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Abstract During the hemostatic phase of wound healing, vascular injury
leads to endothelial cell damage, initiation of a coagulation cascade involv-
ing platelets, and formation of a fibrin-rich clot. As this cascade culminates,
activation of the protease thrombin occurs and soluble fibrinogen is converted
into an insoluble polymerized fibrin network. Fibrin polymerization is critical
for bleeding cessation and subsequent stages of wound healing. We develop a
cooperative enzyme kinetics model for in vitro fibrin matrix polymerization
capturing dynamic interactions among fibrinogen, thrombin, fibrin and inter-
mediate complexes. A tailored parameter subset selection technique is also
developed to evaluate parameter identifiability for a representative data curve
for fibrin accumulation in a short duration in vitro polymerization experiment.
Our approach is based on systematic analysis of eigenvalues and eigenvectors of
the classical information matrix for simulations of accumulating fibrin matrix
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via optimization based on a least squares objective function. Results demon-
strate robustness of our approach in that a significant reduction in objective
function cost is achieved relative to a more ad hoc curve-fitting procedure.
Capabilities of this approach to integrate non-overlapping subsets of the data
to enhance the evaluation of parameter identifiability is also demonstrated.
Unidentifiable reaction rate parameters are screened to determine whether in-
dividual reactions can be eliminated from the overall system while preserving
the low objective cost. These findings demonstrate the high degree of infor-
mation within a single fibrin accumulation curve, and a tailored model and
parameter subset selection approach for improving optimization and reducing
model complexity in the context of polymerization experiments.

Keywords Wound healing - Fibrin polymerization - Kinetics model -
Parameter identifiability - Subset selection

Mathematics Subject Classification (2010) 62P10 - 65109 - 92C45 -
92C05

1 Introduction

Wound healing is a complex process that occurs in four temporally overlapping
phases (hemostasis, inflammation, proliferation, and remodeling), spanning
several hours to weeks (Chester et al. 2019). During hemostasis, initial vascu-
lar injury leads to endothelial cell damage, platelet activation, and subsequent
fibrin clot formation. Over the next 24-48 hours, inflammatory cells migrate
into the wound bed to fight pathogens and remove foreign material. This is fol-
lowed by 1-2 weeks of proliferation in which fibroblasts migrate into the fibrin
clot to rebuild damaged tissue via biosynthesis and remodeling of extracellular
matrix (ECM). Lastly, in the remodeling phase which spans months to years,
provisional ECM is replaced with a more permanent collagen-rich matrix con-
current with additional fibroblast-mediated ECM remodeling. The successful
design of novel therapeutic approaches can benefit from coordination with
development of mathematical models for these underlying mechanisms, par-
ticularly in cases of degenerate wound healing (Hoffman et al. 2006). A variety
of mathematical models have been developed to describe these mechanisms in
one or more phases of wound healing (see Jorgensen and Sanders 2016; Valero
et al. 2015; Weihs et al. 2016 for reviews). Most models focus on one (or just
a few) phases of wound healing (Jorgensen and Sanders 2016). Models have
been delineated (Valero et al. 2015) by those that are biochemical (kinetics or
reaction-diffusion systems), mechanobiological (Tranquillo and Murray 1992),
or discrete (e.g. Cellular Potts) or particle-based models that track individual
cells (Vermolen and Gefen 2013). Recently, hybrid (continuum-discrete) mod-
els have also been developed to study coupling between cell dynamics, diffusive
signaling and extracelullar matrix deposition (Wang et al. 2019).

This investigation considers hemostasis, during which the coagulation cas-
cade is activated by the initial vascular injury and formation of a fibrin-rich
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clot ensues. Specifically, this cascade culminates in activation of the protease
(enzyme) thrombin, which converts soluble fibrinogen into an insoluble fibrin
network (Janmey et al. 2009; Weisel 2004; Weisel 2005; Weisel and Litvinov
2013; Wolberg 2007). Formation of this network is critical, both initially as
it stops bleeding, and for subsequent stages of wound healing. In particu-
lar, the initial polymerized fibrin network serves as a provisional ECM scaf-
fold to support infiltration of cells involved in later healing stages (Chester
and Brown 2017), thus influencing outcomes in both normal and degenerate
wound healing. The viability of kinetic modeling of fibrin polymerization was
demonstrated several decades ago (Weisel and Nagaswami 1992), but model
interpretation was qualitative. In particular, model parameters were not esti-
mated though a process of inverse analysis of data from experiments.

The focus of this study is two-fold. The first major focus is on the de-
velopment of a kinetics-based mathematical model for fibrin matrix polymer-
ization during initial clot formation. A cooperative enzyme kinetics model,
comprising a system of ordinary differential equations (ODEs), is formulated
to capture dynamic interactions among fibrinogen, thrombin, fibrin matrix
and intermediate complexes. The second major focus is the development of
a tailored parameter subset selection technique to assess those parameters
which are identifiable in the sense that they are uniquely determined by data.
The notion of identifiability specific to our problem is practical identifiability
with respect to the underlying reaction rates (Brun et al. 2002; Quaiser and
Monnigmann 2009). Our approach is rooted in algorithms presented in studies
based on analysis of eigenvalues and eigenvectors of the (ill-conditioned) infor-
mation matrix (Burth et al. 1999; Quaiser and Ménnigmann 2009; Vajda et
al. 1989). Prior works utilizing parameter subset selection techniques based on
such approaches employed simulated data (Burth et al. 1999; Cintrén-Arias
et al. 2009; Quaiser and Ménnigmann 2009), whereas our approach is tailored
to our specific model and wound healing application using real data for fib-
rin matrix accumulation during polymerization. Note that our approach does
not integrate the parameter estimation and subset selection procedure with
uncertainty quantification of estimated parameter values, as in Cintrén-Arias
et al. (2009). The technique developed in this study is applied in the context
of parameter estimation via optimization of a least squares objective function
comparing model predictions of fibrin to representative data for fibrin matrix
accumulation in a short duration polymerization experiment.

