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Abstract 17	

Deforestation	is	a	major	threat	to	biodiversity	in	the	Amazon,	partly	because	it	leaves	18	

remaining	forest	habitat	highly	fragmented,	with	remnants	of	different	sizes	embedded	in	19	

an	often	highly	contrasting	matrix.	Local	extinction	of	species	from	individual	fragments	is	20	

common,	but	the	demographic	mechanisms	underlying	these	extinctions	are	poorly	21	

understood.	It	is	often	hypothesized	that	the	altered	environmental	conditions	in	22	

fragments	drive	declines	in	reproduction,	recruitment,	or	survivorship.	The	Amazon	basin,	23	

in	addition	to	experiencing	continuing	fragmentation,	is	warming	and	experiencing	24	

changes	in	precipitation	leading	to	altered	frequency	and	intensity	of	droughts	and	25	

unusually	wet	periods.	Whether	plant	populations	in	tropical	forest	fragments	are	26	

particularly	susceptible	to	extremes	in	precipitation	remains	unclear.	Most	studies	of	27	

plants	in	fragments	are	relatively	short	(1–6	years),	focus	on	a	single	life-history	stage,	and	28	

often	do	not	compare	to	populations	in	continuous	forest.	Even	fewer	studies	consider	29	

delayed	effects	of	climate	despite	the	importance	of	such	delayed	effects	for	plant	30	

demographic	vital	rates	in	studies	that	look	for	them.	Using	a	decade	of	demographic	and	31	

climate	data	from	an	experimentally	fragmented	landscape	in	the	Central	Amazon,	we	32	

assess	the	effects	of	climate	on	populations	of	an	understory	herb	(Heliconia	acuminata,	33	

Heliconiaceae).	We	used	distributed	lag	non-linear	models	to	understand	the	delayed	34	

effects	of	temperature	and	precipitation	on	survival,	growth,	and	flowering.	We	detected	35	

delayed	effects	of	climate	up	to	36	months.	Drought	two	dry	seasons	prior	to	the	February	36	

census	decreased	survival	and	increased	flowering	probability	while	drought	in	the	wet	37	

season	a	year	prior	to	the	census	decreased	flowering	probability	and	increased	growth.	38	

The	effects	of	extremes	in	precipitation	on	survival	and	growth	were	more	intense	in	forest	39	



fragments	compared	to	continuous	forest.	The	complex	delayed	effects	of	climate	and	40	

habitat	fragmentation	on	H.	acuminata	vital	rates	points	to	the	importance	of	long-term	41	

demography	experiments	in	understanding	the	effects	of	anthropogenic	change	on	plant	42	

populations.	43	

	 	44	



Introduction 45	

The	expansion	of	agriculture	and	other	human	activities	is	a	primary	driver	of	46	

deforestation	in	the	tropics	(Alroy,	2017;	Haddad	et	al.,	2015).	It	also	results	in	landscapes	47	

where	the	remaining	forest	can	be	highly	fragmented,	with	patches	of	different	sizes	48	

embedded	in	a	matrix	of	often	contrasting	habitat	(Bianchi	&	Haig,	2013;	Taubert	et	al.,	49	

2018).	This	fragmentation	is	associated	with	myriad	ecological	changes,	including	the	local	50	

and	regional	extinction	of	plant	species	(da	Silva	&	Tabarelli,	2000;	Laurance	et	al.,	2006).	51	

Although	the	demographic	mechanisms	responsible	these	extinctions	are	poorly	52	

understood	(Bruna	et	al.,	2009),	it	is	often	hypothesized	that	the	dramatically	altered	53	

environmental	conditions	in	tropical	forest	fragments	(Arroyo-Rodríguez	et	al.,	2017;	54	

Didham	&	Lawton,	1999;	Ewers	&	Banks-Leite,	2013)	drive	declines	in	plant	reproduction,	55	

recruitment,	or	survivorship	(Bruna,	1999;	Laurance	et	al.,	1998;	Zartman	et	al.,	2015).	56	

Despite	the	prevalence	of	this	hypothesis	(Betts	et	al.,	2019;	Didham	&	Lawton,	1999;	57	

Laurance	et	al.,	2001),	efforts	to	link	population-level	demographic	responses	with	altered	58	

environmental	conditions	in	fragments	remains	scarce.	59	

Studies	in	temperate	systems	have	shown	that	the	demography	of	species	can	also	be	60	

altered	by	climate	change	(Doak	&	Morris,	2010;	Selwood	et	al.,	2015;	Sletvold,	2005;	61	

Williams	et	al.,	2015),	and	that	the	effects	of	climate	change	could	be	more	pronounced	62	

when	habitat	is	fragmented	(Holyoak	&	Heath,	2016;	Oliver	et	al.,	2015).	While	the	63	

demographic	consequences	of	climate	change	for	tropical	species	are	expected	to	be	64	

similarly	severe	(Brodie	et	al.,	2012;	Scheffers	et	al.,	2017),	surprisingly	little	is	known	65	

about	the	responses	of	these	species	to	climatic	variability	(Paniw	et	al.,	2021).	Tropical	66	

plants	may	be	particularly	sensitive	to	climate	change—they	typically	have	narrow	ranges	67	



of	climatic	tolerance	(Feeley	et	al.,	2012),	and	recent	results	suggest	increases	in	the	68	

frequency	and	severity	of	extreme	precipitation	events	reduce	survival	and	reproduction	69	

(Esteban	et	al.,	2021;	Gaoue	et	al.,	2019).	This	sensitivity	to	climatic	fluctuations,	coupled	70	

with	evidence	that	plant	growth	and	survivorship	are	lower	in	fragments	(Bruna	et	al.,	71	

2002;	Laurance	et	al.,	1998;	Zartman	et	al.,	2015),	has	led	to	speculation	that	plants	in	72	

forest	fragments	will	be	especially	susceptible	to	climate	change	(Laurance	et	al.,	2001;	73	

Opdam	&	Wascher,	2004;	Selwood	et	al.,	2015).	74	

Whether	the	demography	of	plant	populations	in	tropical	forest	fragments	is	more	75	

susceptible	to	climatic	extremes	remains	unclear	for	three	primary	reasons.	First,	most	76	

studies	of	plants	in	fragments	have	focused	on	a	single	life-history	stage	or	process	(Bruna	77	

et	al.,	2009;	Ehrlen	et	al.,	2016),	making	it	challenging	to	draw	broader	demographic	78	

conclusions.	Second,	there	is	a	growing	literature	on	how	tropical	plants	respond	to	79	

droughts	(Esquivel-Muelbert	et	al.,	2019;	González-M	et	al.,	2020;	Uriarte	et	al.,	2016),	but	80	

few	studies	have	compared	the	responses	of	plants	in	continuous	forest	with	those	of	81	

plants	in	forest	fragments	(Laurance	et	al.,	2001).	Finally,	the	multi-year	data	needed	to	82	

test	population-level	hypotheses	about	climate	change	and	fragmentation	are	scant,	83	

especially	for	tropical	systems	(Crone	et	al.,	2011;	Salguero-Gómez	et	al.,	2015).	These	data	84	

are	critical	not	simply	because	they	allow	for	capturing	variation	in	climatic	conditions	and	85	

the	resulting	demographic	responses	(Morris	&	Doak,	2002;	Teller	et	al.,	2016).	They	are	86	

also	essential	because	while	some	demographic	effects	of	fragmentation	or	drought	can	be	87	

detected	immediately,	others	may	take	years	to	manifest	(e.g.,	Gagnon	et	al.,	2011).	Indeed,	88	

lagged	responses	of	demographic	vital	rates	to	climate	may	be	the	rule	rather	than	the	89	



exception	(Anderegg	et	al.,	2015;	Evers	et	al.,	2021;	Kannenberg	et	al.,	2020;	Schwalm	et	al.,	90	

2017).	91	

Herbaceous	plants	represent	up	to	25%	of	plant	diversity	in	tropical	forests	(Gentry	&	92	

Dodson,	1987),	are	critical	food	and	habitat	for	myriad	species	(Snow,	1981),	and	are	93	

economically	and	culturally	vital	(Nakazono	et	al.,	2004;	Ticktin,	2003).	Nevertheless,	the	94	

impacts	of	global	change	phenomena	on	their	demography	remain	conspicuously	95	

understudied	(Bruna	et	al.,	2009).	We	used	a	decade	of	demographic	and	climatic	data	from	96	

an	experimentally	fragmented	landscape	in	the	Central	Amazon	to	assess	the	effects	of	97	

climate	on	populations	of	a	tropical	understory	herb	(Heliconia	acuminata,	Heliconiaceae).	98	

