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The Impact of Command-Following Task on
Human-in-the-Loop Control Behavior

S. Alireza Seyyed Mousavi, Faina Matveeva, Xingye Zhang, T. Michael Seigler, and Jesse B. Hoagg

Abstract—This paper presents results from an experiment in
which 44 human subjects interact with a dynamic system 40 times
over a one-week period. The subjects are divided into 4 groups.
All groups interact with the same dynamic system, but each
group performs a different sequence of command-following tasks.
All reference commands have frequency content between 0 and
0.5 Hz. We use a subsystem identification algorithm to estimate
the control strategy (feedback and feedforward) that each subject
uses on each trial. The experimental and identification results
are used to examine the impact of the command-following tasks
on the subjects’ performance and the control strategies that
the subjects learn. Results demonstrate that certain reference
commands (e.g., a sum of sinusoids) are more difficult for
subjects to learn to follow than others (e.g., a chirp), and
the difference in difficulty is related to the subjects’ ability to
match the phase of the reference command. In addition, the
identification results show that differences in command-following
performance for different tasks can be attributed to 3 aspects of
the subjects’ identified controllers: i) compensating for time delay
in feedforward; ii) using a comparatively accurate approxima-
tion of the inverse dynamics in feedforward; and iii) using a
feedback controller with comparatively high gain. Results also
demonstrate that subjects generalizes their control strategy when
the command changes. Specifically, when the command changes,
subjects maintains relatively high gain in feedback and retains
their feedforward internal model of the inverse dynamics. Finally,
we provide evidence that subjects use prediction of the command
(if possible) to improve performance but that subjects can learn
to improve performance without prediction. Specifically, subjects
learn to use feedback controllers with comparatively high gain to
improve performance even though the command is unpredictable.

Index Terms—Human control behavior, learning, subsystem
identification, task, generalization, prediction.

I. INTRODUCTION

Humans often perform command-following tasks when in-
teracting with dynamic systems. One example is driving an
automobile, where the command-following task is to steer
the automobile along the path of the road. In this case, the
reference command is the road path trajectory. Humans learn
to perform command-following tasks for a variety of reference
commands—some of which are more challenging than others.
In some cases, the reference command is known in advance or
at least predictable. Conversely, the reference command may
be both unknown and unpredictable. For example, in driving,
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the road may be frequently traveled and thus familiar, or it
may be unfamiliar and unpredictable (e.g., a winding road).

From a control-system-design perspective, the reference
command often influences controller design. Generally, some
knowledge of the reference command is required to design a
control system that achieves good command-following perfor-
mance. For example, a control strategy that incorporates an
approximation of the inverse system dynamics in feedforward
can yield good command-following performance. However,
inverse dynamics are generally not causal, and thus, approx-
imating them in feedforward may require that the reference
command is known in advance or at least predictable. Al-
ternatively, feedback control can be used to achieve good
command-following performance by selecting a controller that
makes the magnitude of the loop transfer function large at
the frequencies of the reference command. The most common
example of this approach is the use of integral control for
following step commands. In this case, the controller contains
an integrator, which makes the magnitude of the loop transfer
function infinite at zero frequency (i.e., the frequency of a
constant). This idea can be generalized to a variety of periodic
commands by designing feedback controllers that incorporate
internal models of the reference command [1]–[6]. In this case,
accurate knowledge of the reference command’s frequency
content is required to design the feedback controller.

This paper examines the strategies that humans use for
command-following tasks. Human-in-the-loop (HITL) control
behavior and human learning have been studied in a variety of
experiments (e.g., [7]–[10]), as well as by comparing proposed
models of HITL control strategies with results from HITL
experiments (e.g., [11]–[22]). However, [23] demonstrates
that different control strategies can yield similar closed-loop
responses. Thus, a proposed model that reproduces qualitative
features of an HITL experiment is not necessarily an accurate
representation of the human’s control strategy.

As an alternative, system identification methods can be used
to estimate models of the control strategies that humans use
in HITL experiments [24]–[48]. In [49], [50], a subsystem
identification (SSID) algorithm is presented, which can be
used to identify the best-fit linear time-invariant (LTI) model
of the control strategy (feedback and feedforward) used by
a human in an experiment. This method does not require
that a specific control strategy is assumed a priori. In [23],
this SSID algorithm is used to model the feedforward and
feedback control (including feedback time delay) that subjects
use in an HITL experiment, where subjects interact with an
LTI dynamic system and perform a command-following (i.e.,
pursuit-tracking) task. The results in [23] demonstrate that
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subjects learn to update the feedforward (i.e., anticipatory)
control until it approximates the inverse dynamics of the
system with which the subjects interact; this result supports
the internal model hypothesis in neuroscience [51]–[53].

The experiment in [23] has subjects repeat one command-
following task multiple times. This raises questions regarding
the impact of the command-following task (i.e., reference
command) on HITL control behavior. First, do humans learn to
approximate the system’s inverse dynamics in feedforward for
a variety of command-following tasks, and if so, how does
the specific task impact their ability to learn to implement
the approximate inverse dynamics? Second, what happens if
the task changes? Do subjects generalize their control strategy
from one task to another, and if so, how do they generalize?
A control strategy is said to generalize if it can be learned
in one situation (e.g., one task) and effectively transferred to
another situation (e.g., another task) [54]. Studies that provide
evidence of generalization include [55]–[59]. Third, what is
the impact of reference-command prediction? If the same task
(i.e., reference command) is repeated multiple times, then a
subject can learn the task, which may allow them to use a
control strategy that incorporates a prediction of the reference
into the future. Prediction can be interpreted mathematically
as using a noncasual (i.e., improper) control strategy. Thus,
prediction may be important for approximating the inverse
dynamics in feedforward, because if an LTI dynamic system
is strictly proper, then its inverse dynamics are improper.
Even if a proper approximation of the inverse dynamics are
used in feedforward, then the approximation contains phase
lead at certain frequencies, and prediction may help humans
implement the required phase lead.

This paper provides new insights into the questions in
the previous paragraph. We present results from an HITL
experiment, where 44 subjects interact with an LTI dynamic
system 40 times over a one-week period. The subjects are
divided into 4 groups, where each group has 11 subjects.
Each group interacts with the same LTI dynamic system but
performs a different sequence of command-following tasks
over the trials. We extend the SSID algorithm from [23], [49],
[50] to allow for identification of the feedforward time delay
as well as the feedforward transfer function, feedback transfer
function, and feedback time delay. We use this extended SSID
method to model the control strategies that each subject uses
on each trial, and we examine the impact of different tasks by
analyzing the subjects’ command-following performance and
the best-fit models of the subjects’ control strategies.

This paper presents several new contributions. First, exper-
imental results show that certain reference commands (e.g.,
a sum of sinusoids) are more difficult for subjects to learn
to follow than others (e.g., a chirp), and the difference in
difficulty is related to the subjects’ ability to match the phase
of the reference command. Furthermore, the SSID results
suggest that differences in command-following performance
for different tasks can be attributed to 3 aspects of the subjects’
identified controllers: i) compensating for time delay in feed-
forward; ii) using a comparatively accurate approximation of
the inverse dynamics in feedforward (particularly phase lead);
and iii) using a feedback controller with comparatively high

gain across the frequency range of the reference command.
Second, we provide evidence that the subjects generalize

their control strategy when the reference command changes,
and we identify specific elements of their control that are
generalized. Specifically, the SSID results show that subjects
generalize by retaining aspects of their feedback and feedfor-
ward control strategies—subjects maintain relatively high gain
in their feedback control and retain their feedforward internal
model of the inverse dynamics.

Third, we provide evidence that subjects use prediction
of the reference (if possible) to improve command-following
performance but that subjects can learn to improve perfor-
mance without prediction. The SSID results suggest that if
the reference command is unpredictable, then subjects cannot
learn to compensate for time delay in feedforward or use a
comparatively accurate approximation of the inverse dynamics
in feedforward (particularly phase lead). However, in this
case, subjects can improve performance by learning to use
a feedback controller with comparatively high gain across the
frequency range of the reference command. Some preliminary
results from this paper appear in [60]; however, this article
goes beyond [60] by presenting SSID results that include time
delay in the feedforward path, and by presenting significantly
extended methods, analyses, and discussion in Sections III–VI.

II. EXPERIMENTAL METHODS

Forty-four people (38 male and 6 female) voluntarily partic-
ipated in this study. The subjects were 18 to 35 years of age,
and they had no known motor control or neurological disor-
ders. The University of Kentucky’s Institutional Review Board
approved this study under IRB protocol 44649. All participants
signed an informed consent form prior to participating in the
experiment.

In this study, subjects use a single-degree-of-freedom joy-
stick to affect the single-degree-of-freedom horizontal position
of a controlled object that is displayed on the screen of a
computer. The position of the joystick is denoted by u, which
is the input to a dynamic system. The horizontal position of
the controlled object is denoted by y, which is the output of the
dynamic system. Another object also moves on the computer
screen, and its horizontal position is denoted by r, which is
independent of u. This object is called the reference object.
The signals u, y, and r are functions of time t. Figure 1 is a
diagram of the experimental setup, and Fig. 2 is a photograph
of the experimental setup.