2 Models and Methods
2.1 Fibrin Matrix Polymerization Experiment

We have the capability to analyze the polymerization of fibrin matrices via in
vitro clot turbidity experiments (Sproul et al. 2018). In this study, we focus
on the representative fibrin matrix data corresponding to measurements of
polymerizaton rate (turbidity profiles) for initial concentrations of 2.5 mg/mL
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for fibrinogen, 0.75 (Units/mL) for thrombin and 5mM CaCl2. Fibrinogen was
mixed with 25 mM Hepes buffer (25 mM HEPES, 150 mM NaCl, 5 mM CaCl2,
pH 7.4). Real time measurement of clot turbidity was taken every minute for
roughly 4 hours (225 minutes) through absorbance readings (Abs350nm) using
a plate reader (Brown et al. 2015; Sproul et al. 2018). Such measurements are
known to have a direct relationship with proportional increases in fibrin matrix
density (Wolberg et al. 2002). Specifically, clots are formed within a 96 well
plate and the plate reader measures absorbance at 9 locations per well. As
fibrinogen converts into fibrin, an increase in absorbance is detected, serving
as a quantitative measurement of fibrin matrix density (Fig. 1). This method
enables rapid investigation of early time system dynamics which is not possible
using traditional approaches to measuring fibrin content.

2.2 Reaction System for Fibrin Matrix Polymerization

We idealize the aforementioned in vitro system for fibrin matrix polymeriza-
tion as a set of chemical reactions involving interactions among fibrinogen, the
enzyme thrombin (Thb) and fibrin matriz (FM). A unique feature of this sys-
tem is that thrombin and fibrinogen are unbound (dissolved) species, whereas
fibrin matrix is a bound species that forms a solid-like matrix. We will utilize
an extended enzyme kinetics framework to account for the intermediate com-
plexes that arise in the transition from unbound to bound system constituents
which is known to involve a cooperative mechanism (Chernysh et al. 2012).
Hence, our system will include a small number of intermediate complexes along
with associated reactions.

The first stage of fibrin polymerization in the in vitro system involves the
activation of inactive fibrinogen (Fbn;) into active fibrinogen (Fbn,), with the
latter species combining with other substrates in subsequent reactions to form
fibrin matrix. This activation of fibrinogen is assumed to follow Michaelis-
Menten-type reaction kinetics (Michaelis and Menten 1913), mediated by in-
teractions with the enzyme thrombin (Thb) and a single intermediate complex
(Cp). The resulting reaction system is:

N
Fbn; + Thb <= Cy —* Fbn, + Thb. (1)
=

The right-most (forward) reaction in (1) occurs rapidly and is assumed to
be irreversible once fibrinogen is activated. Active fibrinogen is a dissolved
intermediate product that in turn reacts to form fibrin matrix; i.e. active
fibrinogen does not return to an inactive form.

Thrombin-mediated kinetics for fibrin assembly are known to exhibit a
sigmoidal reaction velocity for the product (Chatterjee et al. 2010; Weisel
and Nagaswami 1992), indicative of cooperative enzyme effects with a few
intermediate complexes. Here, we assume the simplest case of a Hill-type model
(Goutelle et al. 2008; Hoffman et al. 2006) with positive cooperativity (Hill
coefficient n = 2) to model fibrin matrix accumulation. The associated reaction
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system thus involves two additional intermediate complexes (C1, Cz) and is
given by:

ki ks
Fbn, + Thb == C; == Thb + FM, (2)
ky ky
ki 2
ana + Cl S CQ S Cl + FM. (3)
kg ky

The reaction system for our model then comprises (1)-(3). Note that the 11
reaction rates {k,k*, k=, k k7 | i = 1,...,4} are all assumed to be non-
negative constants. Some additional features of the reaction system (1)-(3)
are now outlined.

In many enzyme kinetics models with cooperative effects, it is assumed
that the product is continuously removed from the system (Keener and Sneyd
1998). When this assumption is applicable, the right-most reverse reactions in
(2) and (3) can be neglected. By contrast, in our system the product (fibrin
matrix) is a bound species that cannot be removed from the system; thus,
in our model we retain the reverse reactions in (2) and (3). Moreover, due
to inherent model complexity from cooperative effects, many models invoke a
quasi-steady state approximation (QSSA; Briggs and Haldane 1925), assuming
equal rates for formation and breakdown of intermediate complexes (Keener
and Sneyd 1998). In our system (1)-(3), using the QSSA violates physical laws
governing the system, admitting negative values for substrate and product
concentrations in the model.

2.3 Mathematical Model

Initial ODE System. Using the law of mass action, which assumes leading or-
der reaction kinetics (Holmes 2000), we map the 11 reactions in (1)-(3) to a
system of 7 ordinary differential equations in 7 dependent variables, delineated
as the four primary system species (Fbn,, FM, Thb, Fbn;) and three interme-
diate complexes (Cg, C1, C3). In the mathematical model italicized symbols for
all species denote their concentration, except for FM which uses absorbance
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units (as a surrogate for concentration). The resulting system is

dzl;"“ =~k Fbn, - Thb+ ky Cy — ki Fon, - C1 + k3 C2 + kCy  (4)
dFM
T kyCy —ky Thb- FM + kfCy —k; Cy - FM, (5)
% = —k{ Fbng - Thb + ki C1 + ki C1 — ky Thb - FM
— k+anl -Thb+ k™ Cy + kCy, (6)
F .
% = kT Fbn; - Thb + k= Cy, (7)
% _ kT Fbn; Thb — k™ Co — kCy, (8)
dt
% =k Fbn, - Thb — ki Cy — ky C1 + ky Thb - FM + k3 Co
— ki Fbn, - Cy +kfCy —k Cy - FM, (9)
dTCf:k;ana01_k§CQ+k201FM_]{?ICQ (10)

Initial conditions for this system are as follows:

Fbna(0) =0, FM(0) = FM,, Thb(0) = Thby, Fbn;(0) = Fbnso,
C;(0) =0, j=0,1,2. (11)

Collectively, equations (4)-(11) contain 14 model parameters, of which 11 are
(constant) reaction rates and the remaining 3 are prescribed initial species
quantities. In (11), Thby is the initial concentration of thrombin in the system
based on properties of the batch obtained for use in the experiment (§2.1).
We also assume that initially all fibrinogen is inactive, with prescribed initial
value Fbn;y. Due to the structure of our coupled reaction system, a small
initial amount of fibrin matrix must be assumed at ¢ = 0. This value for F M,
is determined in the experiment by measuring the amount of fibrin matrix
present just after initial polymerization occurs and is used to prescribe the
corresponding initial condition in (11).