This	time	series,	which	included	the	severe	droughts	of	1997	(McPhaden,	1999)	and	2005	99	

(Marengo	et	al.,	2008;	Zeng	et	al.,	2008),	allowed	us	to	address	the	following	questions:	(1)	100	

Does	drought	increase	or	decrease	the	growth,	survival,	and	fertility	of	plant	populations	in	101	

continuous	forest?	(2)	Are	there	delayed	effects	of	drought	on	demographic	vital	rates,	and	102	

if	so	what	lag	times	are	most	critical?	(3)	Are	the	effects	of	drought	on	the	vital	rates	of	103	

populations	in	fragments	similar	in	direction	and	magnitude	to	those	in	continuous	forest?	104	

Methods 105	

Study site 106	

The	Biological	Dynamics	of	Forest	Fragments	Project	(BDFFP)	is	located	~70	km	north	of	107	

Manaus,	Brazil	(2º30’	S,	60ºW).	In	addition	to	large	areas	of	continuous	forest,	the	BDFFP	108	

has	forest	fragment	reserves	isolated	from	1980–1984	by	felling	the	trees	surrounding	the	109	

area	chosen	for	isolation	and,	in	most	cases,	burning	the	downed	trees	once	they	dried	110	

(Bierregaard	et	al.,	1992).	In	subsequent	decades	the	vegetation	regenerating	around	111	



fragments	has	been	periodically	cleared	to	ensure	fragment	isolation	(Bierregaard	et	al.,	112	

2001).	113	

The	BDFFP	reserves	are	located	in	nonflooded	(i.e.,	terra	firme)	tropical	lowland	forest	114	

with	a	30–37m	tall	canopy	(Rankin-de-Mérona	et	al.,	1992)	and	an	understory	dominated	115	

by	stemless	palms	(Scariot,	1999).	The	soils	in	the	reserves	are	nutrient-poor	xanthic	116	

ferrosols;	their	water	retention	capacity	is	poor	despite	having	a	high	clay	content.	Mean	117	

annual	temperature	in	the	region	is	26º	C	(range=19–39º	C),	and	annual	rainfall	ranges	118	

from	1900–2300	mm.	There	is	a	pronounced	dry	season	from	June	to	October	(Figure	S1).	119	

Focal species 120	

Heliconia	acuminata	(LC	Rich.)	(Heliconiaceae)	is	a	perennial	monocot	distributed	121	

throughout	Central	Amazonia	(Kress,	1990)	and	is	the	most	abundant	understory	herb	at	122	

the	BDFFP	(Ribeiro	et	al.,	2010).	While	many	Heliconia	species	grow	in	large	patches	in	123	

treefall	gaps	and	other	disturbed	areas,	others,	such	as	H.	acuminata,	are	found	at	lower	124	

densities	in	the	darker	and	cooler	forest	understory	(Rundel	et	al.,	2020).	These	species	125	

produce	fewer	inflorescences	and	are	pollinated	by	traplining	rather	than	territorial	126	

hummingbirds	(Bruna	et	al.,	2004;	Stouffer	&	Bierregaard,	1996).	In	our	sites	H.	acuminata	127	

is	pollinated	by	Phaeothornis	superciliosus	and	P.	bourcieri	(Bruna	et	al.,	2004).	Plants	begin	128	

flowering	at	the	start	of	the	rainy	season;	reproductive	plants	have	𝑥‾ = 1.1	flowering	129	

shoots	(range	=	1–7),	each	of	which	has	an	inflorescence	with	20–25	flowers	(Bruna	&	130	

Kress,	2002).	Fruits	mature	April-May,	have	1–3	seeds	per	fruit	(𝑥‾ = 2),	and	are	eaten	by	a	131	

thrush	and	several	species	of	manakin	(Uriarte	et	al.,	2011).	Dispersed	seeds	germinate	132	

approximately	6	months	after	dispersal	at	the	onset	of	the	subsequent	rainy	season,	with	133	



rates	of	germination	and	seedling	establishment	higher	in	continuous	forest	than	forest	134	

fragments	(Bruna,	1999;	Bruna	&	Kress,	2002).	135	

Demographic data collection 136	

This	study	uses	data	collected	in	four	1-ha	fragment	reserves	and	six	continuous	forest	137	

sites.	In	1997–1998	we	established	a	5000	m2	plots	(50 × 100m)	in	each	of	these	sites	in	138	

which	we	marked	and	measured	all	Heliconia	acuminata;	plots	in	1-ha	fragments	were	on	139	

one	randomly	selected	half	of	the	fragment,	while	plots	in	continuous	forest	were	located	140	

500–4000	m	from	the	borders	of	secondary	and	mature	forest.	The	distance	between	plots	141	

ranged	from	500	m–41	km.	Our	dataset	comprised	4,083	plants	in	continuous	forest	and	142	

1,010	plants	in	forest	fragments.	Plots	in	CF	had	on	average	2.7-fold	more	plants	than	plots	143	

in	1-ha	fragments	(CF	=	681	±	493	SD;	1-ha	=	253	±	30	SD).	144	

Each	plot	was	subdivided	into	50	quadrats	(10 × 10m)	to	simplify	annual	surveys,	during	145	

which	we	recorded	the	number	of	vegetative	shoots	each	plant	had,	the	height	of	each	plant	146	

to	the	tallest	leaf,	and	whether	each	plant	was	flowering	(height	and	shoot	number	are	147	

correlated	with	leaf	area,	the	probability	of	flowering,	and	rates	of	survivorship	(Bruna,	148	

2002;	Bruna	&	Kress,	2002)).	In	this	study,	we	used	the	product	of	shoot	number	and	plant	149	

height	as	our	measure	of	plant	size.	Preliminary	analysis	showed	that	the	product	of	shoot	150	

number	and	height	was	a	better	predictor	of	total	leaf	area	(which	in	turn	is	assumed	to	be	151	

a	strong	predictor	of	aboveground	biomass)	than	either	shoot	number	or	height	alone	152	

(Table	S2	).	Plants	that	were	not	found	for	three	consecutive	surveys	were	considered	153	

dead.	We	also	surveyed	plots	regularly	during	the	rainy	season	to	identify	any	that	154	



flowered	after	the	survey.	For	additional	details	on	the	location	of	plots,	survey	methods,	155	

and	H.	acuminata	population	structure	see	Bruna	&	Kress	(2002).	156	

Climate data 157	

Data	on	precipitation	and	potential	evapotranspiration	in	our	sites	were	obtained	from	a	158	

published	gridded	dataset	(0.25º	×	0.25º	resolution)	built	using	data	from	3,625	ground-159	

based	weather	stations	across	Brazil	(Xavier	et	al.,	2016).	We	used	these	data	to	calculate	160	

the	standardized	precipitation	evapotranspiration	index	(SPEI)	(Vicente-Serrano	et	al.,	161	

2010).	SPEI	is	a	proxy	for	meteorological	drought	that	integrates	precipitation	and	162	

evapotranspiration	anomalies	over	a	specified	time	scale.	Positive	SPEI	values	for	a	given	163	

month	indicate	conditions	wetter	than	the	historical	average	for	that	month,	while	negative	164	

values	of	SPEI	indicate	droughts	with	intensity	categorized	as	mild	(0	to	-1),	moderate	(-1	165	

to	-1.5),	severe	(-1.5	to	-2),	or	extreme	(<	-2)	(McKee	et	al.,	1993).	SPEI	can	be	calculated	to	166	

represent	different	temporal	scales	of	drought;	we	used	3-month	SPEI	because—given	its	167	

shallow	roots	and	rhizome—H.	acuminata	relies	primarily	on	soil	moisture	rather	than	168	

deeper	water	sources	that	can	persist	for	longer	timescales	(Vicente-Serrano	et	al.,	2010).	169	

Note	that	3-month	SPEI	is	still	monthly	data—each	month’s	SPEI	value	simply	takes	into	170	

account	precipitation	and	evapotranspiration	of	the	previous	three	months.	SPEI	171	

calculations	were	made	using	the	SPEI	package	(Beguería	&	Vicente-Serrano,	2017).	The	172	

timing	of	drought	events	based	on	these	SPEI	calculations	is	consistent	with	that	resulting	173	

from	SPEI	calculated	with	other	data	sources,	though	the	magnitude	of	drought	sometimes	174	

differed	(Figure	S2;	Table	S1	).	175	



Statistical Modeling of Vital Rates 176	

To	assess	the	effects	of	drought	history	on	plant	vital	rates	we	used	Distributed	Lag	Non-177	

linear	Models	(DLNMs,	Gasparrini	et	al.,	2017).	DLNMs	capture	how	potentially	delayed	178	

effects	of	predictor	variables	(e.g.	SPEI)	affect	an	outcome	(e.g.	growth)	well	beyond	the	179	

event	period.	They	do	so	by	fitting	a	bi-dimensional	predictor-lag-response	association	180	

spline,	referred	to	as	a	crossbasis	function.	This	models	a	non-linear	relationship	between	181	

predictor	and	response	(e.g.	between	SPEI	and	vital	rates)	and	allows	the	shape	of	that	182	

relationship	to	vary	smoothly	over	lag	time.	Using	the	dlnm	package	(Gasparrini,	2011;	R	183	

