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ABSTRACT

Reward and punishment reinforcement feedback has been shown to influence
initial learning and re-learning of upper extremity motor tasks, but the influence on lower
extremity motor learning is unknown. The objective of this study was to examine the
effects of reinforcement feedback (reward and punishment) on the learning process of
asymmetrical gait on a novel ‘virtual’ split-belt paradigm, that alters visual target speed
on one side to induce an asymmetrical gait pattern. Twenty-seven healthy young adults
(20.44 £ 2.50 yrs) walked on an instrumented treadmill with real-time visual feedback of
the toe position and stepping targets. During adaptation, the visual targets moved
slower on one side while the treadmill speed was equal between sides. The control
group received no scores, while the reward group received increasing scores and the
punishment group received decreasing scores when the toe was within and beyond 4
cm from the center of the target, respectively. Participants came back after 24 + 2 hours
and completed the same paradigm for a re-learning assessment. Participants adapted
and demonstrated aftereffects in error symmetry, step length symmetry, and step time
symmetry with the ‘virtual’ split-belt paradigm during both initial- and re-exposure.
Reinforcement feedback did not influence initial adaptation or de-adaptation, but
punishment group demonstrated faster spatial re-adaptation compared to Reward and
Controls. Our results on the differential effect of punishment and reward are consistent
with previously reported upper-extremity studies. Together, this study points to a

potential novel paradigm that utilizes visual feedback to address gait asymmetry.
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NEW & NOTEWORTHY

This is the first study to examine the effect of a ‘virtual’ split-belt paradigm, and to
examine the effect of reward and punishment reinforcement feedback on lower
extremity locomotor learning task. We have found that healthy young adults are able to
adapt both spatial and temporal gait measures with the paradigm, and that punishment
reinforcement feedback specifically influences the spatial re-learning on locomotor

error-based adaptation task.
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INTRODUCTION

Walking must be constantly monitored and adjusted to the immediate
environment by the nervous system to prevent the loss of balance. Although the task of
walking on flat surfaces for healthy humans is largely an automatic action that does not
require conscious thought to control (Choi et al., 2016; Malone & Bastian, 2010) walking
can be voluntarily controlled by changing step length (i.e. foot placement) in response to
visual cues perceived in the environment (Maeda et al. 2017). This is especially
important when walking across uneven terrains that require careful stepping.

When there are discrepancies between visual feedback and perceived
proprioception, this can result in motor adaptation. For example, when real-time visual
biofeedback of a specific gait parameter (e.g. knee flexion angle) is altered, this can
induce adaptation in the specific gait parameter and show aftereffects (Cherry-Allen et
al. 2018; Chunduru et al. 2019; Kim and Krebs 2012; Kim et al. 2015; Statton et al.
2016). With altered visual feedback of step length on one side, previous studies have
demonstrated that participants gradually adapt to an asymmetrical step length, and that
this asymmetry persists even with the visual feedback removed (Kim and Krebs 2012;
Kim et al. 2015). Interestingly, when compared to split-belt treadmill walking adaptation,
the aftereffect in step length asymmetry with the visual distortion is longer (Chunduru et
al. 2019). This provides opportunities for the development of novel visually-guided
interventions that can target specific gait kinematics with prolonging aftereffects tailored

towards specific clinical population needs.
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When healthy humans learn to adapt to a specific learning pattern, this can be
re-learned at a faster rate, even after de-adaptation following the initial adaptation
(Huang et al. 2011; Malone et al. 2011). In a visuomotor locomotor task with prism
glasses, healthy young participants re-learn walking pattern faster and retain the
information for at least one year after the initial training (Maeda et al. 2018). To our
knowledge, this has not been investigated with visually-guided locomotor learning that
presents real-time feedback of kinematics, such as foot trajectory during walking.
Investigating the re-learning of novel interventions is important for future applications in
the rehabilitation therapy settings, where interventions are presented a multitude of
times.

One way to alter the effectiveness of interventions that involve visual feedback is
by the introduction of operant conditioning. Human behavior has been known to
respond to positive (additive) reinforcement stimuli (i.e. reward) to increase a certain
behavior and to positive punishment stimuli to decrease a certain behavior (Daw et al.
2002). Previously, it was speculated that motor adaptation is an implicit process which
is insensitive to the effects of reward and punishment feedback (Mazzoni and Krakauer
2006; Shadmehr and Krakauer 2008). However, recent studies have shown that motor
adaptation requires descending control from the cortex (Barthelemy et al. 2011; Sato
and Choi 2019) and responds to reward and punishment feedback, but the effects are
task specific (Abe et al. 2011; Galea et al. 2015; Song et al. 2020; Wachter et al. 2009).
In an upper extremity sequence learning task, punishment feedback led to better
performance while reward feedback led to greater learning (Wachter et al. 2009),

whereas in a motor skill learning task, there were no immediate differences in learning
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with the punishment or reward feedback (Abe et al. 2011). In error-based visuomotor
upper extremity tasks, punishment feedback has shown to accelerate learning during
initial adaptation (Galea et al. 2015; Song et al. 2020). This suggests that punishment
may be useful to enhance initial acquisition in motor tasks, however, the effect seems to
be specific to error-based learning.

Reward and punishment feedback have also been demonstrated to play a role in
re-learning. With an upper extremity error-based motor task, punishment accelerated re-
learning rates, while reward feedback increased retention of the learned motor task
(Galea et al. 2015; Quattrocchi et al. 2017; Quattrocchi et al. 2018). The increase in
retention with rewarded feedback was also observed in an study that used sequence
learning (Abe et al. 2011). This suggests that reward feedback enhances retention
irregardless of the type of motor task, unlike the initial learning acquisition phase.
Therefore, reward and punishment feedback may be useful to implement in visually-
guided therapeutic interventions for efficient motor recovery. However, the effects of
reward and punishment on lower extremity locomotor adaptation with visual distortion is
not known.