Conservation Laws. The stoichiometric matrix S used to determine conser-
vation laws for the system of ODEs (4)-(10) is defined in terms of the net
stoichiometric coefficient for each reactant and product involved in each re-
action, assuming r species and n reactions (S € R™*"). Specifically, the net
stoichiometric coeflicient of species ¢ in reaction j is n;; = njj — Ny, where
jj is the product stoichiometric coefficient defined as the production rate
for the species, and n;; the reactant stoichiometric coeflicient defined as the
consumption rate of the species (Brendel et al. 2006). With these definitions,
the (i,j)-th entry S;; = n;;. The rank of the null space of S7 is equal to the
number of linearly independent conservation laws in the system of ODEs, and
a specific set of conservation laws is obtained from basis vectors for the null

n
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space (Holmes 2000). In our system, n = 7 and r = 11, and the matrix .S yields
two independent conservation laws (noting that these depend on the chosen
basis vectors):

—ana — FM +2Thb — anl + C() + Cl = 7ani0 + 2Thb0 — FMo, (12)
Fong, + FM — Thb+ Fbn; + Cy = Fbnyg — Thby + F M. (13)

Reduced ODE System. Given two independent conservation laws, it is possi-
ble to reduce our system from 7 to 5 ordinary differential equations. We use
(12) and (13) to ecliminate the intermediate complexes C; and C and thus
reduce the original system to 5 ordinary differential equations (4)-(8) with the
respective initial conditions.

2.4 Data Observations and Statistical Model

The parameter subset selection techniques employed in this investigation were
developed by optimizing model predictions of F'M (t) using a single represen-
tative experimental data curve for accumulation of fibrin matrix (FM) (Fig. 1,
see also §2.1).

081 iesssseesesseseesescecs
0.6

0.4

FM Absorbance

0.2r,

0 Sb 160 15‘0 260 7

Time (minutes)
Fig. 1: Representative fibrin matrix absorbance data for model development
and analysis. As outlined in §2.1, data was collected every minute for a total

of 225 minutes and averaged at each time point across all 9 locations within
one well. The data was downsampled to retain every 10** point.

The representative data curve exhibits sigmoidal features consistent with a
Hill coefficient (n > 1) associated with positive cooperative (enzyme) effects.
In particular, this curve exhibits an inflection point, corresponding to a maxi-
muimn reaction rate, occurring within the first hour of the reaction. To increase
algorithmic efficiency, we have downsampled the data by considering every k"
point. We denote the data collected in this manner by {y”}¥,, where N is

the total number of data points after downsampling.
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Let y(t; o, qx) be the solution curve for the fibrin matrix equation in (4)-
(8), where

qo = [FM(), T‘hbo7 anzO] (14)

are the three (experimentally prescribed) initial condition parameters, and
Qk:[kii_,k;,k‘;,k‘;,k;,k;,ki,kz,k,k+,l€i] (15)

are the 11 reaction rate parameters. The statistical model for the observation
process can be formulated as

yi = y(ti;Q0, @) + €, i =1,..., N, (16)

where qg,qk are the true but unknown parameter values. The errors ¢; are
random variables assumed to be independently and identically distributed.

2.5 Parameter Subset Selection Approach

In practice, we prescribe values for qo &~ §o from (16) based on initial states
in the fibrin polymerization experiment. Hence, our focus is on estimating pa-
rameters qx € RM from (15) for M = 11. To find an optimal qf ~ qx in (16)
we use an approach that, within each iteration, systematically decreases the
number of parameters j (< M) to be estimated as we determine which M — j
parameters are unidentifiable in the sense that they are not uniquely deter-
mined by the data. In §2.5.4, we outline the main parameter subset selection
procedure used to find qy;, but first we introduce some helpful concepts and
notation.

Let q € R/ be the vector consisting of the current j parameters to be
estimated, and let @ := qx\g be the vector comprising the remaining M — j
fixed parameters in qx. Thus, we may write qx = (q,q)!, where ( , ) denotes
the merging of vectors that preserves the original parameter index ordering
n (15). For convenience, the amount of fibrin matrix at time ¢ is henceforth

denoted as y(t; qo, (q,@)).

2.5.1 Parameter Estimation

The parameters q € RJ are estimated via the following minimization of the
ordinary least squares objective function J(q; q):

N
. . _ 1 )
q" =arg min J(q;q), where J(q;d@) = = Y (y(tiiqo, (0. @) —u) "
qERJZO Z:1

(17)

U For example, if q = [k}, ky, ki, k, k3] and @ = [k3 , k5, ki, k~, kg, kT], then qi =
(q,@) = [a[3],a[3],al5], al2], q[2], q[1], q[1],al5], a[4], G[6], q[4]]. Note that this notation
throughout the paper does not denote an inner product.
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In evaluating J(q; @) in (17), the solution y is determined approximately using
a numerical solver for stiff systems of ODEs (see §3). The optimization problem
that determines q* is solved via a Nelder-Mead direct search simplex algorithm
(Nelder and Mead 1965) applied to the objective function (17).