Core	Team,	2020),	we	created	crossbasis	functions	with	possible	lags	from	0–36	months.	184	

We	chose	36	months	as	a	maximum	lag	because	prior	transplant	experiments	with	H.	185	

acuminata	showed	they	typically	recover	from	transplant	shock	in	less	than	36	months	186	

(Bruna	et	al.,	2002)	so	this	is	a	reasonable	upper	bound	for	lagged	effects	of	drought.	187	

The	crossbasis	function	was	fit	to	the	data	in	the	context	of	a	generalized	additive	model	188	

(GAM)	with	restricted	maximum	likelihood	using	the	mgcv	package	(Wood,	2017).	The	189	

general	form	of	the	vital	rate	(𝑦)	models	was	as	follows:	190	

𝑔[E(𝑦!)] = 𝛼" + 𝑠#(𝑧!) + 𝑠$4𝑑!,& , . . . , 𝑑!,&'()7 + 𝛽𝑥!
𝛼" ∼ 𝑁 ;𝜇*! , 𝜎*!

$ > ,  for	plot	𝑗
  (1)	191	

where	𝑠#(𝑧!)	is	a	smooth	function	of	plant	size	(natural	log	of	height	×	shoot	number),	fit	192	

using	a	penalized	cubic	regression	spline,	𝑠$(⋅)	is	the	crossbasis	function	in	which	𝑑!,&	is	the	193	

SPEI	value	during	the	census	month	of	an	observation	(February)	and	𝑑!,&'+ 	is	the	SPEI	𝑙	194	

months	prior	(see	Gasparrini	et	al.	2017	for	details).	The	crossbasis	function,	𝑠$(⋅)	can	also	195	

be	written:	196	



𝑠$4𝑑!,& , . . . , 𝑑!,&'$,7 = D𝑓
-

+.+"

⋅ 𝑤4𝑑!,&'+ , 𝑙7  (2)	197	

where	the	crossbasis	function,	𝑓 ⋅ 𝑤(𝑑, 𝑙),	is	composed	of	two	marginal	basis	functions:	the	198	

standard	predictor-response	function	𝑓(𝑑),	and	the	additional	lag-response	function	𝑤(𝑙).	199	

These	marginal	functions	are	combined	as	a	tensor	product	smooth	such	that	the	shape	of	200	

one	marginal	function	varies	smoothly	along	the	other	dimension	(see	chapter	5	of	Wood	201	

(2017)	and	Gasparrini	et	al.	(2017)	for	more	detail).	Penalized	cubic	regression	splines	202	

were	used	for	both	marginal	bases	of	the	crossbasis	function,	with	35	knots	for	the	lag	203	

dimension	(i.e.	number	of	lagged	SPEI	values	for	each	observation	with	36	months	as	a	204	

maximum	lag)	and	3	knots	for	the	drought	response	dimension	to	restrict	the	shape	of	the	205	

fitted	response	to	drought	to	bimodal	when	most	complex.	Because	of	penalization,	the	206	

number	of	knots	is	generally	not	important	as	long	it	is	large	enough	to	allow	the	smooth	to	207	

represent	the	‘true’	relationship	(Wood,	2017).	Estimated	degrees	of	freedom	(edf)	208	

represent	the	‘true’	complexity	of	the	smooth	after	penalization	with	edf	=	1	being	209	

equivalent	to	a	straight	line	and	larger	numbers	representing	more	complex	curves.	210	

To	determine	if	plot	characteristics	influenced	average	vital	rates	we	included	a	random	211	

effect	of	plot	ID	on	the	intercept;	this	was	represented	by	𝑎" 	in	eq.	1.	We	determined	the	212	

effects	of	SPEI	on	plant	growth	using	plant	size	in	year	t+1	as	a	response	variable.	This	was	213	

modeled	with	a	scaled	t	family	error	distribution	because	residuals	were	leptokurtic	with	a	214	

Gaussian	error	structure.	Because	number	of	inflorescences	was	highly	zero-inflated,	we	215	

converted	this	to	a	binary	response	to	model	reproduction	(i.e.,	1	for	≥1	inflorescence,	0	for	216	

no	inflorescences).	We	modeled	both	reproduction	and	survival	(i.e.,	from	year	t	to	year	217	



t+1)	using	a	binomial	family	error	distribution	with	a	logit	link	function.	We	modeled	a	218	

potential	cost	of	reproduction	by	including	flowering	in	the	previous	year	as	covariate,	𝑥! ,	219	

in	eq.	1.	Additionally,	in	models	for	flowering	probability	and	size,	we	included	plant	ID	as	a	220	

random	effect	to	account	for	variation	among	individuals.	Preliminary	analyses	showed	221	

that	this	random	effect	was	not	significant	in	the	growth	models	(edf	~	0,	p	>	0.2)	and	as	222	

such	it	was	dropped	to	improve	computational	efficiency.	1	A	random	effect	of	plant	ID	was	223	

not	included	in	survival	models	since	each	plant	only	dies	once.	224	

In	the	process	of	fitting	the	models,	the	penalty	on	the	crossbasis	smooth	(and	other	225	

smoothed	terms)	is	optimized	such	that	more	linear	shapes	are	favored	unless	the	data	226	

supports	non-linearity	(Wood,	2017).	We	applied	an	additional	penalty	to	shrink	linear	227	

portions	toward	zero	with	the	select=TRUE	option	to	the	gam()	function,	and	inferred	228	

statistical	significance	of	model	terms	with	p-values	from	the	summary.gam()	function	as	229	

recommended	in	Marra	&	Wood	(2011).	230	

The	dlnm	package	does	not	currently	allow	the	modeling	of	interaction	terms,	which	means	231	

we	could	not	asses	the	interaction	of	habitat	type	and	lagged	effects.	We	therefore	fit	232	

separate	models	for	plants	in	fragments	and	in	continuous	forest	to	allow	the	shape	of	the	233	

crossbasis	function	to	differ	between	habitats.	Significant	main	effects	of	habitat	type	were	234	

assessed	by	looking	for	overlap	in	the	84%	confidence	intervals	of	model	intercepts;	the	235	

84%	CIs	of	two	samples	drawn	from	the	same	population	overlap	about	95%	of	the	time	236	

(Payton	et	al.,	2003).	237	

All	analyses	were	conducted	in	R	version	4.0.2	(2020-06-22)	(R	Core	Team,	2020).	238	



Results 239	

The	meteorological	droughts	in	our	focal	region	indicated	by	SPEI	are	generally	consistent	240	

with	those	reported	in	the	literature	(Table	S1).	For	example,	the	drought	associated	with	241	

the	1997	El	Niño	Southern	Oscillation	(ENSO)	event	was	one	of	the	most	severe	on	record	242	

for	the	Amazon	(Williamson	et	al.,	2000);	correspondingly,	1997	has	the	lowest	SPEI	values	243	

in	our	timeseries	(Figure	1d).	The	2005	dry	season	(June–October)	was	also	reported	as	an	244	

exceptionally	dry	year,	although	this	drought	mostly	affected	the	southwestern	Amazon	245	

(Marengo	et	al.,	2008;	Zeng	et	al.,	2008).	Our	SPEI	data	show	the	2005	dry	season	to	be	a	246	

moderate	drought	(-1	>	SPEI	>	-1.5).	247	

Survival, growth, and flowering in continuous forest vs. fragments 248	

Survival:	Across	all	plots,	the	proportion	of	plants	surviving	was	lowest	in	the	2003–2004	249	

transition	year	(𝑃/012 = 0.92).	This	coincided	with	droughts	in	both	the	2003	and	2004	250	

rainy	seasons	(Figure	1b,d)	and	was	preceded	by	a	drop	in	average	plant	size	in	the	2002–251	

2003	transition	year	(Figure	1a).	The	lowest	survival	for	1-ha	fragment	plots	(𝑃/012 = 0.93)	252	

was	for	the	2005–2006	transition	year,	which	encompassed	a	moderate	drought	in	October	253	

2005	and	and	wetter	than	average	conditions	(SPEI	>	0.5)	in	December	2005	and	January	254	

