d−1χ≤10(ρs)s

β+d−1
∣∣f(s)

∣∣ dsdρ.

Thus,

‖(3.37-1)‖L2
r
!

∫ +∞

0

∫ +∞

0

∥∥r2χ≤1(ρr)
∥∥
L2
r
χ2k(ρ)ρ

d−1χ≤10(ρs)s
β+d−1|f(s)| dsdρ

!

∫ +∞

0

χ2k(ρ)ρ
d− 7

2

∥∥χ≤10(ρs)s
d−3
∥∥
L2
s

∥∥s
d−1
2 f(s)

∥∥
L2
s
dρ

!

∫ +∞

0

ρ−1χ2k(ρ) dρ
∥∥s

d−1
2 f(s)

∥∥
L2
s
! ‖f‖L2(Rd). (3.38)

Now we estimate (3.37-2). From (3.15), we write

(3.37-2) = r2
∫ +∞

0

J(ρr)χ≤1(ρr)χ2k(ρ)ρ
d−1

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ

· χ≥π
6
(θ) cosd−2 θ dθχ≥10(ρs)s

β+d−1f(s) dsdρ (3.39-i)

+r2
∫ +∞

0

J(ρr)χ≤1(ρr)χ2k(ρ)ρ
d−1

∫ +∞

0

O
(
(ρs)−10

)
χ≥10(ρs)s

β+d−1f(s) dsdρ.

(3.39-ii)
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The terms (3.39-i) is equal to

r2
∫ π

2

0

∫ π
2

−π
2

∫ +∞

0

∫ +∞

0

e2πiρ(−s sin θ′+r sin θ)χ≤1(ρr)χ2k(ρ)χ≥10(ρs)

· ρd−1sβ+d−1f(s) dρds χ≥π
6
(θ′) cosd−2 θ′ cosd−2 θ dθ′dθ. (3.40)

Note that the power β + d− 1 is too large to be integrable in s, but we can use integration-
by-parts to decrease the power of s, due to the non-resonance of the phase. Indeed, when
|θ′| ≥ π

7 , s ≥ 5r, we have (3.28). Thus using the formula (3.29) and integration-by-parts 10
times, (3.39-i) can be controlled by

r2
∫ +∞

0

∫ +∞

0

χ!1(ρr)χ2k(ρ)χ"1(ρs)ρ
d−11sβ+d−11|f(s)| dρds.

Therefore, we obtain
‖(3.39-i)‖L2

r
! ‖f‖L2(Rd).

The term (3.39-ii) can be controlled by
∫ +∞

0

∫ +∞

0

χ≤1(ρr)χ≥10(ρs)χ2k(ρ)ρ
d−13sd−13 · s

d−1
2 |f(s)| dsdρ.

Hence, similar as the estimate on (3.37-1), we have

‖(3.39-ii)‖L2
r
! ‖f‖L2(Rd).

Combining this last estimate with the estimate on (3.39-i), we get

‖(3.37-2)‖L2
r
! ‖f‖L2(Rd).

This together with (3.38), gives

‖(3.36a)‖L2
r
! ‖f‖L2(Rd). (3.41)

Estimates on (3.36b). Note that

(3.36b) = r2
∫ +∞

0

(
J(ρr)−K(ρr)

)
χ≥1(ρr)χ2k(ρ)

· ρd−1

∫ +∞

0

(
J(ρs) + J(−ρs)

)
sβ+d−1f(s) dsdρ.

Note that for J(ρr)−K(ρr), we have the equality given in (3.13); and for J(ρs) + J(−ρs)
we have the equality given in (3.15). Then we divide (3.36b) into the following four parts.
The first part is

r2
∫ +∞

0

∫ π
2

0

e2πiρr sin θχ≥π
6
(θ) cosd−2 θ dθ χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′sβ+d−1f(s) dsdρ; (3.42-1)

the second part is

r2
∫ +∞

0

∫ π
2

0

e2πiρr sin θχ≥π
6
(θ) cosd−2 θ dθ χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

O
(
〈ρs〉−10

)
sβ+d−1f(s) dsdρ; (3.42-2)
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the third part is

r2
∫ +∞

0

O
(
(ρr)−5

)
χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′sβ+d−1f(s) dsdρ; (3.42-3)

and the fourth part is

r2
∫ +∞

0

O
(
(ρr)−5

)
χ≥1(ρr)χ2k(ρ)ρ

d−1

∫ +∞

0

O
(
〈ρs〉−10

)
sβ+d−1f(s) dsdρ. (3.42-4)

Estimate on (3.42-1). We split (3.42-1) into the following two subparts again,

r2
∫ +∞

0

∫ π
2

0

e2πiρr sin θχ≥π
6
(θ) cosd−2 θ dθ χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′

(
χ≤ 1

10 r
(s) + χ≥10r(s)

)
sβ+d−1f(s) dsdρ; (3.43-i)

and

r2
∫ +∞

0

∫ π
2

0

e2πiρr sin θχ≥π
6
(θ) cosd−2 θ dθ χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′χ 1

10 r≤·≤10r(s)s
β+d−1f(s) dsdρ. (3.43-ii)

For (3.43-i), we rewrite it as

r2
∫ π

2

0

∫ π
2

−π
2

∫ +∞

0

∫ +∞

0

e2πiρ(r sin θ−s sin θ′)χ≥1(ρr)χ2k(ρ)ρ
d−1 χ≥π

6
(θ)

· cosd−2 θχ≥π
6
(θ′) cosd−2 θ′

(
χ≤ 1

10 r
(s) + χ≥10r(s)

)
sβ+d−1f(s) dρdsdθ′dθ.

Note that we have (3.28) in this situation. Thus treated similarly as the term (3.39-i), using
the formula (3.29) and integration-by-parts 10 times, (3.43-i) has the bound of

r2χ"2−k(r)

∫ +∞

0

∫ +∞

0

(r + s)−10ρ−10χ2k(ρ)ρ
d−1sβ+d−1

∣∣f(s)
∣∣ dρds.

Hence,

‖(3.43-i)‖L2
r
! ‖f‖L2(Rd). (3.44)

For (3.43-ii), by dyadic decomposition, it is equal to

∞∑

j=−k

χ2j (r) · (3.43-ii).
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Note that χ2j (r) · (3.43-ii) can be written by

r2χ2j (r)

∫ +∞

0

∫ π
2

0

e2πiρr sin θχ≥π
6
(θ) cosd−2 θ dθ χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′χ2j−2≤·≤2j+2(s)sβ+d−1f(s) dsdρ (3.45)

+ other terms.

Here the “other terms” can be treated in the same manner as (3.43-i) and thus we ignore
them. For (3.45), from Lemma 3.6, we have the following two formulas,

∫ π
2

0

e2πiρr sin θχ≥π
6
(θ) cosd−2 θ dθ = c(ρr)−

d−1
2 e2πiρr +O

(
(ρr)−

d+1
2
)
;

and
∫ π

2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′ = (ρs)−

d−1
2

(
c̄e−2πiρs + ce2πiρs

)
+O

(
(ρs)−

d+1
2
)
.

Accordingly, we divide (3.45) into four parts as (3.42-1)–(3.42-4). The first part is

r2χ2j (r)

∫ +∞

0

(ρr)−
d−1
2 e2πiρrχ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

(ρs)−
d−1
2

(
c̄e−2πiρs + ce2πiρs

)
χ2j−2≤·≤2j+2(s)sβ+d−1f(s) dsdρ; (3.46-iia)

the second part is

r2χ2j (r)

∫ +∞

0

(ρr)−
d−1
2 e2πiρrχ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

O
(
(ρs)−

d+1
2
)
χ2j−2≤·≤2j+2(s)sβ+d−1f(s) dsdρ; (3.46-iib)

the third part is

r2χ2j (r)

∫ +∞

0

O
(
(ρr)−

d+1
2
)
χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

(ρs)−
d−1
2

(
c̄e−2πiρs + ce2πiρs

)
χ2j−2≤·≤2j+2(s)sβ+d−1f(s) dsdρ; (3.46-iic)

and the fourth part is

r2χ2j (r)

∫ +∞

0

O
(
(ρr)−

d+1
2
)
χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

O
(
(ρs)−

d+1
2
)
χ2j−2≤·≤2j+2(s)sβ+d−1f(s) dsdρ. (3.46-iid)

First, we consider (3.46-iia), which is equivalent to

2(2−
d−1
2 )jχ2j (r)

∫ +∞

0

e2πiρrχ≥1(ρr)χ2k(ρ)

·

∫ +∞

0

(
c̄e−2πiρs + ce2πiρs

)
χ2j−2≤·≤2j+2(s)s

d−5
2 s

d−1
2 f(s) dsdρ.
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Then using Corollary 2.12 and Plancherel’s identity, we have

‖(3.46-iia)‖L2
r
!2

5−d
2 j
∥∥∥
∫ +∞

0

(
c̄e−2πiρs + ce2πiρs

)
χ2j−2≤·≤2j+2(s)s

d−5
2 s

d−1
2 f(s) ds

∥∥∥
L2
ρ

!2
5−d
2 j
∥∥χ2j−2≤·≤2j+2(s)s

d−5
2 s

d−1
2 f(s)

∥∥
L2
s
!
∥∥f
∥∥
L2({|x|∼2j})

. (3.47)

Using the relationship r ∼ s, the term (3.46-iib)–(3.46-iid) can be treated in the similar way
as (3.42-2)–(3.42-4). We just take the term (3.46-iib) for example. Indeed, by Corollary
2.12, we have

‖(3.46-iib)‖L2
r
!2(2−

d−1
2 )j
∥∥∥ρ−

d−1
2 χ2k(ρ)ρ

d−1

∫ +∞

0

O
(
(ρs)−

d+1
2
)
χ2j−2≤·≤2j+2(s)sβ+d−1f(s) ds

∥∥∥
L2
ρ

!
∥∥χ2j−2≤·≤2j+2(s)s

d−1
2 f(s)

∥∥
L2
s
!
∥∥f
∥∥
L2({|x|∼2j})

. (3.48)

Similar as (3.42-3), (3.42-4), we have

‖(3.46-iic)‖L2
r
+ ‖(3.46-iid)‖L2

r
!
∥∥f
∥∥
L2({|x|∼2j})

. (3.49)

Combining with (3.48), (3.49) and (3.47), we obtain that

‖(3.45)‖L2
r
!
∥∥f
∥∥
L2({|x|∼2j})

.

Hence, we have

‖χ2j (r) · (3.43-ii)‖L2
r
!
∥∥f
∥∥
L2({|x|∼2j})

.

Therefore,

‖(3.43-ii)‖2L2
r
!

+∞∑

j=−k

‖χ2j (r) · (3.43-ii)‖
2
L2
r
!

+∞∑

j=−k

∥∥f
∥∥2
L2({|x|∼2j})

!
∥∥f
∥∥2
L2(Rd)

.