2.5.2 Sensitivities and Information Matriz.

Once we obtain an optimal parameter vector q*, we compute the j x j infor-
mation matrix xTx (Rothenberg 1971), where x := Vqu({t:}Y1; qo, (q*,@))
is the NV X j sensitivity matrix. However, the variety of units and time scales
inherent to our model lead to a wide range of parameter (reaction rate) mag-
nitudes to be estimated. To circumvent this, we re-scale our model by writing.
ys(t; o, (0,@)) = y(t; qo, (s(#),q)), where 0 is the scaled parameter vector and
s(f) is the linear mapping from the intervals [0, 17 to [[7._, [(1—a)q}, (14+)q}].
The value of « is prescribed (0 < « < 1; see §3.1). The scaled sensitivity matrix
Xs is then defined as

Xs = Voys({ti}iL1;q0, (0,@)) (18)

where, via the Chain Rule, gz: = gq% g—g’;. It can be readily shown that %32 =
. = 90, ,

2aqf. The derivative gq’j: is approximated using a complex-step approximation

(Lyness 1967; Lyness and Moler 1967; Martins et al 2003; Squire and Trapp
1995)

%(tl;Qm (", a) ~ Im[y(t; qo, (a* +lhek,Q>)]7 k=1,....jil=1,...,N, (19)
@ h
where Im[| denotes the imaginary part of the function with standard basis
vectors e, € R/ and 0 < h(= 1071%) < 1. Complex-step derivative approx-
imation is second-order accurate without the drawback of (numerator) sub-
tractive cancellation that can occur with standard finite differences (Banks et
al. 2015).

We now briefly summarize the relevance of the matrix x”x (or analogously,
xFxs) to parameter identifiablilty. When y(t; qo, (q,q)) is expanded about
q = q*, we obtain via a Taylor expansion the result

N _ 1 A
J(a" + Aa; @) ~ - Aq" X xAq ~ | Adlf3. (20)

Here Aq = q — g* and y is evaluated approximately using (19). We note that
xTx is symmetric and non-negative definite. The second approximate equality
in (20) follows when Aq is an eigenvector of xTx; i.e. xTxAq = AAq for
some real eigenvalue A > 0.

From (20), we have that J(q*+ Aq;q) — 0 if A — 0, and the perturbation
directions Aq associated with negligible eigenvalues of x”x are indicative of
parameters that are unidentifiable.
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2.5.8 Parameter Candidate Selection (PCS)

Our main procedure to find, at each iteration, parameters q* (identifiable) and
g (unidentifiable) satisfying q;. = (q*, @) relies on at least one call in every it-
eration to an underlying algorithm, termed the Parameter Candidate Selection
Algorithm (PCS, Algorithm 1). This algorithm is based on techniques from
prior works utilizing parameter subset selection (Burth et al. 1999; Cintrén-
Arias et al. 2009; Quaiser and Monnigmann 2009), that is tailored to our
specific application and unique features of our data. The PCS Algorithm is

Algorithm 1 Parameter Candidate Selection (PCS)
Input: Vector q* € R7 for given j; observations {yP};c; where N = |I|

Output: L=PCS(q*, {yiD}iej) where subset L C {1,...,5} are indices of candidate least
identifiable parameters

1: Specify tolerances 0 <7 < 1 and 0 < 6 < 1.

2: Construct N x j sensitivity matrix xs(q*).

3: Compute ordered eigenvalues A\; < ... < X; of xTxs(a*).
4: L+ 0

5: if A1 > n then

6: return L

7: else

8: Find index m for which A, < and Ap41 > 7.

9: fori=1:m do
10: Compute normalized eigenvector v; corresponding to A;.
11: if 3 v;, component of v; with |v;,| > § then
12: L+ LU{l;}
13: end if
14: end for
15: return L
16: end if

invoked within every iteration of our main procedure to determine indices of
unidentifiable parameters for a given q*. Equation (20) provides the founda-
tion for the algorithm. If the (scaled) information matrix has full rank, all
corresponding parameters used in its evaluation are identifiable. For our pur-
poses, we set a threshold 7 for eigenvalues of the information matrix (line 1); if
all eigenvalues have magnitude above 7, then x 7y, has full rank, numerically.
In this case, all parameters in q* are identifiable, and the PCS algorithm re-
turns the empty list (lines 4-6). Otherwise, there is some index for which all of
the preceding eigenvalues, ordered from smallest to largest, are less than the
designated threshold n (lines 7-16). We then compute the normalized eigen-
vectors that correspond to these eigenvalues (line 10). The PCS Algorithm
flags the components of these eigenvectors that are sufficiently large and re-
turns their indices (lines 11-13); the index of any component having magnitude
greater than § < 1 is a candidate for being deemed as unidentifiable within
each iteration of our main procedure.
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2.5.4 Outline of Main Parameter Selection Procedure

We now outline our main procedure to find parameter vectors g* (identifiable)
and @ (unidentifiable) such that qj = (q*, ).

First, we initialize @ = [ ] and set the number of parameters to be estimated
j = M (here M = 11). The first iteration solves (17) for q* € R/ (§2.5.1),
with a prescribed initial vector qs,,, € R?. Algorithm 1 is then called with this
vector q*.

Each time it is invoked, Algorithm 1 returns either: (a) a list L that is
the empty set; or (b) a subset of the full index set {1,...,7} with indices of
parameters that are flagged as candidates for being unidentifiable.

In case (a), the matrix x7xs(q*) has full rank, and we deem all param-
eters in q* identifiable. Hence the PCS procedure would yield L = @) and so
ax = (9", Q).

In case (b), consider the set of candidates for non-identifiability with corre-
sponding indices stored in L. We wish to determine which candidate influences
minimization of the objective function in (17) the least. For each index [ € L,
we remove the [** component g/ from g, i.e. moving it temporarily to q, and
repeat the estimation (17) over q € R/~ using the remaining components of
q* as the initial parameter vector. With this approach, the solver in each loop
iterate is guaranteed to output a cost that is no greater than the previous
iterate’s best cost. Let m € L be the index corresponding to the lowest cost.
The current iteration then completes by updating j < j — 1 and by moving
q;, into q.