2006	(Figure	1b,d).	The	lowest	survival	for	continuous	forest	was	in	2004	(𝑃/012 = 0.91).	255	

When	summarizing	across	years,	plots,	and	plant	sizes,	the	survival	probability	of	Heliconia	256	

acuminata	was	similarly	high	in	both	continuous	forest	and	fragments	(𝑃/012 = 0.95;	Figure	257	

1b;	the	overlapping	85%	CI	of	model	intercepts	indicate	no	significant	difference).	258	

However,	survival	in	both	habitats	was	size	dependent	(𝑝 < 0.001	for	the	effect	of	log-259	

transformed	plant	size	in	year	t	on	survival	in	year	t+1	in	both	habitats).	The	survival	260	



probability	of	large	plants	approached	1	in	both	habitat	types	(Figure	3b),	but	the	smallest	261	

plants	had	higher	survival	in	1-ha	fragments.	262	

Growth:	Plants	in	continuous	forest	had	an	average	of	2.9	shoots	(±	1.8	SD)	and	were	on	263	

average	40.6	cm	tall	(±	26.5	SD).	Plants	in	1-ha	fragments	had	on	average	13.8%	fewer	264	

shoots	(2.5	±	1.5	SD)	and	were	10.8%	shorter	(36.3	cm	±	24.1	SD).	Because	our	proxy	for	265	

plant	size	was	the	product	of	these	two	metrics,	plants	in	continuous	forest	were	on	266	

average	34%	larger	than	those	in	forest	fragments	(150	±	175	SD	vs.	112	±	141	SD,	267	

respectively),	with	fragments	having	proportionately	fewer	large	plants	(Figure	3d).	This	268	

difference	was	not	significant,	however	(overlap	in	84%	CI	of	model	intercepts),	and	the	269	

disparity	in	plant	size—which	was	most	pronounced	in	the	initial	years	of	our	surveys—270	

diminished	over	time	(Figure	1a).	271	

Mean	plant	size	dropped	dramatically	in	2003	in	both	habitat	types,	corresponding	with	a	272	

severe	drought	during	the	February	census	(SPEI	=	-1.39)	(Figure	1d).	As	with	survival,	273	

size	in	year	t	was	a	significant	predictor	of	size	in	year	t+1	(𝑝 < 0.001	in	both	habitats).	274	

While	the	effect	was	generally	similar	across	size	classes	and	habitat	types,	the	impact	of	275	

plant	size	on	growth	was	greatest	for	mid-sized	plants	in	continuous	forest	(Figure	3a).	276	

Flowering:	The	overall	proportion	of	plants	that	flowered	was	very	low.	While	it	was	almost	277	

40%	higher	in	continuous	forest	than	1-ha	fragments	(0.05	±	0.21	vs.	0.04	±	0.19,	278	

respectively),	this	difference	was	not	statistically	significant	(84%	CIs	of	model	intercepts	279	

overlapped).	The	observed	disparity	was	largely	due	to	the	fact	that	flowering	is	also	size-280	

dependent	(𝑝 < 0.001	in	both	habitats),	with	the	probability	of	flowering	increasing	281	

dramatically	once	plants	reached	the	threshold	size	of	about	148	(i.e.,	log(size)	>	5	in	282	



Figure	3c).	Despite	the	flowering	probability	of	large	plants	being	greater	in	fragments	than	283	

continuous	forest,	populations	in	fragments	had	proportionately	fewer	plants	above	the	284	

reproductive	size	threshold	(Figure	3d).	The	most	striking	difference	between	habitat	285	

types	coincided	with	a	severe	drought	in	2003,	when	the	percentage	of	flowering	286	

reproductive-sized	plants	was	28%	in	continuous	forest	vs.	only	13.6%	in	1-ha	fragments	287	

(Figure	1c).	288	

Delayed effects of drought on demographic vital rates 289	

Drought	history	had	a	significant	(𝑝 < 0.001)	effect	on	the	survival,	growth,	and	flowering	290	

of	plants	in	both	habitats.	Comparing	the	respective	crossbasis	surfaces,	however,	reveals	291	

that	the	specific	climatic	drivers,	their	timing,	and	their	impact	on	individual	vital	rates	all	292	

differed	among	habitats.	293	

Survival:	For	1-ha	fragments,	there	was	a	significant	effect	on	survival	of	SPEI	in	the	294	

preceding	13	months.	The	highest	survival	was	near	SPEI	of	0,	with	mortality	increasing	as	295	

conditions	became	either	drier	or	wetter	(i.e.,	as	SPEI	values	became	increasingly	negative	296	

or	positive,	respectively;	Figure	4b).	Wet	conditions	in	the	preceding	23	months	(i.e.,	SPEI	>	297	

1)	also	had	a	significant	negative	effect	on	survival	in	fragments	(Figure	4b).	In	contrast,	298	

the	effect	of	recent	SPEI	in	continuous	forest	was	weaker,	with	only	the	6	months	preceding	299	

a	census	having	a	significant	effect	on	survival	(Figure	4a).	These	short-term	effects	of	SPEI	300	

on	survival	were	also	unidirectional—the	probability	of	survival	declined,	albeit	only	301	

slightly,	with	increasingly	negative	values	of	SPEI	(i.e.,	as	droughts	became	more	severe;	302	

Figure	4a).	In	contrast,	the	most	pronounced	negative	effects	of	SPEI	on	the	survival	of	303	

plants	in	continuous	forest	were	at	lag	times	of	15–20	months	and	32–36	months.	Drought	304	



15–20	months	prior	to	a	census	(i.e.	two	dry	seasons	prior	to	a	census)	was	significantly	305	

associated	with	reduced	survival,	while	high	precipitation	(i.e.,	SPEI	>	1)	was	significantly	306	

associated	with	higher	survival.	Finally,	plants	in	both	habitat	types	showed	an	increase	in	307	

survival	probability	with	very	high	SPEI	values	(i.e.,	extremely	high	precipitation)	at	a	lag	308	

time	of	32–36	months.	It	should	be	noted,	however,	that	only	the	first	year	of	census	data	309	

(1999)	met	these	conditions.	We	compared	the	effects	of	SPEI	history	in	continuous	forest	310	

and	fragments	by	subtracting	the	fitted	values	in	Figure	4b	from	Figure	4a	to	produce	311	

Figure	4c.	This	shows	that	in	average	conditions	(SPEI	=	0),	there	is	little	difference	in	312	

survival	probability	between	continuous	forest	and	forest	fragments	(Figure	4c).	However,	313	

under	extreme	conditions,	survival	probability	is	higher	in	continuous	forest	by	up	to	314	

0.025.	315	

Growth:	The	effects	of	drought	history	on	trends	in	plant	size	were	generally	similar	for	316	

continuous	forest	and	fragments.	However,	the	crossbasis	function	for	1-ha	fragments	317	

indicated	more	complex	responses	in	some	situations	(edf	=	17.8	for	1-ha	fragments;	edf	=	318	

13.0	for	continuous	forest;	see	also	Figure	5).	For	example,	under	average	conditions	(i.e.,	319	

SPEI	=	0),	growth	is	similar	or	slightly	higher	in	continuous	forest	over	all	lag	periods	320	

(Figure	5c).	However,	the	growth	of	plants	in	fragments	is	reduced	when	the	current	wet	321	

season	is	unusually	wet	(i.e.,	SPEI>2),	and	as	a	result	the	plants	in	continuous	forests	will	322	

be	larger	by	up	to	log(size)	=	0.57.	In	contrast,	drought	at	lags	of	8–11	months	(i.e.,	the	end	323	

of	the	preceding	year’s	wet	season)	led	to	increased	growth	in	both	habitats,	with	a	more	324	

pronounced	response	in	1-ha	fragments.	325	



Flowering:	Overall,	the	the	probability	of	flowering	was	higher	in	continuous	forest	than	in	326	

1-ha	fragments	for	all	values	of	SPEI	(Figure	6),	although	this	difference	was	not	significant	327	

(84%	CIs	of	intercepts	overlap).	The	responses	in	1-ha	fragments	were	also	more	muted	as	328	

indicated	by	the	shape	of	the	crossbasis	function	(1-ha	edf	=	8.3,	continuous	forest	edf	=	329	