Prior to interacting with the experimental setup, each subject
is shown the computer screen and told that manipulating the
joystick moves the controlled object. Subjects are told that
their objective is to manipulate the joystick and attempt to
make the controlled and reference objects have the same
horizontal position at each instant of time. Thus, each subject’s
objective is to generate a control u that makes the magnitude
of the error e , r − y as small as possible. The subjects
have no knowledge of the dynamic system relating u and y,
or the reference object’s trajectory r prior to the experiment.
Furthermore, prior to the experiment, the subjects have no
experience with the experimental setup (e.g., the joystick or
computer screen interface).
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Fig. 1. Experimental setup. A subject uses a joystick to affect the horizontal
position y of a controlled object displayed on a computer screen. The joystick
position u is the input to a dynamic system, and the controlled object’s
position y is the output of the dynamic system. A reference object’s position
r is also shown on the computer screen.

Fig. 2. Photograph of the experimental setup.

A trial is a 60-s period during which a subject manipulates
the joystick. Each subject performed 40 trials of the experi-
ment over 7 days. These trials were divided into 4 sessions
of 10 trials, and each session was completed in a 20-minute
period. Each subject completed no more than one session in
a 12-hour period.

For each session, a subject sits in a chair facing the computer
screen, which is approximately 60 cm from the subject’s
eyes. The computer screen is 47.6 cm high and 26.8 cm
wide. The subject uses a hand of their choice to manipulate
the single-degree-of-freedom rotational joystick, which is a
Teledyne Gurley model number 8225-6000-DQSD. On all
trials, subjects chose to use their dominant hand to manipulate
the joystick.

The controlled object’s position y satisfies the linear time-
invariant (LTI) differential equation

...
y (t) + a2ÿ(t) + a1ẏ(t) + a0y(t) = b1u̇(t) + b0u(t), (1)

where a0 = 6.4, a1 = 9.76, a2 = 5.2, b0 = 7.04, and b1 =
3.2, and the initial conditions are ÿ(0) = ẏ(0) = y(0) = 0.
Thus, the transfer function from u to y is given by

G(s) ,
3.2(s+ 2.2)

(s+ 1.6)(s2 + 3.6s+ 4)
,

which has poles at −1.6 and −1.8±0.87, and a zero at −2.2.
We examine the effects of command-following task (e.g.,

reference command) by using different reference-command
signals r for different subjects and on different trials. We
consider 22 different reference-command signals. For all t ∈

[0, 60], define the reference command

cc(t) , 2 sin
πt2

120
,

which is an 60-s chirp with frequency content between
0 and 0.5 Hz. For all t ∈ [0, 60], define the reference command

cs(t) ,
1

3

30∑
j=1

cos

(
2πjt

60
− j(j − 1)π

30

)
,

which is an 60-s sum of 30 sinusoids with evenly spaced
frequencies between 0 and 0.5 Hz and with Schroeder
phases [61]. For all t ∈ [0, 60] and all i ∈ {1, . . . , 20}, define
the reference command

ci(t) ,
1

3

30∑
j=1

cos

(
2πjt

60
+ φi,j

)
,

where for all i ∈ {1, . . . , 20} and all j ∈ {1, . . . , 30}, φi,j is
a randomly selected phase such that ci(0) = 0 and the peak
magnitude is less than 2.6, that is, maxt∈[0,60] |ci(t)| < 2.6.
Thus, ci is an 60-s sum of 30 sinusoids with evenly spaced
frequencies between 0 and 0.5 Hz and with randomly selected
phases φi,j . The units of the reference command are hash
marks (hm), which are vertical lines separated by 2.5 cm on
the computer display. The computer screen displays a range
of ±8 hm.

The dynamic system (1) is simulated using a dSPACE
DS1103 control board. The dSPACE board also measures u,
and the ControlDesk software is used to display the controlled
object and reference object on the computer screen.

To examine the effects of task (i.e., reference command),
the 44 subjects are divided into 4 groups, where each group
has 11 subjects. All subjects interact with the dynamic sys-
tem (1), but each group has a different sequence of tasks (i.e.,
reference commands). Group 1 performs 40 trials, where for
all 40 trials, r = cc. Group 2 performs 40 trials, where for all
40 trials, r = cs. Group 3 performs 40 trials, where for trials
i ∈ {1, 2, . . . , 20}, r = cc and for trials i ∈ {21, 22, . . . , 40},
r = cs. Group 4 performs 40 trials, where for trials i ∈
{1, 2, . . . , 20}, r = ci and for trials i ∈ {21, 22, . . . , 40},
r = cs. Note that the reference commands c1, . . . , c20 for
group 4’s first 20 trials are unpredictable because the phases
φi,j are randomly selected.

To examine the effect of the chirp reference command cc
in comparison to the sum-of-sinusoids reference command cs,
we compare experimental and SSID results for group 1 to
those for group 2. To examine the effect of changing task
from cc to cs, we compare experimental and SSID results for
group 3 to those for groups 1 and 2. In particular, we examine
whether or not the subjects in group 3 generalize their control
strategy from the task on the first 20 trials to the task on the
last 20 trials. To examine the effect of unpredictable reference
commands, we compare experimental and SSID results for
group 4 to those for group 2. For example, we examine
whether or not the subjects in group 4 learn to improve their
performance over the first 20 trials even though the reference
command is unpredictable.
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III. EXPERIMENTAL DATA

For each of the 1760 trials, we record r, u, and y with a
sample time of Ts = 0.02 s. The sampled data are denoted by
{rk}nk=1, {uk}nk=1, and {yk}nk=1, where n = 3000 samples.
For k ∈ {1, . . . , n}, we define ek , rk − yk, which is the
command-following error.

A divergent trial is a trial, where for any k ∈ {1, . . . , n},
yk exceeds ±8 hm display limits. As shown in Table I, there
are more divergent trials during the earlier trials than during
the later trials. Group 3 has the most divergent trials—a total
of 11, which is 2.5% of the trials. Divergent trials are omitted
from the results reported in the rest of this paper.

TABLE I
NUMBER OF DIVERGENT TRIALS.

Group Trials Trials Trials Trials Trials Trials Total
1–5 6–15 16–20 21–25 26–35 36–40

1 0 0 1 0 0 0 1
2 2 0 0 0 0 0 2
3 3 5 0 1 1 1 11
4 4 3 0 0 0 1 8

A. Time-Domain Data

For each trial, we define the time-averaged error

‖e‖ , 1

n

n∑
k=1

|ek|.

Figures 3 and 4 show y, r, and e for the first and last trials of
the subject from each group whose ‖e‖ on the last trial is the
median (i.e., 6th best) of the subjects in the group. For each
group, the median subject’s ‖e‖ on the last trial is less than
their ‖e‖ on the first trial. The time-averaged error on the last
trial for the subject in group 1 is less than that for the subject
in group 2, which is less than that for the subject in group 3,
which is less than that for the subject in group 4.
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Fig. 3. Output y and reference r on the first and last trials of the subject
from each group whose ‖e‖ on the last trial is the median of the group.
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Fig. 4. Error e on the first and last trials of the subject from each group
whose ‖e‖ on the last trial is the median of the group.

Figure 5 shows the mean and standard deviation of ‖e‖ on
each trial for groups 1, 2, and 3. The open-loop (i.e., u = 0)
time-averaged errors with cc and cs are 1.20 and 1.14. By the
last trial, the mean ‖e‖ for each group is at least 50% better
than open loop. The mean ‖e‖ for groups 1 and 2 decreases
consistently over the trials. However, on each trial, the mean
‖e‖ for group 1 is less than that for group 2, which suggests
that the chirp cc is easier to follow than the sum of sinusoids cs.

In contrast, the mean ‖e‖ for group 3 increases 54% from
trial 20 to 21, which corresponds to the change in task from
cc to cs. The mean ‖e‖ for group 3 is comparable to the mean
‖e‖ for group 1 during the first 20 trials and is comparable to
the mean ‖e‖ for group 2 during the last 20 trials. On trial 21,
the mean ‖e‖ for group 3 is greater than that of group 2 on
trial 21 but is still 35% less than the mean ‖e‖ for group 2
on trial 1. In fact, the mean ‖e‖ for group 3 on trial 21 is
less than the mean ‖e‖ for group 2 on trials 1 to 13. This
observation suggests that when the task changes on trial 21,
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Fig. 5. Mean and standard deviation of ‖e‖ on each trial for groups 1, 2, and
3. For all groups, the mean ‖e‖ decreases from trial 1 to 40. However, the
mean ‖e‖ for group 3 increases from trial 20 to 21 when the task changes.
The ◦ is the mean, and the lines indicate the standard deviation.
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the subjects in group 3 generalize the control strategies that
they learn during the first 20 trials.