The objective of this study is to examine the effects of reinforcement feedback
(reward and punishment) on the learning process of asymmetrical gait on a novel
‘virtual’ split-belt paradigm, which alters visual target speed on one side to induce an
asymmetrical gait pattern. We explored our objective with three participant groups: (1)
control group who received no reinforcement feedback, (2) reward group who received
increasing scores for an accurate step, and (3) punishment group who received

decreasing scores for inaccurate steps. The specific aims were: (1) To examine whether
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spatial and temporal gait asymmetry can be adapted and stored through a ‘virtual’ split-
belt paradigm, (2) to examine the effects of reinforcement feedback on the acquisition of
asymmetrical gait pattern, and (3) to examine the effects of reinforcement feedback (on
the re-learning of asymmetrical gait pattern. We hypothesized that (1) all groups will
adapt and de-adapt to asymmetrical step lengths and step times with the ‘virtual’ split-
belt paradigm, and based on upper extremity visually-guided motor learning studies that
(2) punishment group will demonstrate faster learning in the asymmetrical gait pattern
compared to the reward group during initial learning (Galea et al. 2015; Song and
Smiley-Oyen 2017), and that (3) the punishment group will demonstrate faster re-

learning compared to the reward group (Galea et al. 2015).

METHODS

Participants

Twenty-seven healthy young adults (13 male, 14 females) ages 18 to 30 years
old (20.44 + 2.50 yrs) participated in this study. We excluded participants with any
history of neurological or orthopedic impairments, with less than 20/30 vision, with any
color blindness, and with a leg length difference greater than 2 centimeters. All
participants gave informed written consent before the study in accordance with the
protocol approved by the Institutional Review Board of the University of Massachusetts

Amherst. None of the participants had prior experience walking on a split-belt treadmill.

Experimental Paradigm
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Participants walked on a split-belt treadmill (Bertec, Columbus, Ohio, USA) that
has two separate belts for each leg with a screen placed in front of the treadmill.
Throughout the experiment, participants walked with the two treadmill belts at the same
speed (i.e. tied-belt condition). The speed of the treadmill was based on each
participants’ leg length (m), from the greater trochanter to the lateral malleolus for each
leg and averaged between limbs. Step length (m) for the visuomotor task was
determined as two-thirds of the leg length, and the speed of the treadmill and
visuomotor task was determined as 1.33 x step length (speed (m/s) = step length (m) x
cadence (constant variable: 1.33 = 90 steps/60 seconds)). A cadence of 90
steps/minute has been determined as a comfortable cadence for participants performing
a similar visuomotor task in a different study (Choi et al. 2016).

A screen in front of the treadmill was used to project the visuomotor task. Real-
time position of the toe was projected on the screen as a blue dot (Figure 1A). Based on
the calculated step lengths and speed of the treadmill, red square targets were
projected on the screen when the leg is in swing phase (Figure 1B). For the visuomotor
locomotor task, visuomotor gain (i.e. the ratio of the relationship between the screen
and treadmill space) was altered. When the visuomotor gain was set as 1.0, the ratio
between the treadmill and screen space was equal so that the speed at which the
targets move down was the same as the treadmill speed. When the visuomotor gain
was set to 0.9, the relationship between the screen and treadmill space was decreased,
and as a result, the target speed on the screen was decreased compared to the
treadmill speed. In the lower gain condition, the participants had to step with greater

step lengths to hit the target.
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The study consisted of two sessions, 24 + 2 hrs apart. Each session consisted of
5 conditions, all at the participant-specific set treadmill speed with tied-belt treadmill
(Figure 1C): (1) Familiarization, where participants first walked on the treadmill with no
visuomotor task for 5 minutes, (2) Pre-slow condition, where participants walked with
the visuomotor task with symmetrical low visuomotor gain (0.9:0.9) for 300 steps, (3)
Pre-fast condition, where participants walked with the visuomotor task with symmetrical
1.0:1.0 visuomotor gain, (4) Split-visuomotor adaptation, where participants walked with
the visuomotor task with 1.0 visuomotor gain on one side and 0.9 visuomotor gain on
the other for 450 steps, and (5) Split-visuomotor de-adaptation, where participants
walked with symmetrical 1.0:1.0 visuomotor gain for 450 steps. From here on forward
the leg on the 1.0 visuomotor gain during adaptation is referred to the ‘fast’ leg and the
leg on the 0.9 visuomotor gain during adaptation is referred to the ‘slow’ leg. The fast
and slow leg side was randomized between participants.

Participants were randomly placed into one out of three groups for the
visuomotor task: (1) Control, (2) Reward, or (3) Punishment. In the control group (n = 9,
Age: 21.4 £+ 3.5 years; Table 1) participants did not receive any external feedback on
the knowledge of results during all of the conditions with the visuomotor task. In the
reward group (n =9, Age: 20.4 £ 1.9 years) participants received positive external
feedback on the knowledge of results during the adaptation condition on both day 1 and
day 2. In the punishment group (n =9, Age: 19.4 + 1.4 years) participants received
negative external feedback on the knowledge of results during the adaptation condition
on both day 1 and day 2. For the reward group, the score on the top-right corner of the

screen counted up by one from zero and the dot representing the toe position turned
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green for each successful step (less than 4 cm of the center of the target). For the
punishment group, the score on the top-right corner of the screen counted down by one
from 2000, and the dot representing the toe position turned red for each unsuccessful

step (greater than 4cm from the center of the target).

Data collection

Lower limb kinematics were recorded at 100 Hz using a 4-camera Oqus system
(Qualysis, Gothenburg, Sweden). Reflective markers were placed on the 5" metatarsal
(big toe) of each foot. Ground reaction force data was collected from the force plate
under each treadmill belt. Force data was sampled at 1000 Hz and synchronized with
kinematics data using Qualisys Track Manager (Qualisys, Godteborg, Sweden).
Data pre-processing

Data processing and analysis was performed using custom software written in
MATLAB (Mathworks, Natick, MA). Ground reaction force data was low-pass filtered (3"
order Butterworth) with a 15 Hz cut-off frequency. Heel-strike and toe-off times on each
leg were identified when the vertical ground reaction force crossed a threshold of 10 N.
Time of heel-strike and toe-off was visually inspected, and manually corrected if

necessary, by marking them on kinematic trajectories.