10.6)	(Figure	6).	This	led	to	some	important	inter-habitat	differences	in	plant	responses	to	330	

prior	droughts.	In	continuous	forests,	recent	drought	(i.e.,	at	lag	=	0–2	with	SPEI	<	-1),	331	

drought	two	dry	seasons	prior	(lags	15–20	)	and	in	the	wet	season	34–36	months	prior	all	332	

increased	the	probability	of	flowering.	However,	drought	at	the	end	of	the	rainy	season	one	333	

year	prior	(lags	7–13)	significantly	reduced	flowering	probability	(Figure	6a).	In	fragments,	334	

recent	drought	had	no	significant	effect	on	flowering	probability	and	only	drought	at	two	335	

dry	seasons	prior	(lags	16–20)	and	in	the	wet	season	33–36	months	prior	increased	336	

flowering	probability	(Figure	6b).	The	effects	of	drought	on	flowering	probability	were	337	

strong	in	continuous	forest	compared	to	1	ha	fragments	(Figure	6c).	We	found	no	evidence	338	

for	a	cost	of	reproduction:	in	both	forest	and	fragments,	plants	that	had	flowered	in	the	339	

previous	year	were	on	average	more	likely	to	be	larger	(CF:	𝑝 = 0.048;	1-ha:	𝑝 = 0.030)	340	

and	flower	again	(CF:	𝑝 < 0.001;	1-ha:	𝑝 = 0.004).	The	random	effect	of	plant	ID	on	341	

flowering	probability	was	also	significant	(CF:	𝑝 < 0.001;	1-ha:	𝑝 = 0.003),	indicating	342	

significant	individual-level	variation	in	flowering	probability.	343	

Finally,	with	the	exception	of	survival	in	1-ha	fragments	(𝑝 = 0.253),	the	delayed	effects	of	344	

SPEI	on	all	three	vital	rates	varied	significantly	among	plots	(𝑝 < 0.01	for	the	random	effect	345	

of	plot).	346	



Discussion 347	

Understanding	how	landscape	structure	and	abiotic	conditions	act	to	influence	population	348	

dynamics	is	central	to	many	conceptual	frameworks	for	studying	and	conserving	349	

fragmented	landscapes	(Didham	et	al.,	2012;	Driscoll	et	al.,	2013).	Our	results	support	the	350	

emerging	consensus	that	the	effects	of	climatic	extremes	on	demographic	vital	rates	can	be	351	

delayed	for	months	or	even	years	(Evers	et	al.,	2021;	Teller	et	al.,	2016;	Tenhumberg	et	al.,	352	

2018).	We	also	found	that	the	delayed	responses	of	populations	in	fragments	can	differ	353	

significantly	in	magnitude,	direction,	and	lag	time	from	those	of	populations	in	continuous	354	

forest.	This	suggests	that	the	hypothesized	synergies	between	climate	and	fragmentation	355	

on	population	dynamics	(Laurance	&	Williamson,	2001;	Opdam	&	Wascher,	2004;	Selwood	356	

et	al.,	2015)	are	likely	to	be	pervasive,	but	also	far	more	complex	than	previously	thought.	357	

Temporal variation in demographic responses to forest fragmentation 358	

Many	studies	investigating	the	biological	consequences	of	habitat	fragmentation	on	plant	359	

growth,	survival,	and	reproduction	comprise	short-term	(<3	year)	experiments	and	360	

observations.	Our	results	underscore	the	difficulty	in	extrapolating	long-term	trends	from	361	

such	short-term	studies,	particularly	when	studying	long-lived	organisms	or	when	the	362	

responses	of	interest	can	vary	with	size	or	age.	For	instance,	one	would	have	reached	a	very	363	

different	conclusion	regarding	the	effect	of	fragmentation	on	annual	survival	if	the	study	364	

windows	were	1999–2002	(i.e.,	higher	survival	in	continuous	forest),	2002–2005	(i.e.,	365	

higher	survival	in	fragments),	or	2004–2007	(i.e,	no	clear	effect	of	fragmentation)	(Figure	366	

1b).	It	is	only	when	evaluating	over	longer	time	windows	that	it	becomes	apparent	367	

mortality	is	elevated	in	fragments	relative	to	continuous	forest	(Figure	2),	and	that	the	368	

observed	interannual	variation	is	largely	driven	by	dynamic	patterns	of	recruitment	369	



(Bruna,	2002)	coupled	with	low	mortality	for	plants	beyond	the	smallest	size	classes	370	

(Bruna,	2003).	371	

Similarly,	conclusions	regarding	the	effects	of	fragmentation	on	flowering—which	is	also	372	

both	rare	and	size-dependent	(Brooks	et	al.,	2019)—would	also	differ	based	on	the	year	in	373	

which	they	were	investigated.	This	could	lead	to	erroneous	extrapolations	regarding	the	374	

effects	of	fragmentation	on	reproductive	mutualists	or	population	genetic	structure	(Côrtes	375	

et	al.,	2013;	Uriarte	et	al.,	2010;	Uriarte	et	al.,	2011).	Conclusions	based	on	short-term	376	

observations	of	temporally	variable	vital	rates	could	lead	to	conservation	and	management	377	

practices	that	are	ineffective	or	even	counterproductive,	especially	when	when	failing	to	378	

consider	how	the	consequences	of	this	variation	might	be	modulated	by	organismal	life	379	

history	(Morris	et	al.,	2008).	380	

It	is	important	to	emphasize,	however,	that	the	overall	effects	of	SPEI	on	survival	and	381	

growth	are	more	severe	in	fragments	than	continuous	forest	(Figures	4,	5).	Furthermore,	382	

the	magnitude	of	plant	responses	to	climatic	extremes	is	also	greater	in	habitat	383	

fragments—extreme	drought	in	dry	seasons	and	extreme	precipitation	in	during	rainy	384	

seasons	are	most	detrimental	to	growth	and	survival	in	fragments.	While	intact	forest	and	385	

its	canopy	buffer	populations	from	climatic	extremes,	populations	in	fragments—especially	386	

near	edges	with	high	contrast	matrix—likely	lack	this	protection	(Didham	&	Lawton,	1999;	387	

Ewers	&	Banks-Leite,	2013).	We	suggest	it	is	these	climate	extremes,	rather	than	trends	in	388	

average	temperature,	precipitation,	or	SPEI	(Laurance	et	al.,	2014),	that	that	are	the	causal	389	

mechanism	underlying	reduced	plant	growth	and	survival	in	forest	fragments.	390	



Delayed effects of climate on demographic vital rates 391	

Climate	anomalies	are	known	to	have	immediate	effects	on	the	growth,	survival,	or	392	

reproduction	of	plants	(Esteban	et	al.,	2021;	Wright	&	Calderon,	2006),	including	Heliconia	393	

(Stiles,	1975;	Westerband	et	al.,	2017)	and	other	tropical	herbs	(Wright,	1992).	These	394	

effects	can	be	complex	or	even	contradictory—mild	droughts	can	increase	the	growth	rates	395	

of	tropical	trees	and	seedling	survival,	perhaps	due	to	reductions	in	cloud	cover	and	396	

concomitant	increases	in	solar	radiation	(Alfaro-Sánchez	et	al.,	2017;	Condit	et	al.,	2004;	397	

Huete	et	al.,	2006;	Jones	et	al.,	2014;	Uriarte	et	al.,	2018),	but	in	severe	drought	years	398	

growth	can	be	extremely	low	and	mortality	can	be	sharply	elevated	(Connell	&	Green,	399	

2000;	Edwards	&	Krockenberger,	2006;	Engelbrecht	et	al.,	2002).	There	is	also	evidence	400	

that	the	effects	can	persist	for	multiple	years	(Phillips	et	al.,	2010),	such	as	a	boom	in	401	

drought-year	fruit	production	followed	by	severe	post-drought	“famine”	(Pau	et	al.,	2013;	402	

Wright	et	al.,	1999).	403	

Despite	these	insights,	models	of	plant	population	dynamics	rarely	include	the	effects	of	404	

environmental	drivers	[but	see	Williams	et	al.	(2015);	Tenhumberg	et	al.	(2018);	Molowny-405	

Horas	et	al.	(2017)).	This	has	largely	been	due	to	the	challenge	(both	ecologically	and	406	

statistically)	of	detecting	any	demographic	responses	to	climatic	extremes	that	are	delayed	407	

for	multiple	growing	seasons.	To	address	this,	researchers	have	begun	to	use	a	number	of	408	

statistical	methods	that	test	for	time	lags	in	demographic	responses	without	a	priori	409	

assumptions	about	the	influence	of	any	particular	climate	window	(Evers	et	al.,	2021;	410	

Teller	et	al.,	2016;	Tenhumberg	et	al.,	2018).	Our	expansion	of	this	approach,	which	offers	411	

an	unbiased	way	of	identifying	these	delayed	effects	without	overfitting	(but	see	Pierre	et	412	

al.	(2020)	and	Ogle	et	al.	(2015)	for	alternative	methods)	yielded	results	consistent	with	413	



this	emerging	literature—that	the	effects	of	precipitation	extremes	on	the	demography	of	414	