This last estimate together with (3.44), yields that

‖(3.42-1)‖L2
r
!
∥∥f
∥∥
L2(Rd)

. (3.50)

Now we consider the second part (3.42-2). Using the formula,

∂ρe
2πiρr sin θ = 2πir sin θ · e2πiρr sin θ,

and integration-by-parts, we reduce (3.42-2) to
∫ +∞

0

∫ π
2

0

e2πiρr sin θ
χ≥π

6
(θ) cosd−2 θ

(2πi sin θ)2
dθ ∂2ρ

[
χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

O
(
〈ρs〉−10

)
sβ+d−1f(s) ds

]
dρ.

Then by Corollary 2.12, we have

‖(3.42-2)‖L2
r
!

∫ π
2

0

∥∥∥∂2ρ
[
χ2k(ρ)ρ

d−1

∫ +∞

0

O
(
〈ρs〉−10

)
sβ+d−1f(s) ds

]∥∥∥
L2
ρ

χ≥π
6
(θ)

cosd−2 θ

sin
5
2 θ

dθ

!
∥∥∥∂2ρ
[
χ2k(ρ)ρ

d−1

∫ +∞

0

O
(
〈ρs〉−10

)
sβ+d−1f(s) ds

]∥∥∥
L2
ρ

.

Here we regard χ1,χ′
1,χ

′′
1 as the same because they have the same properties we need. From

the explicit formula in (3.10), we note that

∂jρ
[
O
(
〈ρs〉−10

)]
= O

(
sj〈ρs〉−10

)
, for j = 0, 1, 2.



32 MARIUS BECEANU, QINGQUAN DENG, AVY SOFFER, AND YIFEI WU

Hence, we get that
∣∣∣∂2ρ
[
χ2k(ρ)ρ

d−1

∫ +∞

0

O
(
〈ρs〉−10

)
sβ+d−1f(s) ds

]∣∣∣

!

∫ +∞

0

χ2k(ρ)ρ
d−1〈ρs〉−10s2sβ+d−1|f(s)| ds+

∫ +∞

0

χ2k(ρ)ρ
d−3〈ρs〉−10sβ+d−1|f(s)| ds

!

∫ +∞

0

χ2k(ρ)
[
(ρs)d−1 + (ρs)d−3

]
〈ρs〉−10s

d−1
2 |f(s)| ds.

Therefore, by Hölder’s inequality, we have

‖(3.42-2)‖L2
r
! ‖s

d−1
2 f‖L2

s
! ‖f‖L2(Rd). (3.51)

For the term (3.42-3), we split it into the following two subsubparts again,

r2
∫ +∞

0

O
(
(ρr)−5

)
χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′χ≤2−k(s)sβ+d−1f(s) dsdρ; (3.52-i)

and

r2
∫ +∞

0

O
(
(ρr)−5

)
χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′χ≥2−k(s)sβ+d−1f(s) dsdρ. (3.52-ii)

By Hölder’s inequality, we have

|(3.52-i)| ! r−3
∥∥∥χ≥1(ρr)χ2k(ρ)ρ

d−6
∥∥∥
L2
ρ

·

∫ π
2

−π
2

∥∥∥
∫ +∞

0

e−2πiρs sin θ′χ≤2−k(s)sβ+d−1f(s) ds
∥∥∥
L2
ρ

χ≥π
6
(θ′) cosd−2 θ′ dθ′,

then by Plancherel’s identity, it is further bounded by

r−3χ≥2−k−1(r)2(d−
1
2−5)k

∥∥∥χ≤2−k(s)sd−3s
d−1
2 f(s)

∥∥∥
L2
s

.

Hence, since d ≥ 3, we have

‖(3.52-i)‖L2
r
! ‖s

d−1
2 f‖L2

s
! ‖f‖L2(Rd). (3.53)

Now we consider (3.52-ii). From Lemma 3.6, we have
∫ π

2

−π
2

e−2πiρs sin θ′χ≥π
6
(θ′) cosd−2 θ′ dθ′ = (ρs)−

d−1
2

(
c̄e−2πiρs + ce2πiρs

)
+O

(
(ρs)−

d+1
2
)
.

Accordingly, (3.52-ii) can be further divided into the following two sub3-parts again,

r2
∫ +∞

0

O
(
(ρr)−5

)
χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

(ρs)−
d−1
2

(
c̄e2πiρs + ce−2πiρs

)
χ≥2−k(s)sβ+d−1f(s) dsdρ; (3.54-iia)
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and

r2
∫ +∞

0

O
(
(ρr)−5

)
χ≥1(ρr)χ2k(ρ)ρ

d−1

·

∫ +∞

0

O
(
(ρs)−

d+1
2
)
χ≥2−k(s)sβ+d−1f(s) dsdρ. (3.54-iib)

Thanks to the power of (ρs)−
d−1
2 in the integral, we can deal with (3.54-iia) as in (3.52-i),

which implies that

|(3.54-iia)| ! r−3χ≥2−k−1(r)2(
d
2−5)k

∥∥∥χ≥2−k(s)s
d−5
2 s

d−1
2 f(s)

∥∥∥
L2
s

.

Since d ≤ 5, we have

‖(3.54-iia)‖L2
r
! ‖f‖L2(Rd). (3.55)

The term (3.54-iib) is controlled by

r−3

∫ +∞

0

∫ +∞

0

χ≥1(ρr)χ2k(ρ)χ≥2−k(s)ρ
d−13

2 s
d−7
2 s

d−1
2 |f(s)| dsdρ.

Hence, by Hölder’s inequality, we obtain that

‖(3.54-iib)‖L2
r
! ‖f‖L2(Rd). (3.56)

Therefore, together with (3.55) and (3.56), we get

‖(3.52-ii)‖L2
r
! ‖f‖L2(Rd).

Hence, combining this last estimate with (3.53), we get

‖(3.42-3)‖L2
r
! ‖f‖L2(Rd). (3.57)

For the term (3.42-4), it can be controlled by

r−3

∫ +∞

0

∫ +∞

0

χ≥1(ρr)χ2k(ρ)〈ρs〉
−10ρd−6sβ+d−1f(s) dsdρ.

Similar as (3.54-iib), we have that

‖(3.42-4)‖L2
r
! ‖f‖L2(Rd). (3.58)

This together with (3.51), (3.57) and (3.58), gives

‖(3.36b)‖L2
r
!
∥∥f
∥∥
L2(Rd)

.

Hence, this last estimate above combined with (3.41), yields the desired estimate. #

Based on Proposition 3.13, we have the following estimate which can be regarded as the
extension of the Bernstein estimate.

Corollary 3.15. For any s ∈ [0, 4], and any integer k ≥ 0, suppose that f ∈ Ḣs(Rd), then
∥∥∥χ≥ 1

4

(
P2k
(
χ≥1f

))
out/in,k−1≤·≤k+1

∥∥∥
Ḣs(Rd)

! 2sk
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

Here the implicit constant is independent of k.
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Proof. We only consider the case when s = 4, since the other cases can be obtained by the
interpolation.

First, we give some reductions. Note that for the radial function g, we have the following
formula, for any integer s ≥ 0,

(−∆)
s
2 g(x) =

s∑

j=0

cjr
j−s∂jrg(r),

where cj are the constants dependent on d and j, and r = |x|. Therefore,
∥∥∥χ≥ 1

4

(
P2k
(
χ≥1f

))
out/in,k−1≤·≤k+1

∥∥∥
Ḣ4(Rd)

!
4∑

j=0

cj
∥∥χ"1(r)r

d−1
2 ∂jr

(
P2k
(
χ≥1f

))
out/in,k−1≤·≤k+1

(r)
∥∥
L2
r
.

Hence, we only need to show that for any integer j ≤ 4,
∥∥χ"1(r)r

d−1
2 ∂jr

(
P2k
(
χ≥1f

))
out/in,k−1≤·≤k+1

(r)
∥∥
L2
r
! 2jk

∥∥P2k
(
χ≥1f

)∥∥
L2(Rd)

. (3.59)

Furthermore, from Definition 3.4,

∂jr
(
P2k
(
χ≥1f

))
out/in,k−1≤·≤k+1

(r) =
j∑

j1=0

cj1r
−β−j+j1

·

∫ +∞

0

∂j1r

(
J(ρr)−K(ρr)

)
χ2k(ρ) ρ

d−1F
(
P2k(χ≥1f)

)
(ρ) dρ, (3.60)

where we have simplified the notation and denote

χ2k(ρ) = χ2k−1≤·≤2k+1(ρ),

and the constants cj may change line to line in the following. Moreover, we note that

∂j1r
(
J(ρr)−K(ρr)

)
=
(ρ
r

)j1
∂j1ρ
(
J(ρr)−K(ρr)

)
.

Hence, (3.60) reduces to
j∑

j1=0

cj1r
−β−j

∫ +∞

0

∂j1ρ

(
J(ρr)−K(ρr)

)
χ2k(ρ) ρ

d−1+j1F
(
P2k(χ≥1f)

)
(ρ) dρ.

Further, by integration-by-parts, it turns to
j∑

j1=0

cj1r
−β−j

∫ +∞

0

(
J(ρr)−K(ρr)

)
∂j1ρ

[
χ2k(ρ) ρ

d−1+j1F
(
P2k(χ≥1f)

)
(ρ)
]
dρ.

Therefore, we obtain that

∂jr
(
P2k
(
χ≥1f

))
out/in,k−1≤·≤k+1

(r)

=
j∑

j1=0

cj1r
−β−j

∫ +∞

0

(
J(ρr)−K(ρr)

)
∂j1ρ

[
χ2k(ρ) ρ

j1ρd−1
]
F
(
P2k(χ≥1f)

)
(ρ)
]
dρ

+
j∑

j1=0

cj1r
−β−j

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

j1ρd−1∂j1ρ

[
F
(
P2k
(
χ≥1f

))
(ρ)
]
dρ.
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Therefore, to prove (3.59), we only need to show the following two estimates: For any j1 ≤ j,

∥∥∥χ"1(r)r
d−1
2 r−β−j

∫ +∞

0

(
J(ρr)−K(ρr)

)
∂j1ρ

[
χ2k(ρ) ρ

j1ρd−1
]

· F
(
P2k
(
χ≥1f

))
(ρ) dρ

∥∥∥
L2
r

! 2jk
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

; (3.61a)

and
∥∥∥χ"1(r)r

d−1
2 r−β−j

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

j1ρd−1

· ∂j1ρ

[
F
(
P2k
(
χ≥1f

))
(ρ)
]
dρ
∥∥∥
L2
r

! 2jk
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

. (3.61b)

For (3.61a), note that r " 1, k ≥ 0, it thus reduces to show

∥∥∥r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
∂j1ρ

[
χ2k(ρ) ρ

j1ρd−1
]
F
(
P2k
(
χ≥1f

))
(ρ) dρ

∥∥∥
L2(Rd)

!
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

Then we can prove it in the same way as Proposition 3.13. Indeed, we can regard

∂j1ρ

[
χ2k(ρ) ρ

j1ρd−1
]

as χ2k(ρ)ρ
d−1,

because they have the same properties used in the proof of Proposition 3.13.