Gait adaptation measures
Kinematic measures quantified for each condition include step length, step time,
and double support time. Step length was calculated as the anterior-posterior distance

between the toe markers at time of heel strike. Step time was calculated as the time
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between consecutive heel strike. For the conditions that included the visuomotor task,
error (not absolute) was also quantified as the distance between the target to the
marker; a negative error would indicate undershooting and a positive error would
indicate overshooting of limb trajectory in relation to the target.

Locomotor adaptation was determined by calculating stride-by-stride changes in
error, step length, and step time (Choi et al. 2009; Reisman et al. 2005). Fast and slow
step length corresponds to when the leading leg is on the 1.0 or 0.9 visuomotor gain
side, respectively, at heel strike. Similarly, fast and slow step time corresponds to when
the leading leg is on the 1.0 or 0.9 visuomotor gain side, respectively, at heel strike.
Error symmetry was defined as the difference between limbs (fast leg — slow leg). Step

length, and step were defined as the normalized difference between legs:

Fast leg — Slow leg

A try =
SYmmetry Fast leg + Slow leg

Changes in locomotor symmetry during the visuomotor task were assessed
based on averaged values over the first 30 strides of each baseline conditions (pre-
slow, pre-fast), and four time periods during adaptation and de-adaptation: (1) initial
(first 5 strides), (2) early change (Stride number 6-30), (3) late change (Stride number
31-100) and (4) plateau phase (last 30 strides). The difference between exposure was
assessed as the first exposure on the first day — the second exposure on the second

day.

Statistical analysis



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

For baseline conditions, group differences were examined with one-way
ANOVAs for pre-slow and pre-fast. In addition, one-sample t-tests were used to
examine if there was significant asymmetry (perfect symmetry = 0 in all symmetry
variables) during the baseline conditions.

For initial adaptation and de-adaptation, changes in spatiotemporal gait
symmetry were compared using sphericity-assumed two-way mixed measures ANOVAs
to determine the main effects of time (Initial, early change, late change, and plateau
phase) and group (Controls, Reward, and Punishment), and their interaction for each
symmetry variable.

To examine exposure difference for adaptation and de-adaptation, a sphericity-
assumed two-way repeated measures ANOVA was used to determine main effect of
exposure, main effect of time (Initial, early change, late change, and plateau phase),
and exposure x time interaction effect for each group. To examine between group
differences in exposure differences, exposure difference (first — second exposure) were
compared with a sphericity-assumed two-way mixed measures ANOVAs to determine
the main effects of time (Initial, early change, late change, and plateau phase) and
group (Controls, Reward, and Punishment), and their interaction for each symmetry
variable.

For all repeated and mixed-measured ANOVAs, separate ANOVAs were
performed for adaptation and de-adaptation walking conditions. If the assumption of
sphericity was violated and Greenhouse-Geisser epsilon was less than 0.75, the

Greenhouse-Geisser correction was used to report the ANOVA results. All statistical
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analyses were performed on SPSS 23.0 (IBM, Armonk, NY), and all significant

differences were established at p < 0.05.

RESULTS

Kinematic adaptation with the visuomotor task

Participants adapted error symmetry (Table 2; Figure 2A-B; F(1.48, 35.47) =
4448, p < 0.001), step length symmetry (Figure 2C-D; F(1.68, 40.34) = 73.75, p <
0.001), and step time symmetry (Figure 2E-F; F(3, 72) = 14.98, p < 0.001), but there
was no group differences (Error symmetry: F(2, 24) = 1.62, p = 0.219; SL symmetry:
F(2,24)=0.27,p = 0.768; ST symmetry: F(2, 24) = 0.37, p = 0.696) nor an time x group
interaction effect (Error symmetry: F(2.96, 35.47) = 0.74, p = 0.535; SL symmetry:
F(3.36, 40.34) = 0.53, p = 0.687; ST symmetry: F(6, 72) = 0.54, p = 0.779).

Error symmetry at initial phase during adaptation was more positively
asymmetrical (in which the fast leg overshot the target more than the slow leg)
compared to early (p < 0.001, 95% confidence interval for difference (Cl) = [19.16,
51.28]), late (p < 0.001, 95% CI =[29.48, 61.17]) and plateau phase (p < 0.001, 95% CI
= [28.07, 67.53]). Error symmetry during early phase was significantly more positively
asymmetrical compared to late (p = 0.002, 95% CI = [3.11, 17.10]) and plateau phase (p
= 0.003, 95% CI =[3.47, 21.69]). Error symmetry between late and plateau phase was
not significantly different (p = 1.00, 95% CI =[-5.01, 9.97]).

During adaptation, participants gradually stepped with larger step lengths on the

slow side compared to the fast side (negative asymmetry). Step length symmetry at
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initial phase during adaptation was more symmetrical compared to early (p < 0.001,
95% CI1 =[0.05, 0.11]), late (p < 0.001, 95% CI =[0.07, 0.12]) and plateau phase (p <
0.001, 95% CI =[0.07, 0.13]), and step length symmetry at early phase was significantly
more symmetrical compared to late (p = 0.004, 95% CI = [0.01, 0.03]) and plateau
phase (p = 0.012, 95% CI = [0.004, 0.04]). Step length symmetry between late and
plateau phase was not significantly different (p = 1.00, 95% CI = [-0.01, 0.02]).
Participants gradually stepped with longer step times on the fast leg compared to
the slow leg (positive asymmetry). Step time symmetry at initial phase during adaptation
was more symmetrical compared to early (p = 0.010, 95% CI = [-0.04, -0.01]), late (p <
0.001, 95% CI = [-0.05, -0.02]) and plateau phase (p < 0.001, 95% CI = [-0.07, -0.02]).
There was no evidence of difference between early and late (p = 0.438, 95% ClI = [-
0.03, 0.01]), early and plateau (p = 0.07, 95% CI = [-0.04, 0.001]), and late and plateau

phase (p = 1.00, 95% CI = [-0.03, 0.01]).