Figure 6 shows the mean and standard deviation of ‖e‖ on
each trial for groups 2 and 4. For each group, the mean ‖e‖
decreases over the 40 trials. By trial 40, the mean ‖e‖ for each
group is at least 39% better than open loop. Recall that for
group 4, the reference is different for each of the first 20 trials.
Since the task changes on each trial, the subjects in group 4
are limited in their ability to use prediction of the reference.
Nevertheless, the mean ‖e‖ for group 4 decreases by 31% over
the first 20 trials. However, the mean ‖e‖ for group 4 does not
change significantly between trials 11 and 20, suggesting that
the subjects reach near-steady-state performance. Note that the
open-loop (i.e., u = 0) time-averaged error for group 4 on
trials 1 to 20 is at least 1.13.
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Fig. 6. Mean and standard deviation of ‖e‖ on each trial for groups 2 and 4.
For both groups, the mean ‖e‖ decreases over the 40 trials. The ◦ is the mean,
and the lines indicate the standard deviation.

B. Frequency-Domain Analysis

For each trial, we calculate the discrete Fourier transform
(DFT) of {yk}nk=1 and {rk}nk=1 at the frequencies ωi =
2πi/60 rad/s, where i ∈ {1, 2, . . . , N}, which are N = 30
evenly spaced frequencies over the 0-to-0.5 Hz range. Let
ydft(ωi) and rdft(ωi) denote the DFT of {yk}nk=1 and {rk}nk=1

at ωi, respectively.
For each trial, define the frequency-averaged error in the

magnitude of the output

Em ,
1

N

N∑
i=1

∣∣∣∣ |ydft(ωi)| e∠rdft(ωi) − |rdft(ωi)| e∠rdft(ωi)

∣∣∣∣
=

1

N

N∑
i=1

∣∣∣∣ |ydft(ωi)| − |rdft(ωi)|
∣∣∣∣,

which is the frequency-averaged magnitude of the difference
between the ydft and rdft assuming that the phase of ydft is
equal to the phase of rdft. Similarly, for each trial, define the
frequency-averaged error in the phase of the output

Ep ,
1

N

N∑
i=1

∣∣∣∣ |rdft(ωi)| e∠ydft(ωi) − |rdft(ωi)| e∠rdft(ωi)

∣∣∣∣

=
1

N

N∑
i=1

|rdft(ωi)|
∣∣∣e∠ydft(ωi) − e∠rdft(ωi)

∣∣∣ ,
which is the frequency-averaged magnitude of the difference
between the ydft and rdft assuming that the magnitude of ydft

is equal to the magnitude of rdft.
Figures 7 and 8 show the mean and standard deviation of

Em and Ep for each group on each trial. These results are
similar to the time-domain results shown in Figs. 5 and 6.
However, for each group, the mean Ep is generally greater than
the mean Em, which suggests that the subjects’ command-
following error is a result of error in phase more than error
in magnitude. Tables II and III show the mean Em and mean
Ep for each group on different sets of trials.

For groups 1 and 2, the mean Em and mean Ep decrease
consistently over the trials; however, Tables II and III show
that the mean Ep decreases more (in absolute and percent)
than the mean Em. Specifically, for groups 1 and 2, the mean
Em decreases by 50% and 29% from the first 5 trials to the last
5 trials. In contrast, for groups 1 and 2, the mean Ep decreases
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Fig. 7. Mean and standard deviation of Em and Ep on each trial for groups 1,
2, and 3. The mean Em and Ep decrease from trial 1 to 40, but the mean
Ep decreases more (in absolute and percent) than the mean Em. The ◦ is the
mean, and the lines indicate the standard deviation.
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Fig. 8. Mean and standard deviation of Em and Ep on each trial for groups 2
and 4. The mean Em and Ep decrease from trial 1 to 40, but the mean Ep

decreases more (in absolute and percent) than the mean Em. The ◦ is the
mean, and the lines indicate the standard deviation.



6

TABLE II
MEAN Em .

Group Trials Trials Trials Trials Trials Trials
1–5 6–15 16–20 21–25 26–35 36–40

1 0.06 0.05 0.04 0.04 0.04 0.03
2 0.07 0.06 0.05 0.05 0.05 0.05
3 0.07 0.05 0.05 0.06 0.05 0.05
4 0.08 0.07 0.07 0.05 0.05 0.05

TABLE III
MEAN Ep .

Group Trials Trials Trials Trials Trials Trials
1–5 6–15 16–20 21–25 26–35 36–40

1 0.11 0.07 0.05 0.05 0.04 0.04
2 0.15 0.12 0.09 0.09 0.07 0.06
3 0.12 0.08 0.07 0.10 0.08 0.07
4 0.19 0.17 0.16 0.13 0.11 0.09

by 64% and 60% from the first 5 trials to the last 5 trials . This
observation suggests that these groups’ improvement in ‖e‖ is
attributed more to improvement in matching the phase of the
reference than improvement in matching the magnitude of the
reference. In addition, the mean Em for groups 1 and 2 are
comparable on many trials, whereas the mean Ep for group 2
is significantly greater than that for group 1 on every trial.
Thus, the fact that the mean ‖e‖ for group 2 is greater than
that for group 1 is attributed more to error in phase than error
in magnitude. This suggests that the sum of sinusoids cs is
more difficult to follow than the chirp cc, because it is more
difficult to match the phase of the reference than its magnitude.

For group 3, the mean Em and mean Ep decrease over the
first 20 trials where the task is the same (i.e., predictable);
increase from trial 20 to 21 where the task changes (i.e., is
unpredictable); and decrease over the last 20 trials where the
task is again the same. Tables II and III show that mean Em

and mean Ep increase by 20% and 43% from the last 5 trials
before the task changes (i.e., trials 16–20) to the first 5 trials
after the task changes (i.e., trials 21–25). Thus, the increase
in ‖e‖ when the task changes from cc to cs is attributed more
to error in phase than error in magnitude. On trials 21–25,
the mean Em and mean Ep for group 3 is less than those for
groups 2 and 3 on trials 1–5. This observation suggests that
when the task changes on trial 21, the subjects in group 3
generalize the control strategy that they learn during the first
20 trials.

For group 4, the mean Em and mean Ep decrease over
the first 20 trials; however, these metrics for group 4 are
consistently greater than and decrease less than for the other
groups. Furthermore, these metrics for group 4 do not change
significantly between trials 11 and 20. Notably, the mean Ep

for group 4 is significantly greater than that of the other
groups over the first 20 trials. Thus, group 4’s mean ‖e‖
over the first 20 trials is greater than that for the other
groups primarily because of error in phase as opposed to
error in magnitude. One possible explanation for Group 4’s
poor command-following performance over the first 20 trials
(relative to the other groups) is that the reference is different
on each trial, and thus, the subjects are limited in their

ability to predict the reference into the future. This potential
explanation is supported by the fact that the group’s command-
following error is attributed more to error in phase than error in
magnitude because limited predictive capability could manifest
itself in phase lag (i.e., the phase of y lagging the phase of
r). This hypothesis is discussed further with the SSID results
presented in Section V.

IV. MODELING CONTROL STRATEGIES USING SSID

We discretize G using a zero-order hold on the input with
sample time Ts = 0.02 s, which yields the discrete-time
transfer function G. Thus, (1) implies that

ŷ(z) = G(z)û(z), (2)

where û and ŷ are the z-transforms of uk and yk.
Each subject’s control strategy is modeled by the LTI control

architecture shown in Fig. 9, which is given by

û(z) = z−τfbGfb(z)ê(z) + z−τffGff(z)r̂(z), (3)

where r̂(z) and ê(z) are the z-transforms of rk and ek; Gfb and
Gff are the transfer functions of the feedback and feedforward
controllers; and the nonnegative integers τfb and τff are the
feedback and feedforward delays. Feedforward is the anticipa-
tory control determined solely from the reference rk, whereas
feedback is the reactive control determined from the observed
error ek. Define Tfb , 103τfbTs and Tff , 103τffTs, which are
the feedback and feedforward time delays in milliseconds. It
follows from (2) and (3) that the closed-loop transfer function
from rk to yk is

G̃yr(z) ,
G(z) [z−τffGff(z) + z−τfbGfb(z)]

1 + z−τfbGfb(z)G(z)
, (4)

and the closed-loop transfer function from rk to ek is

G̃er(z) , 1− G̃yr(z) =
1− z−τffGff(z)G(z)

1 + z−τfbGfb(z)G(z)
. (5)

rk

yk ek

Model of Subject’s Control Strategy

Delay
z−τff

Feedforward
Gff

Delay
z−τfb

Feedback
Gfb

uk

Fig. 9. Model of the control strategy. The control strategy is modeled using
feedforward transfer function Gff , feedforward delay τff , feedback transfer
function Gfb, and feedback delay τfb.

For each trial, we use SSID to determine the control strategy
(i.e., Gff , τff , Gfb, τfb) of the form (3) that is the best-fit to the
experimental data. For each trial and for i ∈ {1, 2, . . . , N},
define H(ωi) , ydft(ωi)/rdft(ωi), which is the closed-loop
frequency-response data from rk to yk.

Since yk is bounded, we assume that G̃yr is asymptotically
stable (i.e., its poles are contained in the open unit disk of
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the complex plane). Thus, it follows from (4) that Gff is
asymptotically stable. The SSID algorithm presented in this
section can be implemented in a computationally efficient
manner if Gff is finite impulse response (FIR). Thus, we let
Gff be FIR. Since Gff is asymptotically stable, the assumption
that Gff is FIR does not significantly restrict the class of
feedforward behavior; see [49] for more information.