For (3.61b), we first consider

∂j1ρ

[
F
(
P2k
(
χ≥1f

))
(ρ)
]
,

which is equal to
∫ +∞

0

∂j1ρ

(
J(ρs) + J(−ρs)

)
sβ+d−1P2k

(
χ≥1f

)
(s) ds.

Using the relationship

∂j1ρ

(
J(ρs) + J(−ρs)

)
=
(s
ρ

)j1
∂j1s

(
J(ρs) + J(−ρs)

)
,

we have

∂j1ρ

[
F
(
P2k
(
χ≥1f

))
(ρ)
]
=

1

ρj1

∫ +∞

0

∂j1s

(
J(ρs) + J(−ρs)

)
sβ+d−1+j1P2k

(
χ≥1f

)
(s) ds.

Then by integration-by-parts, to prove (3.61b), it suffices to show the following two estimates.
The first one is
∥∥∥χ"1(r)r

d−1
2 r−β−j

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

·

∫ +∞

0

(
J(ρs) + J(−ρs)

)
sβ+d−1P2k

(
χ≥1f

)
(s) dsdρ

∥∥∥
L2
r

!
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

; (3.62-1)
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and the second one is
∥∥∥χ"1(r)r

d−1
2 r−β−j

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

·

∫ +∞

0

(
J(ρs) + J(−ρs)

)
sβ+d−1+j1∂j1s

[
P2k
(
χ≥1f

)]
dsdρ

∥∥∥
L2
r

! 2jk
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

. (3.62-2)

For (3.62-1), we drop χ"1(r)r−j and reduce the left-hand side of (3.62-1) to

∥∥∥r
d−1
2 −β

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

·

∫ +∞

0

(
J(ρs) + J(−ρs)

)
sβ+d−1P2k

(
χ≥1f

)
(s) dsdρ

∥∥∥
L2
r

.

Note that by Definition 3.4, it is equal to
∥∥ (P2k

(
χ≥1f

))
out,k

∥∥
L2(Rd)

.

Thus the estimate (3.62-1) follows from Proposition 3.13.

For (3.62-2), we split its left-hand side term into the following two subparts again:

∥∥∥χ"1(r)r
d−1
2 r−β−j

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

·

∫ +∞

0

(
J(ρs) + J(−ρs)

)
sβ+d−1+j1χ≤1(s)∂

j1
s

[
P2k
(
χ≥1f

)]
dsdρ

∥∥∥
L2
r

; (3.63-i)

and
∥∥∥χ"1(r)r

d−1
2 r−β−j

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

·

∫ +∞

0

(
J(ρs) + J(−ρs)

)
sβ+d−1+j1χ≥1(s)∂

j1
s

[
P2k
(
χ≥1f

)]
dsdρ

∥∥∥
L2
r

. (3.63-ii)

By Definition 3.4 again, (3.63-i) is controlled by
∥∥∥
(
χ≤1(r)r

j1∂j1r

[
P2k
(
χ≥1f

)])

out,k

∥∥∥
L2(Rd)

.

Hence by Proposition 3.13, it is further bounded by
∥∥∥χ≤1(r)r

j1∂j1r

[
P2k
(
χ≥1f

)]∥∥∥
L2(Rd)

. (3.64)

Note that for any radial function g,

∂j1r g(r) =
( x

|x|
·∇
)j1

g(x). (3.65)

Therefore, using (3.64) and the formula (3.65), we have that

(3.63-i) ! 2j1k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.
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For (3.63-ii), we note that

(3.63-ii)2 =
+∞∑

h=0

2−jh
∥∥∥χ2h(r)r

d−1
2 r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

·

∫ +∞

0

(
J(ρs) + J(−ρs)

)
sβ+d−1+j1χ≥1(s)∂

j1
s

[
P2k
(
χ≥1f

)]
dsdρ

∥∥∥
2

L2
r

.

Due to this, we may split (3.63-ii)2 into the following three subsubparts again. The first one
is

+∞∑

h=0

2−jh
∥∥∥χ2h(r)r

d−1
2 r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

∫ +∞

0

(
J(ρs) + J(−ρs)

)

· sβ+d−1+j1χ≥1(s)χ2h−2≤·≤2h+2(s)∂j1s

[
P2k
(
χ≥1f

)]
dsdρ

∥∥∥
2

L2
r

; (3.66-ii-1)

the second one is
+∞∑

h=0

2−jh
∥∥∥χ2h(r)r

d−1
2 r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

∫ +∞

0

(
J(ρs) + J(−ρs)

)

· sβ+d−1+j1χ≥1(s)χ≥2h+2(s)∂j1s

[
P2k
(
χ≥1f

)]
dsdρ

∥∥∥
2

L2
r

; (3.66-ii-2)

and the third one is
+∞∑

h=0

2−jh
∥∥∥χ2h(r)r

d−1
2 r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

∫ +∞

0

(
J(ρs) + J(−ρs)

)

· sβ+d−1+j1χ≥1(s)χ≤2h−2(s)∂j1s

[
P2k
(
χ≥1f

)]
dsdρ

∥∥∥
2

L2
r

. (3.66-ii-3)

Similar as (3.63-i), from Definition 3.4 and Proposition 3.13, we have

(3.66-ii-1) !
+∞∑

h=0

2−jh
∥∥∥rj1χ2h−2≤·≤2h+2(r)χ≥1(r)∂

j1
r

[
P2k
(
χ≥1f

)]∥∥∥
2

L2(Rd)
.

Since j1 ≤ j, it is further dominated by

+∞∑

h=0

∥∥∥χ2h−2≤·≤2h+2(r)χ≥1(r)∂
j1
r

[
P2k
(
χ≥1f

)]∥∥∥
2

L2(Rd)
!
∥∥∥χ≥1(r)∂

j1
r

[
P2k
(
χ≥1f

)]∥∥∥
2

L2(Rd)
.

Using (3.65) again, it is bounded by 22j1k
∥∥P2k

(
χ≥1f

)∥∥2
L2(Rd)

.

For (3.66-ii-2) and (3.66-ii-3), we only consider the former, since they can be treated
in the same manner. From Corollary 3.10, we split (3.66-ii-2) into the following two terms
again,

+∞∑

h=0

2−jh
∥∥∥χ2h(r)r

d−1
2 r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

∫ +∞

0

∫ π
2

−π
2

e−2πiρs sin θ

· χ≥π
6
(θ) cosd−2 θ dθsβ+d−1+j1χ≥1(s)χ≥2h+2(s)∂j1s

[
P2k
(
χ≥1f

)]
dsdρ

∥∥∥
2

L2
r

; (3.67-ii-2a)
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and
+∞∑

h=0

2−jh
∥∥∥χ2h(r)r

−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1

∫ +∞

0

O
(
(ρs)−10

)

· χ≥1(s)χ≥2h+2(s)sβ+d−1+j1∂j1s

[
P2k
(
χ≥1f

)]
dsdρ

∥∥∥
2

L2(Rd)
. (3.67-ii-2b)

For (3.67-ii-2a), due to the non-resonance of the phase, it can be treated similarly as
(3.43-i). Indeed, from Corollary 3.9, we write

J(ρr)−K(ρr) =

∫ π
2

0

e2πiρr sin θη(θ, ρr) dθ,

where η(θ, ρr) is defined as

η(θ, ρr) =χ≤1(ρr) cos
d−2 θ + χ≥1(ρr)χ≥π

6
(θ) cosd−2 θ

+ χ1≤·≤2(ρr)χ≤π
6
(θ) cosd−2 θ + χ≥2(ρr)

1

(2πiρr)5
η̃d(θ).

Therefore, (3.67-ii-2a) can be rewritten as

+∞∑

h=0

2−jh
∥∥∥χ2h(r)r

d−1
2 r−β

∫ π
2

0

∫ π
2

−π
2

∫ +∞

0

∫ +∞

0

e2πiρ(r sin θ−s sin θ′)ρd−1η(θ, ρr) χ2k(ρ)

· sβ+d−1+j1χ≥1(s)χ≥2h+2(s)∂j1s

[
P2k
(
χ≥1f

)]
χ≥π

6
(θ′) cosd−2 θ′ dρdsdθ′dθ

∥∥∥
2

L2
r

.

Note that we have (3.28). Thus using the formula (3.29) and integration-by-parts 10 times,
we further control (3.67-ii-2a) as

+∞∑

h=0

∥∥∥χ2h(r)

∫ +∞

0

∫ +∞

0

ρd−11 χ2k(ρ)s
d−11χ≥1(s)χ≥2h+2(s)

∣∣∣∂j1s
[
P2k
(
χ≥1f

)]∣∣∣ dsdρ
∥∥∥
2

L2(Rd)
.

Hence, by the Hölder inequality, we get

(3.67-ii-2a) !
∥∥∥χ≥1(r)∂

j1
r

[
P2k
(
χ≥1f

)]∥∥∥
2

L2(Rd)
! 22j1k

∥∥P2k
(
χ≥1f

)∥∥2
L2(Rd)

.

For (3.67-ii-2b), thanks to the high-order decay of ρ and s, by Hölder’s inequality, it is
controlled by

+∞∑

h=0

2−jh2(
d
2−β)h2−9k

∥∥∥χ≥2h+2(s)sβ+d−10+j1∂j1s

[
P2k
(
χ≥1f

)]∥∥∥
2

L2
s

.

Hence, it is also bounded by

22j1k
∥∥P2k

(
χ≥1f

)∥∥2
L2(Rd)

.

Therefore, we obtain that

(3.66-ii-2) ! 22j1k
∥∥P2k

(
χ≥1f

)∥∥2
L2(Rd)

.

Collecting the estimates above, we finish the proof of the corollary. #
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4. Estimates on the incoming/outgoing linear flow

In this subsection, we present some important properties on the incoming/outgoing linear
flow.

4.1. “Incoming/outgoing” decomposition of the linear flow. Let N ≥ 1. First of
all, we show that the linear flow eit∆(P≥Nχ≥1f)out is almost ”outgoing” with the frequency
dependent velocity. To do this, we use the Littlewood-Paley decomposition. Without loss of
generality, we may assume that N = 2k0 for some k0 ∈ N, then

P≥Nχ≥1f =
∞∑

k=k0

P2k
(
χ≥1f

)
,

and thus
(
P≥Nχ≥1f

)
out/in

=
∞∑

k=k0

(
P2k
(
χ≥1f

))
out/in

.

Now we consider
(
P2k
(
χ≥1f

))
out/in

, for which we only consider the outgoing part. First,

from Proposition 3.11, we have
(
P2k
(
χ≥1f

))
out

=
(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

+ hk, (4.1)

where hk satisfies the following estimate,

‖hk‖Hµ(d)(Rd) ! 2−10k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

. (4.2)

Due to this estimate, we only need to consider
(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

. Further, we write

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

= χ≤ 1
4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

+ χ≥ 1
4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

.