Kinematic de-adaptation with the visuomotor task

During de-adaptation, participants altered error symmetry. Participants initially
overshot with the slow limb (Table 3; Figure 3A-B; F(1.85, 44.29) = 42.31, p < 0.001). In
addition participants altered step length symmetry (Figure 3C-D; F(1.96, 47.14) = 72.67,
p < 0.001), and step time symmetry during de-adaptation (Figure 3E-F; F(1.95, 46.72) =
27.40, p < 0.001), but there was no group differences (Error symmetry: F(2, 24) = 0.26,
p = 0.776; SL symmetry: F(2, 24) = 0.02, p = 0.980; ST symmetry: F(2,24)=1.21,p =

0.317) nor a time x group interaction effect (Error symmetry: F(3.69, 44.29) = 2.02, p =
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0.112; SL symmetry: F(3.93, 47.14) = 2.34, p = 0.080; ST symmetry: F(3.89, 46.72) =
0.69, p = 0.602).

Post-hoc comparisons showed that error symmetry, step length symmetry, and
step time symmetry at initial phase was significantly different compared to early, late
and plateau phase, and early phase was significantly different compared to late and
plateau phase, but late and plateau phases were not different from each other (p-values

and confidence intervals are provided in Table 4).

Re-adaptation with the visuomotor task

For adaptation in Controls, there was a main effect of exposure in error symmetry
and step length symmetry, but not for step time symmetry (Table 5; Figure 4A,D,G;
Error symmetry: F(1,8) = 6.62, p = 0.033; SL symmetry: F(1,8) = 6.62, p = 0.033; ST
symmetry: F(1,8) = 0.53, p = 0.488). Error symmetry in Controls during adaptation in
first exposure was more asymmetrical compared to the second exposure (p = 0.033;
95% Cl = [0.46, 8.39]), and step length symmetry was less asymmetrical in first
exposure compared to second exposure (p = 0.033; 95% CI =[0.001, 0.020]), indicating
faster learning in the spatial measures in Controls. Similarly, in Punishment there was a
significant main effect of exposure in error symmetry and step length symmetry, but not
for step time symmetry (Figure 4C,F,l; Error symmetry: F(1,8) = 16.37, p = 0.004; SL
symmetry: F(1,8) = 12.92, p = 0.007; ST symmetry: F(1,8) = 0.20, p = 0.664). in
contrast, there was no evidence of a main effect of exposure for adaptation in Reward
(Figure 4B,E,H; all p’'s > 0.750), and there was no evidence of a exposure x time

interaction effect for any of the groups for all symmetry measures (all p’s > 0.150).
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Similar to adaptation during initial exposure, there was a main effect of time during
adaptation for all groups for all conditions (p-values and confidence intervals are
provided in Table 6).

For adaptation, there was a group effect in exposure difference in error symmetry
and step length symmetry, but not for exposure difference in step time symmetry
(Figure 5A,C,E; Error symmetry: F(2, 24) = 4.42, p = 0.023; SL symmetry: F(2, 24) =
3.93, p = 0.033; ST symmetry = F(2, 24) = 0.06, p = 0.945). The exposure difference
was consistent across adaptation phases in all three symmetry measures (Error
symmetry: F(1.74, 41.78) = 0.481, p = 0.481; SL symmetry: F(1.94, 46.62) = 0.48, p =
0.616; ST symmetry: F(3, 72) = 0.02, p = 0.995). There was no evidence of an
interaction effect for any symmetry measures (Error symmetry: F(3.48, 41.78) = 0.82, p
= 0.508; SL symmetry: F(3.89, 46.62) = 0.31, p = 0.864; ST symmetry: F(6, 72) = 0.55,
p =0.768).

Post-hoc comparisons revealed that the punishment group presented with less
error asymmetry and more step length asymmetry during day 2 compared to day 1
(positive exposure difference in both error and step length symmetry). Exposure
difference during adaptation in error symmetry and step length symmetry was larger in
punishment compared to reward (Error symmetry: p = 0.022, 95% CI =[1.81, 27.79]; SL
symmetry: p = 0.029, 95% CI =[0.002, 0.05]). Spatial exposure difference during
adaptation in Controls was not significantly different compared to Reward (Error
symmetry: p = 0.924, 95% CI| = [-7.73, 18.24]; SL symmetry: p = 0.546, 95% CI =[-0.01,
0.04]) and Punishment (Error symmetry: p = 0.212, 95% CI = [-22.53, 3.45]; SL

symmetry: p = 0.497, 95% CI = [-0.04, 0.01]).



334 In contrast to adaptation, in de-adaptation there was no evidence of a main effect
335 of exposure in all groups for all symmetry measures (Table 7; Figure 6; all p’'s > 0.100).
336 In Controls there was a significant exposure x time interaction effect for error symmetry
337 and step length symmetry, but not step time symmetry (Error symmetry: F(3,24) = 3.93,
338 p=0.021; SL symmetry: F(3,24) = 5.24, p = 0.006; ST symmetry: F(3,24) =0.93, p =
339 0.444). Reward and Punishment did not show a significant day x time interaction effect
340  during de-adaptation (all p’s > 0.400). There was a main effect of time during de-

341  adaptation for all groups for all conditions (p-values and confidence intervals are

342  provided in Table 8).

343 For exposure difference in de-adaptation, there was no evidence of an effect of
344  time (Figure 5B,D,F; Error symmetry: F(2.05, 49.11) = 2.56, p = 0.086; SL symmetry:
345 F(1.96, 46.93) = 3.42, p = 0.042, but post-hoc comparisons all p > 0.05 with Bonferroni
346  corrections; ST symmetry: F(1.96, 46.99) = 0.10, p = 0.898), nor an effect of group

347  (Error symmetry: F(2, 24) = 0.81, p = 0.456; SL symmetry: F(2, 24) = 0.82, p = 0.452;
348 ST symmetry: F(2, 24) = 2.13, p = 0.141), nor an interaction effect in all three symmetry
349 measures (Error symmetry: F(4.09, 49.11) = 1.28, p = 0.291; SL symmetry: F(3.91,
350 46.93) = 1.84, p = 0.138; ST symmetry: F(3.92, 46.99) = 0.94, p = 0.450).