Heliconia	acuminata	could	be	delayed	for	up	to	3	growing	seasons.	415	

While	it	appears	that	delayed	effects	of	climate	on	demographic	vital	rates	may	be	416	

ubiquitous	(Evers	et	al.,	2021),	the	extent	to	which	they	vary	spatially	or	with	habitat	417	

remains	an	open	question.	Our	results	clearly	indicate	that	they	can,	with	habitat-specific	418	

differences	in	how	environmental	conditions	influenced	future	vital	rates.	For	example,	419	

extreme	values	of	SPEI—both	positive	(unusually	high	precipitation)	and	negative	420	

(drought	conditions)—led	to	declines	in	the	probability	of	individual	survival	in	both	421	

habitat	types.	However,	the	magnitude	of	these	declines	was	far	greater	in	forest	422	

fragments.	Similarly,	the	detrimental	effects	of	extremes	in	SPEI	on	growth	rates	were	also	423	

more	pronounced	in	fragments.	In	contrast,	variation	in	SPEI	had	far	stronger	effects	on	the	424	

probability	of	flowering	in	continuous	forest	than	fragments.	These	results	should	be	425	

interpreted	with	some	caution,	however,	as	the	relatively	low	number	of	plants	in	426	

fragments	that	are	above	the	threshold-size	for	flowering	could	limit	the	power	to	detect	427	

delayed	effects.	428	

There	are	several,	non-mutually-exclusive	explanations	for	delayed	effects	of	SPEI	on	429	

demography.	The	first	is	that	the	physiological	processes	underlying	vital	rates	might	be	430	

initiated	long	before	they	are	demographically	apparent	(Evers	et	al.,	2021),	and	hence	be	431	

shaped	by	climatic	events	at	any	point	in	that	physiological	window.	For	example,	the	432	

flowering	shoots	of	Heliconia	chartacea	begin	to	develop	6–10	months	prior	to	the	433	

appearance	of	inflorescences	(Criley	&	Lekawatana,	1994).	Adverse	conditions	during	the	6	434	

months	following	initiation,	rather	than	the	months	when	inflorescences	are	starting	435	



expand,	leads	to	the	aborted	production	of	flowering	shoots.	Interestingly,	we	observed	the	436	

opposite	effect—drought	conditions	increased	the	probability	of	flowering	two	years	later.	437	

While	this	could	reflect	bet-hedging	in	response	to	stress	(Nihad	et	al.,	2018),	this	does	not	438	

appear	to	be	the	case,	as	growth	or	survival	do	not	appear	to	decrease	following	439	

reproduction	(see	also	(Horvitz	&	Schemske,	1988).	In	fact,	flowering	in	one	year	is	440	

associated	with	increased	reproduction	and	growth	in	the	next	.	441	

Demographic	responses	will	also	be	delayed	if	abiotic	stress	causes	plants	to	invest	in	442	

belowground	rhizomes	(sensu	Pumisutapon	et	al.,	2012).	The	carbohydrates	stored	in	443	

rhizomes	allow	Heliconia	to	regenerate	aboveground	biomass	following	damage	(Rundel	et	444	

al.,	1998)	and	protect	the	buds	that	give	rise	to	new	shoots	from	stressful	conditions	445	

(Klimešová	et	al.,	2018).	This	may	be	why	drought	led	to	delayed	increases	in	growth—by	446	

shedding	shoots	and	leaves	(Bruna	et	al.,	2002)	and	investing	in	rhizomes,	plants	are	447	

generating	proportionately	more	buds	with	which	to	regenerate	when	conditions	improve.	448	

This	would	also	be	consistent	with	the	results	of	prior	experiments,	in	which	the	growth	449	

rates	of	H.	acuminata	8	months	after	they	were	mechanically	damaged	far	exceeded	those	450	

of	control	plants	(Bruna	&	Ribeiro,	2005).	451	

Third,	it	may	be	that	the	delayed	demographic	effects	we	observed	are	indirectly	mediated	452	

by	the	effect	of	SPEI	on	other	species	rather	than	the	direct	effects	on	individual	physiology	453	

(Evers	et	al.,	2021).	For	example,	topical	trees	may	not	die	until	three	or	more	years	after	a	454	

drought	(Criley	&	Lekawatana,	1994).	When	they	finally	do,	the	resulting	leaf	drop	(Janssen	455	

et	al.,	2021)	and	treefalls	allow	for	light	penetration	to	the	forest	understory	(Canham	et	al.,	456	

1990;	Leitold	et	al.,	2018),	triggering	a	boom	in	the	growth	and	flowering	of	understory	457	



plants	(Bruna	&	Oli,	2005).	Similar	delayed	changes	in	the	local	environment	could	also	458	

influence	the	foraging	behavior	of	a	plant’s	pollinators	(Bruna	et	al.,	2004;	Stouffer	&	459	

Bierregaard,	1996),	seed	dispersers	(Uriarte	et	al.,	2011),	or	herbivores	(Scott	et	al.,	2021).	460	

While	more	work	is	needed	to	explain	why	the	(delayed)	effects	of	SPEI	on	H.	acuminata	461	

survival	and	growth	are	greater	in	fragments	than	forest	interiors,	one	hypothesis,	462	

motivated	by	recent	intriguing	results	from	other	systems	(Sapsford	et	al.,	2017),	is	that	the	463	

greater	litterfall	on	edges	(Vasconcelos	&	Luizão,	2004)	may	be	altering	the	abundance	of	464	

pathogens	or	mycorrhizae.	465	

Finally,	demographic	delays	could	be	an	artifact	of	the	timing	of	responses	in	relation	to	the	466	

census	date.	If	extreme	drought	in	the	dry	season	before	the	census	increased	plant	467	

mortality	during	that	season,	for	example,	this	would	nevertheless	appear	in	models	as	a	468	

delayed	effect	(e.g.	in	Figure	4b).	In	our	case,	this	potential	explanation	for	delayed	effects	469	

applies	only	to	plant	size	and	survival,	as	plots	were	surveyed	regularly	throughout	the	470	

reproductive	season	to	identify	flowering	plants.	This	possibility	is	not	unique	to	our	study,	471	

rather	it	is	a	consequence	of	conducting	demographic	censuses	on	an	annual	scale	while	472	

the	climate	is	quantified	monthly	or	seasonally.	While	the	very	slow	growth	and	extremely	473	

low	mortality	rates	of	H.	acuminata	mean	this	effect	is	unlikely	to	be	acting	in	our	system,	it	474	

may	be	that	for	some	species	it	will	be	important	to	conduct	demographic	surveys	at	the	475	

same	temporal	scale	at	which	climate	is	aggregated.	476	

Conclusions & Future Directions 477	

Over	24	million	ha	of	the	Brazilian	Amazon	have	been	cleared	in	the	last	two	decades	(Silva	478	

Junior	et	al.,	2021),	resulting	in	their	extensive	fragmentation	(Broadbent	et	al.,	2008).	479	



Climate	models	predict	a	future	of	extremes	for	these	forests—increases	in	the	frequency	480	

and	geographic	extent	of	droughts,	but	also	increases	in	the	frequency	and	area	affected	by	481	

periods	of	unusual	wetness	(Duffy	et	al.,	2015).	Our	results	support	the	hypothesis	that	482	

populations	in	Amazonian	forest	fragments	could	be	more	susceptible	to	the	effects	of	483	

changing	climate	than	those	in	continuous	forest	(Laurance	et	al.,	2014).	However,	they	484	

also	indicate	that	the	demographic	responses	to	climate	change	of	populations	in	485	

fragmented	landscapes	may	be	far	more	complex	than	previously	appreciated.	Multi-486	

factorial,	multi-season	experiments	(Aguirre	et	al.,	2021;	sensu	Bruna	&	Ribeiro,	2005;	487	

Markewitz	et	al.,	2010;	Westerband	et	al.,	2017),	ideally	manipulating	multiple	488	

combinations	of	climatic	variables	(Mundim	&	Bruna,	2016),	are	needed	to	determine	how	489	

and	why	habitat-specific	differences	in	environmental	conditions	interact	to	delay	the	490	

demographic	responses	of	plants	to	climatic	variability.	Also	needed	are	statistical	tools	491	

that	can	test	for	synergistic	effects	of	fragmentation	and	climate	in	vital	rates,	as	those	492	

currently	available	do	not	allow	for	including	interaction	terms.	This	also	limits	the	ability	493	

to	include	size	by	climate	interactions	in	a	DLNM;	although	plant	responses	to	both	494	

fragmentation	and	climatic	extremes	can	be	size-specific	(Bruna	&	Oli,	2005;	Schwartz	et	495	

al.,	2019).	The	ability	to	identify	size-specific	lagged	responses	may	be	especially	496	

complicated	given	size	and	growth	are	rarely	measured	at	the	same	time	scale	as	SPEI	and	497	

other	putative	climatic	drivers.	498	

Finally,	no	analytical	approach	assessing	the	potential	for	demographic	lags	can	499	

compensate	for	a	lack	of	long-term	data	(Evers	et	al.,	2021;	Tenhumberg	et	al.,	2018).	500	