From Lemma 3.12, we have
∥∥χ≤ 1

4

(
P2k
(
χ≥1f

))
out/in,k−1≤·≤k+1

∥∥
Hµ(d)(Rd)

! 2−2k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

. (4.3)

So it is left to consider χ≥ 1
4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

. The first estimate is

Proposition 4.1. Let k ≥ 0 be an integer. Then there exists δ > 0, such that for any triple
(γ, q, r) satisfying that

q ≥ 2, r > 2, 0 ≤ γ ≤ 1,
2

q
+

2d− 1

r
<

2d− 1

2
, (4.4)

the following estimate holds,
∥∥∥|∇|γ

[
χ≤δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]∥∥∥
Lq
tL

r
x(R

+×Rd)

! 2−
(
5−d−(γ− 2

q
− d

r
)
)
k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

The same estimate holds when eit∆ and out are replaced by e−it∆ and in, respectively.
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Proof. We only consider the estimates on the “outgoing” part, since the “incoming” part
can be treated in the same way.

First, from the definition,
(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

(r)

= r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
χ2k(ρ)ρ

d−1F
(
P2k
(
χ≥1f

))
(ρ) dρ.

Here we use the notation χ2k(ρ) = χ2k−1≤·≤2k+1(ρ) again. We denote η̃(θ, r) as

η̃(θ, r) = χ≤2(r)χ≤π
6
(θ) cosd−2 θ + χ≥2(r)

1

(2πir)5
η̃d(θ).

Then

η̃(θ, r) = O(〈r〉−5). (4.5)

Moreover, from Corollary 3.9,

J(r)−K(r) =

∫ π
2

0

e2πir sin θχ≥π
6
(θ) cosd−2 θ dθ +

∫ π
2

0

e2πir sin θη̃(θ, r) dθ.

Accordingly, we split
(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

(r) into two parts, which are denoted by F1

and F2, as follows:

F1(r) = r−β

∫ +∞

0

∫ π
2

0

e2πiρr sin θη̃(θ, ρr) dθ χ2k(ρ)ρ
d−1F

(
P2k
(
χ≥1f

))
(ρ) dρ;

and

F2(r) = r−β

∫ +∞

0

∫ π
2

0

e2πiρr sin θχ≥π
6
(θ) cosd−2 θ dθ χ2k(ρ)ρ

d−1F
(
P2k
(
χ≥1f

))
(ρ) dρ.

We consider F1 first, and claim that for s ∈ [0, 3],

‖χ≥ 1
4
F1‖Ḣs(Rd) ! 2−(5− d

2−s)k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

. (4.6)

To prove (4.6), we need the following lemma.

Lemma 4.2. Let d = 3, 4, 5, and f ∈ L2(Rd), then
∥∥χ"2k(ρ)F

(
P2k
(
χ≥1f

)) ∥∥
L2
ρ
! 2−

d−1
2 k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

Proof. Note that
∥∥χ"2k(ρ)F

(
P2k
(
χ≥1f

)) ∥∥
L2
ρ
=
∥∥|ξ|−

d−1
2 χ"2k(ξ)F

(
P2k
(
χ≥1f

))
(ξ)
∥∥
L2
ξ(R

d)

!2−
d−1
2 k
∥∥F
(
P2k
(
χ≥1f

)) ∥∥
L2
ξ(R

d)
. (4.7)

From (3.3),
F
(
P2k
(
χ≥1f

))
= F

(
|x|βP2k

(
χ≥1f

))
.

Then by the Plancherel identity, we obtain

(4.7) =2−
d−1
2 k
∥∥|x|βP2k

(
χ≥1f

)∥∥
L2
x(Rd)

≤2−
d−1
2 k
∥∥|x|βχ≤ 1

4
P2k
(
χ≥1f

)∥∥
L2
x(R

d)
+ 2−

d−1
2 k
∥∥|x|βχ≥ 1

4
P2k
(
χ≥1f

)∥∥
L2
x(R

d)
.
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Note that 3 ≤ d ≤ 5, we have that −1 ≤ β ≤ 0. Then it is further bounded by

2−
d−1
2 k
∥∥χ≤ 1

4
P2k
(
χ≥1f

)∥∥
L∞(Rd)

+ 2−
d−1
2 k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

From Lemma 2.4, it is controlled by 2−
d−1
2 k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

. This gives the desired esti-
mate. #

By (4.5), Hölder’s inequality and Lemma 4.2, we get

χ≥ 1
4
(r)|F1(r)| ! r−β−5

∥∥∥χ2k(ρ)ρ
d−6
∥∥∥
L2
ρ

·
∥∥χ"2k(ρ)F

(
P2k
(
χ≥1f

)) ∥∥
L2
ρ

! r−β−52(d−
11
2 )k2−

d−1
2 k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

! r−β−52(
d
2−5)k

∥∥P2k
(
χ≥1f

)∥∥
L2(Rd)

.

Therefore, we obtain

‖χ≥ 1
4
F1‖L2(Rd) ! 2(

d
2−5)k

∥∥P2k
(
χ≥1f

)∥∥
L2(Rd)

.

For the estimate on the high-order derivatives, we note that for j = 1, 2, 3,

∂jr

∫ +∞

0

∫ π
2

0

e2πiρr sin θη̃(θ, ρr) dθ = O(r−5ρ−5+j).

Hence arguing similarly as above, we get that for s = 1, 2, 3,

‖χ≥ 1
4
F1‖Ḣs(Rd) ! 2−(5− d

2−s)k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

For general s ∈ [0, 3], we obtain it by the interpolation. This proves (4.6).

Using Lemma 2.3, we obtain that
∥∥∥|∇|γ

[
χ≤δ(1+2kt)e

it∆
(
χ≥ 1

4
F1

)]∥∥∥
Lq
tL

r
x(R+×Rd)

!
∥∥∥〈∇〉γeit∆

(
χ≥ 1

4
F1

)∥∥∥
Lq
tL

r
x(R+×Rd)

.

Then from Lemma 2.9, it can be controlled by

‖χ≥ 1
4
F1‖Hs(Rd), with s =

d

2
+ γ −

2

q
−

d

r
.

Now applying (4.6), it gives
∥∥∥|∇|γ

[
χ≤δ(1+2kt)e

it∆
(
χ≥ 1

4
F1

)]∥∥∥
Lq
tL

r
x(R

+×Rd)
! 2−

(
5−d−(γ− 2

q
− d

r
)
)
k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

. (4.8)

Now we consider eit∆
(
χ≥ 1

4
F2

)
, which is equal to

∫ +∞

0

∫ π
2

0

eit∆
(
r−βχ≥ 1

4
(r)e2πiρr sin θ

)
χ≥π

6
(θ) cosd−2 θ dθ

· χ2k(ρ)ρ
d−1F

(
P2k
(
χ≥1f

))
(ρ) dρ. (4.9)

To give its estimate, we consider the following term,

eit∆
(
r−βχ≥ 1

4
(r)e2πiρr sin θ

)
.

Using the formula in Lemma 2.7, we have

eit∆
(
r−βχ≥ 1

4
(r)e2πiρr sin θ

)
=

c

t
d
2

∫

Rd

ei
|x−y|2

4t +2πiρ|y| sin θ|y|−βχ≥ 1
4
(y) dy.
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We expand the phase and rewrite it as

c

t
d
2

ei
|x|2

4t

∫

Rd

e−ix·y2t +i |y|
2

4t +2πiρ|y| sin θ|y|−βχ≥ 1
4
(y) dy

=
c

t
d
2

ei
|x|2

4t

∫

|ω|=1

∫ +∞

0

eiφ(r)rd−1−βχ≥ 1
4
(r) drdω, (4.10)

where φ(r) = −x·ω
2t r +

r2

4t + 2πρr sin θ. Then

φ′(r) = −
x · ω

2t
+

r

2t
+ 2πρ sin θ.

Note that ρ ∼ 2k, r ∼ 1 and sin θ ≥ 1
4 , so choosing δ small enough, we obtain that when

|x| ≤ δ(1 + 2kt),

φ′(r) ≥
1

4

(r
t
+ πρ

)
. (4.11)

Moreover,

φ′′(r) =
1

2t
, and φ(j)(r) = 0, for j = 3, 4, · · · . (4.12)

Hence we can use the formula,

eiφ(r) =
1

iφ′(r)
∂r
(
eiφ(r)

)
,

and integrate by parts to obtain that for any K ∈ Z+, there exists cK ∈ C, such that

eit∆
(
r−βχ≥ 1

4
(r)e2πiρr sin θ

)

=
cK

t
d
2

ei
|x|2

4t

∫

|ω|=1

∫ +∞

0

eiφ(r)∂r
( 1

φ′(r)
∂r
)K−1[ 1

φ′(r)
rd−1−βχ≥ 1

4
(r)
]
drdω. (4.13)

Using Lemma 2.6, we have

∂r
( 1

φ′(r)
∂r
)K−1[ 1

φ′(r)
rd−1−βχ≥ 1

4
(r)
]

=
∑

l1,··· ,lK∈N,l′∈N;
lj≤j;l1+···+lK+l′=K

Cl1,··· ,lK ,l′∂
l1
r

( 1

φ′(r)

)
· · ·∂lKr

( 1

φ′(r)

)
∂l

′

r

[
rd−1−βχ≥ 1

4
(r)
]
.

Since φ(j)(r) = 0 when j ≥ 3, we find that for any integer l ≥ 0,

∂lr

( 1

φ′(r)

)
=

(φ′′(r))l

(φ′(r))l+1
,

it implies that

∂l1r

( 1

φ′(r)

)
· · ·∂lKr

( 1

φ′(r)

)
=

(φ′′(r))l1+···+lK

(φ′(r))l1+···+lK+K
.

This together with (4.11), (4.12), gives
∣∣∣∂l1r
( 1

φ′(r)

)
· · ·∂lKr

( 1

φ′(r)

)∣∣∣ !
1

(r + ρt)l1+···+lK
(
r
t + ρ

)K .
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Moreover, we have
∣∣∣∂l

′

r

[
rd−1−βχ≥ 1

4
(r)
]∣∣∣ ! rd−1−β−l′χ"1(r).

Combining the above two estimates, and noting that l1 + · · ·+ lK + l′ = K, we obtain that
∣∣∣∂l1r
( 1

φ′(r)

)
· · ·∂lKr

( 1

φ′(r)

)∣∣∣
∣∣∣∂l

′

r

[
rd−1−βχ≥ 1

4
(r)
]∣∣∣ !

1

rK
(
r
t + ρ

)K rd−1−βχ"1(r).

Note that when 0 ≤ t ≤ 1, it is bounded by

t3

rK+3ρK−3
rd−1−βχ"1(r);

when t ≥ 1, it is bounded by
1

rKρK
rd−1−βχ"1(r).

