

Running head: Reward and punishment on ‘virtual’ split-belt adaptation

Punishment feedback enhances visually-guided locomotor adaptation

Sumire Sato,^{1,2} Ashley Cui,³ Julia T. Choi^{1,2,*}

¹ Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA

² Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL

³ Public Health Science Program, University of Massachusetts Amherst, Amherst, MA, USA

*Corresponding author:
Dr. Julia T. Choi

Author contributions: SS and JTC conceived research. SS, AC, and JTC designed the experiment. SS and AC collected, processed, and analyzed the experimental data. SS, AC, and JTC interpreted results of experiments. SS prepared figures and tables. SS and JTC drafted the manuscript. All authors discussed the results and approved of the final manuscript.

1 ABSTRACT

2

3 Reward and punishment reinforcement feedback has been shown to influence
4 initial learning and re-learning of upper extremity motor tasks, but the influence on lower
5 extremity motor learning is unknown. The objective of this study was to examine the
6 effects of reinforcement feedback (reward and punishment) on the learning process of
7 asymmetrical gait on a novel 'virtual' split-belt paradigm, that alters visual target speed
8 on one side to induce an asymmetrical gait pattern. Twenty-seven healthy young adults
9 (20.44 ± 2.50 yrs) walked on an instrumented treadmill with real-time visual feedback of
10 the toe position and stepping targets. During adaptation, the visual targets moved
11 slower on one side while the treadmill speed was equal between sides. The control
12 group received no scores, while the reward group received increasing scores and the
13 punishment group received decreasing scores when the toe was within and beyond 4
14 cm from the center of the target, respectively. Participants came back after 24 ± 2 hours
15 and completed the same paradigm for a re-learning assessment. Participants adapted
16 and demonstrated aftereffects in error symmetry, step length symmetry, and step time
17 symmetry with the 'virtual' split-belt paradigm during both initial- and re-exposure.
18 Reinforcement feedback did not influence initial adaptation or de-adaptation, but
19 punishment group demonstrated faster spatial re-adaptation compared to Reward and
20 Controls. Our results on the differential effect of punishment and reward are consistent
21 with previously reported upper-extremity studies. Together, this study points to a
22 potential novel paradigm that utilizes visual feedback to address gait asymmetry.

23

24 NEW & NOTEWORTHY

25 This is the first study to examine the effect of a 'virtual' split-belt paradigm, and to
26 examine the effect of reward and punishment reinforcement feedback on lower
27 extremity locomotor learning task. We have found that healthy young adults are able to
28 adapt both spatial and temporal gait measures with the paradigm, and that punishment
29 reinforcement feedback specifically influences the spatial re-learning on locomotor
30 error-based adaptation task.

31

32 KEYWORDS

33 Locomotion, adaptation, visuomotor, reinforcement feedback

34

35

36

37

38 **INTRODUCTION**

39

40 Walking must be constantly monitored and adjusted to the immediate
41 environment by the nervous system to prevent the loss of balance. Although the task of
42 walking on flat surfaces for healthy humans is largely an automatic action that does not
43 require conscious thought to control (Choi et al., 2016; Malone & Bastian, 2010) walking
44 can be voluntarily controlled by changing step length (i.e. foot placement) in response to
45 visual cues perceived in the environment (Maeda et al. 2017). This is especially
46 important when walking across uneven terrains that require careful stepping.

47 When there are discrepancies between visual feedback and perceived
48 proprioception, this can result in motor adaptation. For example, when real-time visual
49 biofeedback of a specific gait parameter (e.g. knee flexion angle) is altered, this can
50 induce adaptation in the specific gait parameter and show aftereffects (Cherry-Allen et
51 al. 2018; Chunduru et al. 2019; Kim and Krebs 2012; Kim et al. 2015; Statton et al.
52 2016). With altered visual feedback of step length on one side, previous studies have
53 demonstrated that participants gradually adapt to an asymmetrical step length, and that
54 this asymmetry persists even with the visual feedback removed (Kim and Krebs 2012;
55 Kim et al. 2015). Interestingly, when compared to split-belt treadmill walking adaptation,
56 the aftereffect in step length asymmetry with the visual distortion is longer (Chunduru et
57 al. 2019). This provides opportunities for the development of novel visually-guided
58 interventions that can target specific gait kinematics with prolonging aftereffects tailored
59 towards specific clinical population needs.

60 When healthy humans learn to adapt to a specific learning pattern, this can be
61 re-learned at a faster rate, even after de-adaptation following the initial adaptation
62 (Huang et al. 2011; Malone et al. 2011). In a visuomotor locomotor task with prism
63 glasses, healthy young participants re-learn walking pattern faster and retain the
64 information for at least one year after the initial training (Maeda et al. 2018). To our
65 knowledge, this has not been investigated with visually-guided locomotor learning that
66 presents real-time feedback of kinematics, such as foot trajectory during walking.
67 Investigating the re-learning of novel interventions is important for future applications in
68 the rehabilitation therapy settings, where interventions are presented a multitude of
69 times.

70 One way to alter the effectiveness of interventions that involve visual feedback is
71 by the introduction of operant conditioning. Human behavior has been known to
72 respond to positive (additive) reinforcement stimuli (i.e. reward) to increase a certain
73 behavior and to positive punishment stimuli to decrease a certain behavior (Daw et al.
74 2002). Previously, it was speculated that motor adaptation is an implicit process which
75 is insensitive to the effects of reward and punishment feedback (Mazzoni and Krakauer
76 2006; Shadmehr and Krakauer 2008). However, recent studies have shown that motor
77 adaptation requires descending control from the cortex (Barthelemy et al. 2011; Sato
78 and Choi 2019) and responds to reward and punishment feedback, but the effects are
79 task specific (Abe et al. 2011; Galea et al. 2015; Song et al. 2020; Wachter et al. 2009).
80 In an upper extremity sequence learning task, punishment feedback led to better
81 performance while reward feedback led to greater learning (Wachter et al. 2009),
82 whereas in a motor skill learning task, there were no immediate differences in learning

83 with the punishment or reward feedback (Abe et al. 2011). In error-based visuomotor
84 upper extremity tasks, punishment feedback has shown to accelerate learning during
85 initial adaptation (Galea et al. 2015; Song et al. 2020). This suggests that punishment
86 may be useful to enhance initial acquisition in motor tasks, however, the effect seems to
87 be specific to error-based learning.

88 Reward and punishment feedback have also been demonstrated to play a role in
89 re-learning. With an upper extremity error-based motor task, punishment accelerated re-
90 learning rates, while reward feedback increased retention of the learned motor task
91 (Galea et al. 2015; Quattrocchi et al. 2017; Quattrocchi et al. 2018). The increase in
92 retention with rewarded feedback was also observed in a study that used sequence
93 learning (Abe et al. 2011). This suggests that reward feedback enhances retention
94 regardless of the type of motor task, unlike the initial learning acquisition phase.
95 Therefore, reward and punishment feedback may be useful to implement in visually-
96 guided therapeutic interventions for efficient motor recovery. However, the effects of
97 reward and punishment on lower extremity locomotor adaptation with visual distortion is
98 not known.

99 The objective of this study is to examine the effects of reinforcement feedback
100 (reward and punishment) on the learning process of asymmetrical gait on a novel
101 'virtual' split-belt paradigm, which alters visual target speed on one side to induce an
102 asymmetrical gait pattern. We explored our objective with three participant groups: (1)
103 control group who received no reinforcement feedback, (2) reward group who received
104 increasing scores for an accurate step, and (3) punishment group who received
105 decreasing scores for inaccurate steps. The specific aims were: (1) To examine whether

106 spatial and temporal gait asymmetry can be adapted and stored through a 'virtual' split-
107 belt paradigm, (2) to examine the effects of reinforcement feedback on the acquisition of
108 asymmetrical gait pattern, and (3) to examine the effects of reinforcement feedback (on
109 the re-learning of asymmetrical gait pattern. We hypothesized that (1) all groups will
110 adapt and de-adapt to asymmetrical step lengths and step times with the 'virtual' split-
111 belt paradigm, and based on upper extremity visually-guided motor learning studies that
112 (2) punishment group will demonstrate faster learning in the asymmetrical gait pattern
113 compared to the reward group during initial learning (Galea et al. 2015; Song and
114 Smiley-Oyen 2017), and that (3) the punishment group will demonstrate faster re-
115 learning compared to the reward group (Galea et al. 2015).

116

117 **METHODS**

118

119 *Participants*

120 Twenty-seven healthy young adults (13 male, 14 females) ages 18 to 30 years
121 old (20.44 ± 2.50 yrs) participated in this study. We excluded participants with any
122 history of neurological or orthopedic impairments, with less than 20/30 vision, with any
123 color blindness, and with a leg length difference greater than 2 centimeters. All
124 participants gave informed written consent before the study in accordance with the
125 protocol approved by the Institutional Review Board of the University of Massachusetts
126 Amherst. None of the participants had prior experience walking on a split-belt treadmill.

127

128 *Experimental Paradigm*

129 Participants walked on a split-belt treadmill (Bertec, Columbus, Ohio, USA) that
130 has two separate belts for each leg with a screen placed in front of the treadmill.
131 Throughout the experiment, participants walked with the two treadmill belts at the same
132 speed (i.e. tied-belt condition). The speed of the treadmill was based on each
133 participants' leg length (m), from the greater trochanter to the lateral malleolus for each
134 leg and averaged between limbs. Step length (m) for the visuomotor task was
135 determined as two-thirds of the leg length, and the speed of the treadmill and
136 visuomotor task was determined as $1.33 \times \text{step length (m/s)} = \text{step length (m)} \times$
137 cadence (constant variable: $1.33 = 90 \text{ steps/60 seconds}$). A cadence of 90
138 steps/minute has been determined as a comfortable cadence for participants performing
139 a similar visuomotor task in a different study (Choi et al. 2016).