The SSID objective is to determine Gff , τff , Gfb, and τfb
such that the modeled frequency response {G̃yr(eωiTs)}Ni=1

approximates the frequency-response data {H(ωi)}Ni=1. More
specifically, we seek to find the quadruple (Gff , τff , Gfb, τfb)
that minimizes the cost function

J(Gff , τff , Gfb, τfb) ,
N∑
i=1

∣∣∣G̃yr(eωiTs)−H(ωi)
∣∣∣2

=
N∑
i=1

∣∣∣∣∣
[
e−ωiTsτffGff(eωiTs) + e−ωiTsτfbGfb(eωiTs)

]
1 + e−ωiTsτfbGfb(eωiTs)G(eωiTs)

×G(eωiTs)−H(ωi)
∣∣∣2, (6)

subject to the constraint that G̃yr is asymptotically stable.
To identify Gff , τff , Gfb, and τfb, we develop an SSID

algorithm based on the method in [23]. However, [23] does
not address identification of τff . Thus, we extend the method
in [23] to identify not only Gff , Gfb, and τfb but also τff .
The details of this SSID algorithm are in Appendix A of
the Supplemental Material, and the method is summarized as
follows. First, we generate two candidate pools. The feedback
candidate pool contains possible models of Gfb and τfb.
Every element in this candidate pool is such that G̃yr is
asymptotically stable. The feedforward-delay candidate pool
contains possible values of τff . For each possible model in the
candidate pools, the cost J is convex in the coefficients of
Gff . Thus, for each model in the feedback candidate pool, we
solve a sequence of convex optimizations to find the best-fit
Gff and τff . Then, we search the feedback candidate pool to
determine the quadruple (Gff , τff , Gfb, τfb) that minimizes J .
This SSID algorithm has provable properties; see [49] for an
analysis of the algorithm without delay (i.e., τfb = τff = 0).

To achieve good command-following performance (i.e.,
yk ≈ rk, or equivalently, ek ≈ 0), it follows that the control
strategy should be such that |G̃er(eωTs)| is small for ω
in the frequency range of the command rk. Many different
control strategies can be used to achieve good command-
following performance—two such strategies are high gain in
feedback and approximate inverse dynamics G−1 in feedfor-
ward. For high gain in feedback, |Gfb(eωTs)| is large at the
frequencies of rk. In contrast, approximate inverse dynamics
in feedforward requires e−ωTsτffGff(eωTs) ≈ G−1(eωTs)
at the frequencies of rk. With either of these strategies, it
follows from (5) that |G̃er(eωTs)| is small at the frequencies
of rk. Thus, |ek| is small if G̃er is asymptotically stable.
Other control strategies that achieve good command-following
performance include combinations of approximating G−1 in
feedforward and using high gain in feedback. See [23, Sec. IV]
for a more detailed discussion of these different strategies.

Note that if yk ≡ rk, then G̃yr(e
ωTs) = 1 over the

frequency range of rk. In this case, the SSID problem is not
well posed because there are infinitely feedback z−τfbGfb and
feedforward z−τffGff controller pairs that minimize the cost
function (6). For example, (6) is minimized by any stabilizing
feedback controller z−τfbGfb if the feedforward controller
satisfies z−τffGff = G−1 over the frequency range of rk.
However, this degenerate case does not arise in the SSID
analysis presented in this paper, because for all trials, yk 6≡ rk.

We use the SSID algorithm in Appendix A of the Sup-
plemental Material as opposed to traditional system identi-
fication techniques (e.g., [62]–[66]), because the unknown
subsystem (3) is connected in feedback with G, and tradi-
tional system identification algorithms applied to closed-loop
architectures can yield trivial solutions [67], [68]. For example,
z−τffGff = G−1 and z−τfbGfb = −G−1 is a trivial solution
with many traditional system identification approaches. In
contrast, z−τffGff = G−1 and z−τfbGfb = −G−1 does not
minimize the SSID cost (6) because H(ωk) 6≡ 1. Thus,
z−τffGff = G−1 and z−τfbGfb = −G−1 is not a solution
with the SSID algorithm in Appendix A of the Supplemen-
tal Material. However, if the identified feedback controller
satisfies z−τfbGfb ≈ −G−1, then the denominator of (4)
is approximately zero. In this case, the SSID results are
ill conditioned. The feedback candidate pool is selected to
prevent z−τfbGfb = −G−1. Appendix B in the Supplemental
Material provides details on the SSID candidate pools used
in this paper. Although the feedback candidate pool prevents
z−τfbGfb = −G−1, the SSID algorithm could yield ill-
conditioned results if z−τfbGfb ≈ −G−1 at some frequen-
cies. Appendix C in the Supplemental Material examines the
conditioning of the SSID results presented in this paper and
shows that the qualitative results reported in this paper are not
impacted by ill-conditioned results.

V. SSID RESULTS

For each trial, we identify the second-order exactly proper
FIR feedforward transfer function Gff , feedforward delay τff ,
second-order strictly proper feedback transfer function Gfb,
and feedback delay τfb that minimize J . The feedforward
transfer function order is selected to allow Gff to approximate
G−1 with approximately 0.1% error over the 0-to-0.5 Hz
range of the reference commands used in the experiment. See
Appendix B in the Supplemental Material for the details of
the candidate pools. The SSID algorithm is implemented on
a supercomputer using parallel processing. Appendix D in the
Supplemental Material presents a validation analysis of the
SSID results.

Figures 10–13 show the Bode plots of the identified con-
trollers z−τffGff and z−τfbGfb, and the resulting closed-loop
transfer function G̃yr on trial 1 and 40 for the subject whose
‖e‖ on the last trial is the median of the subjects in that group.
For these subjects, the closed-loop transfer function G̃yr is
closer to one (i.e., unity magnitude and 0◦ phase) on trial 40
than on trial 1. This observation agrees with the time-domain
results in Figs. 3 and 4, which show that y approximates r
more closely on trial 40 than on trial 1. For these subjects,
G̃yr is closer to one on the last trial, in part, because the
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Fig. 10. Identified z−τffGff and z−τfbGfb, and resulting G̃yr on trial 1
and 40 for the median subject from group 1. The identified z−τffGff is closer
to G−1 and G̃yr is closer to one on trial 40 than on trial 1.
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Fig. 11. Identified z−τffGff and z−τfbGfb, and resulting G̃yr on trial 1
and 40 for the median subject from group 2. The identified z−τffGff is closer
to G−1 and G̃yr is closer to one on trial 40 than on trial 1.

identified z−τffGff for the last trial approximates the inverse
dynamics G−1 better than it does on the first trial.

A. Feedback and Feedforward Time Delay

Figures 14 and 15 show the mean and standard deviation
of the identified feedback time delay Tfb and the identified
feedforward time delay Tff on each trial for each group. The
average identified Tfb over all 40 trials for groups 1, 2, 3, and 4
are 232 ms, 215 ms, 213 ms, and 277 ms, respectively. These
results for human feedback time delay with visual feedback
are consistent with the results in [23]. Figure 14 also shows
that there is no consistent trend in the mean Tfb over the trials.

In contrast, the mean Tff tends to decrease over the 40 trials
for groups 1 and 2. This observation suggests that groups 1
and 2 learn to predict the reference r into the future and
use this prediction of the reference for feedforward control.
This prediction is possible for groups 1 and 2 because the
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Fig. 12. Identified z−τffGff and z−τfbGfb, and resulting G̃yr on trial 1
and 40 for the median subject from group 3. The identified z−τffGff is closer
to G−1 and G̃yr is closer to one on trial 40 than on trial 1.
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Fig. 13. Identified z−τffGff and z−τfbGfb, and resulting G̃yr on trial 1
and 40 for the median subject from group 4. The identified z−τffGff is closer
to G−1 and G̃yr is closer to one on trial 40 than on trial 1.
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Fig. 14. Mean and standard deviation of Tfb on each trial. The mean Tfb

does not exhibit a consistent trend. The ◦ is the mean, and the lines indicate
the standard deviation.
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reference is the same for all 40 trials. However, the mean Tff

for group 1 is consistently less than the mean Tff for group 2,
which suggests that cc is easier to learn to predict than cs.
Table IV shows the mean Tff for each group on different sets
of trials.

Trial Number
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0
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Trial Number
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Trial Number
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Fig. 15. Mean and standard deviation of Tff on each trial. The mean Tff

tends to decrease for trials where the task (i.e., reference) is predictable. The
◦ is the mean, and the lines indicate the standard deviation.

TABLE IV
MEAN Tff .

Group Trials Trials Trials Trials Trials Trials
1–5 6–15 16–20 21–25 26–35 36–40

1 118 40 22 15 12 10
2 292 183 119 94 55 43
3 98 43 37 114 81 36
4 350 311 350 299 195 147

For group 3, the mean Tff decreases over the first 20 trials
where the task is the same (i.e., predictable); increases sig-
nificantly from trial 20 to 21 where the task changes (i.e.,
is unpredictable); and decreases over the last 20 trials where
the task is again the same. Table IV shows that the mean Tff

increases by 208% from trials 16–20 to trials 21–25, which
corresponds to the change in task from cc to cs. On trials 21–
25, the mean Tff for group 3 is greater than that of group 2 on
trials 21–25 but is still 61% less than the mean Tff for group 2
on trials 1–5. In fact, the mean Tff for group 3 on trial 21 is
less than the mean Tff for group 2 on trials 1 to 7.