Hence, choosing K suitably large, we get
∣∣∣∂r
( 1

φ′(r)
∂r
)K[ 1

φ′(r)
rd−1−βχ≥ 1

4
(r)
]∣∣∣ ! t3〈t〉−3r−10ρ−10χ"1(r).

Inserting this estimate into (4.13), we obtain that
∣∣∣χ≤δ(1+2kt)e

it∆
(
r−βχ≥ 1

4
(r)e2πiρr sin θ

)∣∣∣ ! 〈t〉−
d
2ρ−10.

Hence, from this estimate and (4.9), we obtain that
∣∣∣χ≤δ(1+2kt)e

it∆
(
χ≥ 1

4
F2

)∣∣∣ ! 〈t〉−
d
2

∫ +∞

0

∣∣χ2k(ρ)ρ
d−11F

(
P2k
(
χ≥1f

))
(ρ)
∣∣ dρ.

Using Hölder’s inequality, it is further controlled by

〈t〉−
d
2

∥∥∥χ2k(ρ)ρ
d−11

∥∥∥
L2
ρ

·
∥∥χ"2k(ρ)F

(
P2k
(
χ≥1f

)) ∥∥
L2
ρ
.

Now by Lemma 4.2, it is further bounded by

〈t〉−
d
22(d−

21
2 )k2−

d−1
2 k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

That is,
∣∣∣χ≤δ(1+2kt)e

it∆
(
χ≥ 1

4
F2

)∣∣∣ ! 〈t〉−
d
22(

d
2−10)k

∥∥P2k
(
χ≥1f

)∥∥
L2(Rd)

.

Note that the structure of eit∆
(
χ≥ 1

4
F2

)
does not essentially change when we consider the

estimates on the high-order derivatives, hence in the same manner, we obtain that for any
even integer s̃ ∈ [0, 10],

∣∣∣|∇|s̃
[
χ≤δ(1+2kt)e

it∆
(
χ≥ 1

4
F2

)]∣∣∣ ! 〈t〉−
d
22(

d
2−10)k

∥∥P2k
(
χ≥1f

)∥∥
L2(Rd)

.

Therefore, by Hölder’s inequality, if

1

q
+

d

r
<

d

2
, q ≥ 2, r ≥ 2

(note that this condition is implied by (4.4)), then we have
∥∥∥|∇|s̃

[
χ≤δ(1+2kt)e

it∆
(
χ≥ 1

4
F2

)]∥∥∥
Lq
tL

r
x(R

+×Rd)
! 2(

d
2−10+ d

r
)k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.
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Since d ≤ 5, by the interpolation, we obtain that for any s ∈ [0, 10],
∥∥∥|∇|s

[
χ≤δ(1+2kt)e

it∆
(
χ≥ 1

4
F2

)]∥∥∥
Lq
tL

r
x(R

+×Rd)
! 2−5k

∥∥P2k
(
χ≥1f

)∥∥
L2(Rd)

. (4.14)

Now collecting the estimates in (4.8) and (4.14), we prove the proposition. #

The following result is the incoming/outgoing linear flow’s estimate related to the outside
region.

Proposition 4.3. Let k ≥ 0 be an integer. Moreover, let r, γ1, γ2, s be the parameters
satisfying

r > 2, , γ1 ≥ 0, γ2 ≥ 0, s+
1

r
≥

1

2
, γ1 + s = d

(1
2
−

1

r

)
.

Then for any t > 0,
∥∥∥|∇|γ2

[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]∥∥∥
Lr(Rd)

! (1 + 2kt)−γ12(γ2+s+)k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

The same estimate holds when eit∆ and out are replaced by e−it∆ and in, respectively.

Proof. As before, we only consider the estimate on the “outgoing” part. Moreover, we only
need to consider the case of r < ∞. Indeed, when r = ∞, then by the Sobolev inequality,

∥∥∥|∇|γ2
[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]∥∥∥
L∞(Rd)

!
∥∥∥|∇|γ2〈∇〉0+

[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]∥∥∥
L∞−(Rd)

.

Hence we only need to consider the case of r < ∞, by replacing γ2 by γ2+ if necessary.

First, we split

|∇|γ2
[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]

into the following three terms,

P≤1|∇|γ2
[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]
(4.15a)

+ χ≤δ2(1+2kt)P≥1|∇|γ2
[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]
(4.15b)

+ χ≥δ2(1+2kt)P≥1|∇|γ2
[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]
. (4.15c)

Now we consider the first term (4.15a). From Lemma 2.1, under the assumptions, we
have ∥∥|x|γ1g

∥∥
Lr(Rd)

! ‖g‖Ḣs(Rd).

Hence, this last estimate combined with the Bernstein inequality and Lemma 2.8, gives that
∥∥(4.15a)

∥∥
Lr(Rd)

!
∥∥∥χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)∥∥∥
Lr(Rd)

!
(
1 + 2kt

)−γ1
∥∥∥eit∆

(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)∥∥∥
Ḣs(Rd)

!
(
1 + 2kt

)−γ1
∥∥∥χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

∥∥∥
Ḣs(Rd)

.
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Therefore, by Corollary 3.15, we get
∥∥(4.15a)

∥∥
Lr(Rd)

!
(
1 + 2kt

)−γ12sk
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

For the second term (4.15b), by Lemma 2.4, we have that for any M > 0, K ≥ 1,
∥∥∥χ≤δKP≥1|∇|γ2

(
χ≥Kg

)∥∥∥
Lr(Rd)

!δ,M K−M
∥∥χ≥Kg

∥∥
Lr(Rd)

.

Then using the inequality above and treating similarly as (4.15a), we obtain that
∥∥(4.15b)

∥∥
Lr(Rd)

!M (1 + 2kt)−M
∥∥∥χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)∥∥∥
Lr(Rd)

!M (1 + 2kt)−M−γ1
∥∥χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

∥∥
Ḣs(Rd)

!M

(
1 + 2kt

)−M−γ12sk
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

For the third term (4.15c), we use the similar argument as above, and obtain that
∥∥(4.15c)

∥∥
Lr(Rd)

!(1 + 2kt)−γ1
∥∥∥χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)∥∥∥
Ḣγ2+s(Rd)

.

From Lemma 2.3 and Lemma 2.8, it is further controlled by

(1 + 2kt)−γ1
∥∥∥χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

∥∥∥
Hγ2+s(Rd)

.

Now using Corollary 3.15, we get
∥∥(4.15c)

∥∥
Lr(Rd)

! (1 + 2kt)−γ12(γ2+s)k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

.

Combining the above estimates on (4.15a)–(4.15c), we finish the proof of the proposition. #

Now an easy consequence of this proposition is the following space-time estimate.

Corollary 4.4. Let (γ, q, r) be the triple satisfying

γ ≥ 0, q ≥ 1, r > 2,
1

q
< (d− 1)

(1
2
−

1

r

)
, (4.16)

then the following estimate holds,
∥∥∥|∇|γ

[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]∥∥∥
Lq
tL

r
x(R+×Rd)

! 2(−
1
q
− 1

r
+ 1

2+γ+)k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

. (4.17)

Moreover, for any δ > 0,
∥∥∥|∇|γ

[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]∥∥∥
L2
tL

∞
x ([δ,+∞)×Rd)

!δ 2
(− d−2

2 +γ+)k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

. (4.18)

The same estimate holds when eit∆ and out are replaced by e−it∆ and in, respectively.

Proof. From Proposition 4.3, we have
∥∥∥|∇|γ

[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]∥∥∥
Lq
tL

r
x(R

+×Rd)

! 2(γ+s+)k
∥∥(1 + 2kt)−γ1

∥∥
Lq
t (R

+)

∥∥P2k
(
χ≥1f

)∥∥
L2(Rd)

, (4.19)
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where the parameters

s =
1

2
−

1

r
, γ1 = (d− 1)

(1
2
−

1

r

)
.

By the condition (4.16), we have that 1
q < γ1, and thus

∥∥(1 + 2kt)−γ1
∥∥
Lq
t (R

+)
! 2−

1
q
k.

Combining this estimate with (4.19), we prove (4.17). Since
∥∥(1 + 2kt)−γ1

∥∥
Lq
t ([δ,+∞))

!δ 2
−γ1k,

we have (4.18). This finishes the proof of the corollary. #

4.2. Improved Strichartz’s estimates. Now we collect the estimates above, and obtain
the following results.

Proposition 4.5. Let N ≥ 1, s0 > 0. Suppose that (s, q, r) is the triple satisfying that
(q, r) = (∞, 2) or

q ≥ 2, r ≥ 2,
1

q
< (d− 1)

(1
2
−

1

r

)
;

0 ≤ s ≤ 1, s+
d

2
−

(
2

q
+

d

r

)
≤ µ(d);

and

γ0 = s0 − s−max

{
(d− 5)−

(
2

q
+

d

r

)
,
1

2
−

1

q
−

1

r

}
> 0.

Then
∥∥|∇|seit∆

(
P≥N

(
χ≥1f

))
out

∥∥
Lq
tL

r
x(R+×Rd)

! N−γ0+‖P≥Nχ≥1f‖Hs0(Rd). (4.20)

Moreover, for any δ,
∥∥∇eit∆

(
P≥N

(
χ≥1f

))
out

∥∥
L2
tL

∞
x ([δ,+∞)×Rd)

! N1−s0−
d−2
2 +‖P≥Nχ≥1f‖Hs0 (Rd). (4.21)

The same estimate holds when eit∆ and out are replaced by e−it∆ and in, respectively.

Remark 4.6. Now we list some triples (s, q, r) which satisfy the conditions in Proposition 4.5
and will be used later. First, for any r > 2(d−1)

d−2 , 0 ≤ s ≤ 1, s0 > s− 1
r , we have

∥∥|∇|seit∆
(
P≥N

(
χ≥1f

))
out

∥∥
L2
tL

r
x(R

+×Rd)
! N s−s0−

1
r
+
∥∥P≥Nχ≥1f

∥∥
Hs0 (Rd)

. (4.22)

Second, for any r > 2, s0 >
1
2 −

1
r ,

∥∥eit∆
(
P≥N

(
χ≥1f

))
out

∥∥
L∞
t Lr

x(R+×Rd)
! N−s0+

1
2−

1
r
+
∥∥P≥Nχ≥1f

∥∥
Hs0 (Rd)

. (4.23)

Third, for any p ≥ max{1, 4
d} and any s0 >

1
2 −

d+2
2dp ,

∥∥eit∆
(
P≥N

(
χ≥1f

))
out

∥∥
L2p
t Ldp

x (R+×Rd)
! N−s0+

1
2−

d+2
2dp +

∥∥P≥Nχ≥1f
∥∥
Hs0 (Rd)

. (4.24)
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Proof of Proposition 4.5. Again, we only consider the estimates on the “outgoing” part, since
the “incoming” part can be treated in the same way. Moreover, by choosing s < s0, the case
of (q, r) = (∞, 2) follows from Corollary 3.15. Hence, we only consider the case when r > 2.
Let N = 2k0 for some k0 ∈ N.