140 A screen in front of the treadmill was used to project the visuomotor task. Real-
141 time position of the toe was projected on the screen as a blue dot (Figure 1A). Based on
142 the calculated step lengths and speed of the treadmill, red square targets were
143 projected on the screen when the leg is in swing phase (Figure 1B). For the visuomotor
144 locomotor task, visuomotor gain (i.e. the ratio of the relationship between the screen
145 and treadmill space) was altered. When the visuomotor gain was set as 1.0, the ratio
146 between the treadmill and screen space was equal so that the speed at which the
147 targets move down was the same as the treadmill speed. When the visuomotor gain
148 was set to 0.9, the relationship between the screen and treadmill space was decreased,
149 and as a result, the target speed on the screen was decreased compared to the
150 treadmill speed. In the lower gain condition, the participants had to step with greater
151 step lengths to hit the target.

152 The study consisted of two sessions, 24 ± 2 hrs apart. Each session consisted of
153 5 conditions, all at the participant-specific set treadmill speed with tied-belt treadmill
154 (Figure 1C): (1) Familiarization, where participants first walked on the treadmill with no
155 visuomotor task for 5 minutes, (2) Pre-slow condition, where participants walked with
156 the visuomotor task with symmetrical low visuomotor gain (0.9:0.9) for 300 steps, (3)
157 Pre-fast condition, where participants walked with the visuomotor task with symmetrical
158 1.0:1.0 visuomotor gain, (4) Split-visuomotor adaptation, where participants walked with
159 the visuomotor task with 1.0 visuomotor gain on one side and 0.9 visuomotor gain on
160 the other for 450 steps, and (5) Split-visuomotor de-adaptation, where participants
161 walked with symmetrical 1.0:1.0 visuomotor gain for 450 steps. From here on forward
162 the leg on the 1.0 visuomotor gain during adaptation is referred to the 'fast' leg and the
163 leg on the 0.9 visuomotor gain during adaptation is referred to the 'slow' leg. The fast
164 and slow leg side was randomized between participants.

165 Participants were randomly placed into one out of three groups for the
166 visuomotor task: (1) Control, (2) Reward, or (3) Punishment. In the control group ($n = 9$,
167 Age: 21.4 ± 3.5 years; Table 1) participants did not receive any external feedback on
168 the knowledge of results during all of the conditions with the visuomotor task. In the
169 reward group ($n = 9$, Age: 20.4 ± 1.9 years) participants received positive external
170 feedback on the knowledge of results during the adaptation condition on both day 1 and
171 day 2. In the punishment group ($n = 9$, Age: 19.4 ± 1.4 years) participants received
172 negative external feedback on the knowledge of results during the adaptation condition
173 on both day 1 and day 2. For the reward group, the score on the top-right corner of the
174 screen counted up by one from zero and the dot representing the toe position turned

175 green for each successful step (less than 4 cm of the center of the target). For the
176 punishment group, the score on the top-right corner of the screen counted down by one
177 from 2000, and the dot representing the toe position turned red for each unsuccessful
178 step (greater than 4cm from the center of the target).

179

180 *Data collection*

181 Lower limb kinematics were recorded at 100 Hz using a 4-camera Qualisys system
182 (Qualysis, Gothenburg, Sweden). Reflective markers were placed on the 5th metatarsal
183 (big toe) of each foot. Ground reaction force data was collected from the force plate
184 under each treadmill belt. Force data was sampled at 1000 Hz and synchronized with
185 kinematics data using Qualisys Track Manager (Qualisys, Goöteborg, Sweden).

186 *Data pre-processing*

187 Data processing and analysis was performed using custom software written in
188 MATLAB (Mathworks, Natick, MA). Ground reaction force data was low-pass filtered (3rd
189 order Butterworth) with a 15 Hz cut-off frequency. Heel-strike and toe-off times on each
190 leg were identified when the vertical ground reaction force crossed a threshold of 10 N.
191 Time of heel-strike and toe-off was visually inspected, and manually corrected if
192 necessary, by marking them on kinematic trajectories.

193

194 *Gait adaptation measures*

195 Kinematic measures quantified for each condition include step length, step time,
196 and double support time. Step length was calculated as the anterior-posterior distance
197 between the toe markers at time of heel strike. Step time was calculated as the time

198 between consecutive heel strike. For the conditions that included the visuomotor task,
199 error (not absolute) was also quantified as the distance between the target to the
200 marker; a negative error would indicate undershooting and a positive error would
201 indicate overshooting of limb trajectory in relation to the target.

202 Locomotor adaptation was determined by calculating stride-by-stride changes in
203 error, step length, and step time (Choi et al. 2009; Reisman et al. 2005). Fast and slow
204 step length corresponds to when the leading leg is on the 1.0 or 0.9 visuomotor gain
205 side, respectively, at heel strike. Similarly, fast and slow step time corresponds to when
206 the leading leg is on the 1.0 or 0.9 visuomotor gain side, respectively, at heel strike.
207 Error symmetry was defined as the difference between limbs (fast leg – slow leg). Step
208 length, and step were defined as the normalized difference between legs:
209

210

$$\text{Asymmetry} = \frac{\text{Fast leg} - \text{Slow leg}}{\text{Fast leg} + \text{Slow leg}}$$

211

212 Changes in locomotor symmetry during the visuomotor task were assessed
213 based on averaged values over the first 30 strides of each baseline conditions (pre-
214 slow, pre-fast), and four time periods during adaptation and de-adaptation: (1) initial
215 (first 5 strides), (2) early change (Stride number 6-30), (3) late change (Stride number
216 31-100) and (4) plateau phase (last 30 strides). The difference between exposure was
217 assessed as the first exposure on the first day – the second exposure on the second
218 day.

219

220 *Statistical analysis*

221 For baseline conditions, group differences were examined with one-way
222 ANOVAs for pre-slow and pre-fast. In addition, one-sample t-tests were used to
223 examine if there was significant asymmetry (perfect symmetry = 0 in all symmetry
224 variables) during the baseline conditions.

225 For initial adaptation and de-adaptation, changes in spatiotemporal gait
226 symmetry were compared using sphericity-assumed two-way mixed measures ANOVAs
227 to determine the main effects of time (Initial, early change, late change, and plateau
228 phase) and group (Controls, Reward, and Punishment), and their interaction for each
229 symmetry variable.

230 To examine exposure difference for adaptation and de-adaptation, a sphericity-
231 assumed two-way repeated measures ANOVA was used to determine main effect of
232 exposure, main effect of time (Initial, early change, late change, and plateau phase),
233 and exposure x time interaction effect for each group. To examine between group
234 differences in exposure differences, exposure difference (first – second exposure) were
235 compared with a sphericity-assumed two-way mixed measures ANOVAs to determine
236 the main effects of time (Initial, early change, late change, and plateau phase) and
237 group (Controls, Reward, and Punishment), and their interaction for each symmetry
238 variable.

239 For all repeated and mixed-measured ANOVAs, separate ANOVAs were
240 performed for adaptation and de-adaptation walking conditions. If the assumption of
241 sphericity was violated and Greenhouse-Geisser epsilon was less than 0.75, the
242 Greenhouse-Geisser correction was used to report the ANOVA results. All statistical

243 analyses were performed on SPSS 23.0 (IBM, Armonk, NY), and all significant
244 differences were established at $p < 0.05$.

245

246 RESULTS

247

248 *Kinematic adaptation with the visuomotor task*

249 Participants adapted error symmetry (Table 2; Figure 2A-B; $F(1.48, 35.47) =$
250 44.48, $p < 0.001$), step length symmetry (Figure 2C-D; $F(1.68, 40.34) = 73.75$, $p <$
251 0.001), and step time symmetry (Figure 2E-F; $F(3, 72) = 14.98$, $p < 0.001$), but there
252 was no group differences (Error symmetry: $F(2, 24) = 1.62$, $p = 0.219$; SL symmetry:
253 $F(2, 24) = 0.27$, $p = 0.768$; ST symmetry: $F(2, 24) = 0.37$, $p = 0.696$) nor an time x group
254 interaction effect (Error symmetry: $F(2.96, 35.47) = 0.74$, $p = 0.535$; SL symmetry:
255 $F(3.36, 40.34) = 0.53$, $p = 0.687$; ST symmetry: $F(6, 72) = 0.54$, $p = 0.779$).

256 Error symmetry at initial phase during adaptation was more positively
257 asymmetrical (in which the fast leg overshot the target more than the slow leg)
258 compared to early ($p < 0.001$, 95% confidence interval for difference (CI) = [19.16,
259 51.28]), late ($p < 0.001$, 95% CI = [29.48, 61.17]) and plateau phase ($p < 0.001$, 95% CI
260 = [28.07, 67.53]). Error symmetry during early phase was significantly more positively
261 asymmetrical compared to late ($p = 0.002$, 95% CI = [3.11, 17.10]) and plateau phase (p
262 = 0.003, 95% CI = [3.47, 21.69]). Error symmetry between late and plateau phase was
263 not significantly different ($p = 1.00$, 95% CI = [-5.01, 9.97]).

264 During adaptation, participants gradually stepped with larger step lengths on the
265 slow side compared to the fast side (negative asymmetry). Step length symmetry at

266 initial phase during adaptation was more symmetrical compared to early ($p < 0.001$,
267 95% CI = [0.05, 0.11]), late ($p < 0.001$, 95% CI = [0.07, 0.12]) and plateau phase ($p <$
268 0.001, 95% CI = [0.07, 0.13]), and step length symmetry at early phase was significantly
269 more symmetrical compared to late ($p = 0.004$, 95% CI = [0.01, 0.03]) and plateau
270 phase ($p = 0.012$, 95% CI = [0.004, 0.04]). Step length symmetry between late and
271 plateau phase was not significantly different ($p = 1.00$, 95% CI = [-0.01, 0.02]).