For group 4, the mean Tff is relatively large and does
not have a consistent trend over the first 20 trials where the
task changes (i.e., is unpredictable). However, from trials 21
to 40, the task for group 4 does not change. During these last
20 trials, the mean Tff for group 4 decreases. These trends
for groups 3 and 4 are consistent with the observation that
when the reference is predictable, subjects learn to predict the
reference command into the future and use this prediction of
the reference for feedforward control.

B. Feedforward Control

For each identified feedforward controller, we define

‖z−τffGff −G−1‖1 ,
1

π

∫ π

0

∣∣e−ωTsτffGff(eωTs)

−G−1(eωTs)
∣∣ dω,

which is the frequency-averaged magnitude of the differ-
ence between the identified z−τffGff and the inverse dynam-
ics G−1 over the 0-to-0.5 Hz range (i.e., the 0-to-π rad/s
range). Figure 16 shows the mean and standard deviation of
‖z−τffGff −G−1‖1 on each trial for each group, and Table V
shows the mean ‖z−τffGff−G−1‖1 for each group on different
sets of trials.
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Fig. 16. Mean and standard deviation of ‖z−τffGff −G−1‖1 on each trial.
The difference between the identified z−τffGff and G−1 decreases over the
trials. The ◦ is the mean, and the lines indicate the standard deviation.

TABLE V
MEAN ‖z−τffGff −G−1‖1 .

Group Trials Trials Trials Trials Trials Trials
1–5 6–15 16–20 21–25 26–35 36–40

1 0.77 0.43 0.39 0.33 0.33 0.27
2 1.46 1.01 0.83 0.70 0.64 0.59
3 0.83 0.52 0.49 0.76 0.60 0.58
4 2.05 2.09 2.03 1.34 1.03 0.85

For groups 1 and 2, the mean ‖z−τffGff −G−1‖1 decreases
consistently over the trials. Figures 17 and 18 are the Bode
plots of the average identified feedforward controller z−τffGff

over all 11 subjects on trials 1, 20, 21, and 40 for groups 1
and 2, respectively. For both groups, the average identified
z−τffGff on trial 40 approximates G−1 better than on trials 1,
20, and 21. Thus, by the last trial, the subjects learn an
approximation of G−1 and use this approximation in feedfor-
ward. This result agrees with the results reported in [23] for
a different experiment. This result also supports the internal
model hypothesis in neuroscience [51]–[53].

For group 3, the mean ‖z−τffGff − G−1‖1 decreases over
the first 20 trials where the task is the same; increases from
trial 20 to 21 where the task changes; and decreases over the
last 20 trials where the task is again the same. Table V shows
that mean ‖z−τffGff−G−1‖1 increases by 55% from trials 16–
20 to trials 21–25, which corresponds to the change in task
from cc to cs. However, the mean ‖z−τffGff − G−1‖1 for
group 3 on trials 21–25 is 8% less than that on trials 1–5 for
group 3, and 48% less than that on trials 1–5 for group 2. This
observation helps to explain the mechanism that the subjects
in group 3 used to generalize from the cc task to the cs task—
the subjects in group 3 retain some of their internal model
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Fig. 18. Average identified feedforward controller for group 2 on trials 1,
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of G−1, which did not change from trial 20 to 21. Figure 19
shows the average identified z−τffGff over all 11 subjects in
group 3 on trials 1, 20, 21, and 40. The average identified
z−τffGff on trial 21 approximates G−1 better than on trial 1.
In particular, the phase of z−τffGff is closer to the phase of
G−1 on trial 21 than on trial 1.

For group 4, the mean ‖z−τffGff−G−1‖1 does not decrease
over the first 20 trials where the task is changing, and
decreases over the last 20 trials where the task is the same.
The observation that the mean ‖z−τffGff − G−1‖1 does not
decrease over the first 20 trials is consistent with the task
changing on each trial. Approximating G−1 in feedforward
requires subjects to use phase lead over the 0-to-0.5 Hz range.
Since the subjects cannot predict the reference, it is difficult to
implement phase lead in feedforward. Figure 20 is the average
identified z−τffGff over all 11 subjects in group 4 on trials 1,
20, 21, and 40. The average identified z−τffGff on trial 20
does not approximate G−1 as well as on trial 40. In fact, the

0

2

4

Trial 1

M
a
gn

it
u
d
e

z!=,G, average
G!1

0.1 0.3 0.5

0

90

180

Frequency (Hz)

P
h
a
se

(d
eg

)

Trial 20

0.1 0.3 0.5
Frequency (Hz)

Trial 21

0.1 0.3 0.5
Frequency (Hz)

Trial 40

0.1 0.3 0.5
Frequency (Hz)

Fig. 19. Average identified feedforward controller for group 3 on trials 1,
20, 21, and 40. The shaded region shows the standard deviation.
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Fig. 20. Average identified feedforward controller for group 4 on trials 1,
20, 21, and 40. The shaded region shows the standard deviation.

average identified z−τffGff on trial 20 does not have phase lead
at frequencies greater than 0.1 Hz. Thus, some mechanism
other than learning to approximate G−1 in feedforward is
responsible for group 4 improving their performance over the
first 10 trials. This improvement in performance over the first
10 trials is most likely a result of the feedback control used
during these trials, which is discussed in Section V-C.

For group 4, one impediment to learning to approximate
G−1 in feedforward over the first 20 trials is the feedfor-
ward time delay, which causes phase lag in the feedforward
controller z−τffGff . Since the reference changes on each of
the first 20 trials, the subjects in group 4 cannot learn to
predict the reference and compensate for feedforward time
delay. Figure 21 is average identified feedforward transfer
function Gff over all 11 subjects in group 4 on trials 1, 20, 21,
and 40. Note that Gff is equal to the feedforward controller
if the feedforward delay is zero. Thus, we can interpret Gff

as the feedforward controller that the subjects could achieve
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if they could compensate completely for feedforward time
delay. Figure 21 shows that by trial 20, Gff approximates
G−1 comparatively well from 0 to 0.25 Hz. This observation
suggests that over the first 20 trials the subjects in group 4 are
attempting to approximating G−1 in feedforward; however, the
significant feedforward time delay (see Fig. 15) prevents an
accurate approximation of the phase of G−1.
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Fig. 21. Average identified feedforward transfer function for group 4 on
trials 1, 20, 21, and 40. The shaded region shows the standard deviation.

C. Feedback Control

For each identified feedback controller, we define

‖z−τfbGfb‖1 ,
1

π

∫ π

0

∣∣e−ωTsτfbGfb(eωTs)
∣∣ dω,

which is the frequency-averaged magnitude of z−τfbGfb

over the 0-to-0.5 Hz range. Note that ‖z−τfbGfb‖1 =
1
π

∫ π
0

∣∣Gfb(eωTs)
∣∣ dω, and thus ‖z−τfbGfb‖1 does not depend

on the feedback delay τfb. Figure 22 shows the mean and
standard deviation of ‖z−τfbGfb‖1 on each trial for each group,
and Table VI shows the mean ‖z−τfbGfb‖1 for each group on
different sets of trials.

For all groups, the mean ‖z−τfbGfb‖1 tends to increase
over the first 20 trials. In particular, for each group the mean
‖z−τfbGfb‖1 increases from trials 1–5 to trials 16–20. These
increases suggest that over the first 20 trials, the subjects learn
to use more feedback gain in a frequency-averaged sense. One
potential explanation is that through repeated interactions with
G, the subjects learn to increase the feedback gain without
causing closed-loop instability. To examine this conjecture,
we compute the stability margins (i.e., upward gain margin
and phase margin) associated with each identified feedback
controller. Tables VII and VIII show the mean upward gain
margins and mean phase margins for each group on differ-
ent sets of trials during the first 20 trials. For each group,
the mean upward gain margin decreases from trials 1–5 to
trials 16–20. Thus, over the first 20 trials, subjects learn
to increase feedback gain by using controllers with smaller
upward gain margins. This observations suggests that through
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Fig. 22. Mean and standard deviation of ‖z−τfbGfb‖1 on each trial. The
◦ is the mean, and the lines indicate the standard deviation.

TABLE VI
MEAN ‖z−τfbGfb‖1 .

Group Trials Trials Trials Trials Trials Trials
1–5 6–15 16–20 21–25 26–35 36–40

1 1.85 1.82 2.48 1.82 2.32 2.27
2 1.22 1.64 1.77 1.61 1.72 1.98
3 1.49 1.94 2.91 1.70 1.61 1.42
4 1.14 1.25 1.36 1.06 1.06 1.40

TABLE VII
MEAN UPWARD GAIN MARGIN (ABSOLUTE).