First, we recall the reductions given at the beginning of Subsection 4.1. We write

eit∆
(
P≥Nχ≥1f

)
out

=
∞∑

k=k0

eit∆
(
P2k
(
χ≥1f

))
out

=
∞∑

k=k0

eit∆
(
χ≤ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

+ hk

)

+
∞∑

k=k0

eit∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)
.

Let (s, q, r) be the triple satisfying

s ≥ 0,
2

q
+

2d− 1

r
<

2d− 1

2
, s+

d

2
−

(
2

q
+

d

r

)
≤ µ(d).

In particular, (s, q, r) = (2, 2, 2d
d−2) verifies the condition above. Then we use Lemma 2.9,

(4.2) and (4.3), to get

∞∑

k=k0

∥∥∥eit∆|∇|s
(
χ≤ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

+ hk

)∥∥∥
Lq
tL

r
x(R

+×Rd)

!
∞∑

k=k0

(∥∥χ≤ 1
4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

∥∥
Hµ(d)(Rd)

+
∥∥hk

∥∥
Hµ(d)(Rd)

)

!
∞∑

k=k0

2−2k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

!
∥∥P≥Nχ≥1f

∥∥
H−1(Rd)

. (4.25)

Furthermore, we write

∞∑

k=k0

eit∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)

=
∞∑

k=k0

χ≤δ(1+2kt)e
it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)

+
∞∑

k=k0

χ≥δ(1+2kt)e
it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)
.
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On one hand, from Proposition 4.1, we have that for any (s, q, r) satisfying (4.4) (note that
the condition (4.4) is implied by the conditions in this proposition),

∞∑

k=k0

∥∥∥|∇|s
[
χ≤δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]∥∥∥
Lq
tL

r
x(R+×Rd)

!
∞∑

k=k0

2−
(
5−d−(s− 2

q
− d

r
)
)
k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

! N−γ0+‖P≥Nχ≥1f‖Hs0 (Rd).

On the other hand, from Corollary 4.4, we obtain that
∞∑

k=k0

∥∥∥|∇|s
[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]∥∥∥
Lq
tL

r
x(R

+×Rd)

!
∞∑

k=k0

2(−
1
q
− 1

r
+ 1

2+s+)k
∥∥P2k

(
χ≥1f

)∥∥
L2(Rd)

! N−γ0+‖P≥Nχ≥1f‖Hs0 (Rd);

and similarly,
∞∑

k=k0

∥∥∥∇
[
χ≥δ(1+2kt)e

it∆
(
χ≥ 1

4

(
P2k
(
χ≥1f

))
out,k−1≤·≤k+1

)]∥∥∥
L2
tL

∞
x ([δ,+∞)×Rd)

! N1−s0−
d−2
2 +‖P≥Nχ≥1f‖Hs0(Rd).

Then collecting the estimates above, we give the desired estimate and thus complete the
proof of the proposition. #

5. Proof of the Theorem 1.3

In this section, we are ready to prove Theorem 1.3. To do this, we need the following
preliminary.

5.1. Definitions of the modified incoming and outgoing components. With the
preparations in the previous sections, we can define the modified incoming and outgoing
components, say f+ and f−, of the function f . First of all, we split the function f as follows,

f = P≤Nf + P≥Nχ≤1f + P≥Nχ≥1f.

Definition 5.1. Let the radial function f ∈ S(Rd). We define the modified outgoing com-
ponent of f as

f+ =
1

2
P≤Nf +

1

2
P≥Nχ≤1f +

(
P≥Nχ≥1f

)
out

;

the modified incoming component of f as

f− =
1

2
P≤Nf +

1

2
P≥Nχ≤1f +

(
P≥Nχ≥1f

)
in
.

From the definitions, we have
f = f+ + f−.

Moreover, Definition 5.1 combining with Proposition 4.5 gives the proof of Proposition 1.1.

To prove Theorem 1.3, we only consider the outgoing part, since the incoming part can
be treated in the same way. That is, initial data u0 = f+.
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Denote vL = eit∆
(
P≥Nχ≥1f

)
out

. Let w = u− vL, then w obeys the equation
{
i∂tw +∆w = |u|pu,

w(0, x) = w0(x),
(5.1)

where

w0 =
1

2
P≤Nf +

1

2
P≥Nχ≤1f.

Then by Bernstein’s inequality, and (1.6) (in which ε0 = 1), we have
∥∥w0

∥∥
H1(Rd)

! N1−s0 , (5.2)

where the implicit constant depends on ‖χ≤1f‖H1(Rd) and ‖χ≥1f‖Hs0(Rd).

The first result is the following local well-posedness theorem, in which the indices are
not sharp but enough for this paper.

Proposition 5.2. Let d = 3, 4, 5. Then there exists p1(d) <
4

d−2 , such that for any s0 ≥ 1
2

and any p ∈ [p1,
4

d−2), the following is true. Let f be the function under the same hypothesis
on Theorem 1.3 with ε0 = 1 and w0 ∈ H1(Rd), then there exists Tmax > 0, such that the
Cauchy problem (5.1) is locally well-posed on [0, Tmax). Moreover, the blowup criterion holds:
If Tmax < ∞, then

lim
t→Tmax

‖w(t)‖H1(Rd) = +∞.

Proof. It follows from the standard fixed point argument, and thus the proof is much brief.
According to the Duhamel formula, we denote

Φ(w)(t) = eit∆w0 +

∫ t

0

ei(t−s)∆|u(s)|pu(s) ds.

For short, we further denote the parameters

1

r̃
=

1

2
−

3d− 2

d(2d− 1)
−
ε

d
; s̃ = 1−

d− 1

2d− 1
− ε,

where ε is an arbitrary small positive constant. Fixing T > 0, we denote the norm
∣∣∣∣∣∣w
∣∣∣∣∣∣ := ‖w‖L∞

t H1
x([0,T )×Rd) +

∥∥〈∇〉s̃w
∥∥
L2
tL

r̃
x([0,T )×Rd)

.

From Lemma 2.9 and Lemma 2.2, we have
∣∣∣∣∣∣Φ(w)

∣∣∣∣∣∣ !‖w0‖H1
x(Rd) +

∥∥〈∇〉s̃
(
|u|pu

)∥∥
L2
tL

2d
d+2s̃
x ([0,T )×Rd)

!‖w0‖H1
x(Rd) +

∥∥〈∇〉s̃vL
∥∥
L2
tL

∞
x ([0,T )×Rd)

(
‖vL‖

p

L∞
t L

2dp
d+2s̃
x ([0,T )×Rd)

+ ‖w‖p

L∞
t L

2dp
d+2s̃
x ([0,T )×Rd)

)

+
∥∥〈∇〉s̃w

∥∥
L∞
t L

r1
x ([0,T )×Rd)

(
‖vL‖

p

L2p
t Ldp

x ([0,T )×Rd)
+ ‖w‖p

L2p
t Ldp

x ([0,T )×Rd)

)
, (5.3)

where r1 is the parameters satisfying

1

r1
=

1

2
−

1

d
(1− s̃).
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Note that when p1(d) is suitably close to 4
d−2 , we have 2 < r1,

2dp
d+2s̃ <

2d
d−2 . From (4.22)–(4.24),

we have that for any s0 ≥
1
2 ,

∥∥〈∇〉s̃vL
∥∥
L2
tL

∞
x (R+×Rd)

+ ‖vL‖
L∞
t L

2dp
d+2s̃
x (R+×Rd)

+ ‖vL‖L2p
t Ldp

x (R+×Rd) ! ‖f‖Hs0 (Rd),

Hence, we get
∥∥〈∇〉s̃vL

∥∥
L2
tL

∞
x ([0,T )×Rd)

+ ‖vL‖
L∞
t L

2dp
d+2s̃
x ([0,T )×Rd)

+ ‖vL‖L2p
t Ldp

x ([0,T )×Rd) = r(T ),

where r(T ) → 0 when T → 0. Further, by the Sobolev inequality and interpolation, we have

‖w‖
L∞
t L

2dp
d+2s̃
x ([0,T )×Rd)

+‖〈∇〉s̃w‖L∞
t L

r1
x ([0,T )×Rd) ! ‖w‖L∞

t H1
x([0,T )×Rd);

‖w‖L2p
t Ldp

x ([0,T )×Rd) ! T θ
∣∣∣∣∣∣w
∣∣∣∣∣∣,

where θ = 1
2(1− sc) > 0. Hence, inserting these estimates into (5.3), we obtain that

∣∣∣∣∣∣Φ(w)
∣∣∣∣∣∣ !‖w0‖H1

x(Rd) + r(T )
(
1 +

∣∣∣∣∣∣w
∣∣∣∣∣∣p+1)

.

Similarly, by choosing T = T (‖f‖Hs0(Rd), ‖w0‖H1(Rd)) > 0 small enough, we have that for any
wj satisfying

∣∣∣∣∣∣wj

∣∣∣∣∣∣ ≤ 2‖w0‖H1(Rd) for j = 1, 2,

∣∣∣∣∣∣Φ(w1)− Φ(w2)
∣∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣∣w1 − w2

∣∣∣∣∣∣.

Then the proposition follows from the fixed point theory. #

In the following subsections, we will prove the boundedness of w in the energy space and
some space-time spaces. To this end, we define the working space as follows. We denote
XN(I) for I ⊂ R+ to be the space under the norms

‖h‖XN (I) :=N3(s0−1)‖h‖L∞
t Ḣ1

x(I×Rd) +Nα(d,p)·(s0−1)‖h‖Lr0
tx (I×Rd),

where the positive constants

r0 = p+ 2 +
2

d− 2
, and α(d, p) =

3d

r0(d− 2)
.

In the following, we restrict our attention to 3,4 and 5 dimensions. Moreover, fixing δ0 > 0,
we set N = N(δ0) > 0, such that

‖P≥Nχ≥1f‖Hs0(Rd) ≤ δ0. (5.4)

First of all, we have the uniform boundedness of the L∞
t L2

x(I × Rd) norm of w. Indeed,
choosing s0 > 0, we have u0 ∈ L2(Rd). Using the mass conservation law, we have

‖u‖L∞
t L2

x(I×Rd) = ‖u0‖L2(Rd).

Moreover, by Proposition 3.13,

‖vL‖L∞
t L2

x(I×Rd) !
∥∥f
∥∥
Hs0 (Rd)

.

Hence, we obtain that

‖w‖L∞
t L2

x(I×Rd) !
∥∥f
∥∥
Hs0 (Rd)

. (5.5)
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5.2. Space-time estimates. In this subsection, based on the Lr0
tx-norm in ‖w‖XN(I). we

shall prove the general space-time estimates we will use below.

Lemma 5.3. Let p1(d) ≥ max{ 3
d−2 , 1}, then there exists s0 ∈ (0, 1), such that for any

p ∈ [p1(d),
4

d−2), there exist some constants α1(d, p) > 0,α2(d, p) > 1 such that
∥∥w
∥∥
L2
tL

2d
d−2
x (I×Rd)

! 1 +Nα1(d,p)·(1−s0)
∥∥w
∥∥α2(d,p)

XN (I)
.