272 Participants gradually stepped with longer step times on the fast leg compared to
273 the slow leg (positive asymmetry). Step time symmetry at initial phase during adaptation
274 was more symmetrical compared to early ($p = 0.010$, 95% CI = [-0.04, -0.01]), late ($p <$
275 0.001, 95% CI = [-0.05, -0.02]) and plateau phase ($p < 0.001$, 95% CI = [-0.07, -0.02]).
276 There was no evidence of difference between early and late ($p = 0.438$, 95% CI = [-
277 0.03, 0.01]), early and plateau ($p = 0.07$, 95% CI = [-0.04, 0.001]), and late and plateau
278 phase ($p = 1.00$, 95% CI = [-0.03, 0.01]).

279

280 *Kinematic de-adaptation with the visuomotor task*

281 During de-adaptation, participants altered error symmetry. Participants initially
282 overshot with the slow limb (Table 3; Figure 3A-B; $F(1.85, 44.29) = 42.31$, $p < 0.001$). In
283 addition participants altered step length symmetry (Figure 3C-D; $F(1.96, 47.14) = 72.67$,
284 $p < 0.001$), and step time symmetry during de-adaptation (Figure 3E-F; $F(1.95, 46.72) =$
285 27.40, $p < 0.001$), but there was no group differences (Error symmetry: $F(2, 24) = 0.26$,
286 $p = 0.776$; SL symmetry: $F(2, 24) = 0.02$, $p = 0.980$; ST symmetry: $F(2, 24) = 1.21$, $p =$
287 0.317) nor a time x group interaction effect (Error symmetry: $F(3.69, 44.29) = 2.02$, $p =$

288 0.112; SL symmetry: $F(3.93, 47.14) = 2.34, p = 0.080$; ST symmetry: $F(3.89, 46.72) =$
289 0.69, $p = 0.602$).

290 Post-hoc comparisons showed that error symmetry, step length symmetry, and
291 step time symmetry at initial phase was significantly different compared to early, late
292 and plateau phase, and early phase was significantly different compared to late and
293 plateau phase, but late and plateau phases were not different from each other (p -values
294 and confidence intervals are provided in Table 4).

295

296 *Re-adaptation with the visuomotor task*

297 For adaptation in Controls, there was a main effect of exposure in error symmetry
298 and step length symmetry, but not for step time symmetry (Table 5; Figure 4A,D,G;
299 Error symmetry: $F(1,8) = 6.62, p = 0.033$; SL symmetry: $F(1,8) = 6.62, p = 0.033$; ST
300 symmetry: $F(1,8) = 0.53, p = 0.488$). Error symmetry in Controls during adaptation in
301 first exposure was more asymmetrical compared to the second exposure ($p = 0.033$;
302 95% CI = [0.46, 8.39]), and step length symmetry was less asymmetrical in first
303 exposure compared to second exposure ($p = 0.033$; 95% CI = [0.001, 0.020]), indicating
304 faster learning in the spatial measures in Controls. Similarly, in Punishment there was a
305 significant main effect of exposure in error symmetry and step length symmetry, but not
306 for step time symmetry (Figure 4C,F,I; Error symmetry: $F(1,8) = 16.37, p = 0.004$; SL
307 symmetry: $F(1,8) = 12.92, p = 0.007$; ST symmetry: $F(1,8) = 0.20, p = 0.664$). in
308 contrast, there was no evidence of a main effect of exposure for adaptation in Reward
309 (Figure 4B,E,H; all p 's > 0.750), and there was no evidence of a exposure x time
310 interaction effect for any of the groups for all symmetry measures (all p 's > 0.150).

311 Similar to adaptation during initial exposure, there was a main effect of time during
312 adaptation for all groups for all conditions (p-values and confidence intervals are
313 provided in Table 6).

314 For adaptation, there was a group effect in exposure difference in error symmetry
315 and step length symmetry, but not for exposure difference in step time symmetry
316 (Figure 5A,C,E; Error symmetry: $F(2, 24) = 4.42, p = 0.023$; SL symmetry: $F(2, 24) =$
317 $3.93, p = 0.033$; ST symmetry = $F(2, 24) = 0.06, p = 0.945$). The exposure difference
318 was consistent across adaptation phases in all three symmetry measures (Error
319 symmetry: $F(1.74, 41.78) = 0.481, p = 0.481$; SL symmetry: $F(1.94, 46.62) = 0.48, p =$
320 0.616 ; ST symmetry: $F(3, 72) = 0.02, p = 0.995$). There was no evidence of an
321 interaction effect for any symmetry measures (Error symmetry: $F(3.48, 41.78) = 0.82, p$
322 = 0.508 ; SL symmetry: $F(3.89, 46.62) = 0.31, p = 0.864$; ST symmetry: $F(6, 72) = 0.55,$
323 $p = 0.768$).

324 Post-hoc comparisons revealed that the punishment group presented with less
325 error asymmetry and more step length asymmetry during day 2 compared to day 1
326 (positive exposure difference in both error and step length symmetry). Exposure
327 difference during adaptation in error symmetry and step length symmetry was larger in
328 punishment compared to reward (Error symmetry: $p = 0.022, 95\% CI = [1.81, 27.79]$; SL
329 symmetry: $p = 0.029, 95\% CI = [0.002, 0.05]$). Spatial exposure difference during
330 adaptation in Controls was not significantly different compared to Reward (Error
331 symmetry: $p = 0.924, 95\% CI = [-7.73, 18.24]$; SL symmetry: $p = 0.546, 95\% CI = [-0.01,$
332 $0.04]$) and Punishment (Error symmetry: $p = 0.212, 95\% CI = [-22.53, 3.45]$; SL
333 symmetry: $p = 0.497, 95\% CI = [-0.04, 0.01]$).

334 In contrast to adaptation, in de-adaptation there was no evidence of a main effect
335 of exposure in all groups for all symmetry measures (Table 7; Figure 6; all p's > 0.100).
336 In Controls there was a significant exposure x time interaction effect for error symmetry
337 and step length symmetry, but not step time symmetry (Error symmetry: $F(3,24) = 3.93$,
338 $p = 0.021$; SL symmetry: $F(3,24) = 5.24$, $p = 0.006$; ST symmetry: $F(3,24) = 0.93$, $p =$
339 0.444). Reward and Punishment did not show a significant day x time interaction effect
340 during de-adaptation (all p's > 0.400). There was a main effect of time during de-
341 adaptation for all groups for all conditions (p-values and confidence intervals are
342 provided in Table 8).

343 For exposure difference in de-adaptation, there was no evidence of an effect of
344 time (Figure 5B,D,F; Error symmetry: $F(2.05, 49.11) = 2.56$, $p = 0.086$; SL symmetry:
345 $F(1.96, 46.93) = 3.42$, $p = 0.042$, but post-hoc comparisons all $p > 0.05$ with Bonferroni
346 corrections; ST symmetry: $F(1.96, 46.99) = 0.10$, $p = 0.898$), nor an effect of group
347 (Error symmetry: $F(2, 24) = 0.81$, $p = 0.456$; SL symmetry: $F(2, 24) = 0.82$, $p = 0.452$;
348 ST symmetry: $F(2, 24) = 2.13$, $p = 0.141$), nor an interaction effect in all three symmetry
349 measures (Error symmetry: $F(4.09, 49.11) = 1.28$, $p = 0.291$; SL symmetry: $F(3.91,$
350 $46.93) = 1.84$, $p = 0.138$; ST symmetry: $F(3.92, 46.99) = 0.94$, $p = 0.450$).

351

352 **Discussion**

353

354 Healthy young adults adapted and demonstrated aftereffects in error symmetry,
355 step length symmetry, and step time symmetry with a 'virtual' split-belt paradigm with
356 unequal stepping target visuomotor gains. Reinforcement feedback did not influence

357 initial adaptation or de-adaptation with the paradigm, but punishment group

358 demonstrated faster spatial re-adaptation compared to reward and control groups.

359

360 *'Virtual' split-belt can induce changes in kinematic symmetry with robust aftereffects*

361 Our results demonstrated that healthy young adults adapted both step lengths

362 and step time symmetry with robust aftereffects even after the visual targets were

363 brought back to the symmetrical visuomotor gain. This is in line with previous studies

364 that have demonstrated that when visual feedback of target step length is altered on

365 one side, healthy young adults gradually adapt to an asymmetrical step length (Kim and

366 Krebs 2012; Kim et al. 2015) and with studies that observed altered gait pattern in

367 virtual environments (Lamontagne et al. 2007; Prokop et al. 1997). With our visual

368 feedback, we aimed to recreate a virtual treadmill environment instead of the previously

369 used bars to indicate step lengths (Kim and Krebs 2012; Kim et al. 2015) or specific

370 joint kinematics (Cherry-Allen et al. 2018; Statton et al. 2016), to examine if healthy

371 young adults adapt spatial and/or temporal gait measures to visual targets at uneven

372 speeds between sides. This way, the visual paradigm more closely resembles the split-

373 belt adaptation treadmill where participants are not restricted to one gait parameter to

374 learn an asymmetrical pattern.

375 The robust aftereffect that we observed in our participants suggests that the new

376 gait pattern attained during adaptation using sensory information is stored in the

377 nervous system. The neural control of locomotion that integrates visual, proprioceptive

378 and vestibular feedback is complex and requires both spinal and supraspinal input

379 (Hinton et al. 2020; Takakusaki 2017), which makes pinpointing the location of the

380 stored information difficult. However, in cats, it has been shown that cortical control,
381 especially the posterior parietal cortex for planning of limb trajectory and motor cortex
382 for execution of motor commands are important for visually guided gait (Drew and
383 Marigold 2015). Although we can expect that quadrupedal and bipedal locomotion
384 require different neural mechanisms, cortical control is likely to play important role in
385 visuomotor locomotor adaptation, unlike split-belt proprioception-driven locomotor
386 adaptation that is does not critically dependent on cortical control (Reisman et al. 2007).