351

352 Discussion

353

354 Healthy young adults adapted and demonstrated aftereffects in error symmetry,
355 step length symmetry, and step time symmetry with a ‘virtual’ split-belt paradigm with

356 unequal stepping target visuomotor gains. Reinforcement feedback did not influence
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initial adaptation or de-adaptation with the paradigm, but punishment group

demonstrated faster spatial re-adaptation compared to reward and control groups.

‘Virtual’ split-belt can induce changes in kinematic symmetry with robust aftereffects

Our results demonstrated that healthy young adults adapted both step lengths
and step time symmetry with robust aftereffects even after the visual targets were
brought back to the symmetrical visuomotor gain. This is in line with previous studies
that have demonstrated that when visual feedback of target step length is altered on
one side, healthy young adults gradually adapt to an asymmetrical step length (Kim and
Krebs 2012; Kim et al. 2015) and with studies that observed altered gait pattern in
virtual environments (Lamontagne et al. 2007; Prokop et al. 1997). With our visual
feedback, we aimed to recreate a virtual treadmill environment instead of the previously
used bars to indicate step lengths (Kim and Krebs 2012; Kim et al. 2015) or specific
joint kinematics (Cherry-Allen et al. 2018; Statton et al. 2016), to examine if healthy
young adults adapt spatial and/or temporal gait measures to visual targets at uneven
speeds between sides. This way, the visual paradigm more closely resembles the split-
belt adaptation treadmill where participants are not restricted to one gait parameter to
learn an asymmetrical pattern.

The robust aftereffect that we observed in our participants suggests that the new
gait pattern attained during adaptation using sensory information is stored in the
nervous system. The neural control of locomotion that integrates visual, proprioceptive
and vestibular feedback is complex and requires both spinal and supraspinal input

(Hinton et al. 2020; Takakusaki 2017), which makes pinpointing the location of the
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stored information difficult. However, in cats, it has been shown that cortical control,
especially the posterior parietal cortex for planning of limb trajectory and motor cortex
for execution of motor commands are important for visually guided gait (Drew and
Marigold 2015). Although we can expect that quadrupedal and bipedal locomotion
require different neural mechanisms, cortical control is likely to play important role in
visuomotor locomotor adaptation, unlike split-belt proprioception-driven locomotor

adaptation that is does not critically dependent on cortical control (Reisman et al. 2007).

Reward and punishment reinforcement feedback does not influence initial locomotor
visuomotor learning

In our study, control participants who received no score on their stepping (i.e.
implicit learning condition) was able to adapt their gait to achieve the asymmetrical gait
pattern. This is in line with other paradigms such as the split-belt locomotor adaptation
(Reisman et al. 2005; Sato and Choi 2019) and implicit visuomotor paradigms (French
et al. 2018; Kim and Krebs 2012) that people are able to adapt their gait even without
instructions on how to do so.

We demonstrated that reward and punishment reinforcement feedback does not
influence initial locomotor adaptation with the visuomotor paradigm. This finding is in
contrast to upper extremity studies that demonstrated punishment feedback to
accelerate initial learning in error-based tasks (Galea et al. 2015; Song et al. 2020),
which may suggest that although visuomotor locomotor adaptation likely requires more
cortical control compared to split-belt adaptation, the visuomotor locomotor adaptation is

more implicit compared to upper-extremity tasks. Is it important to note though, French



403 and colleagues (2018) have seen success in accelerating visually-guided locomotor
404  adaptation with instructional external feedback. There are other studies that have

405 supported the use of individualized feedback to enhance initial locomotor learning

406 (Hussain et al. 2013; Rendos et al. 2020; Roemmich et al. 2016), suggesting that

407  merely providing correct/incorrect feedback is not enough, but individualized feedback is
408 needed to enhance initial visuomotor locomotor learning.

409

410  Punished reinforcement feedback may influence locomotor visuomotor re-learning

411 In our study, the reinforcement feedback group with punished feedback

412 demonstrated faster spatial learning on the second day. Specifically, the punishment
413 group learned spatial asymmetry faster compared to the reward group. This is in line
414  with findings of Galea and colleagues (2015), who observed faster re-adaptation in
415 punished feedback groups in an upper-extremity error-based adaptation task. Our

416 findings supplement the reinforcement feedback literature that reward and punishment
417 feedback have differential effects on motor learning (Abe et al. 2011; Galea et al. 2015;
418 Quattrocchi et al. 2018; Song et al. 2020; Wachter et al. 2009).

419 Punished reinforcement feedback may have only influenced re-learning due to
420 the differential neural processes underlying the initial learning and re-learning process
421 (Galea et al. 2011; Hadipour-Niktarash et al. 2007). Motor cortex activation in humans
422  does not affect adaptation, but improved retention (Galea et al. 2011), suggesting

423  dissociable neural mechanisms underlying initial learning and re-learning. Punishment
424  feedback has been reported to alter activity in the anterior cingulate cortex (Holroyd and

425 Coles 2002) which is functionally connected (Paus 2001; Wang et al. 2001; Williams et
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al. 2004) and in anatomical proximity to the primary motor cortex. This may suggest that
punishment feedback during initial learning may influence cortical plasticity in the motor

cortex which is reflected in the faster spatial re-learning.

Limitations

A limitation of our paradigm is that we did not have monetary associations with
our reinforcement feedback paradigm. Scores increased or decreased by 1 for the
reward and punishment groups, respectively, which may not have been enough
motivational incentive for participants. Although more robust effect is expected to be
observed with monetary associations (Ohgami et al. 2006), previous studies with
increasing and decreasing scores for reward and punishment have successfully seen
effects in upper-extremity motor learning (Nikooyan and Ahmed 2015). Furthermore, our
future goal is to apply the findings to enhance interventions in rehabilitation, and the
monetary reward or punishment would not be feasible in clinic. Therefore, we decided
that for the purposes of this study we will examine and report on the effects of rewarded

and punished feedback with no monetary associations.