Proof. By Lemma 2.8, we have
∥∥w
∥∥
L2
tL

2d
d−2
x (I×Rd)

!
∥∥w0

∥∥
L2
x(Rd)

+
∥∥|u|pu

∥∥
L2
tL

2d
d+2
x (I×Rd)

. (5.6)

From (5.2), we have
∥∥w0

∥∥
L2
x(R

d)
! 1. (5.7)

Moreover, using u = w + vL, we have
∥∥|u|pu

∥∥
L2
tL

2d
d+2
x (I×Rd)

!
∥∥|vL|pvL

∥∥
L2
tL

2d
d+2
x (I×Rd)

+
∥∥|w|pw

∥∥
L2
tL

2d
d+2
x (I×Rd)

.

For the first term, we get
∥∥|vL|pvL

∥∥
L2
tL

2d
d+2
x (I×Rd)

!
∥∥vL
∥∥
L2
tL

2d
d−2
x (I×Rd)

∥∥vL
∥∥p
L∞
t L

dp
2

x (I×Rd)
.

Since dp
2 > 2, then by (4.22)–(4.24) and (5.4), we have

∥∥vL
∥∥
L2
tL

2d
d−2
x (I×Rd)

! δ0N
d+2
2d −s0+,

and ∥∥vL
∥∥
L∞
t L

dp
2

x (I×Rd)
! δ0N

1
2−

2
dp

−s0+.

Choosing 1− s0 small enough such that for any p ∈ [1, 4],

−
d+ 2

2d
−

p

2
+ (1− s0)(p+ 1) < 0,

we have that
∥∥|vL|pvL

∥∥
L2
tL

2d
d+2
x (I×Rd)

! 1.

For the second term, when d = 3, we get
∥∥|w|pw

∥∥
L2
tL

6
5
x (I×R3)

!
∥∥w
∥∥

r0
2

L
r0
tx (I×R3)

∥∥w
∥∥p+1−

r0
2

L∞
t L

r2
x (I×R3)

,

where the parameter

r2 = 3(p+ 1−
r0
2
).

Since 2 < r2 < 6, we further get
∥∥|w|pw

∥∥
L2
tL

6
5
x (I×R3)

!
∥∥w
∥∥

r0
2

L
r0
tx (I×R3)

∥∥w
∥∥p+1−

r0
2

L∞
t H1

x(I×R3)

!N [α(3,p)
r0
2 +3(p+1−

r0
2 )](1−s0)

∥∥w
∥∥p+1

XN (I)
.

Setting

α1(3, p) = α(3, p)
r0
2
+ 3(p+ 1−

r0
2
), α2(3, p) = p+ 1,
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we obtain that
∥∥|w|pw

∥∥
L2
tL

6
5
x (I×R3)

! 1 +Nα1(3,p)·(1−s0)
∥∥w
∥∥α2(3,p)

XN (I)
.

Therefore, we get

∥∥w
∥∥
L2
tL

6
x(I×R3)

! 1 +Nα1(3,p)·(1−s0)
∥∥w
∥∥α2(3,p)

XN (I)
,

and thus we get the desired estimate.

When d = 4, we have that
∥∥|w|pw

∥∥
L2
tL

4
3
x (I×R4)

!
∥∥w
∥∥a1
L2
tL

4
x(I×R4)

∥∥w
∥∥a2
L
r0
tx (I×R4)

∥∥w
∥∥a3
L∞
t L2

x(I×R4)

!Nα(d,p)(1−s0)·a2
∥∥w
∥∥a1
L2
tL

4
x(I×R4)

∥∥w
∥∥a2
XN (I)

,

where the parameters

a1 =
r0 − 2p− 1

r0 − 3
, a2 =

r0(p− 1)

r0 − 3
, a3 = p+ 1− a1 − a2.

Note that 0 < a1 <
1
3 when p ≥ 3

2 . Hence, setting

α1(4, p) = α(4, p)a2(1− a1)
−1, α2(4, p) = a2(1− a1)

−1,

and by the Cauchy-Schwarz inequality, we get

∥∥w
∥∥
L2
tL

4
x(I×R4)

! 1 +Nα1(4,p)·(1−s0)
∥∥w
∥∥α2(4,p)

XN (I)
,

When d = 5, similarly we have that
∥∥|w|pw

∥∥
L2
tL

10
7

x (I×R5)
!
∥∥w
∥∥a1
L2
tL

10
3

x (I×R5)

∥∥w
∥∥a2
L
r0
tx (I×R5)

∥∥w
∥∥a3
L∞
t L2

x(I×R5)
.

Here the parameters

a1 =
62− 15r0
15r0 − 42

, a2 =
r0(15r0 − 52)

15r0 − 42
, a3 = p+ 1− a1 − a2.

Note that 1
9 < a1 <

3
4 when p ≥ 1. Setting

α1(5, p) = α(5, p)a2(1− a1)
−1, α2(5, p) = a2(1− a1)

−1,

and by the Cauchy-Schwarz inequality, we get

∥∥w
∥∥
L2
tL

10
3

x (I×R5)
! 1 +Nα1(5,p)·(1−s0)

∥∥w
∥∥α2(5,p)

XN (I)
,

and thus we get the desired estimate. #

Remark 5.4. Taking p1(d) ≥ 1, then we can roughly estimate that α1(d, p),α2(d, p) ≤ 20.
Hence, α1(d, p),α2(d, p) have a uniform upper bound when p1(d) is close to 4

d−2 . Based on
these facts, the parameters α3(d, p),α4(d, p) defined later also have a uniform upper bound
when p1(d) is close to 4

d−2 .
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5.3. Morawetz estimates. In this subsection, we consider the Morawetz-type estimate of
Lin-Strauss [35], see also [14] for the interaction Morawetz estimates. For convenience, we
rewrite the equation of w in the following way,

i∂tw +∆w = |w|pw + F (vL, w),

where F (vL, w) = |vL + w|p(vL + w)− |w|pw. Let

M(t) = Im

∫

Rd

x

|x|
·∇w(t, x)w̄(t, x) dx.

Then we have the following lemma.

Lemma 5.5. Under the same assumption as in Lemma 5.3, for any time interval I such
that 0 ∈ I ⊂ R+,

∫

I

∫

Rd

|w(t, x)|p+2

|x|
dxdt ! N3(1−s0)

(
‖w‖XN (I) + δ0‖w‖

1+pα2(d,p)
XN (I)

)
.

Proof. Note that

M ′(t) = Im

∫ (
2
x

|x|
·∇w +

d− 1

|x|
w
)
wt dx. (5.8)

Since
wt = −i∆w̄ + i|w|pw̄ + iF (vL, w),

we shall consider the following three terms,

Im

∫ (
2
x

|x|
·∇w +

d− 1

|x|
w
)
(−i∆w̄) dx; (5.9a)

Im

∫ (
2
x

|x|
·∇w +

d− 1

|x|
w
)
(i|w|pw̄) dx; (5.9b)

and

Im

∫ (
2
x

|x|
·∇w +

d− 1

|x|
w
)(

iF (vL, w)
)
dx. (5.9c)

By a direct computation, we have

(5.9a) ≥ 0. (5.10)

Indeed, by integration-by-parts,

(5.9a) =

∫
1

|x|

(
|∇w|2 −

∣∣∣∣
x

|x|
·∇w

∣∣∣∣
2
)

dx+G(w),

where

G(w) =






2π|w(t, 0)|2, if d = 3,

(d− 1)(d− 3)

4

∫
|w(t, x)|2

|x|3
dx, if d > 3.

Hence, we obtain (5.10). Using integration-by-parts again, we find

(5.9b) =
(d− 1)p

2(p+ 1)

∫
|w(t, x)|p+2

|x|
dx. (5.11)
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For (5.9c), using the Hölder inequality and the Hardy inequality, we have

|(5.9c)| ≤
∣∣∣
∫ (

2
x

|x|
·∇w +

d− 1

|x|
w
)(

iF (vL, w)
)
dx
∣∣∣

!‖F (vL, w)‖L2
x(R

d)

(∥∥∇w
∥∥
L2
x(Rd)

+
∥∥∥
w

|x|

∥∥∥
L2
x(Rd)

)

!
∥∥∇w

∥∥
L2
x(R

d)
‖F (vL, w)‖L2

x(R
d).

Hence, this last estimate combining (5.10) and (5.11), and integrating in time in (5.8), we
obtain that

∫

I

∫

Rd

|w(t, x)|p+2

|x|
dxdt !max

t∈I
M(t) +

∥∥∇w
∥∥
L∞
t L2

x(I×Rd)
‖F (vL, w)‖L1

tL
2
x(I×Rd). (5.12)

By the Hölder inequality and (5.5), we have

max
t∈I

M(t) ! N3(1−s0)‖w‖XN(I). (5.13)

Now we claim that by choosing s0 close enough to 1,

‖F (vL, w)‖L1
tL

2
x(I×Rd) ! 1 + δ0‖w‖

pα2(d,p)
XN (I) . (5.14)

Indeed, we have

‖F (vL, w)‖L1
tL

2
x(I×Rd) !

∥∥|vL|p+1
∥∥
L1
tL

2
x(I×Rd)

+
∥∥|vL||w|p

∥∥
L1
tL

2
x(I×Rd)

For the first term, by (4.20), we have that
∥∥|vL|p+1

∥∥
L1
tL

2
x(I×Rd)

!
∥∥vL
∥∥p+1

Lp+1
t L2(p+1)

x (I×Rd)
! 1.

For the second term, when d = 3, noting that r0 > 2p, we have that

∥∥|vL||w|p
∥∥
L1
tL

2
x(I×R3)

!‖vL‖L2
tL

∞
x (I×R3)‖w‖

(p−2)r0
r0−4

L
r0
tx (I×R3)

‖w‖
2r0−4p
r0−4

L4
tx(I×R3)

.

Note that by the interpolation and Lemma 5.3,

‖w‖L4
tx(I×R3) ! ‖w‖

1
2

L∞
t L3

x(I×R3)‖w‖
1
2

L2
tL

6
x(I×R3)

! 1 +N [ 32+
1
2α1(3,p)](1−s0)

∥∥w
∥∥α2(3,p)

XN (I)
. (5.15)

By (4.22), we get

‖vL‖L2
tL

∞
x (I×R3) ! δ0N

−s0+.

Therefore,

∥∥|vL||w|p
∥∥
L1
tL

2
x(I×R3)

!δ0N
−s0+

(
1 +N

(
(p−2)r0
r0−4 α(3,p)+

r0−2p
r0−4 [3+α1(3,p)]

)
(1−s0)

)
‖w‖pα2(3,p)

XN (I) .