387

388 *Reward and punishment reinforcement feedback does not influence initial locomotor*
389 *visuomotor learning*

390 In our study, control participants who received no score on their stepping (i.e.
391 implicit learning condition) was able to adapt their gait to achieve the asymmetrical gait
392 pattern. This is in line with other paradigms such as the split-belt locomotor adaptation
393 (Reisman et al. 2005; Sato and Choi 2019) and implicit visuomotor paradigms (French
394 et al. 2018; Kim and Krebs 2012) that people are able to adapt their gait even without
395 instructions on how to do so.

396 We demonstrated that reward and punishment reinforcement feedback does not
397 influence initial locomotor adaptation with the visuomotor paradigm. This finding is in
398 contrast to upper extremity studies that demonstrated punishment feedback to
399 accelerate initial learning in error-based tasks (Galea et al. 2015; Song et al. 2020),
400 which may suggest that although visuomotor locomotor adaptation likely requires more
401 cortical control compared to split-belt adaptation, the visuomotor locomotor adaptation is
402 more implicit compared to upper-extremity tasks. Is it important to note though, French

403 and colleagues (2018) have seen success in accelerating visually-guided locomotor
404 adaptation with instructional external feedback. There are other studies that have
405 supported the use of individualized feedback to enhance initial locomotor learning
406 (Hussain et al. 2013; Rendos et al. 2020; Roemmich et al. 2016), suggesting that
407 merely providing correct/incorrect feedback is not enough, but individualized feedback is
408 needed to enhance initial visuomotor locomotor learning.

409

410 *Punished reinforcement feedback may influence locomotor visuomotor re-learning*

411 In our study, the reinforcement feedback group with punished feedback
412 demonstrated faster spatial learning on the second day. Specifically, the punishment
413 group learned spatial asymmetry faster compared to the reward group. This is in line
414 with findings of Galea and colleagues (2015), who observed faster re-adaptation in
415 punished feedback groups in an upper-extremity error-based adaptation task. Our
416 findings supplement the reinforcement feedback literature that reward and punishment
417 feedback have differential effects on motor learning (Abe et al. 2011; Galea et al. 2015;
418 Quattrocchi et al. 2018; Song et al. 2020; Wachter et al. 2009).

419 Punished reinforcement feedback may have only influenced re-learning due to
420 the differential neural processes underlying the initial learning and re-learning process
421 (Galea et al. 2011; Hadipour-Niktarash et al. 2007). Motor cortex activation in humans
422 does not affect adaptation, but improved retention (Galea et al. 2011), suggesting
423 dissociable neural mechanisms underlying initial learning and re-learning. Punishment
424 feedback has been reported to alter activity in the anterior cingulate cortex (Holroyd and
425 Coles 2002) which is functionally connected (Paus 2001; Wang et al. 2001; Williams et

426 al. 2004) and in anatomical proximity to the primary motor cortex. This may suggest that
427 punishment feedback during initial learning may influence cortical plasticity in the motor
428 cortex which is reflected in the faster spatial re-learning.

429

430 *Limitations*

431 A limitation of our paradigm is that we did not have monetary associations with
432 our reinforcement feedback paradigm. Scores increased or decreased by 1 for the
433 reward and punishment groups, respectively, which may not have been enough
434 motivational incentive for participants. Although more robust effect is expected to be
435 observed with monetary associations (Ohgami et al. 2006), previous studies with
436 increasing and decreasing scores for reward and punishment have successfully seen
437 effects in upper-extremity motor learning (Nikooyan and Ahmed 2015). Furthermore, our
438 future goal is to apply the findings to enhance interventions in rehabilitation, and the
439 monetary reward or punishment would not be feasible in clinic. Therefore, we decided
440 that for the purposes of this study we will examine and report on the effects of rewarded
441 and punished feedback with no monetary associations.

442

443 *Conclusions*

444 With a ‘virtual’ split-belt paradigm that projected stepping targets with altered
445 visuomotor gain on one side, we demonstrated that healthy young adults are able to
446 adapt and de-adapt both spatial and temporal gait asymmetry. Reward and punishment
447 reinforcement feedback did not influence initial learning with the paradigm, which
448 suggests that correct/incorrect feedback is not enough to improve visuomotor locomotor

449 learning. However, punished reinforcement feedback led to faster spatial re-adaptation
450 compared to reward and control groups. Together, this points towards a possible
451 visually-guided locomotor paradigm to restore gait symmetry.

452

453 *Funding:* This study was supported by the University of Massachusetts Amherst
454 Commonwealth Honors College Honors Research Grant.

455

456 References

457 **Abe M, Schambra H, Wassermann EM, Luckenbaugh D, Schweighofer N, and**
458 **Cohen LG.** Reward improves long-term retention of a motor memory through induction
459 of offline memory gains. *Curr Biol* 21: 557-562, 2011.

460 **Barthelemy D, Grey MJ, Nielsen JB, and Bouyer L.** Involvement of the corticospinal
461 tract in the control of human gait. *Prog Brain Res* 192: 181-197, 2011.

462 **Cherry-Allen KM, Statton MA, Celnik PA, and Bastian AJ.** A Dual-Learning
463 Paradigm Simultaneously Improves Multiple Features of Gait Post-Stroke. *Neurorehabil*
464 *Neural Repair* 32: 810-820, 2018.

465 **Choi JT, Jensen P, and Nielsen JB.** Locomotor sequence learning in visually guided
466 walking. *J Neurophysiol* 115: 2014-2020, 2016.

467 **Choi JT, Vining EP, Reisman DS, and Bastian AJ.** Walking flexibility after
468 hemispherectomy: split-belt treadmill adaptation and feedback control. *Brain* 132: 722-
469 733, 2009.

470 **Chunduru P, Kim SJ, and Lee H.** Gait symmetric adaptation: Comparing effects of
471 implicit visual distortion versus split-belt treadmill on aftereffects of adapted step length
472 symmetry. *Hum Mov Sci* 66: 186-197, 2019.

473 **Daw ND, Kakade S, and Dayan P.** Opponent interactions between serotonin and
474 dopamine. *Neural Netw* 15: 603-616, 2002.

475 **Drew T, and Marigold DS.** Taking the next step: cortical contributions to the control of
476 locomotion. *Curr Opin Neurobiol* 33: 25-33, 2015.

477 **French MA, Morton SM, Charalambous CC, and Reisman DS.** A locomotor learning
478 paradigm using distorted visual feedback elicits strategic learning. *J Neurophysiol* 120:
479 1923-1931, 2018.

480 **Galea JM, Mallia E, Rothwell J, and Diedrichsen J.** The dissociable effects of
481 punishment and reward on motor learning. *Nat Neurosci* 18: 597-602, 2015.

482 **Galea JM, Vazquez A, Pasricha N, de Xivry JJ, and Celnik P.** Dissociating the roles
483 of the cerebellum and motor cortex during adaptive learning: the motor cortex retains
484 what the cerebellum learns. *Cerebral cortex* 21: 1761-1770, 2011.

485 **Hadipour-Niktarash A, Lee CK, Desmond JE, and Shadmehr R.** Impairment of
486 retention but not acquisition of a visuomotor skill through time-dependent disruption of
487 primary motor cortex. *J Neurosci* 27: 13413-13419, 2007.

488 **Hinton DC, Conradsson DM, and Paquette C.** Understanding Human Neural Control
489 of Short-term Gait Adaptation to the Split-belt Treadmill. *Neuroscience* 451: 36-50,
490 2020.

491 **Holroyd CB, and Coles MGH.** The neural basis of human error processing:
492 reinforcement learning, dopamine, and the error-related negativity. *Psychol Rev* 109:
493 679-709, 2002.

494 **Huang VS, Haith A, Mazzoni P, and Krakauer JW.** Rethinking motor learning and
495 savings in adaptation paradigms: model-free memory for successful actions combines
496 with internal models. *Neuron* 70: 787-801, 2011.

497 **Hussain SJ, Hanson AS, Tseng SC, and Morton SM.** A locomotor adaptation
498 including explicit knowledge and removal of postadaptation errors induces complete 24-
499 hour retention. *J Neurophysiol* 110: 916-925, 2013.

500 **Kim SJ, and Krebs HI.** Effects of implicit visual feedback distortion on human gait. *Exp*
501 *Brain Res* 218: 495-502, 2012.

502 **Kim SJ, Ogilvie M, Shimabukuro N, Stewart T, and Shin JH.** Effects of Visual
503 Feedback Distortion on Gait Adaptation: Comparison of Implicit Visual Distortion Versus
504 Conscious Modulation on Retention of Motor Learning. *IEEE Trans Biomed Eng* 62:
505 2244-2250, 2015.

506 **Lamontagne A, Fung J, McFadyen BJ, and Faubert J.** Modulation of walking speed
507 by changing optic flow in persons with stroke. *J Neuroeng Rehabil* 4: 22, 2007.

508 **Maeda RS, McGee SE, and Marigold DS.** Long-term retention and reconsolidation of a
509 visuomotor memory. *Neurobiol Learn Mem* 155: 313-321, 2018.

510 **Maeda RS, O'Connor SM, Donelan JM, and Marigold DS.** Foot placement relies on
511 state estimation during visually guided walking. *J Neurophysiol* 117: 480-491, 2017.

512 **Malone LA, Vasudevan EV, and Bastian AJ.** Motor adaptation training for faster
513 relearning. *J Neurosci* 31: 15136-15143, 2011.

514 **Mazzoni P, and Krakauer JW.** An implicit plan overrides an explicit strategy during
515 visuomotor adaptation. *J Neurosci* 26: 3642-3645, 2006.

516 **Nikooyan AA, and Ahmed AA.** Reward feedback accelerates motor learning. *J*
517 *Neurophysiol* 113: 633-646, 2015.

518 **Ohgami Y, Kotani Y, Tsukamoto T, Omura K, Inoue Y, Aihara Y, and Nakayama M.**
519 Effects of monetary reward and punishment on stimulus-preceding negativity.
520 *Psychophysiology* 43: 227-236, 2006.

521 **Paus T.** Primate anterior cingulate cortex: where motor control, drive and cognition
522 interface. *Nat Rev Neurosci* 2: 417-424, 2001.