Group Trials Trials Trials Trials Trials Trials
1–5 6–15 16–20 21–25 26–35 36–40

1 1.27 1.51 1.18 1.32 1.23 1.33
2 2.25 1.62 1.63 1.71 1.88 1.56
3 1.54 1.35 1.24 1.95 1.81 2.58
4 2.67 2.90 1.92 2.70 3.20 2.15

TABLE VIII
MEAN PHASE MARGIN (DEGREES).

Group Trials Trials Trials Trials Trials Trials
1–5 6–15 16–20 21–25 26–35 36–40

1 20 15 14 14 12 12
2 44 29 25 37 25 25
3 18 17 17 45 37 42
4 36 61 43 54 57 48

repeated interaction with G, the subjects learn the dynamics
G well enough to use less conservative feedback controllers
(i.e., feedback controllers with smaller upward gain margins)
without causing closed-loop instability. Table VIII shows that
for groups 1, 2, and 3, the mean phase margin also decreases
from trials 1–5 to trials 16–20. In contrast, the mean phase
margin for group 4 does not have a clear trend over the first
20 trials. Note that the mean ‖z−τfbGfb‖1 and stability margins
do not have a consistent trend over the last 15 trials. However,
during these trials, the subjects are using a comparatively
accurate approximation of G−1 in feedforward. In this case,
(4) implies that the closed-loop transfer function G̃yr (and
thus, closed-loop response) is insensitive to the feedback
controller Gfb. Thus, for trials where z−τffGff approximates
G−1, the identified Gfb may not be an accurate representation
of the feedback used by the subjects.

Table VI shows that the mean ‖z−τfbGfb‖1 for group 1
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is consistently greater than that for group 2. Furthermore,
Tables VII and VIII show that these larger feedback gains for
group 1 relative to group 2 correspond with smaller upward
gain margins and phase margins. Thus, group 1’s mean ‖e‖ is
less than that of group 2, in part, because group 1 learns to
use feedback controllers with larger gain and less conservative
stability margins.

For group 3, the mean ‖z−τfbGfb‖1 increases over the first
20 trials where the task is the same (i.e., predictable), and
decreases from trial 20 to 21 where the task changes (i.e.,
is unpredictable). Table VI shows that the mean ‖z−τfbGfb‖1
decreases by 42% from the last 5 trials before the task changes
(i.e., trials 16–20) to the first 5 trials after the task changes (i.e.,
trials 21–25). Furthermore, Tables VII and VIII show that this
decrease in feedback gain corresponds with a significant in-
crease in upward gain margin and phase margin. This suggests
that the subjects in group 3 compensated for the change in task
by using more conservative feedback controllers. However, the
mean ‖z−τfbGfb‖1 for group 3 on trials 21–25 is 14% greater
than the mean ‖z−τfbGfb‖1 for group 3 on trials 1–5, and 39%
greater than the mean ‖z−τfbGfb‖1 for group 2 on trials 1–5.
This observation helps to explain another mechanism that the
subjects in group 3 use to generalize from the cc task to the cs
task—when the task changes, group 3 do not revert to using
feedback controllers with frequency-averaged gain as small as
those used initially by the subjects in either group 2 or group 3.
In other words, the subjects in group 3 retain some of their
learned feedback control strategy when the task changes.

For group 4, the mean ‖z−τfbGfb‖1 increases over the first
20 trials where the task changes (i.e., is unpredictable). Specif-
ically, Table VI shows that the mean ‖z−τfbGfb‖1 increases
by 19% from trials 1–5 to trials 16–20. The observation that
subjects learn to increase the feedback gain over the first
20 trials helps explain why the mean ‖e‖ for group 4 decreases
over the first 20 trials (as shown in Fig. 6) even though the
reference is unpredictable.

VI. SUMMARY AND DISCUSSION

This paper presented several new contributions. First, we
showed that the sum of sinusoids cs is harder for humans to
learn to follow than the chirp cc; furthermore, the associated
SSID results provided insights into why cs is harder to follow
than cc. The time-domain results (Fig. 5) show that cs is harder
to follow than cc, that is, the time-averaged error ‖e‖ for
group 2 is greater than that for group 1 on every trial. The
frequency-domain analysis (Fig. 7) shows that the difference
in performance between groups 1 and 2 is attributed more to
error in phase than error in magnitude. The SSID results show
that the mean feedforward time delay Tff for group 2 is greater
than that for group 1 on every trial (see Fig. 15). Thus, group 2
does not compensate for feedforward time delay as well as
group 1, which suggests that cs is harder to learn to predict
than cc. Similarly, group 2 does not learn to approximate
G−1 in feedforward as well as group 1 (see Fig. 16). The
Bode plots of the average identified feedforward controllers
(Figs. 17 and 18) show that group 2’s approximation of G−1

in feedforward is worse than group 1’s approximation, in large

part, because group 2 does not learn to use sufficient phase lead
in feedforward (particularly at higher frequencies). This can
be attributed, in part, to the fact that group 2 cannot predict the
reference as well as group 1, which results in larger feedfor-
ward time delay, which, in turn, decreases the phase lead of the
feedforward controller. Group 1 also uses consistently larger
frequency-averaged gain in feedback (Fig. 22) than group 2,
and these higher gains correspond to smaller stability margins.
Thus, learning to use less-conservative feedback controllers
with larger gain is another factor that contributes to smaller
time-averaged error ‖e‖ for group 1 relative group 2.

Second, we provided evidence that the subjects in group 3
generalize aspects of their control strategy when the reference
changes from cc to cs, and we identified specific mechanisms
of generalization. The time-domain data (Fig. 5) demonstrates
that group 3 generalizes the control strategy they learn during
the first 20 trials to the last 20 trials after the reference
changes. The SSID results provide insights into how group 3
generalizes their control strategies. The frequency-averaged
magnitude of the identified feedback controllers for group 3
decrease when the task changes (see Fig. 22), which suggests
that group 3 compensates for the change in reference by using
more conservative feedback controllers. However, the mean
‖z−τfbGfb‖1 for group 3 after the reference changes is still
greater than the mean ‖z−τfbGfb‖1 for group 2 and group 3 on
trials 1–5. Thus, when the reference changes, group 3 does not
revert to using feedback controllers with frequency-averaged
gain as small as those used initially by either group 2 or
group 3. This observation suggests that when the task changes,
group 3 retains aspects of their learned feedback control
strategy. In addition, although the mean ‖z−τffGff − G−1‖1
for group 3 increases when the reference changes, the mean
‖z−τffGff −G−1‖1 for group 3 after the reference changes is
still less than the mean ‖z−τffGff−G−1‖1 for groups 2 and 3
on trials 1–5 (see Fig. 16). Thus, when the reference changes,
group 3 retains their feedforward internal model of G−1. It
is also noteworthy that the mean feedforward time delay Tff

for group 3 increases when the reference changes, because the
reference is unpredictable for the trials immediately after the
change. This increase in mean Tff is one factor that causes the
the mean ‖z−τffGff − G−1‖1 to increase when the reference
changes.

Third, we provided evidence that humans use prediction
of the reference (if possible) to improve command-following
performance, but that humans can learn to improve perfor-
mance without prediction. The time-domain data (Fig. 6)
shows that the mean ‖e‖ for group 4 decreases over the first
20 trials, where the reference changes on each trial and is
unpredictable. However, the mean ‖e‖ for group 4 is greater
than that for group 2 during this first 20 trials and does
not change significantly between trials 11 and 20, suggesting
that there is a limit to the subjects’ achievable performance
when the reference is unpredictable. The SSID results provide
insights into how group 4 improves performance over the first
20 trials, where the reference is unpredictable. Specifically,
the frequency-averaged magnitude of the identified feedback
controllers for group 4 increases over the first 20 trials (see
Fig. 22). This increase in feedback gain over the first 20 trials
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helps explain why the mean ‖e‖ for group 4 decreases over
the first 20 trials even though the reference is unpredictable.
In contrast to the other groups, group 4 does not learn to
compensate for and decrease feedforward time delay over
the first 20 trials (see Fig. 15). This observation suggests
that humans use prediction of the reference into the future
for feedforward control if and only if the the reference is
predictable. Similarly, group 4 does not learn to approximate
G−1 in feedforward over the first 20 trials, which is in contrast
to the other groups (see Fig. 16). Notably, the SSID results (see
Figs. 20 and 21) show that group 4 attempts to approximate
G−1 in feedforward; however, the significant feedforward time
delay prevents an accurate approximation of the phase of G−1.

The results of this paper provide new insights into the
impact of command-following task on HITL control behavior.
These results could have application to design and analysis for
a variety of HITL technologies, including: active prostheses
and exoskeletons; co-robotic systems (e.g., robotic-therapy
devices for motor rehabilitation); and human-operated devices
and vehicles (e.g., automobiles and aircraft). Nevertheless,
open questions remain. For example, how do the results in this
paper extend to more complex dynamic systems (e.g., higher-
order systems, nonlinear systems, systems with multiple inputs
and outputs)? As one example, it would be interesting to
examine how haptic feedback (e.g., [69]) would impact the
results described in this paper.
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APPENDIX A
SUBSYSTEM IDENTIFICATION ALGORITHM

This appendix presents the SSID algorithm used to identify
the feedforward transfer function, feedforward delay, feedback
transfer function, and feedback delay used by subjects in the
HITL experiment. This SSID algorithm is based on the method
in [23], [49], which can identify multivariable LTI feedback
and feedforward subsystems. However, the method in [23],
[49] does not address the identification of feedforward time
delay. In this appendix, we extend the method in [23], [49] to
allow for the identification of feedforward time delay.