Conclusions

With a ‘virtual’ split-belt paradigm that projected stepping targets with altered
visuomotor gain on one side, we demonstrated that healthy young adults are able to
adapt and de-adapt both spatial and temporal gait asymmetry. Reward and punishment
reinforcement feedback did not influence initial learning with the paradigm, which

suggests that correct/incorrect feedback is not enough to improve visuomotor locomotor
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learning. However, punished reinforcement feedback led to faster spatial re-adaptation
compared to reward and control groups. Together, this points towards a possible

visually-guided locomotor paradigm to restore gait symmetry.
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Figure 1. Experimental methods. A. Experimental setup. Participants walked with a
screen in front of the treadmill, with a reflective marker on the 5" metatarsal. During the
visuomotor walking task, the real-time position of the toe was projected on the screen
as a blue dot. B. Progression of visuomotor task. Real-time toe location during the
swing phase of gait will be displayed as a solid blue dot on the screen. Red boxes
represent the target that will be displayed on the screen. Empty blue circles represent
the position of the toe on the opposite (stance) leg (not visible to the participant). Red
and blue arrows indicate which direction the target and toe location will move
(respectively) and will not be displayed on the screen. C. Experimental paradigm.
Double lines indicate when visuomotor gain will be equal for both left and right treadmill
belts. Singular lines indicate the visuomotor gain for each right and left side during the
visuomotor adaptation condition. During the adaptation period, the feedback that the
participants see will be different for the control, reward and punishment groups. Reward
and Punishment saw scores go up and down if the toe marker is within and outside of 4
cm from the center of the target, respectively.
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Figure 2. Adaptation with the visuomotor task on the first day in error symmetry (A-B),
step length (SL) symmetry (C-D), and step time (ST) symmetry (E-F). A, C, E. Stride-by-
stride changes during the first 100 and last 100 strides during adaptation are plotted
with moving average of 3 strides. Vertical dotted line are lines at stride 5, 30, and 170,
and coincides with the bar graph phases. Horizontal dotted line at O indicates perfect
symmetry. B, D, F. Kinematic symmetry changes at initial (strides 1-5), early (strides 6-
30), late (strides 31-100) and plateau (last 30 strides). Error bars are standard error
bars. In black = Controls; In blue = Reward; In red = Punishment; ***: p < 0.001; **: p =
0.001-0.009; *: p = 0.010-0.049.
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Figure 3. Baseline conditions and de-adaptation with the visuomotor task on the first
day in error symmetry (A-B), step length (SL) symmetry (C-D), and step time (ST)
symmetry (E-F). A, C, E. Average of first 30 strides of baseline conditions with standard
error and stride-by-stride changes during the first 100 and last 100 strides during de-
adaptation are plotted with moving average of 3 strides. Vertical dotted line are lines at
stride 5, 30, and 170, and coincides with the bar graph phases. Horizontal dotted line at
0 indicates perfect symmetry. B, D, F. Kinematic symmetry changes at initial (strides 1-
5), early (strides 6-30), late (strides 31-100) and plateau (last 30 strides). Error bars are
standard error bars. In black = Controls; In blue = Reward; In red = Punishment; ***: p <
0.001; **: p = 0.001-0.009; *: p = 0.010-0.049.
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Figure 4. First and second exposure during adaptation in error symmetry (A-C), step
length (SL) symmetry (D-F), and step time (ST) symmetry (G-I). Kinematic symmetry
changes at initial (strides 1-5), early (strides 6-30), late (strides 31-100) and plateau
(last 30 strides). 0 indicates perfect symmetry. In black = first day. In red = second day.
Outlined in black = Controls; Outlined in blue = Reward; Outlined in red = Punishment.
*** p <0.001; **: p=0.001-0.009; *: p = 0.010-0.049.
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Figure 5. Exposure difference in in error symmetry (A-B), step length (SL) symmetry (C-
D), and step time (ST) symmetry (E-F) for adaptation (A, C, E) and de-adaptation (B, D,
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Figure 6. First (in black) and second exposure (in red) during de-adaptation in error
symmetry (A-C), step length (SL) symmetry (D-F), and step time (ST) symmetry (G-I).
Kinematic symmetry changes at initial (strides 1-5), early (strides 6-30), late (strides 31-
100) and plateau (last 30 strides). O indicates perfect symmetry. ***: p < 0.001; **: p =
0.001-0.009; *: p = 0.010-0.049.



Controls (n =9) | Reward (n =9) | Punishment (n =9)
Age (years) 214+£35 204 +£1.9 194+14
Sex (F:M) 5:4 4:5 5:4
R dominant leg 7 6 9
Leg length (cm) 80.7+6.5 81.2+83 83.0+5.8
Step length (cm) 54.1+45 54.4+3.8 55.7+3.8
VM task speed (m/s) | 0.72 + 0.06 0.72+£0.07 0.74 £ 0.05
Table 1. Participant demographics.
Controls Reward Punishment
> Initial 51.38 + 26.69 66.22 + 33.64 | 71.59 + 21.51
'§ g E | Early 27.69 £ 16.15 29.29+11.33 |26.56 + 18.18
L0 ;é Late 13.27 £10.5 2295+ 11.34 |17 £ 9.81
® Plateau | 10.34 £ 12.19 20.73+14.35 |14.71+£21.09
2 | Initial 0.003 +£ 0.023 0.006 + 0.056 | 0.021 + 0.033
- “‘E-" Early -0.067 £ 0.036 -0.075 £ 0.019 | -0.07 £ 0.034
@ ; Late -0.093 + 0.021 -0.082 + 0.017 | -0.089 £ 0.02
® | Plateau | -0.098 * 0.025 -0.085 + 0.024 | -0.094 £ 0.037
> | Initial -0.012 £ 0.026 0 +0.045 -0.002 + 0.036
- g Early 0.015 + 0.021 0.028 £ 0.04 0.014 £ 0.049
@ ; Late 0.031 £ 0.023 0.037 £0.042 | 0.023 £ 0.032
® | Plateau | 0.045 + 0.025 0.04 + 0.023 0.028 + 0.029

Table 2. Mean and standard deviation for adaptation on the first day.