523 **Prokop T, Schubert M, and Berger W.** Visual influence on human locomotion.
524 Modulation to changes in optic flow. *Exp Brain Res* 114: 63-70, 1997.

525 **Quattrocchi G, Greenwood R, Rothwell JC, Galea JM, and Bestmann S.** Reward
526 and punishment enhance motor adaptation in stroke. *J Neurol Neurosurg Psychiatry* 88:
527 730-736, 2017.

528 **Quattrocchi G, Monaco J, Ho A, Irmel F, Strube W, Ruge D, Bestmann S, and**
529 **Galea JM.** Pharmacological Dopamine Manipulation Does Not Alter Reward-Based
530 Improvements in Memory Retention during a Visuomotor Adaptation Task. *eNeuro* 5:
531 2018.

532 **Reisman DS, Block HJ, and Bastian AJ.** Interlimb coordination during locomotion:
533 what can be adapted and stored? *J Neurophysiol* 94: 2403-2415, 2005.

534 **Reisman DS, Wityk R, Silver K, and Bastian AJ.** Locomotor adaptation on a split-belt
535 treadmill can improve walking symmetry post-stroke. *Brain* 130: 1861-1872, 2007.

536 **Rendos NK, Zajac-Cox L, Thomas R, Sato S, Eicholtz S, and Kesar TM.** Verbal
537 feedback enhances motor learning during post-stroke gait retraining. *Top Stroke*
538 *Rehabil* 1-16, 2020.

539 **Roemmich RT, Long AW, and Bastian AJ.** Seeing the Errors You Feel Enhances
540 Locomotor Performance but Not Learning. *Curr Biol* 26: 2707-2716, 2016.

541 **Sato S, and Choi JT.** Increased intramuscular coherence is associated with temporal
542 gait symmetry during split-belt locomotor adaptation. *J Neurophysiol* 122: 1097-1109,
543 2019.

544 **Shadmehr R, and Krakauer JW.** A computational neuroanatomy for motor control. *Exp*
545 *Brain Res* 185: 359-381, 2008.

546 **Song Y, Lu S, and Smiley-Oyen AL.** Differential motor learning via reward and
547 punishment. *Q J Exp Psychol (Hove)* 73: 249-259, 2020.

548 **Song Y, and Smiley-Oyen AL.** Probability differently modulating the effects of reward
549 and punishment on visuomotor adaptation. *Exp Brain Res* 235: 3605-3618, 2017.

550 **Statton MA, Toliver A, and Bastian AJ.** A dual-learning paradigm can simultaneously
551 train multiple characteristics of walking. *J Neurophysiol* 115: 2692-2700, 2016.

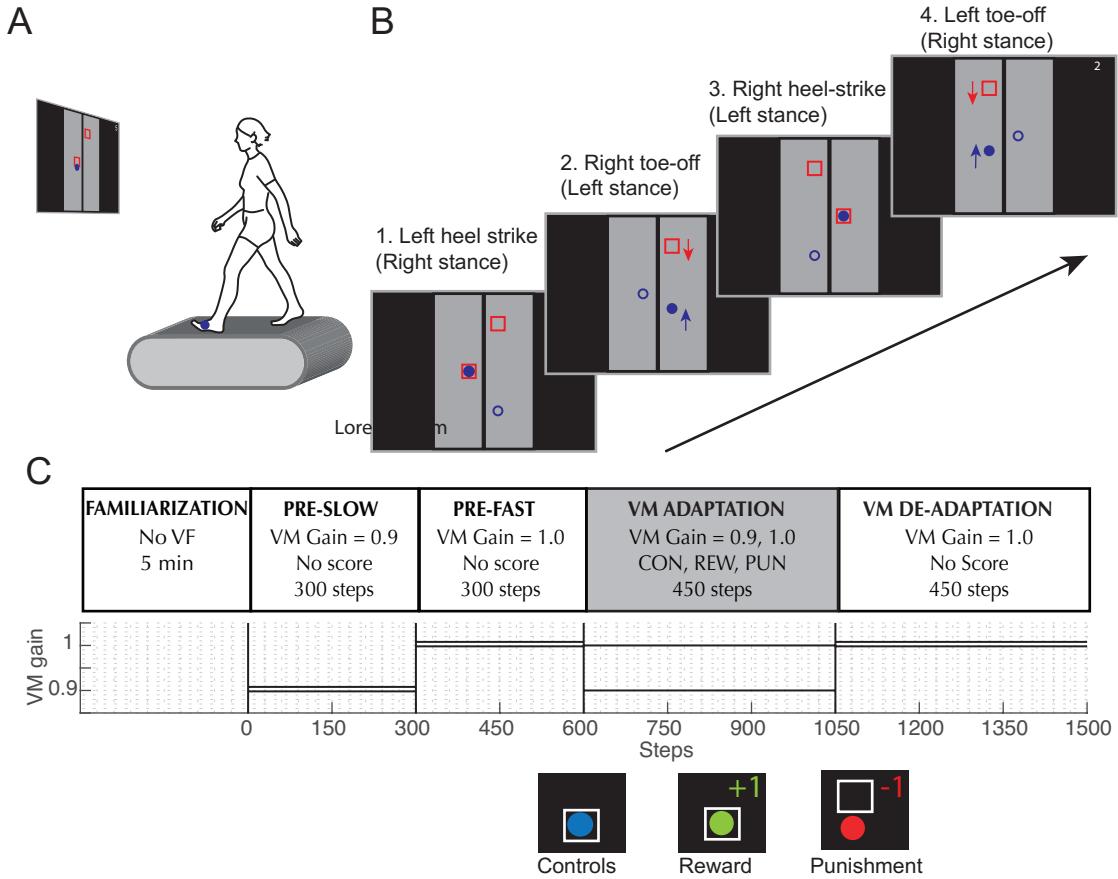
552 **Takakusaki K.** Functional Neuroanatomy for Posture and Gait Control. *J Mov Disord*
553 10: 1-17, 2017.

554 **Wachter T, Lungu OV, Liu T, Willingham DT, and Ashe J.** Differential effect of
555 reward and punishment on procedural learning. *J Neurosci* 29: 436-443, 2009.

556 **Wang Y, Shima K, Sawamura H, and Tanji J.** Spatial distribution of cingulate cells
557 projecting to the primary, supplementary, and pre-supplementary motor areas: a

558 retrograde multiple labeling study in the macaque monkey. *Neurosci Res* 39: 39-49,
559 2001.

560 **Williams ZM, Bush G, Rauch SL, Cosgrove GR, and Eskandar EN.** Human anterior
561 cingulate neurons and the integration of monetary reward with motor responses. *Nat
562 Neurosci* 7: 1370-1375, 2004.


563

564

565

566

567

Figure 1. Experimental methods. A. Experimental setup. Participants walked with a screen in front of the treadmill, with a reflective marker on the 5th metatarsal. During the visuomotor walking task, the real-time position of the toe was projected on the screen as a blue dot. B. Progression of visuomotor task. Real-time toe location during the swing phase of gait will be displayed as a solid blue dot on the screen. Red boxes represent the target that will be displayed on the screen. Empty blue circles represent the position of the toe on the opposite (stance) leg (not visible to the participant). Red and blue arrows indicate which direction the target and toe location will move (respectively) and will not be displayed on the screen. C. Experimental paradigm. Double lines indicate when visuomotor gain will be equal for both left and right treadmill belts. Singular lines indicate the visuomotor gain for each right and left side during the visuomotor adaptation condition. During the adaptation period, the feedback that the participants see will be different for the control, reward and punishment groups. Reward and Punishment saw scores go up and down if the toe marker is within and outside of 4 cm from the center of the target, respectively.

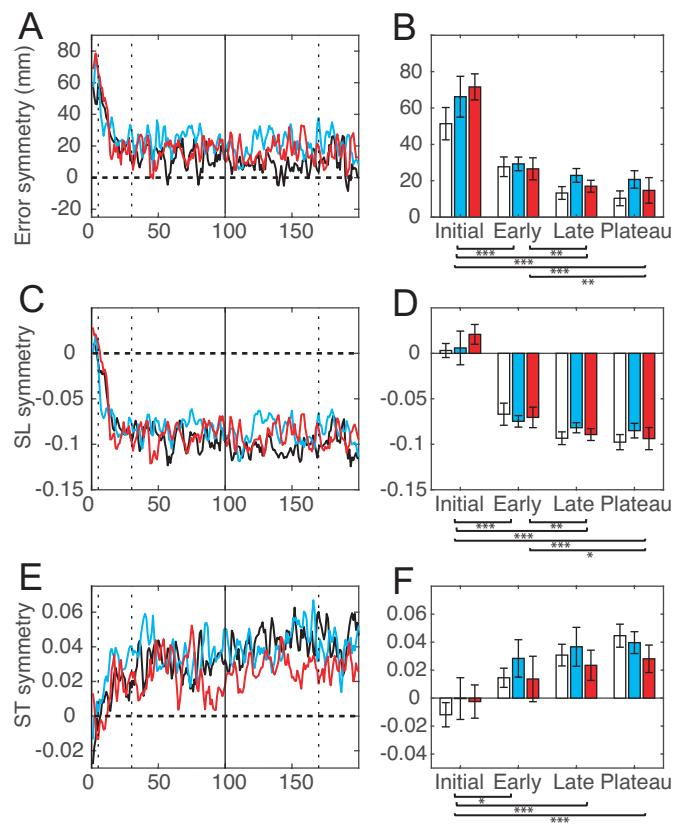


Figure 2. Adaptation with the visuomotor task on the first day in error symmetry (A-B), step length (SL) symmetry (C-D), and step time (ST) symmetry (E-F). A, C, E. Stride-by-stride changes during the first 100 and last 100 strides during adaptation are plotted with moving average of 3 strides. Vertical dotted line are lines at stride 5, 30, and 170, and coincides with the bar graph phases. Horizontal dotted line at 0 indicates perfect symmetry. B, D, F. Kinematic symmetry changes at initial (strides 1-5), early (strides 6-30), late (strides 31-100) and plateau (last 30 strides). Error bars are standard error bars. In black = Controls; In blue = Reward; In red = Punishment; ***: $p < 0.001$; **: $p = 0.001-0.009$; *: $p = 0.010-0.049$.