Let G : C → C be a real rational discrete-time transfer
function, which is assumed to be known and is interconnected
with an unknown dynamic subsystem as shown in Fig. 23. The
input {rj}nj=1 and output {yj}nj=1 sequences are assumed to
be measured with sample time Ts. Note that n is the number
of samples.

Unknown
Subsystem

uk
Known

Subsystem
G

yk
rk

Fig. 23. A known LTI subsystem G interconnected with an unknown
subsystem. The external input rk and the output yk are measured.

Let N be a positive integer, and let ω1 < ω2 < · · · < ωN
be nonnegative. For k ∈ N , {1, 2, . . . , N}, let rdft(ωk) and
ydft(ωk) denote the discrete Fourier transform of {rj}nj=1 and
{yj}nj=1 at ωk; define the closed-loop frequency response data
H(ωk) , ydft(ωk)/rdft(ωk); and define σk , eωkTs .

Let Gff , Gfb : C → C denote real rational discrete-time
transfer functions; let the nonnegative integers τff and τfb
denote the feedforward delay and feedback delay, respectively;
and let Gff be FIR. The unknown subsystem in Fig. 23 is
modeled using the LTI control (3) shown in Fig. 9.

Our objective is to determine Gff , τff , Gfb, and τfb such that
the modeled frequency response {G̃yr(σk)}Nk=1 approximates
the data {H(ωk)}Nk=1, where G̃yr is given by (4). To achieve
this objective, we seek to find Gff , τff , Gfb, and τfb that
minimize the cost J(Gff , τff , Gfb, τfb) given by (6), subject
to the constraint that G̃yr is asymptotically stable.

We parameterize the feedback and feedforward controllers
by their numerator and denominator coefficients and cast the
SSID problem in terms of these coefficients. Let nff and dff be
nonnegative integers that denote the degree of the numerator
and denominator of Gff , respectively, and define a , dff + 1.
Let nfb and dfb be nonnegative integers that denote the degrees
of the numerator and denominator of Gfb, respectively, and
define b , nfb + dfb + 1.

Consider the functions Nff : C×Ra → C, Nfb : C×Rb → C,
and Dfb : C× Rb → C given by

Nff(z, α) , [znff znff−1 · · · z 1]α,

Nfb(z, β) , [znfb · · · z 1 01×dfb ]β,

Dfb(z, β) , zdfb + [01×(nfb+1) zdfb−1 · · · z 1]β.

Define

Gff(z, α) ,
Nff(z, α)

zdff
, Gfb(z, β) ,

Nfb(z, β)

Dfb(z, β)
,

where α contains the numerator coefficients of Gff , and β
contains the numerator and denominator coefficients of Gfb.

The real rational transfer function G can be expressed as
G = Z/P , where Z and P are coprime polynomials. Next,
consider the cost function J : Ra×N×Rb×N→ [0,∞) given
by

J(α, ψ, β, γ) , J (Gff(z, α), ψ,Gfb(z, β), γ)

=αTΩ2(β, γ)α+ Ω0(β, γ)

+ Re Υ∗1(β, γ) (diag Γ(ψ)) Υ2(β, γ)α,

where ψ ∈ N represents the feedforward delay, γ ∈ N
represents the feedback delay, and

Ω2(β, γ) , Re
N∑
k=1

A∗k(β, γ)Ak(β, γ) ∈ Ra×a,

Ω0(β, γ) ,
N∑
k=1

|Bk(β, γ)|2 ∈ R,

Υ1(β, γ) , 2
[
B1(β, γ) · · · BN (β, γ)

]T ∈ CN ,

Υ2(β, γ) ,
[
A1(β, γ) · · · AN (β, γ)

]T ∈ CN×a,

Γ(ψ) ,
[
σ−ψ1 · · · σ−ψN

]T ∈ CN ,

where for all k ∈ N,

Ak(β, γ) ,
σγ−nff

k Z(σk)Dfb(σk, β)

D̃(σk, β, γ)
v(σk) ∈ C1×a,

Bk(β, γ) ,
Z(σk)Nfb(σk, β)

D̃(σk, β, γ)
−H(ωk) ∈ C,

and

D̃(z, β, γ) , zγDfb(z, β)P (z) + Nfb(z, β)Z(z),

v(z) ,
[
znff · · · z 1

]
.

We restrict our attention to (β, γ) ∈ Rb × N contained in

S , {(β, γ) ∈ Rb × N : β ∈ Rb, γ ∈ N, and if λ ∈ C
and D̃(λ, β, γ) = 0, then |λ| < 1},

which is the set of parameters that yield asymptotically stable
closed-loop transfer functions.

Let m be a positive integer, and let Φ ⊂ S be a set with
m elements. We call Φ the feedback candidate pool. For all
i, j ∈M , {1, 2, . . . ,m}, let φi, φj ∈ Φ be such that if i 6= j,
then φi 6= φj .

Let

Eβ ,
[
Ib 0b×1

]
, Eγ ,

[
01×b 1

]
.

Then, for all i ∈M, define the cost function

Ji(α,ψ) , J(α,ψ,Eβφi, Eγφi)

=αTΩ2(Eβφi, Eγφi)α+ Ω0(Eβφi, Eγφi)

+ Re ΓT(ψ)ΩT
1 (Eβφi, Eγφi)α,



where

Ω1(β, γ) , ΥT
2 (β, γ) (diag Υ1(β, γ))

∗ ∈ Ca×N .

Note that for all ψ ∈ N, Ji(α,ψ) is convex in α. If the number
N of frequency response data is sufficiently large, then it can
be shown that Ω2(Eβφ1, Eγφ1), . . . ,Ω2(Eβφm, Eγφm) are
positive definite and thus nonsingular. In this case, for each
i ∈M,

αi(ψ) , −1

2
Ω−1

2 (Eβφi, Eγφi)Re Ω1(Eβφi, Eγφi)Γ(ψ)

exists, and for all ψ ∈ N and all i ∈ M, αi(ψ) is the unique
global minimizer of Ji(α,ψ). Define the auxiliary cost

Qi(ψ) , Ji(αi(ψ), ψ)

= −
[

Re Γ(ψ)
−Im Γ(ψ)

]T

Fi

[
Re Γ(ψ)
−Im Γ(ψ)

]
+ Ω0(Eβφi, Eγφi),

where

Fi ,
1

4

[
Re ΩT

1 (Eβφi, Eγφi)
Im ΩT

1 (Eβφi, Eγφi)

]
Ω−1

2 (Eβφi, Eγφi)

×
[

Re ΩT
1 (Eβφi, Eγφi)

Im ΩT
1 (Eβφi, Eγφi)

]T

.

Let p be a positive integer, and let Ψ ⊂ N be a set with
p elements. We call Ψ the feedforward-delay candidate pool.
For all i, j ∈ P , {1, 2, . . . , p}, let ψi, ψj ∈ Ψ be such that if
i 6= j, then ψi 6= ψj .

For all i ∈M, let qi ∈ P be the smallest integer such that

Qi(ψqi) = min
j∈P

Qi(ψj).

Next, let ` ∈ M be the smallest integer such that Q`(ψq`) =
mini∈M Qi(ψqi). Thus, the identified parameters are α`(ψq`),
τff , ψq` , β` , Eβφ`, and τfb , Eγφ`, which implies that
the identified transfer functions are

Gff(z) , Gff(z, α`(ψq`)), Gfb(z) , Gfb(z, β`). (7)

We now summarize this SSID method. For an analysis of its
properties without delay, see [49].

Algorithm 1. Consider the closed-loop transfer function (4)
and the frequency-response data {H(ωk)}Nk=1.
Step 1. Generate the feedback candidate pool Φ ⊂ S and

feedforward-delay candidate pool Ψ ⊂ N.
Step 2. For each i ∈ M, compute Qi(ψ) and find smallest

integer qi ∈ P such that Qi(ψqi) = minj∈P Qi(ψj).
Step 3. Find the smallest integer ` ∈M such that Q`(ψq`) =

mini∈M Ji(αi(ψqi), ψqi).
Step 4. The identified parameters are α`(ψq`), τff , ψq` , β` ,

Eβφ`, and τfb , Eγφ`.
Step 5. The identified transfer functions are given by (7).

APPENDIX B
DESCRIPTION OF CANDIDATE POOLS FOR SSID

For each trial, we use Algorithm 1 to identify the best-
fit model of the subject’s control (3). The controller orders

are chosen sufficiently large to capture different control ap-
proaches that lead to good command-following performance.
We select the controller orders to allow for high gain in feed-
back as well as approximate dynamic inversion in feedforward.
Specifically, Gfb is modeled as a second-order strictly proper
transfer function (i.e., nfb = 1 and dfb = 2). We select
nff = dff large enough to allow Gff to approximate G−1 with
approximately 0.1% error over the 0-to-0.5 Hz range. Thus,
nff = dff = 2.