Controls Reward Punishment
> Pre-slow |-5.23 + 21.04 9.12 + 26.62 7.27 + 24.46
‘g Pre-fast 2.22 +14.69 6.22 + 20.51 -2.77 + 14.66
;E Initial -28.97 + 18.34 -42.64 + 25.56 | -44.39 £ 27.03
» E Early -18.46 + 13.78 -9.89+15.7 -12.72 + 19.66
g Late -10.14 + 8.18 1.02 £ 9.41 -5.21 £ 12.09
w Plateau -5.96 £ 9.09 0.78 £9.10 -2.93 + 14.39
Pre-slow | 0.0003 £0.034 |0.012+0.037 |0.005*0.033
% Pre-fast -0.014 + 0.039 0.016 £ 0.026 | 0.004 + 0.028
E Initial -0.066 + 0.027 -0.093 £ 0.038 | -0.094 + 0.047
& | Early -0.035 £ 0.026 -0.026 £ 0.029 | -0.024 + 0.037
o | Late -0.019 £ 0.010 -0.002 £ 0.018 | -0.009 + 0.023
Plateau -0.008 £ 0.014 -0.005 £ 0.015 | -0.006 + 0.025
Pre-slow | 0.016 £ 0.015 -0.007 £ 0.026 | 0.003 £ 0.03
% Pre-fast -0.002 £ 0.019 -0.005 £ 0.028 | 0.002 + 0.015
E Initial 0.065 £ 0.041 0.045+0.033 |0.042 £0.037
o | Early 0.045 + 0.038 0.029 £ 0.030 | 0.022 + 0.025
t | Late 0.026 + 0.025 0.015+£0.025 |0.01+0.017
Plateau 0.012+0.016 0.01 £0.023 0.008 £ 0.012

Table 3. Mean and standard deviation for baseline conditions and de-adaptation on the

first day.




95% Confidence
interval for
Bout 1 Bout 2 p-value difference
> Initial Early < 0.001 [-35.21, -14.74]
® Late < 0.001 [-46.12, -21.66]
g Plateau | <0.001 |[-49.84,-22.09]
u>>' Early Late 0.024 [-16.97, -0.86]
5 Plateau 0.022 [-20.79, -1.19]
= [Late Plateau | 1.000 [-7.65, 3.51]
Initial Early < 0.001 [-0.08, -0.04]
> Late < 0.001 [-0.09, -0.06]
© Plateau < 0.001 [-0.10, -0.06]
g Early Late 0.011 [-0.03, -0.003]
Py Plateau 0.011 [-0.04, -0.004]
d Late Plateau 1.00 [-0.01, 0.006]
Initial Early 0.005 [0.01, 0.03]
> Late < 0.001 [0.02, 0.05]
© Plateau < 0.001 [0.02, 0.06]
E Early Late 0.002 [0.01, 0.03]
Py Plateau 0.002 [0.01, 0.04]
';, Late Plateau 0.159 [-0.002, 0.02]

Table 4. Bonferroni post-hoc tests for main effect of time during de-adaptation on the
first day. SL = Step length; ST = Step time.

Controls Reward Punishment
> Initial 50.69 £ 16.07 61.51+£16.33 |48.37 £ 18.68
'§ g E | Early 16.68 + 7.89 34.01 £ 18.41 14.26 + 12.89
(o ;é Late 9.9+5.71 2417 £11.23 |4.98 +5.33
» Plateau | 7.73 £ 8.69 22.83+11.03 |6.39+6.56
2 | Initial -0.01 £ 0.026 0.002 £0.023 |-0.012+0.025
4 “‘é Early -0.083 + 0.026 -0.063 £ 0.031 |-0.091 +£0.023
@ ; Late -0.099 + 0.008 -0.082 +0.016 |-0.114 £ 0.010
® | Plateau | -0.104 + 0.015 -0.083 +0.019 |-0.111 +£0.011
> | Initial -0.007 £ 0.016 0.007 £ 0.021 -0.002 £ 0.032
- g Early 0.028 £ 0.027 0.021 £0.029 |0.017 £0.033
@ §, Late 0.035 + 0.031 0.04 £ 0.032 0.03 £ 0.030
® | Plateau | 0.041 + 0.027 0.043+£0.023 |0.038 +0.014

Table 5. Mean and standard deviation for adaptation on the second day.




Controls Reward Punishment
95% 95% 95%
Confidence Confidence Confidence
interval for interval for interval for
Bout1 | Bout2 | p-value | difference p-value | difference p-value | difference
Initial Early 0.037 [1.65, 56.05] 0.006 [10.07, 54.36] | 0.001 [20.21, 58.94]
Late 0.001 [17.48,61.41] | 0.003 [15.38, 65.23] | <0.001 [28.96, 69.02]
Q Plateau | 0.002 [18.11,65.88] | 0.007 [12.33, 71.84] | 0.001 [22.25, 76.61]
g Early Late 0.032 [0.85, 20.35] 0.106 [1.36, 17.54] 0.191 [-3.20, 22.03]
% Plateau | 0.008 [3.66, 22.64] 0.181 [-3.18,22.92] | 0.692 [-9.56, 29.27]
'g Late Plateau | 0.728 [-2.57, 7.57] 1.000 [-7.46,11.02] | 1.000 [-10.69, 11.58]
“ Initial Early 0.001 [0.04, 0.11] 0.002 [0.03, 0.11] <0.001 | [0.06, 0.11]
Late <0.001 | [0.08, 0.11] 0.001 [0.04, 0.13] <0.001 | [0.07,0.14]
Plateau | <0.001 | [0.08, 0.12] 0.003 [0.04, 0.14] <0.001 | [0.06, 0.15]
‘qz; Early Late 0.060 [-0.001, 0.04] | 0.178 [-0.004, 0.03] | 0.114 [-0.004, 0.05]
; Plateau | 0.055 [-0.001, 0.05] | 0.305 [-0.01, 0.04] 0.494 [-0.02, 0.06]
é Late Plateau | 0.679 [-0.004, 0.01] | 1.000 [-0.01, 0.02] 1.000 [-0.02, 0.02]
Initial Early 0.032 [-0.06, -0.003] | 0.084 [-0.05, 0.002] | 0.469 [-0.05, 0.01]
Late 0.002 [-0.07,-0.02] | 0.003 [-0.06, -0.01] | 0.109 [-0.06, 0.01]
> Plateau | 0.002 [-0.08, -0.02] | 0.008 [-0.07,-0.01] | 0.018 [-0.07, -0.01]
g Early Late 1.000 [-0.04, 0.02] 0.095 [-0.03, 0.002] | 1.000 [-0.04, 0.02]
; Plateau | 0.106 [-0.05,0.004] | 0.172 [-0.04, 0.005] | 0.381 [-0.05, 0.01]
[72]
5 Late Plateau | 0.890 [-0.03, 0.01] 1.000 [-0.03, 0.02] 1.000 [-0.03, 0.02]