Choosing 1− s0 small enough such that for any p ∈ [2, 4],

(1− s0)
(
1 +

(p− 2)r0
r0 − 4

α(3, p) +
r0 − 2p

r0 − 4

[
3 + α1(3, p)

])
< 1,

we obtain (5.14). When d = 4, 5, since 1 ≤ p < 2, by (4.20) and Lemma 5.3 we have that
∥∥|vL||w|p

∥∥
L1
tL

2
x(I×Rd)

!‖vL‖
L

2
2−p
t L

2d
d−(d−2)p
x (I×Rd)

‖w‖p

L2
tL

2d
d−2
x (I×Rd)

!δ0
(
1 +N−s0+

1
2+pα1(d,p)·(1−s0)

)
‖w‖pα2(d,p)

XN (I) .
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Choosing 1− s0 small enough such that for any p ∈ [2, 4],

(1− s0)
(
1 + pα1(d, p)

)
<

1

2
,

we obtain (5.14) again.

Therefore, together with (5.12), (5.13) and (5.14), we get
∫

I

∫

Rd

|w(t, x)|p+2

|x|
dxdt ! N3(1−s0)

(
‖w‖XN (I) + δ0‖w‖

1+pα2(d,p)
XN (I)

)
.

This finishes the proof of the lemma. #

The following is a consequence of the previous lemma.

Corollary 5.6. Under the same assumptions as in Lemma 5.3, there exists α3(d, p) > 0
such that

‖w‖Lr0
tx (I×Rd) ! Nα(d,p)·(1−s0)

(
‖w‖

d
r0(d−2)

XN (I) + δ
1
r0
0 ‖w‖α3(d,p)

XN (I)

)
.

Proof. By the Hölder inequality,
∫

I

∫

Rd

|w(t, x)|r0 dxdt !
∥∥|x|

d−2
2 w

∥∥
2

d−2

L∞
tx(I×Rd)

∫

I

∫

Rd

|w(t, x)|p+2

|x|
dxdt.

From Lemma 2.1, we have
∥∥|x|

d−2
2 w

∥∥
L∞
tx(I×Rd)

! ‖∇w‖L∞
t L2

x(I×Rd) ! N3(1−s0)‖w‖XN (I).

From Lemma 5.5, we have
∫

I

∫

Rd

|w(t, x)|p+2

|x|
dxdt ! N3(1−s0)

(
‖w‖XN (I) + δ0‖w‖

1+pα2(d,p)
XN (I)

)
.

Hence, we obtain
∫

I

∫

Rd

|w(t, x)|r0 dxdt !N
3d
d−2 (1−s0)

(
‖w‖

d
d−2

XN (I) + δ0‖w‖
d

d−2+pα2(d,p)

XN (I)

)
.

Let

α3(d, p) =
1

r0

[
d

d− 2
+ pα2(d, p)

]
,

we have the desired estimate. This finishes the proof of the corollary. #

5.4. Energy estimate. In this subsection, we consider the energy estimate for w. Since
the energy of w is not conserved, the nonlinear estimates are needed in this subsection. The
main result in this subsection is the following Ḣ1(Rd)-norm bound for w.

Lemma 5.7. There exists α4(d, p) > 1 such that for any 0 ∈ I ⊂ R+,

sup
t∈I

∥∥∇w(t)
∥∥
L2(Rd)

! N3(1−s0)
(
1 + δ

1
2
0 ‖w‖

α4(d,p)
XN (I)

)
. (5.16)
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Proof. Let t ∈ I. Denote that

Ẽ(t) =
1

2

∥∥∇w(t)
∥∥2
L2(Rd)

+
1

p+ 2

∥∥u(t)
∥∥p+2

Lp+2(Rd)
.

Then taking product with wt on the equation (5.1) and integrating in space and in time from
0 to t, we get

Ẽ(t) = Ẽ(0)− Im

∫ t

0

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′.

Since p ≤ 4, by (5.2), (4.23) and the Sobolev inequality, it follows that

Ẽ(0) ! N (p+2)(1−s0) ! N6(1−s0).

From (1.6), Proposition 4.5 and Lemma 2.8, we have that
∥∥∇eit∆u0

∥∥
L2
tL

2d
d−2
x (R+×Rd)

! ‖χ≤1f‖H1(Rd) + ‖χ≥1f‖Hs0(Rd).

Then it follows from the standard fixed point argument that there exists δ > 0 depends only
on ‖χ≤1f‖H1(Rd) and ‖χ≥1f‖Hs0(Rd), such that

∥∥∇u
∥∥
L2
tL

2d
d−2
x ([0,δ]×Rd)

! ‖χ≤1f‖H1(Rd) + ‖χ≥1f‖Hs0(Rd). (5.17)

Accordingly, we write

Im

∫ t

0

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′ = Im

∫ δ

0

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′+Im

∫ t

δ

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′.

For the first term, we have that
∣∣∣∣Im

∫ δ

0

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′

∣∣∣∣ !
∥∥∇u

∥∥
L2
tL

2d
d−2
x ([0,δ]×Rd)

∥∥∇vL
∥∥
L2
tL

2d
d−2
x (I×Rd)

∥∥u
∥∥p
L∞
t L

dp
2

x (I×Rd)
.

By (4.22) and (4.23), we get
∥∥∇vL

∥∥
L2
tL

2d
d−2
x (I×Rd)

! δ0N
1−s0−

d−2
2d +;

∥∥u
∥∥
L∞
t L

dp
2

x (I×Rd)
! 1 +N3(1−s0)‖w‖XN (I).

Hence, by further (5.17), it infers that
∣∣∣∣Im

∫ δ

0

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′

∣∣∣∣ ! δ0N
1−s0−

d−2
2d +
(
1 +N3p(1−s0)‖w‖pXN (I)

)
.

Choosing 1− s0 small enough such that

(1− s0)
(
3p− 5

)
<

d− 2

2d
,

we obtain that
∣∣∣∣Im

∫ δ

0

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′

∣∣∣∣ ! N6(1−s0)
(
1 + δ0‖w‖

p
XN (I)

)
.

For the second term, we have that
∣∣∣∣Im

∫ t

δ

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′

∣∣∣∣ !
∥∥∇u

∥∥
L∞
t L2

x(I×Rd)

∥∥∇vL
∥∥
L2
tL

∞
x ([δ,+∞]×Rd)

∥∥u
∥∥p
L2p
tx (I×Rd)

.



LARGE GLOBAL SOLUTIONS FOR NLS 57

By (4.20) and the interpolation,

∥∥u
∥∥p
L2p
tx ([0,δ]×Rd)

!‖u‖
r0(3p−4)
3r0−8

L
r0
tx (I×Rd)

‖u‖
4(r0−2p)
3r0−8

L
8
3
tx(I×Rd)

!‖u‖
r0(3p−4)
3r0−8

L
r0
tx (I×Rd)

(
‖u‖L∞

t H1
x(I×Rd) + ‖u‖

L2
tL

2d
d−2
x (I×Rd)

) 4(r0−2p)
3r0−8

!
(
1 +Np[α(d,p)+α1(d,p)+3]·(1−s0)

)
‖w‖pα2(d,p)

XN(I) .

Further, by (4.21), ∥∥∇vL
∥∥
L2
tL

∞
x ([δ,+∞]×Rd)

! δ0N
1−s0−

d−2
2 +.

Hence we have that
∣∣∣Im

∫ t

δ

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′
∣∣∣

!δ0N
1−s0−

d−2
2 +

(
1 +N

(
3+p[α(d,p)+α1(d,p)+3]

)
·(1−s0)

)
‖w‖1+pα2(d,p)

XN (I) .

Then choosing 1− s0 small enough such that
(
p[α(d, p) + α1(d, p) + 3]− 2

)
· (1− s0) <

d− 2

2
,

we obtain that
∣∣∣Im

∫ t

δ

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′
∣∣∣ !N6(1−s0)

(
1 + δ0‖w‖

1+pα2(d,p)
XN (I)

)
.

Setting

α4(d, p) =
1

2
max{p, 1 + pα2(d, p)},

we get that
∣∣∣Im

∫ t

0

∫

Rd

∇
(
|u|pu

)
·∇vL dxdt

′
∣∣∣ !N6(1−s0)

(
1 + δ0‖w‖

2α4(d,p)
XN(I)

)
,

and thus

Ẽ(t) !N6(1−s0)
(
1 + δ0‖w‖

2α4(d,p)
XN(I)

)
.

Then we obtain the desired estimates. #

5.5. The proofs. Now we are ready to prove Theorem 1.3. First, we show that for any I
such that 0 ∈ I ⊂ R+,

‖w‖XN (I) ! 1. (5.18)

Indeed, from Corollary 5.6 and Lemma 5.7, we have

N−α(d,p)·(1−s0)‖w‖Lr0
tx(I×Rd) +N−3(1−s0)‖w‖L∞

t Ḣ1
x(I×Rd)

! 1 + ‖w‖
d

r0(d−2)

XN (I) + δ
1
r0
0 ‖w‖α3(d,p)

XN (I) + δ
1
2
0 ‖w‖

α4(d,p)
XN (I) .

That is,

‖w‖XN (I) ! 1 + ‖w‖
d

r0(d−2)

XN (I) + δ
1
r0
0 ‖w‖α3(d,p)

XN(I) + δ
1
2
0 ‖w‖

α4(d,p)
XN (I) .
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We note that
d

r0(d− 2)
< 1, α4(d, p) > 1.

Then using the Cauchy-Schwarz inequality, the second term can be absorbed by the term in
the left-hand side, and thus we have

‖w‖XN (I) ! 1 + δ
1
r0
0 ‖w‖α3(d,p)

XN(I) + δ
1
2
0 ‖w‖

α4(d,p)
XN(I) .

Furthermore, if α3(d, p) ≤ 1, then choosing δ0 suitably small, we have

‖w‖XN (I) ! 1 + δ
1
2
0 ‖w‖

α4(d,p)
XN (I) .

Then using a continuity argument, we obtain (5.18). If α3(d, p) > 1, then choosing δ0 suitably
small, and using a continuity argument, we also obtain (5.18).

Since the estimate in (5.18) is uniform in the time interval I, we have I = R+. This
proves the global existence in the forward time. Moreover,

‖w‖L∞
t Ḣ1

x(R
+×Rd) + ‖w‖Lr0

tx (R
+×Rd) ! A(N), (5.19)

for some constant A depending on N .

Now we set

u+ = f+ +

∫ +∞

0

e−is∆
(
|u|pu

)
ds.

Then we have

u(t)− eit∆u+ =

∫ +∞

t

ei(t−s)∆
(
|u|pu

)
ds.

Using Proposition 4.5 and (5.19), we have (the details are omitted here since similar treat-
ment was presented above)

∥∥∥
∫ +∞

t

ei(t−s)∆
(
|u|pu

)
ds
∥∥∥
H1(Rd)

!
∥∥〈∇〉

(
|u|pu

)∥∥
L2
tL

2d
d+2
x ([t,+∞)×R)

→ 0,

as t → +∞. This proves the scattering statement.
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