Unfortunately,	long-term	data	monitoring	the	entire	life-cycle	of	tropical	taxa	are	rare,	and	501	

those	doing	so	in	fragmented	landscapes	are	virtually	nonexistent	(Bruna	&	Ribeiro,	2005).	502	



Without	investing	in	collecting	such	data,	generalizations	regarding	the	demographic	503	

consequences	of	climate	change	in	these	species	rich	and	increasingly	fragmented	habitats	504	

will	continue	to	prove	elusive.	More	generally,	however,	researchers	need	to	consider	how	505	

delayed	responses	to	climate	could	influence	the	interpretation	of	data	in	studies	where	the	506	

organisms	lifespan	exceeds	the	study’s	duration.	507	
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Figures 518	

	519	

Figure	1:	(a-c)	Time	series	of	H.	acuminata	vital	rates	in	1-ha	fragments	(solid	orange	lines)	520	
and	continuous	forest	(dashed	blue	lines)	and	(d)	drought	occurrence	in	the	study	region.	(a)	521	
Mean	fold-change	in	plant	plant	size	(log2(sizet+1	/	sizet))	varies	by	year	and	habitat.	On	522	
average,	plants	grew	in	most	years	with	the	notable	exception	in	2003,	in	which	on	average	523	
plants	regressed	in	size	in	both	habitats	(i.e.,	fold-change	<	0).	Error	bars	represent	the	524	
standard	deviation.	(b)	The	proportion	of	plants	surviving	from	one	transition	year	to	the	next	525	
varied	from	0.98	(CF	in	1998-1999)	to	0.91	(CF	in	2003-2004).	(c)	The	proportion	of	H.	526	
acuminata	above	the	size	threshold	for	reproduction	that	flowered	each	year	is	on	average	527	
low	but	variable.	The	size	threshold	is	determined	by	the	upper	90th	percentile	size	of	528	
flowering	plants	across	all	years.	(d)	Monthly	3-month	SPEI	for	our	study	region.	Gray	lines	529	



represent	values	from	different	grid	cells	encompassing	BDFFP;	the	dark	line	represents	the	530	
site	mean.	Colored	stripes	represent	drought	intensity:	yellow	=	mild,	orange	=	moderate,	dark	531	
orange	=	severe,	red	=	extreme.	532	

	533	

Figure	2:	Survivorship	curve	for	plants	marked	in	the	1998	survey	year;	these	plants	comprise	534	
49%	of	those	in	the	complete	demographic	dataset.	The	percentage	of	these	plants	that	were	535	
still	alive	ten	years	later	was	79.7%	(1629/2055)	in	continuous	forest	vs.	72.4%	(393/543)	in	536	
1-ha	fragments.	537	



	538	

Figure	3:	Smooth	effect	from	models	of	plant	size	in	the	previous	census	on	(a)	survival,	(b)	539	
log(size),	and	(c)	flowering	probability;	these	values	correspond	to	the	additive	term	s1(zi)	in	540	
eq.	1.	The	bands	depicting	the	95%	confidence	interval	include	uncertainty	in	the	intercept	541	
and	uncertainty	due	to	smoothness	selection;	the	smooths	for	1-ha	fragments	and	continuous	542	
forest	are	fit	in	separate	models.	(d)	Plant	size	distribution	by	habitat	type	(solid	line	=	1-ha	543	
fragments,	dashed	line	=	Continuous	Forest).	544	



	545	

Figure	4:	Smooth	effect	of	lagged	SPEI	on	H.	acuminata	survival	in	(a)	continuous	forest,	(b)	546	
1-ha	fragments,	(c)	and	the	difference	between	the	two.	Outlines	show	regions	where	the	547	
effect	of	SPEI	is	significant,	defined	as	those	where	the	95%	confidence	interval	around	the	548	
response	does	not	overlap	the	intercept.	The	bar	on	the	bottom	of	each	panel	indicates	the	wet	549	
seasons	(black,	November–May)	and	dry	seasons	(white,	June–October).	Surface	is	modeled	as	550	
a	crossbasis	function	with	cubic	regression	splines	for	each	marginal	basis.	Model	intercepts	551	
were	added	to	fitted	values	of	the	crossbasis	function	and	back-transformed	to	the	response	552	
scale.	553	



	554	

Figure	5:	Smooth	effect	of	lagged	SPEI	on	H.	acuminata	growth	in	(a)	continuous	forest,	(b)	1-555	
ha	fragments,	(c)	and	the	difference	between	the	two.	Outlines	show	regions	where	the	effect	556	
of	SPEI	is	significant,	defined	as	those	where	the	95%	confidence	interval	around	the	response	557	
does	not	overlap	the	intercept.	The	bar	on	the	bottom	of	each	panel	indicates	the	wet	seasons	558	
(black,	November–May)	and	dry	seasons	(white,	June–October).	559	



	560	

Figure	6:	Smooth	effect	of	lagged	SPEI	on	H.	acuminata	flowering	probability	in	(a)	561	
continuous	forest,	(b)	1-ha	fragments,	(c)	and	the	difference	between	the	two.	Outlines	show	562	
regions	where	the	effect	of	SPEI	is	significant,	defined	as	those	where	the	95%	confidence	563	
interval	around	the	response	does	not	overlap	the	intercept.	The	bar	on	the	bottom	of	each	564	
panel	indicates	the	wet	seasons	(black,	November–May)	and	dry	seasons	(white,	June–565	
October).	Surface	is	modeled	as	a	crossbasis	function	with	cubic	regression	splines	for	each	566	
marginal	basis.	Model	intercepts	were	added	to	fitted	values	of	the	crossbasis	function	and	567	
back-transformed	to	the	response	scale.	568	
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#>  P Rcpp         * 1.0.6      2021-01-15 [?]	1066	
#>  P readr        * 1.4.0      2020-10-05 [?]	1067	
#>  P readxl       * 1.3.1      2019-03-13 [?]	1068	
#>  P remotes        2.3.0      2021-04-01 [?]	1069	
#>  P renv           0.13.2     2021-03-30 [?]	1070	
#>  P reprex         2.0.0      2021-04-02 [?]	1071	
#>  P rlang          0.4.11     2021-04-30 [?]	1072	
#>  P rmarkdown    * 2.7        2021-02-19 [?]	1073	
#>  P robustbase     0.93-7     2021-01-04 [?]	1074	
#>  P rpart          4.1-15     2019-04-12 [?]	1075	
#>  P rprojroot      2.0.2      2020-11-15 [?]	1076	
#>  P rstudioapi     0.13       2020-11-12 [?]	1077	
#>  P rvest          1.0.0      2021-03-09 [?]	1078	
#>  P scales         1.1.1      2020-05-11 [?]	1079	
#>  P sessioninfo    1.1.1      2018-11-05 [?]	1080	
#>  P snakecase      0.11.0     2019-05-25 [?]	1081	
#>  P SPEI         * 1.7        2017-06-07 [?]	1082	
#>  P statmod      * 1.4.35     2020-10-19 [?]	1083	
#>  P stringi        1.5.3      2020-09-09 [?]	1084	
#>  P stringr      * 1.4.0      2019-02-10 [?]	1085	
#>  P survival     * 3.2-11     2021-04-26 [?]	1086	
#>  P tarchetypes  * 0.2.0      2021-05-11 [?]	1087	
#>  P targets      * 0.4.2      2021-04-30 [?]	1088	
#>  P testthat       3.0.2      2021-02-14 [?]	1089	
#>  P tibble       * 3.1.1      2021-04-18 [?]	1090	
#>  P tidyr        * 1.1.3      2021-03-03 [?]	1091	
#>  P tidyselect     1.1.1      2021-04-30 [?]	1092	
#>  P tidyverse    * 1.3.1      2021-04-15 [?]	1093	
#>  P tsibble      * 1.0.1      2021-04-12 [?]	1094	
#>  P tsModel      * 0.6        2013-06-24 [?]	1095	
#>  P usethis        2.0.1      2021-02-10 [?]	1096	
#>  P utf8           1.2.1      2021-03-12 [?]	1097	
#>  P vctrs          0.3.8      2021-04-29 [?]	1098	
#>  P withr          2.4.2      2021-04-18 [?]	1099	
#>  P xfun           0.22       2021-03-11 [?]	1100	