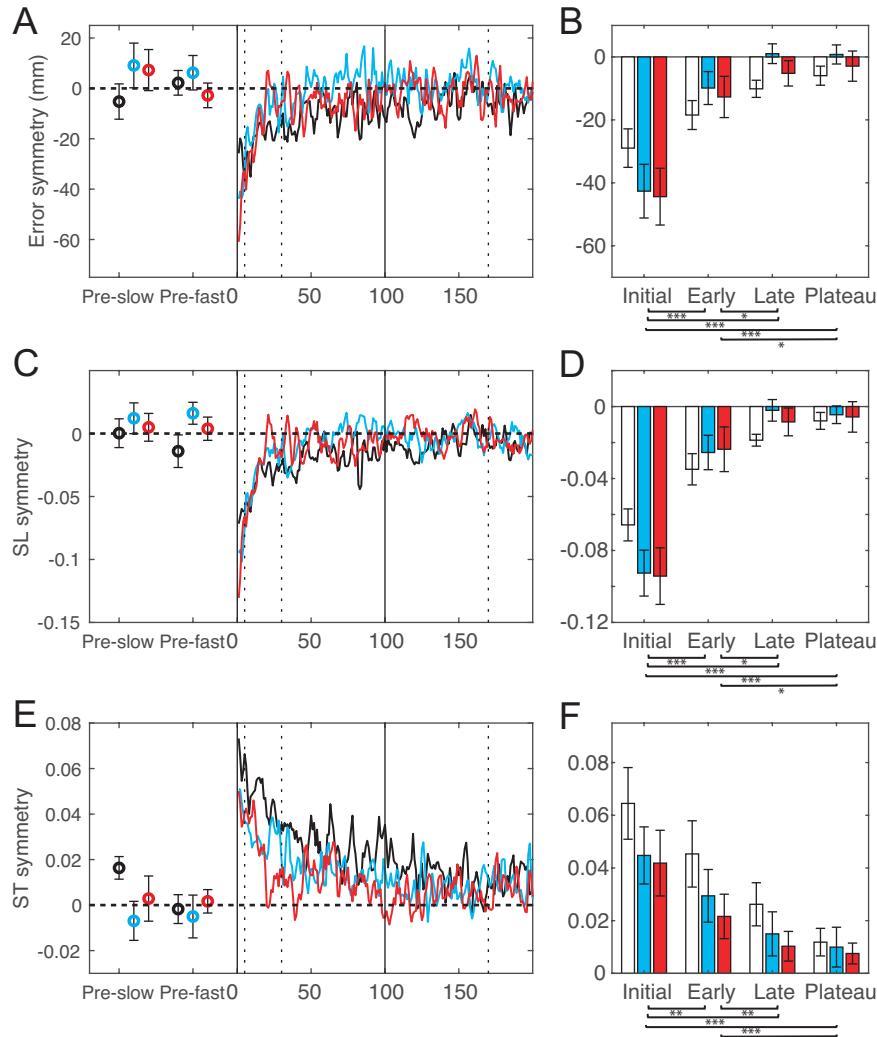


Figure 3. Baseline conditions and de-adaptation with the visuomotor task on the first day in error symmetry (A-B), step length (SL) symmetry (C-D), and step time (ST) symmetry (E-F). A, C, E. Average of first 30 strides of baseline conditions with standard error and stride-by-stride changes during the first 100 and last 100 strides during de-adaptation are plotted with moving average of 3 strides. Vertical dotted line are lines at stride 5, 30, and 170, and coincides with the bar graph phases. Horizontal dotted line at 0 indicates perfect symmetry. B, D, F. Kinematic symmetry changes at initial (strides 1-5), early (strides 6-30), late (strides 31-100) and plateau (last 30 strides). Error bars are standard error bars. In black = Controls; In blue = Reward; In red = Punishment; ***: $p < 0.001$; **: $p = 0.001-0.009$; *: $p = 0.010-0.049$.

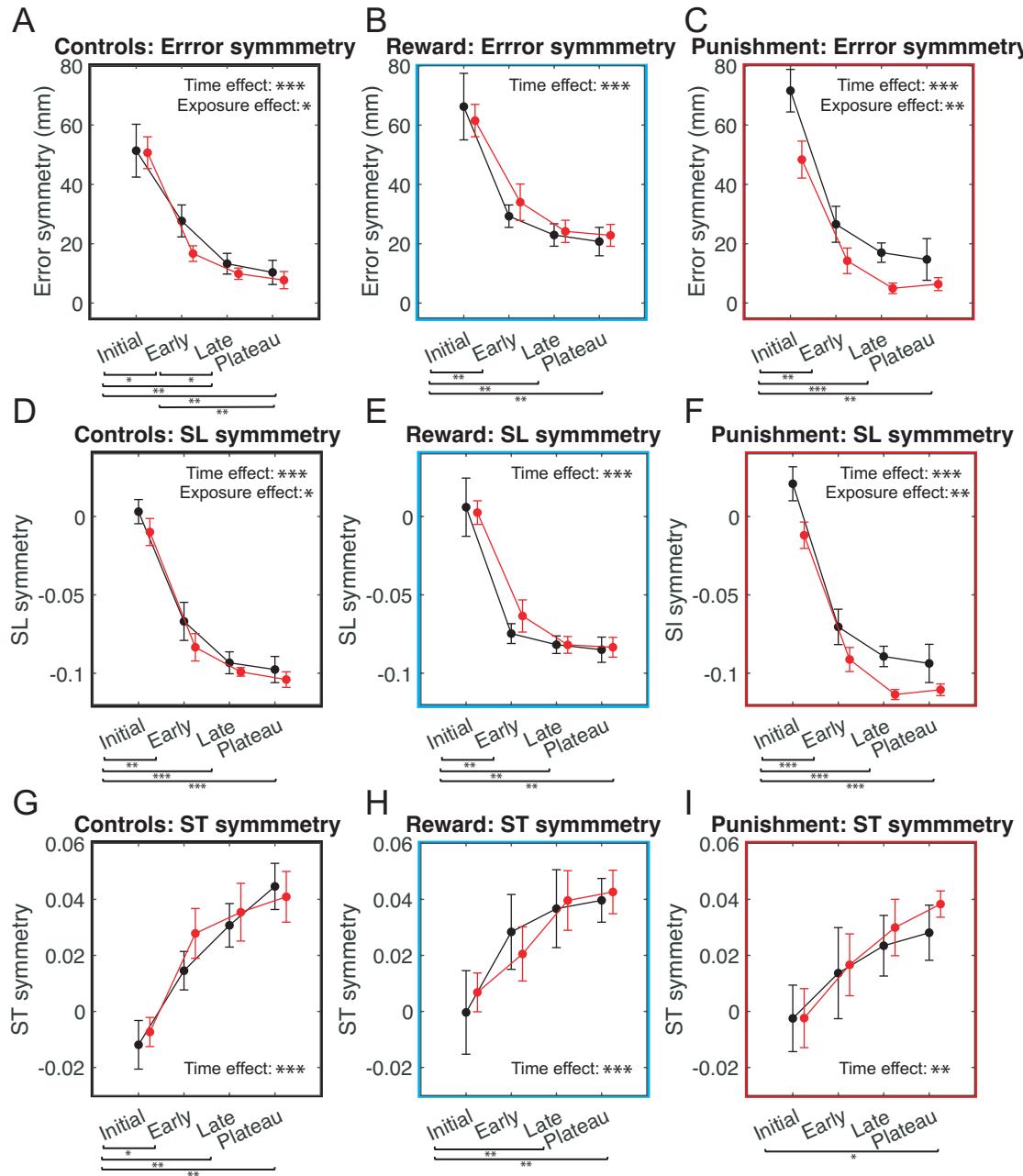


Figure 4. First and second exposure during adaptation in error symmetry (A-C), step length (SL) symmetry (D-F), and step time (ST) symmetry (G-I). Kinematic symmetry changes at initial (strides 1-5), early (strides 6-30), late (strides 31-100) and plateau (last 30 strides). 0 indicates perfect symmetry. In black = first day. In red = second day. Outlined in black = Controls; Outlined in blue = Reward; Outlined in red = Punishment. ***: $p < 0.001$; **: $p = 0.001-0.009$; *: $p = 0.010-0.049$.

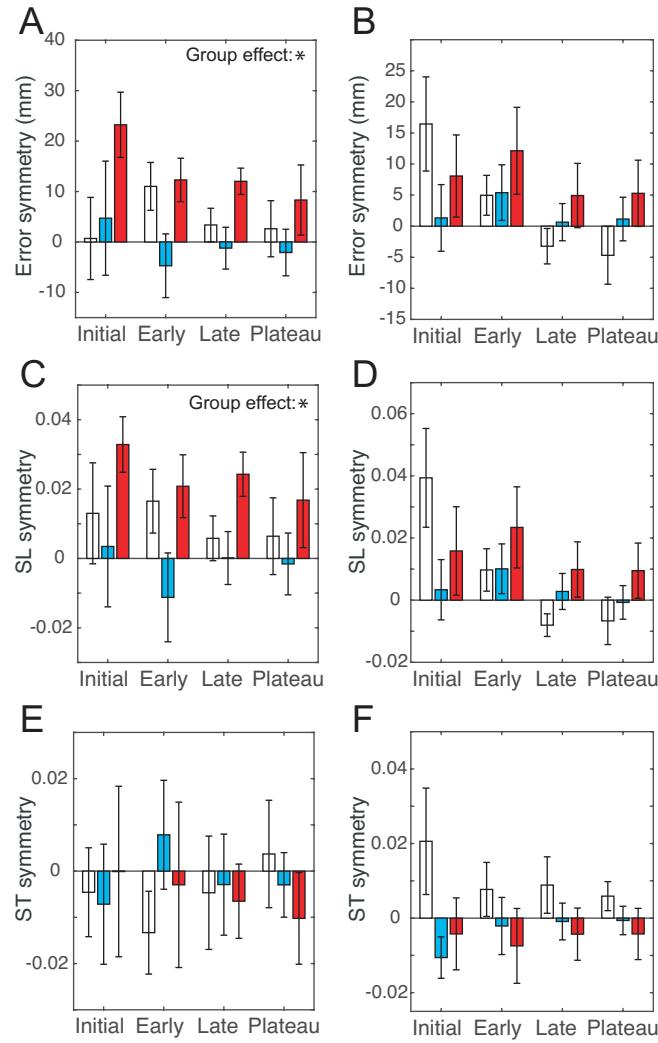


Figure 5. Exposure difference in error symmetry (A-B), step length (SL) symmetry (C-D), and step time (ST) symmetry (E-F) for adaptation (A, C, E) and de-adaptation (B, D, F). Difference (first – second exposure) at initial (strides 1-5), early (strides 6-30), late (strides 31-100) and plateau (last 30 strides). Error bars are standard error bars. In black = Controls; In blue = Reward; In red = Punishment; *: $p = 0.010-0.049$.