Table 6. Bonferroni post-hoc tests for main effect of time during adaptation. SL = Step

length; ST = Step time.




Controls Reward Punishment
> Pre-slow |-9.1+19.46 545+ 12.2 -9.41 + 13.67
‘g Pre-fast 1.94 £ 13.94 6.63 + 15.47 -6.02 + 8.18
;E Initial -45.41 + 22.27 -43.97 £+ 26.19 | -52.46 + 20.48
» E Early -23.43 +7.86 -15.29+12.09 |-24.85+ 13.89
g Late -6.91 + 4.54 0.38 +5.25 -10.14 £ 9.69
w Plateau -1.27 + 8.87 -0.37 £ 5.27 -8.22+5.72
Pre-slow |-0.0173 +£0.019 | 0.003 + 0.021 -0.006 + 0.018
% Pre-fast 0.007 £ 0.014 0.008 £ 0.031 -0.002 £ 0.014
E Initial -0.105 + 0.042 -0.096 + 0.037 |-0.11 +£0.047
& | Early -0.045 + 0.02 -0.036 £ 0.025 | -0.047 £ 0.026
o | Late -0.011 £ 0.008 -0.005 £ 0.007 |-0.018 £0.017
Plateau -0.001 £ 0.013 -0.004 £ 0.009 |-0.015%0.01
Pre-slow | 0.014 +0.016 0.006 £ 0.033 | 0.013 +£0.020
% Pre-fast 0.003 + 0.020 0.005+0.024 |0.003 +0.024
E Initial 0.044 £ 0.024 0.055+0.029 | 0.046 + 0.031
o | Early 0.038 £ 0.022 0.032+0.017 | 0.029 + 0.020
k. | Late 0.017 £ 0.022 0.016 £ 0.021 0.015+£0.018
Plateau 0.006 £ 0.012 0.011£0.024 |0.012+0.015

Table 7. Mean and standard deviation for baseline conditions and de-adaptation on the

second day.




Controls Reward Punishment
95% 95% 95%
Confidence Confidence Confidence
interval for interval for interval for
Bout 1 Bout 2 | p-value difference p-value | difference p-value difference
Initial Early 0.150 [-36.80,4.31] | 0.020 [-56.63, -4.80] | <0.001 [-40.52, -18.75]
Late 0.005 [-47.98, -9.35] | 0.003 [-71.67,-16.65] | <0.001 [-60.14, -21.35]
% Plateau | 0.007 [-57.39, -9.76] | 0.002 [-69.41, -17.61] | 0.002 [-67.83, -17.88]
E Early Late 0.027 [-23.51,-1.33] | 0.015 [-23.91, -2.67] | 0.036 [-21.56, -0.65]
? Plateau | 0.012 [-30.74, -3.91] | 0.074 [-26.65, 1.06] 0.105 [-28.62, 2.19]
u% Late Plateau | 0.099 [-10.56, 0.74] | 1.000 [-8.06, 9.05] 1.000 [-9.47, 5.26]
Initial Early 0.004 [-0.08,-0.02] | 0.002 [-0.10, 0.03] <0.001 [-0.09, -0.04]
Late <0.001 [-0.10, -0.04] | <0.001 [-0.13, -0.05] <0.001 [-0.13, -0.05]
Plateau | <0.001 [-0.12,-0.04] | <0.001 [-0.13, -0.06] 0.001 [-0.14, -0.04]
‘qz; Early Late 0.018 [-0.05, -0.004] | 0.015 [-0.05, -0.01] 0.041 [-0.04, -0.001]
; Plateau | 0.012 [-0.06, -0.01] | 0.063 [-0.06, 0.001] 0.089 [-0.053, 0.003]
é Late Plateau | 0.157 [-0.02, 0.003] | 1.000 [-0.01, 0.01] 1.000 [-0.02, 0.01]
Initial Early 0.981 [-0.02, 0.04] 0.033 [0.001, 0.04] 0.134 [-0.004, 0.04]
Late 0.005 [0.01, 0.05] 0.002 [0.02, 0.06] 0.057 [-0.001, 0.06]
> Plateau | 0.004 [0.02, 0.08] 0.004 [0.02, 0.07] 0.054 [-0.001, 0.07]
g Early Late 0.097 [-0.003, 0.04] | 0.009 [0.004, 0.03] 0.085 [-0.001, 0.03]
; Plateau | 0.053 [-0.001, 0.07] | 0.006 [0.01, 0.03] 0.082 [-0.002, 0.03]
[72]
5 Late Plateau | 0.288 [-0.006, 0.03] | 0.109 [-0.001, 0.01] 1.000 [-0.01, 0.01]

Table 8. Bonferroni post-hoc tests for main effect of time during de-adaptation. SL =
Step length; ST = Step time.