#>  P xml2           1.3.2      2020-04-23 [?]	1101	
#>  P yaml           2.2.1      2020-02-01 [?]	1102	
#>  source                              	1103	
#>  CRAN (R 4.0.2)                      	1104	
#>  CRAN (R 4.0.2)                      	1105	
#>  CRAN (R 4.0.2)                      	1106	
#>  CRAN (R 4.0.2)                      	1107	
#>  CRAN (R 4.0.2)                      	1108	
#>  CRAN (R 4.0.2)                      	1109	
#>  CRAN (R 4.0.2)                      	1110	
#>  CRAN (R 4.0.2)                      	1111	
#>  CRAN (R 4.0.2)                      	1112	
#>  CRAN (R 4.0.2)                      	1113	
#>  CRAN (R 4.0.2)                      	1114	
#>  CRAN (R 4.0.2)                      	1115	
#>  CRAN (R 4.0.2)                      	1116	
#>  CRAN (R 4.0.2)                      	1117	
#>  CRAN (R 4.0.2)                      	1118	
#>  CRAN (R 4.0.2)                      	1119	
#>  CRAN (R 4.0.2)                      	1120	
#>  CRAN (R 4.0.1)                      	1121	
#>  CRAN (R 4.0.2)                      	1122	
#>  CRAN (R 4.0.2)                      	1123	
#>  CRAN (R 4.0.2)                      	1124	
#>  CRAN (R 4.0.2)                      	1125	
#>  CRAN (R 4.0.2)                      	1126	
#>  CRAN (R 4.0.2)                      	1127	
#>  CRAN (R 4.0.2)                      	1128	
#>  CRAN (R 4.0.2)                      	1129	
#>  CRAN (R 4.0.2)                      	1130	
#>  CRAN (R 4.0.2)                      	1131	
#>  CRAN (R 4.0.2)                      	1132	
#>  CRAN (R 4.0.2)                      	1133	
#>  CRAN (R 4.0.1)                      	1134	
#>  CRAN (R 4.0.2)                      	1135	
#>  CRAN (R 4.0.2)                      	1136	
#>  CRAN (R 4.0.2)                      	1137	
#>  CRAN (R 4.0.2)                      	1138	
#>  CRAN (R 4.0.2)                      	1139	
#>  CRAN (R 4.0.2)                      	1140	
#>  CRAN (R 4.0.2)                      	1141	
#>  CRAN (R 4.0.2)                      	1142	
#>  CRAN (R 4.0.2)                      	1143	
#>  CRAN (R 4.0.2)                      	1144	
#>  CRAN (R 4.0.2)                      	1145	
#>  Github (gavinsimpson/gratia@9359c3d)	1146	
#>  CRAN (R 4.0.0)                      	1147	
#>  CRAN (R 4.0.2)                      	1148	
#>  CRAN (R 4.0.2)                      	1149	
#>  CRAN (R 4.0.2)                      	1150	



#>  CRAN (R 4.0.2)                      	1151	
#>  CRAN (R 4.0.2)                      	1152	
#>  CRAN (R 4.0.2)                      	1153	
#>  CRAN (R 4.0.2)                      	1154	
#>  CRAN (R 4.0.2)                      	1155	
#>  CRAN (R 4.0.2)                      	1156	
#>  CRAN (R 4.0.2)                      	1157	
#>  CRAN (R 4.0.2)                      	1158	
#>  CRAN (R 4.0.2)                      	1159	
#>  CRAN (R 4.0.0)                      	1160	
#>  CRAN (R 4.0.2)                      	1161	
#>  CRAN (R 4.0.2)                      	1162	
#>  CRAN (R 4.0.2)                      	1163	
#>  CRAN (R 4.0.2)                      	1164	
#>  CRAN (R 4.0.2)                      	1165	
#>  CRAN (R 4.0.2)                      	1166	
#>  CRAN (R 4.0.2)                      	1167	
#>  CRAN (R 4.0.2)                      	1168	
#>  CRAN (R 4.0.2)                      	1169	
#>  CRAN (R 4.0.2)                      	1170	
#>  CRAN (R 4.0.2)                      	1171	
#>  CRAN (R 4.0.2)                      	1172	
#>  CRAN (R 4.0.2)                      	1173	
#>  CRAN (R 4.0.2)                      	1174	
#>  CRAN (R 4.0.2)                      	1175	
#>  CRAN (R 4.0.2)                      	1176	
#>  CRAN (R 4.0.2)                      	1177	
#>  CRAN (R 4.0.2)                      	1178	
#>  CRAN (R 4.0.2)                      	1179	
#>  CRAN (R 4.0.2)                      	1180	
#>  CRAN (R 4.0.2)                      	1181	
#>  CRAN (R 4.0.2)                      	1182	
#>  CRAN (R 4.0.2)                      	1183	
#>  CRAN (R 4.0.2)                      	1184	
#>  CRAN (R 4.0.2)                      	1185	
#>  CRAN (R 4.0.2)                      	1186	
#>  CRAN (R 4.0.2)                      	1187	
#>  CRAN (R 4.0.0)                      	1188	
#>  CRAN (R 4.0.2)                      	1189	
#>  CRAN (R 4.0.2)                      	1190	
#>  CRAN (R 4.0.2)                      	1191	
#>  CRAN (R 4.0.2)                      	1192	
#>  CRAN (R 4.0.2)                      	1193	
#>  CRAN (R 4.0.2)                      	1194	
#>  CRAN (R 4.0.2)                      	1195	
#>  CRAN (R 4.0.2)                      	1196	
#>  CRAN (R 4.0.2)                      	1197	
#>  CRAN (R 4.0.2)                      	1198	
#>  CRAN (R 4.0.2)                      	1199	
#>  CRAN (R 4.0.2)                      	1200	



#>  CRAN (R 4.0.2)                      	1201	
#>  CRAN (R 4.0.2)                      	1202	
#>  CRAN (R 4.0.2)                      	1203	
#>  CRAN (R 4.0.2)                      	1204	
#>  CRAN (R 4.0.2)                      	1205	
#>  CRAN (R 4.0.2)                      	1206	
#>  CRAN (R 4.0.2)                      	1207	
#>  CRAN (R 4.0.2)                      	1208	
#>  CRAN (R 4.0.2)                      	1209	
#>  CRAN (R 4.0.2)                      	1210	
#>  CRAN (R 4.0.2)                      	1211	
#>  CRAN (R 4.0.2)                      	1212	
#>  CRAN (R 4.0.2)                      	1213	
#>  CRAN (R 4.0.2)                      	1214	
#>  CRAN (R 4.0.2)                      	1215	
#>  CRAN (R 4.0.2)                      	1216	
#>  CRAN (R 4.0.2)                      	1217	
#>  CRAN (R 4.0.2)                      	1218	
#>  CRAN (R 4.0.2)                      	1219	
#>  CRAN (R 4.0.2)                      	1220	
#>  CRAN (R 4.0.2)                      	1221	
#>  CRAN (R 4.0.2)                      	1222	
#>  CRAN (R 4.0.2)                      	1223	
#>  CRAN (R 4.0.2)                      	1224	
#>  CRAN (R 4.0.2)                      	1225	
#>  CRAN (R 4.0.2)                      	1226	
#>  CRAN (R 4.0.2)                      	1227	
#>  CRAN (R 4.0.2)                      	1228	
#>  CRAN (R 4.0.2)                      	1229	
#>  CRAN (R 4.0.2)                      	1230	
#>  CRAN (R 4.0.2)                      	1231	
#>  CRAN (R 4.0.2)                      	1232	
#> 	1233	
#> [1] /Users/scottericr/Documents/HeliconiaDemography/renv/library/R-1234	
4.0/x86_64-apple-darwin17.0	1235	
#> [2] 1236	
/private/var/folders/b_/2vfnxxls5vs401tmhhb3wqdh0000gp/T/RtmpKX4NCE/renv-1237	
system-library	1238	
#> [3] 1239	
/private/var/folders/b_/2vfnxxls5vs401tmhhb3wqdh0000gp/T/RtmpxFg51N/renv-1240	
system-library	1241	
#> 	1242	
#>  P ── Loaded and on-disk path mismatch.	1243	

The	current	Git	commit	details	are:	1244	

#> Local:    emilio /Users/scottericr/Documents/HeliconiaDemography	1245	
#> Remote:   emilio @ origin 1246	



(https://github.com/BrunaLab/HeliconiaDemography.git)	1247	
#> Head:     [5e4dd7c] 2021-06-22: minor edits to results and discussion	1248	