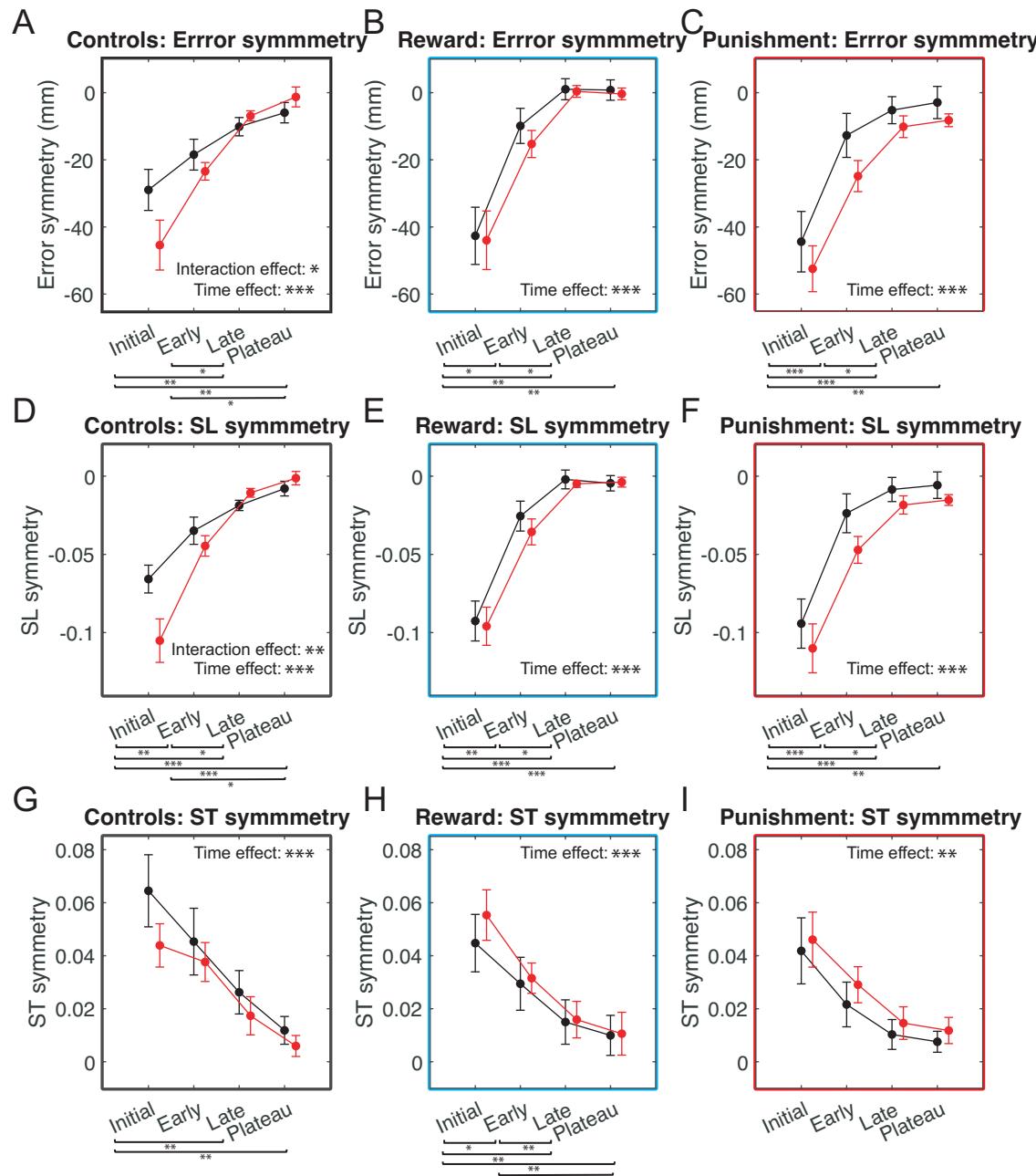


Figure 6. First (in black) and second exposure (in red) during de-adaptation in error symmetry (A-C), step length (SL) symmetry (D-F), and step time (ST) symmetry (G-I). Kinematic symmetry changes at initial (strides 1-5), early (strides 6-30), late (strides 31-100) and plateau (last 30 strides). 0 indicates perfect symmetry. ***: $p < 0.001$; **: $p = 0.001-0.009$; *: $p = 0.010-0.049$.

	Controls (n = 9)	Reward (n = 9)	Punishment (n = 9)
Age (years)	21.4 ± 3.5	20.4 ± 1.9	19.4 ± 1.4
Sex (F:M)	5:4	4:5	5:4
R dominant leg	7	6	9
Leg length (cm)	80.7 ± 6.5	81.2 ± 8.3	83.0 ± 5.8
Step length (cm)	54.1 ± 4.5	54.4 ± 3.8	55.7 ± 3.8
VM task speed (m/s)	0.72 ± 0.06	0.72 ± 0.07	0.74 ± 0.05

Table 1. Participant demographics.

		Controls	Reward	Punishment
Error symmetry (mm)	Initial	51.38 ± 26.69	66.22 ± 33.64	71.59 ± 21.51
	Early	27.69 ± 16.15	29.29 ± 11.33	26.56 ± 18.18
	Late	13.27 ± 10.5	22.95 ± 11.34	17 ± 9.81
	Plateau	10.34 ± 12.19	20.73 ± 14.35	14.71 ± 21.09
SL Symmetry	Initial	0.003 ± 0.023	0.006 ± 0.056	0.021 ± 0.033
	Early	-0.067 ± 0.036	-0.075 ± 0.019	-0.07 ± 0.034
	Late	-0.093 ± 0.021	-0.082 ± 0.017	-0.089 ± 0.02
	Plateau	-0.098 ± 0.025	-0.085 ± 0.024	-0.094 ± 0.037
ST symmetry	Initial	-0.012 ± 0.026	0 ± 0.045	-0.002 ± 0.036
	Early	0.015 ± 0.021	0.028 ± 0.04	0.014 ± 0.049
	Late	0.031 ± 0.023	0.037 ± 0.042	0.023 ± 0.032
	Plateau	0.045 ± 0.025	0.04 ± 0.023	0.028 ± 0.029

Table 2. Mean and standard deviation for adaptation on the first day.

		Controls	Reward	Punishment
Error symmetry (mm)	Pre-slow	-5.23 \pm 21.04	9.12 \pm 26.62	7.27 \pm 24.46
	Pre-fast	2.22 \pm 14.69	6.22 \pm 20.51	-2.77 \pm 14.66
	Initial	-28.97 \pm 18.34	-42.64 \pm 25.56	-44.39 \pm 27.03
	Early	-18.46 \pm 13.78	-9.89 \pm 15.7	-12.72 \pm 19.66
	Late	-10.14 \pm 8.18	1.02 \pm 9.41	-5.21 \pm 12.09
	Plateau	-5.96 \pm 9.09	0.78 \pm 9.10	-2.93 \pm 14.39
SL Symmetry	Pre-slow	0.0003 \pm 0.034	0.012 \pm 0.037	0.005 \pm 0.033
	Pre-fast	-0.014 \pm 0.039	0.016 \pm 0.026	0.004 \pm 0.028
	Initial	-0.066 \pm 0.027	-0.093 \pm 0.038	-0.094 \pm 0.047
	Early	-0.035 \pm 0.026	-0.026 \pm 0.029	-0.024 \pm 0.037
	Late	-0.019 \pm 0.010	-0.002 \pm 0.018	-0.009 \pm 0.023
	Plateau	-0.008 \pm 0.014	-0.005 \pm 0.015	-0.006 \pm 0.025
ST symmetry	Pre-slow	0.016 \pm 0.015	-0.007 \pm 0.026	0.003 \pm 0.03
	Pre-fast	-0.002 \pm 0.019	-0.005 \pm 0.028	0.002 \pm 0.015
	Initial	0.065 \pm 0.041	0.045 \pm 0.033	0.042 \pm 0.037
	Early	0.045 \pm 0.038	0.029 \pm 0.030	0.022 \pm 0.025
	Late	0.026 \pm 0.025	0.015 \pm 0.025	0.01 \pm 0.017
	Plateau	0.012 \pm 0.016	0.01 \pm 0.023	0.008 \pm 0.012

Table 3. Mean and standard deviation for baseline conditions and de-adaptation on the first day.