At the start of the next iteration, we update q;.;; to be q* and then set
q* to be the solution of (17) using ;. Algorithm 1 is invoked again with
the new q*, and we repeat this procedure until its terminal iteration when the
information matrix has full rank (i.e. L = 0).

As the dimension j of the parameter search space is successively reduced
(i.e. as the dimensions of q and @ decrease and increase, respectively), a more
robust optimization can be achieved. Metrics for evaluating such success in-
clude reduction in both the magnitude of the objective function and compu-
tational cost of the optimization as the subset selection procedure proceeds.

2.6 Model Reduction

The procedure described in §2.5.4 returns candidates for parameters that are
unidentifiable in the curve-fitting routine for our model. Traditionally, uniden-
tifiable parameters are fixed at nominal values, which coincide with the start-
ing values for q,,;, passed to the optimization routine. Because our initial
parameter values for this problem are unknown except by a relative order-
ing of magnitudes (see §3.1), we treat the outputs of the PCS Algorithm as
the more realistic set of nominal values for our parameters. The parameters
deemed unidentifiable are fixed at these values (when being moved into @) to
ensure feasibility in the (local) parameter landscape. Among these parameter
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candidates in @, we want to determine those, if any, that can be eliminated
from the model by systematically fixing them at zero and attempting to opti-
mize over the remaining parameters. For example, if ¢ in q* is flagged by the
above procedure as the most unidentifiable parameter, we attempt to fix the
corresponding I*" parameter at 0 to analyze that parameter’s influence on the
model in a more global sense. However, it is noted that a similar quality fit
to the fibrin matrix data in terms of comparable objective costs is a necessary
but insufficient condition for model reduction via parameter elimination. In
addition, we must consider the effects of setting a parameter to zero not only
on the values and sensitivities of the remaining model parameters but also on
the reaction system as a whole. We note that these additional considerations
are a result of physical constraints in our application; the only experimental
observations for (17) correspond to the product (FM). The advantage of this
approach in the context of our problem, if unidentifiable parameters can be set
to zero, is that each parameter corresponds to a reaction rate in the model. By
setting parameters equal to 0, we eliminate reactions from (1)-(3) and reduce
the complexity of the reaction system.

3 Results
3.1 Implementation and Overview

The mathematical model of our reaction kinetics system (4)-(10) was incorpo-
rated into an implementation of the parameter estimation, parameter identifia-
bility, and model reduction techniques outlined in §2.5 and §2.6 using Matlab®
2020b. For all parameter estimations carried out, the routine fminsearch was
used to minimize the objective function in (17). Function and step size toler-
ances were set at 10712 and 1078, respectively. In the context of the available
data, the model exhibits a diverse range of time scales and the system of ODEs
is stiff. Hence, the variable-step, variable-order (VSVO) ODE solver odel5s
was used to numerically solve the system in all cases considered.

Our initial attempt at minimizing the objective function in (17), i.e. over
R revealed a violation of underlying physical properties of the system (1)-
(3). Specifically, the property that an enzyme concentration near steady state
should be very close to its initial value, i.e. Thb(ty) = Thby, was not preserved.
Consequently, in all subsequent simulations we augmented the cost function
(17) with a penalty term enforcing this constraint. Incorporation of this term
precluded any further violations of the aforementioned condition in all results
presented.

The details and progression of our iterative procedure for parameter esti-
mation and identifiability described in §2.5.4 with n = 107'? and § = 0.80 in
the PCS algorithm (and h = 10719 o = 0.2 for the parameter scaling map) is
shown in Tables 1 and 2. Initial values of all 11 parameters in q;,;, were pre-
scribed as multiples of 10 based on presumed reaction rate orders of magnitude.
Our procedure terminated in 6 iterations, i.e. with 6 parameters estimated in



Modeling Fibrin Polymerization Kinetics 13

the optimization algorithm at the final iteration.

Note that, within each iteration (Table 1), three calls to the function PCS
(Algorithm 1) were made to identify a set of candidates for unidentifiable pa-
rameters (see §3.2). When, within each iteration, multiple eigenvalues were
below the threshold 7, eigenvector components (exceeding the threshold §) for
the case with the lowest cost were used to generate the set of unidentifiable
candidates. Via this approach, we ensure that the cost in (17) decreases (Table
2) as the iterative procedure (Table 1) proceeds. In Fig. 3, a representative fit
to our fibrin matrix data is shown for the case with the lowest cost (Table 1,
Tter. 6).

We first motivate incorporation of a data partition into our main parame-
ter selection procedure (§3.2) and then summarize key details of our parameter
subset selection procedure by illustrating outcomes corresponding to several
rows of Table 1 (§3.3-3.5). Lastly, we emphasize how unidentifiable parameters
can be used to aid in model reduction, as outlined in §2.6, in the context of
the given data (§3.6).

3.2 Data Partitioning for Additional Sensitivity Information

As detailed in §2.1, the duration of the experiment informing our model was
roughly 4 hours (225 minutes), and rapid polymerization was observed within
the first hour. Furthermore, parameter sensitivities for our initial curve fitting
results over R (Fig. 2) exhibited two types of sensitivities: those that achieve
their largest magnitude within the first hour of the experiment and those do so
at later times. It is noted that some information about parameter identifiability
was lost when computing sensitivities across the full data set. This is reflective
of the multiple interacting time scales inherent to our application. To mitigate
loss of information when using the full data set, we exploited the data-driven
structure of the sensitivity matrix as well as the flexibility of the PCS algorithm
to receive subsets of the full data as input (Algorithm 1). Specifically, the
dataset for the full duration of the experiment, the data subset for the first hour
of the experiment, and data subset for the remainder of the experiment (~ 3
hours) were all used in the main parameter selection procedure to generate a
comprehensive set of candidates for non-identifiability.