The feedback candidate pool Φ is designed to capture a wide
range of behavior over the 0-to-0.5 Hz range and contains
approximately one billion elements. The feedback candidate
pool satisfies the following conditions:

C1) If λ ∈ C is a pole of Gfb, then |(lnλ)/Ts| ≤ 31.5.
C2) If λ ∈ C is a zero of Gfb, then |(lnλ)/Ts| ≤ 31.5.
C3) maxω∈[0,π]

∣∣Gfb(eωTs)
∣∣ ≤ 30.5.

C4) If λ ∈ C is a pole of G̃yr, then |λ| < 0.998.
C5) For all φ ∈ Φ, Eγφ ∈ {4, 5, 6, . . . , 25}.

Conditions C1) and C2) constrain Φ to include only ele-
ments that have a significant impact on controller dynamics
over the 0-to-0.5 Hz range. Specifically, C1) and C2) state
that Gfb has continuous-time equivalent poles and zeros (that
is, poles and zeros obtained from the matched z-transform
mapping s = (ln z)/Ts) that have magnitudes between 0
and 31.5 rad/s. This condition arises because {H(ωk)}Nk=1

is at frequencies ω1, . . . , ωN ∈ (0, π] rad/s. Thus, we seek
to identify Gfb on the interval (0, π] rad/s. The upper limit
31.5 rad/s on the magnitude of the continuous-time equivalent
poles and zeros is one decade above the π rad/s limit. A
continuous-time pole or zero with magnitude greater than
31.5 rad/s has negligible effect on the Bode plot over the range
(0, π] rad/s. Thus, we restrict Φ to include only elements that
correspond to continuous-time equivalent poles and zeros with
magnitude between 0 and 31.5 rad/s.

Condition C3) states that the peak magnitude of Gfb over
the frequency range (0, π] rad/s is no more than 30.5. We
impose an upper limit on the magnitude of Gfb because a
human cannot use arbitrarily high gain in feedback. See [23]
for a description of the experiment used to determine the 30.5
upper limit.

Condition C4) states that each closed-loop pole has mag-
nitude less than 0.998. A discrete-time pole with magnitude
0.998 and sample time Ts = 0.02 s has a settling time of
approximately 40 s. Thus, C4) restricts Φ to include only
elements that result in closed-loop transfer functions with
settling times less than 40 s. The behavior observed in this
experiment exhibits settling times significantly less than 40 s.

Condition C5) restricts the feedback time delay to the range
of [80, 500] ms. This range is consistent with [23], [70], [71].

The feedforward-delay candidate pool is Ψ =
{0, 1, 2, . . . , 25}, which restricts the feedforward time
delay to the range of [0, 500] ms.

Algorithm 1 is coded in C++ for parallel computation and
implemented on the University of Kentucky High Performance
Computing Cluster. For each trial, it takes approximately 3 h
to run Algorithm 1 on one compute node; each node has a 16
Intel E5-2670 @ 2.6 GHz cores.



APPENDIX C
CONDITIONING OF SSID RESULTS

Define the condition number

C(Gfb, τfb) ,
1

π

∫ π

0

∣∣∣∣ 1

1 + e−ωTsτfbGfb(eωTs)G(eωTs)

∣∣∣∣ dω,
which is a measure of the conditioning of the identified
feedback controller z−τfbGfb. A larger value of C(Gfb, τfb)
indicates a more poorly conditioned identified z−τfbGfb. Fig-
ures 24–27 show C for each SSID result of groups 1, 2, 3, and
4, respectively; the SSID results are organized from the largest
to smallest C. For group 1, the largest C is approximately
32.0, whereas the smallest C is approximately 0.066. For
group 2, the largest C is approximately 15.5, whereas the
smallest C is approximately 0.352. For group 3, the largest C is
approximately 16.0, whereas the smallest C is approximately
0.073. For group 4, the largest C is approximately 11.4,
whereas the smallest C is approximately 0.260. Figures 24–27
also show that there is limited correlation between the trial
number and C for all groups.
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Fig. 24. Condition number C for the group 1.
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Fig. 25. Condition number C for the group 2.

Figures 28–31 show the Bode plots of z−τfbGfb for the
SSID result from each group with the largest C . For each
group, this SSID result has a large C because z−τfbGfb ≈
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Fig. 26. Condition number C for the group 3.
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Fig. 27. Condition number C for the group 4.

−G−1 at frequencies below approximately 0.1 Hz. However,
z−τfbGfb is not approximately equal to −G−1 at frequencies
above 0.1 Hz.

Figures 28–31 also show the Bode plots of z−τfbGfb for
the SSID result from each group with the 133rd largest C

(i.e., the 30th percentile). For the group 1 SSID result with
the 133rd largest C, z−τfbGfb is not approximately equal to
−G−1 at any frequencies over the 0-to-0.5 Hz range. For the
group 2 SSID result with the 133rd largest C, z−τfbGfb is
approximately equal to −G−1 at frequencies below 0.02 Hz
but is not approximately equal to −G−1 at other frequencies
over the 0-to-0.5 Hz range. For the group 3 SSID result with
the 133rd largest C, z−τfbGfb is approximately equal to −G−1

at frequencies below 0.02 Hz but is not approximately equal
to −G−1 at other frequencies over the 0-to-0.5 Hz range. For
the group 4 SSID result with the 133rd largest C, z−τfbGfb is
not approximately equal to −G−1 at any frequencies over the
0-to-0.5 Hz range.

We examine the sensitivity of the SSID results in Section V
to the conditioning of the identified z−τfbGfb by removing the
most ill-conditioned 30% of the SSID results (i.e., 132 trials).
Figures 32–35 show the mean and standard deviation of Tfb,
Tff , ‖z−τffGff−G−1‖1, and ‖z−τfbGfb‖1 on each trial for each
group. The trends observed in Figs. 32–35 are the same as
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Fig. 28. Bode plots of z−τfbGfb for the group 1 SSID results with the
largest condition number and the 133rd largest condition number.
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Fig. 29. Bode plots of z−τfbGfb for the group 2 SSID results with the
largest condition number and the 133rd largest condition number.
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Fig. 30. Bode plots of z−τfbGfb for the group 3 SSID results with the
largest condition number and the 133rd largest condition number.

those observed in Figs. 14–16 and 22. The same observations
hold if the most ill-conditioned 10%, 15%, 20%, 25%, or 30%
of the results are omitted.
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Fig. 31. Bode plots of z−τfbGfb for the group 4 SSID results with the
largest condition number and the 133rd largest condition number.
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Fig. 32. Mean and standard deviation of Tfb on each trial. Plots omit the
most ill-conditioned 30% of trials. The ◦ is the mean, and the lines indicate
the standard deviation.
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Fig. 33. Mean and standard deviation of Tff on each trial. Plots omit the
most ill-conditioned 30% of trials. The ◦ is the mean, and the lines indicate
the standard deviation.

APPENDIX D
VALIDATION OF SSID RESULTS

For each trial, we simulate the identified closed-loop system,
where the input to the simulation is {rk}nk=1, and the output
of the simulation is the validation data {yv,k}nk=1. Specifically,
we simulate

ŷv(z) = G̃yr(z)r̂(z),
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Fig. 34. Mean and standard deviation of ‖z−τffGff −G−1‖1 on each trial.
Plots omit the most ill-conditioned 30% of trials. The ◦ is the mean, and the
lines indicate the standard deviation.
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Fig. 35. Mean and standard deviation of ‖z−τfbGfb‖1 on each trial. Plots
omit the most ill-conditioned 30% of trials. The ◦ is the mean, and the lines
indicate the standard deviation.

where all initial conditions are zero, ŷv(z) is the z-transform
of the validation data yv,k, and G̃yr is the closed-loop transfer
function (4) obtained from the identified Gff , τff , Gfb, and τfb.

For each trial, we compute the variance accounted for
(VAF), which is a measure of the accuracy of the identified
closed-loop transfer function and is given by

VAF , 1−
∑n
k=n1

|yk − yv,k|2∑n
k=n1

|yk|2
,

where n1 = 26. Note that VAF is calculated using data from
the time interval (0.5, 60] s. We omit the interval [0, 0.5] s to
reduce the impact of nonzero initial conditions. The validation
data is computed with zero initial conditions; however, the
experimental data may have nonzero initial conditions.

Figure 36 shows the mean and standard deviation of the
VAF for each trial. For all groups, the mean VAF over the last
5 trials is greater than that over the first 5 trials. Specifically,
the mean VAF over the last 5 trials for groups 1, 2, 3, and 4 is
0.90, 0.80, 0.75, and 0.73, respectively. The mean VAF over
the first 5 trials for groups 1, 2, 3, and 4 is 0.73, 0.63, 0.62,
and 0.48, respectively. Thus, the subjects’ control behavior can
be modeled more accurately by the low-order LTI controller
(3) on the later trials than the earlier trials. This observation

supports similar results observed in [23].
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Fig. 36. Mean and standard deviation of VAF on each trial. The ◦ is the
mean, and the lines indicate the standard deviation.