		Bout 1	Bout 2	p-value	95% Confidence interval for difference
Error Symmetry	Initial	Early	Early	< 0.001	[-35.21, -14.74]
		Late	Late	< 0.001	[-46.12, -21.66]
		Plateau	Plateau	< 0.001	[-49.84, -22.09]
	Early	Late	Late	0.024	[-16.97, -0.86]
		Plateau	Plateau	0.022	[-20.79, -1.19]
	Late	Plateau	Plateau	1.000	[-7.65, 3.51]
SL symmetry	Initial	Early	Early	< 0.001	[-0.08, -0.04]
		Late	Late	< 0.001	[-0.09, -0.06]
		Plateau	Plateau	< 0.001	[-0.10, -0.06]
	Early	Late	Late	0.011	[-0.03, -0.003]
		Plateau	Plateau	0.011	[-0.04, -0.004]
	Late	Plateau	Plateau	1.00	[-0.01, 0.006]
ST symmetry	Initial	Early	Early	0.005	[0.01, 0.03]
		Late	Late	< 0.001	[0.02, 0.05]
		Plateau	Plateau	< 0.001	[0.02, 0.06]
	Early	Late	Late	0.002	[0.01, 0.03]
		Plateau	Plateau	0.002	[0.01, 0.04]
	Late	Plateau	Plateau	0.159	[-0.002, 0.02]

Table 4. Bonferroni post-hoc tests for main effect of time during de-adaptation on the first day. SL = Step length; ST = Step time.

		Controls	Reward	Punishment
Error symmetry (mm)	Initial	50.69 \pm 16.07	61.51 \pm 16.33	48.37 \pm 18.68
	Early	16.68 \pm 7.89	34.01 \pm 18.41	14.26 \pm 12.89
	Late	9.9 \pm 5.71	24.17 \pm 11.23	4.98 \pm 5.33
	Plateau	7.73 \pm 8.69	22.83 \pm 11.03	6.39 \pm 6.56
SL Symmetry	Initial	-0.01 \pm 0.026	0.002 \pm 0.023	-0.012 \pm 0.025
	Early	-0.083 \pm 0.026	-0.063 \pm 0.031	-0.091 \pm 0.023
	Late	-0.099 \pm 0.008	-0.082 \pm 0.016	-0.114 \pm 0.010
	Plateau	-0.104 \pm 0.015	-0.083 \pm 0.019	-0.111 \pm 0.011
ST symmetry	Initial	-0.007 \pm 0.016	0.007 \pm 0.021	-0.002 \pm 0.032
	Early	0.028 \pm 0.027	0.021 \pm 0.029	0.017 \pm 0.033
	Late	0.035 \pm 0.031	0.04 \pm 0.032	0.03 \pm 0.030
	Plateau	0.041 \pm 0.027	0.043 \pm 0.023	0.038 \pm 0.014

Table 5. Mean and standard deviation for adaptation on the second day.

			Controls		Reward		Punishment	
			Bout 1	Bout 2	p-value	95% Confidence interval for difference	p-value	95% Confidence interval for difference
Error Symmetry	Initial	Early	0.037	[1.65, 56.05]	0.006	[10.07, 54.36]	0.001	[20.21, 58.94]
		Late	0.001	[17.48, 61.41]	0.003	[15.38, 65.23]	<0.001	[28.96, 69.02]
		Plateau	0.002	[18.11, 65.88]	0.007	[12.33, 71.84]	0.001	[22.25, 76.61]
	Early	Late	0.032	[0.85, 20.35]	0.106	[1.36, 17.54]	0.191	[-3.20, 22.03]
		Plateau	0.008	[3.66, 22.64]	0.181	[-3.18, 22.92]	0.692	[-9.56, 29.27]
	Late	Plateau	0.728	[-2.57, 7.57]	1.000	[-7.46, 11.02]	1.000	[-10.69, 11.58]
SL symmetry	Initial	Early	0.001	[0.04, 0.11]	0.002	[0.03, 0.11]	< 0.001	[0.06, 0.11]
		Late	< 0.001	[0.08, 0.11]	0.001	[0.04, 0.13]	< 0.001	[0.07, 0.14]
		Plateau	< 0.001	[0.08, 0.12]	0.003	[0.04, 0.14]	< 0.001	[0.06, 0.15]
	Early	Late	0.060	[-0.001, 0.04]	0.178	[-0.004, 0.03]	0.114	[-0.004, 0.05]
		Plateau	0.055	[-0.001, 0.05]	0.305	[-0.01, 0.04]	0.494	[-0.02, 0.06]
	Late	Plateau	0.679	[-0.004, 0.01]	1.000	[-0.01, 0.02]	1.000	[-0.02, 0.02]
ST symmetry	Initial	Early	0.032	[-0.06, -0.003]	0.084	[-0.05, 0.002]	0.469	[-0.05, 0.01]
		Late	0.002	[-0.07, -0.02]	0.003	[-0.06, -0.01]	0.109	[-0.06, 0.01]
		Plateau	0.002	[-0.08, -0.02]	0.008	[-0.07, -0.01]	0.018	[-0.07, -0.01]
	Early	Late	1.000	[-0.04, 0.02]	0.095	[-0.03, 0.002]	1.000	[-0.04, 0.02]
		Plateau	0.106	[-0.05, 0.004]	0.172	[-0.04, 0.005]	0.381	[-0.05, 0.01]
	Late	Plateau	0.890	[-0.03, 0.01]	1.000	[-0.03, 0.02]	1.000	[-0.03, 0.02]

Table 6. Bonferroni post-hoc tests for main effect of time during adaptation. SL = Step length; ST = Step time.

		Controls	Reward	Punishment
Error symmetry (mm)	Pre-slow	-9.1 ± 19.46	5.45 ± 12.2	-9.41 ± 13.67
	Pre-fast	1.94 ± 13.94	6.63 ± 15.47	-6.02 ± 8.18
	Initial	-45.41 ± 22.27	-43.97 ± 26.19	-52.46 ± 20.48
	Early	-23.43 ± 7.86	-15.29 ± 12.09	-24.85 ± 13.89
	Late	-6.91 ± 4.54	0.38 ± 5.25	-10.14 ± 9.69
	Plateau	-1.27 ± 8.87	-0.37 ± 5.27	-8.22 ± 5.72
SL Symmetry	Pre-slow	-0.0173 ± 0.019	0.003 ± 0.021	-0.006 ± 0.018
	Pre-fast	0.007 ± 0.014	0.008 ± 0.031	-0.002 ± 0.014
	Initial	-0.105 ± 0.042	-0.096 ± 0.037	-0.11 ± 0.047
	Early	-0.045 ± 0.02	-0.036 ± 0.025	-0.047 ± 0.026
	Late	-0.011 ± 0.008	-0.005 ± 0.007	-0.018 ± 0.017
	Plateau	-0.001 ± 0.013	-0.004 ± 0.009	-0.015 ± 0.01
ST symmetry	Pre-slow	0.014 ± 0.016	0.006 ± 0.033	0.013 ± 0.020
	Pre-fast	0.003 ± 0.020	0.005 ± 0.024	0.003 ± 0.024
	Initial	0.044 ± 0.024	0.055 ± 0.029	0.046 ± 0.031
	Early	0.038 ± 0.022	0.032 ± 0.017	0.029 ± 0.020
	Late	0.017 ± 0.022	0.016 ± 0.021	0.015 ± 0.018
	Plateau	0.006 ± 0.012	0.011 ± 0.024	0.012 ± 0.015

Table 7. Mean and standard deviation for baseline conditions and de-adaptation on the second day.

			Controls		Reward		Punishment	
			Bout 1	Bout 2	p-value	95% Confidence interval for difference	p-value	95% Confidence interval for difference
Error Symmetry	Initial	Early	0.150	[-36.80, 4.31]	0.020	[-56.63, -4.80]	<0.001	[-40.52, -18.75]
		Late	0.005	[-47.98, -9.35]	0.003	[-71.67, -16.65]	<0.001	[-60.14, -21.35]
		Plateau	0.007	[-57.39, -9.76]	0.002	[-69.41, -17.61]	0.002	[-67.83, -17.88]
	Early	Late	0.027	[-23.51, -1.33]	0.015	[-23.91, -2.67]	0.036	[-21.56, -0.65]
		Plateau	0.012	[-30.74, -3.91]	0.074	[-26.65, 1.06]	0.105	[-28.62, 2.19]
	Late	Plateau	0.099	[-10.56, 0.74]	1.000	[-8.06, 9.05]	1.000	[-9.47, 5.26]
	Initial	Early	0.004	[-0.08, -0.02]	0.002	[-0.10, 0.03]	<0.001	[-0.09, -0.04]
		Late	<0.001	[-0.10, -0.04]	<0.001	[-0.13, -0.05]	<0.001	[-0.13, -0.05]
		Plateau	<0.001	[-0.12, -0.04]	<0.001	[-0.13, -0.06]	0.001	[-0.14, -0.04]
SL symmetry	Early	Late	0.018	[-0.05, -0.004]	0.015	[-0.05, -0.01]	0.041	[-0.04, -0.001]
		Plateau	0.012	[-0.06, -0.01]	0.063	[-0.06, 0.001]	0.089	[-0.053, 0.003]
	Late	Plateau	0.157	[-0.02, 0.003]	1.000	[-0.01, 0.01]	1.000	[-0.02, 0.01]
	Initial	Early	0.981	[-0.02, 0.04]	0.033	[0.001, 0.04]	0.134	[-0.004, 0.04]
		Late	0.005	[0.01, 0.05]	0.002	[0.02, 0.06]	0.057	[-0.001, 0.06]
		Plateau	0.004	[0.02, 0.08]	0.004	[0.02, 0.07]	0.054	[-0.001, 0.07]
	Early	Late	0.097	[-0.003, 0.04]	0.009	[0.004, 0.03]	0.085	[-0.001, 0.03]
		Plateau	0.053	[-0.001, 0.07]	0.006	[0.01, 0.03]	0.082	[-0.002, 0.03]
		Late	Plateau	[-0.006, 0.03]	0.109	[-0.001, 0.01]	1.000	[-0.01, 0.01]

Table 8. Bonferroni post-hoc tests for main effect of time during de-adaptation. SL = Step length; ST = Step time.