3.3 The First Iteration

Our first parameter estimate q* € R!! (Table 1, Iter. 1) results from minimiza-
tion of the cost (17) using the prescribed initial guess q;,;, (Table 1, Iter. 0),
noting that @ = ). Via Algorithm 1, PCS(q*, {y”}},) is then called on the
three time intervals to determine a set of unidentifiable parameter candidates
(Fig. 4).

Five eigenvalues of the full-time information matrix (x. ;) were found to
lie below the specified threshhold 1 and are shown in Fig. 4a. The five corre-
sponding eigenvectors were then examined (Fig. 4b-e), and components that
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Fig. 2: Scaled sensitivities for parameters after initial curve fitting in R!!
(evaluated at the values in Iter. 1 of Table 1). Parameters deemed identifiable
by our main parameter subset selection procedure are shown in (a) while the
unidentifiable parameters are shown in (b).

were above the threshold 6 = 0.80 were flagged (red). By repeating this process
over all three time intervals, the candidate parameters {k3 , k5 , ki, k, k=, ki }
were deemed to be potentially unidentifiable. Next, we determined which one
of these parameters should be moved into q, i.e. fixed at a nominal value, at
the next iteration. To this end, each of the six candidate parameters was (in
turn) fixed at its estimated value within the current iteration (Table 1, Iter.
1), and a new parameter estimation in R!® was carried out. The parameter
k;‘ yielded the lowest cost in (17) and, hence, was chosen to move to @ at the
next iteration (Table 2, Iter. 1).

3.4 Second Iteration

We next describe results for the second iteration of our overall algorithm to
find qf = (q*,@) € R!. Via Algorithm 1, PCS(q*, {yP}Y ;) was called with
q* € R% and q = [k]] for all three time intervals (Table 1, Iter. 2). Initial

1 ‘ ‘ ‘ Fig. 3: Best fit for model pre-
dictions of fibrin matrix accu-
QO'B mulation to the representative
Eo.e data (Fig. 1) based on the pro-
s cedure for parameter estima-
<04 tion and identifiability (§2.5.4).
= *
o The vector of parameters qj
02 and final cost J correspond to
Iter. 6 in Tables 1 and 2.

o

50 100 150 200
Time (minutes)

o
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Fig. 4: Eigenvalues and eigenvectors of x7 y, for the full-time data set evalu-
ated at the optimal vector g* € R1! for Iter. 1 (Table 1). (a) five eigenvalues
that are smaller than the threshold n = 10710 were flagged (red); (b-f) compo-
nents of the associated eigenvectors having magnitude greater than 6 = 0.80
were flagged (red) to generate candidates for unidentifiable parameters (Table
2, Tter. 1)

values for the 10 components of q* were set based on the previous itera-
tion (Table 1, Iter. 1). The PCS results for the early- and full-time data sets
yielded identical sets of unidentifiable parameter candidates; this is illustrated
for the full-time data set in Fig. 5. For the late-time data set, an additional
unidentifiable parameter candidate (k5 ) was generated (Fig. 6). Hence, at this
iteration, the candidate parameters {k;_, kS, ks, k‘} were deemed to be poten-
tially unidentifiable.

The cost comparison procedure (end of §3.3) was then run to determine
the least identifiable parameter, i.e. to be fixed at a nominal value at the next
iteration; the resulting parameter was k~. Consequently, k~ was chosen as the
parameter to move to @ at the next iteration (Table 2, Iter. 2).

3.5 Final Iterations

We then continued the procedure outlined above with results summarized in
Tables 1 and 2 (Iters. 3-4). Consider the iteration for PCS on q* € R” (Table
1, Iter. 5). Parameter candidates identified from the full- (Fig. 7a-b) and early-
time (Fig. 7c-d) data sets illustrated the capability of our data partitioning
technique to extract a greater amount of information. Specifically, no param-
eter candidates exceeded the ¢ threshold for the full time data set (Fig. 7b),
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Fig. 5: Eigenvalues and eigenvectors of I x, for the full-time data set evalu-
ated at the optimal vector q* € R1? for Iter. 2 (Table 1). (a) four eigenvalues
that are smaller than the threshold n = 10710 were flagged (red); (b-e) compo-
nents of the associated eigenvectors having magnitude greater than 6 = 0.80
were flagged (red) to generate candidates for non-unidentifiableidentifiable pa-
rameters.
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Fig. 6: Eigenvalues and eigenvectors of 1y, for the late-time data set eval-
uated at the optimal vector q* € R with @ = [k5]. (a) six eigenvalues
were smaller than the threshold n = 107'°, but for readability, the largest
of these eigenvalues was excluded (it generated no additional parameter can-
didates); (b) components of the first five eigenvectors are shown, and those
having magnitude greater than § = 0.80 were used to generate candidates for
unidentifiable parameters (Table 2, Tter. 2).

whereas the early-time data set found one unidentifiable parameter candidate
(ks , Fig. 7d).

After moving k5 into @ (Table 2, Iter. 5), we then proceeded to the sixth
(and final) iteration of our procedure (Tables 1-2, Iter. 6). Here, calling PCS
using the full data set returned eigenvalues that were all above the thresh-
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set; (c-d) early-time data set. In (b), no eigenvector components exceeded the
threshold § = 0.80. In (d), a single parameter ky was found (in the second
eigenvector) to exceed the threshold § = 0.80.
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Fig. 8: Eigenvalues and eigenvectors of xIx, for Iter. 6 (Table 1) of our
procedure evaluated at the optimal vector q* € RS for the full-time data
set. (a) There were no eigenvalues below the threshold n = 1071°. (b) For
the smallest eigenvalues, no eigenvector components exceeded the threshold
0 = 0.80.

=
Eigenvector components

old n (Fig. 8a). To ensure that the procedure was complete, we checked the
eigenvector corresponding to the smallest eigenvalue to verify that none of its
components were above the threshold ¢ (Fig. 8b). The PCS algorithm yielded
no additional parameter candidates for early- and late-time data sets. Lastly,
we varied the two threshold parameters 17 and ¢ to demonstrate that our set of
identifiable parameters was preserved over reasonable ranges of 1 and ¢ (Table
3).
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Fig. 9: Eigenvectors corresponding to smallest eigenvalue of each information
matrix x7'y,s evaluated at the optimal vector g* € R for the 11-parameter
run described in §3.6 on data sets for: (a) full time; (b) early time; (c) late
time.

3.6 Model Reduction

Upon termination of the main parameter selection procedure (§2.5.4), which
determined the set of unidentifiable parameters (Table 2, Iter. 6), we also con-
sidered using the results obtained for model reduction. Specifically, we aimed
to identify which, if any, of the unidentifiable parameters could be set equal
to 0, i.e. eliminating a reaction from our overall reaction system (1)-(3). How-
ever, in carrying out such a reduction, considerations must be made for model
plausibility in the context of the application and the available data used for
parameter estimation.

To this end, we used the output q;. = (q*,q) (Table 1, Iter. 6) as the start-
ing point qy,;, for optimization over R, as in the first iteration of our main pro-
cedure. In this additional optimization run, the objective cost J = 4.324-1076
was preserved (Table 2, Tter. 6), and the identifiable parameter values were
effectively the same (changed by less than 1075% relative to Table 2, Iter. 6).
We then ran one iteration of the PCS procedure on the resulting optimal pa-
rameter vector q* € R! (Fig. 9).

To determine the most unidentifiable parameters as potential candidates
for model reduction, the eigenvector for the smallest eigenvalue (below 7) was
evaluated for each of the three time intervals (Fig. 9). The three parameters
identified in this manner were k3 (Fig. 9a), k~ (Fig. 9b) and k; (Fig. 9¢). We
next considered how the model is affected by setting, separately, each of these
three parameters to zero. Specifically, for each case, we used optimal parame-
ter values from the R'! fit described above as the starting point to optimize
over the remaining 10 parameters, with the 11th parameter fixed at zero. All
three cases yielded a final objective cost J in the range (4.0,4.6) - 1076. We
also checked that no other parameters except for those in Fig. 9 could be set
to 0 without resulting in a poor fit to the data.

In assessing the physical plausibility of model reductions for the parame-
ters in Fig. 9, we view our reaction system as comprising three subsystems: a
Michaelis-Menten-type subsystem (1), a cooperative enzyme kinetics subsys-
tem with a single intermediate complex (2), and a cooperative enzyme kinetics
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subsystem with two intermediate complexes (2-3). Of our three parameter can-
didates for model reduction, k™ can be set to 0 without impeding progression
of the reaction system towards synthesis of the product (FM). The parameters
ki and kj are forward reactions in (3) that we observed could (simultaneously)
both be fixed at zero while maintaining the same quality of fit to the fibrin
matrix data. Doing so would suggest that an entire mechanism for synthesis
of the product might be excludable from the overall model. However, given
that this subsystem also contained an identifiable parameter k; , we proceed
conservatively with model reduction (see also §4) and conclude that k= is the
only parameter in the context of our data that can be set equal to 0 (Table
4).

4 Discussion and Conclusions

In the context of a single representative data set (Fig. 1), we have demon-
strated the advantages of a tailored approach to parameter estimation, pa-
rameter identifiability and model reduction for a dynamic enzyme kinetics
model (with cooperativity) (4)-(11) of fibrin matrix accumulation in polymer-
ization experiments.

4.1 Methodological Considerations

We can contrast the approach used in this study to a more ad hoc curve-
fitting procedure that would, effectively, commence with a reasonable initial
guess (Table 1, Tter. 0) and obtain a single set of estimated parameter values
with an associated cost (Table 2, Tter. 0). Ultimately, the approach developed
in this study was more robust in that it yielded a significant reduction in
objective function cost, i.e. J = 4.514 - 1076 (Table 3) versus J = 58.68 - 10~°
(Table 2, Iter. 0). Concurrently, it categorized 5 of the 11 reaction rate param-
eters as being unidentifiable (Table 2, Tters. 5-6) and eliminated one of these
parameters (k~), and its associated reaction in (1), from the overall system.
The potential perils of incorporating the information matrix into parameter
estimation are well known (Vallisneri 2008). Thus, our findings demonstrate
the high degree of information within a single data set, as well as the manner
in which it can be systematically extracted and utilized to both improve the
underlying optimization procedure, and to reduce complexity of the overall
model (§3.6).

In particular, the mathematical property that the information matrix y7 x4
is built from the sensitivity matrix ys, which has the number of data points
as one of its dimensions, allows for tailoring of the technique to the prob-
lem under consideration. For models such as ours with a moderate number
of parameters, multiple interacting time scales, and limited data for param-
eter estimation, local sensitivities on their own can be difficult to interpret.
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The (symmetric) information matrix imposes additional algebraic structure
by admitting bases in terms of model parameters for the unidentifiable and
identifiable (complementary) subspaces of the admissible parameter space. In
contrast to local sensitivities, this additional structure combined with our data
partitioning technique enables aggregation of sensitivity information across
time intervals (or sub-intervals) and can also yield covariance estimates for
uncertainty quantification (Cintrén-Arias et al. 2009). Bayesian techniques for
uncertainty quantification, such as Markov Chain Monte Carlo, can exhibit
more accurate and robust performance when carried out subsequent to iden-
tifiability analysis via parameter subset selection (Smith 2013).

4.2 Biological Considerations

We can also view, in the context of the biological application, the collection of
five parameters that were wholly eliminated (k™) or were deemed to be uniden-
tifiable {I<:3+ ks, ki, k:} Notably, £~ is the rate for the first reverse reaction in
(1). The ability to eliminate it from the overall reaction system is supported by
the observation that, once the process of activating (inactive) fibrinogen com-
mences, it rarely deactivates due to rapid conversion of the first intermediate
complex (Cy) to active fibrinogen (Fbn,). A few observations regarding the
remaining sets of four unidentifiable parameters {k3, k3, k7, k} and six iden-
tifiable parameters {kfr kL kS ey ,k:;,k*‘} can also be made. Specifically,
three of four parameters in the reaction subsystem (3) were deemed unidenti-
fiable whereas, in the reaction subsystem (2) all four parameters were found
to be identifiable. Of note here is that the reaction system (2) involves species
with non-zero initial states (Thb, FM) and for which the parameter estimation
procedure accounted for underlying constraints (Thb); by contrast all species
but FM in (3), i.e. (Fbn,, Cy,Cs), are intermediate species in the overall re-
action system. We also note that our model contains multiple timescales,
corresponding to each reaction rate constant. For a given data set for a quan-
tity of interest, the subset of identifiable (and thus influential) parameters
could delineate inherent fast and slow scales of potential use in rescaling the
model for further analytical investigation.

Taken together, these findings demonstrate that robust parameter estima-
tion for dynamic (ODE) models of enzyme reaction kinetics in wound healing
applications can depend on the scope of available data, i.e. capabilities or
constraints for measuring underlying species in the model. Our findings also
demonstrate dependence on the nature of each species, e.g. some species are
primary quantities of interest with available data (e.g. fibrin matrix), oth-
ers are intermediate complexes, and some are enzymes with inherent con-
straints (e.g. thrombin). Future studies tied to our fibrin polymerization ex-
periments (§2.1) will explore expanded data sets examining accumulation rates
and steady-state values of fibrin matrix content as a function of initial throm-
bin concentration. Specifically, the extent to which the subset of influential
parameters identified in this study can delineate cases within (versus across)
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sample groups with the same initial design (within a group) will be considered.

This overall approach will also be considered for an extended biomimetic
system in which the polymerization experiment species are augmented with
platelet-like (microgel) particles (PLPs) (Nandi et al. 2020). PLPs are com-
prised of advanced biomaterials coated with antibodies that rapidly deform
and bind to fibrin matrix during polymerization. In a separate regime after
polymerization, PLPs continue to slowly contract the polymerized clot net-
work by tugging on nearby fibrin matrix fibers as each PLP particle returns to
an energetically favorable conformation. Ultimately, these approaches could be
integrated into models for in vitro or in vivo wound healing systems to inves-
tigate coupled effects among PLPs and fibroblasts during cell migration and
matrix (clot) retraction; here, recent advances in single cell analysis and imag-
ing can be highly beneficial (Guerrero-Juarez et al. 2019; Haensel et al. 2020;
Nandi and Brown 2017). Overall, the approaches and techniques developed in
this study can serve as a modeling and parameter estimation foundation for
such extended systems as well other applications involving enzyme-mediated
kinetics models of biochemical systems.

Parameter Values by Iteration

Iter. k k= | ky | ky | k3 | ki Kt A O S I
0 10000 | 100 | 100 | 100 100 100 1 1 100 1 1
1 21034 | 100 | 196 | 1.46 131 38.2 | 0.041 | 0.71 | 237 | 2.66 | 1.59
2 12906 | 366 | 242 | 1.68 | 3.18 | 83.5 | 0.039 | 0.97 | 310 g 0.46
3 1931 O 252 | 0.27 | 27.3 | 383 | 0.031 | 0.51 | 299 O 16.6
4 | O 248 | 0.26 | 26.8 | 373 | 0.031 | 0.49 | 297 O 15.5
5 O O 250 | 0.26 | 26.9 | 375 | 0.031 | 0.49 | 298 O O
6 O O 250 | 0.26 | 375 0.031 | 0.49 | 298 g ]

Table 1: Results after each iteration of our procedure for parameter estimation
and identifiability (§2.5.4). The last row shows the final output q*. Entries with
a [ reference the last numerical entry within the same column.
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22
Objective Function Costs by Iteration

Iter. | Candidates to Fix J (-1079)

0 [ 58.68
(k3] 47.31
(k5] 36.27

L (k5] 32.35
k] 31.10
(k7] 30.12
ki1 m 26.11
(kT K] 22.45

. kT, k)] 22.30
kT, k3] 5.268
ki, k"] m 4.683
kT, k= k3] 4.683

3 kT k= k] 4.683
kd k= k] 4.442

4 kT k= Kk, k3] 4.348
k3, k= k, k1 m 4.326

5 kd k= Kk kf k] W | 4.324

6 L=0 4.324

Table 2: Intermediate fixed parameters and costs with each iteration of our
procedure for parameter estimation and identifiability (§2.5.4). Within each
iteration, M signifies the vector the procedure chooses as q. The procedure
terminates at Iter. 6 when Algorithm 1 returns an empty list, indicating that
there are no additional candidates for unidentifiable parameters.
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5
0.75 0.80 0.85 0.90

n

105 kd k= kbl k3] | kS ko kT RS | R Rk k) | [T ET R K
4.324-10-6 4.324-10—6 4.348 -10~6 4.348 -10~6

10-10 kT k= kbl k3] | [kd,k,k, k), k3] | [kd, k=, k k] (k3 k=, K]
4.324-10-6 4.324-106 4.348 -10—6 4.442 -10-6

L0-12 [kg s k™ ] g, k™ ] g, k™ k] [kgs k™ k]
4.442 -10-6 4.442 -10-6 4.442 -10-6 4.442 -10-6

Table 3: Unidentifiable parameters determined by our main parameter selec-
tion procedure with corresponding objective function values for a range of ¢
and 7 values.

Final Parameter Values
E | k= | k| Ky ky | ky Et S| kS| kS| KS
2064 0 290 | 0.286 | 22.7 | 366 | 0.0284 | 0.484 | 300 | 2.64 | 15.5

Table 4: Final values of all estimated model parameters at the end of the
parameter subset selection and model reduction procedures (for this case J =
4.514-107%, Fig. 9).
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