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A B S T R A C T   

The capacity of highly diverse systems to prevail has proven difficult to explain. In addition to methodological 
issues, the inherent complexity of ecosystems and issues like multicausality, non-linearity and context-specificity 
make it hard to establish general and unidirectional explanations. Nevertheless, in recent years, high order in
teractions have been increasingly discussed as a mechanism that benefits the functioning of highly diverse 
ecosystems and may add to the mechanisms that explain their persistence. Until now, this idea has been explored 
by means of hypothetical simulated networks. Here, we test this idea using an updated and empirically docu
mented network for a coffee agroecosystem. We identify potentially key nodes and measure network robustness 
in the face of node removal with and without incorporation of high order interactions. We find that the system’s 
robustness is either increased or unaffected by the addition of high order interactions, in contrast with ran
domized counterparts with similar structural characteristics. We also propose a method for representing net
works with high order interactions as ordinary graphs and a method for measuring their robustness.   

1. Introduction 

The link between an ecosystem’s diversity, structure and functioning 
has long been debated in ecology. Both empirical and theoretical studies 
have tried to decipher the nature of their relationship and the factors 
that take part in shaping it. On the one hand, the existence of different 
definitions for these features has contributed to the difficulty of the task, 
while on the other hand, an intrinsic complexity stems from the very 
numerous elements, processes and scales that interact to give rise to 
these qualities (Ives and Carpenter 2007). Early ideas on the topic 
focused on the notion of stability, and maintained that diversity made 
ecosystems stable through species limiting each other’s growth by pre
dation or competition (Odum 1953; MacArthur 1955; Elton 1958). 
These notions were dramatically challenged by the work of Robert May 
(1972; 1973), who used linear stability analyses to show that commu
nities modelled as random networks lose local stability as the number of 
species, the number of interactions, or their strength rise. These results 

caused commotion in the scientific community, as they seemed to 
contradict the very real biodiversity found around the world. Since then, 
two main extensions have helped reconcile theory with observation; 
mainly: the use of realistic community structures (Lawlor 1978; Lawlor 
1980) and the complementation of linear stability analyses with other 
methods to assess ecosystem function from both a structural and a 
dynamical point of view like robustness, feasibility or structural stability 
(Landi et al., 2018). It is now generally recognized that diversity tends to 
positively correlate with some measures of ecosystem functioning, like 
stability, robustness or productivity. Nevertheless, this does not mean 
that diversity is the direct driver of these traits, rather, it should be 
regarded as an ‘umbrella’ indicator of many ecological mechanisms that 
are inherent to ecosystems and that are the actual determinants of the 
diversity-function relationships (McCann 2000). Such mechanisms and 
how they may favor the assembly and reproduction of highly diverse 
communities are now the focus of many studies (Chesson 2000; Levine 
et al., 2017). 
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Different mechanisms have since been proposed to enable the 
coexistence of species in highly diverse systems (Chesson 2000; Wright 
2002; Adler et al., 2013; Levine et al., 2017). Recently, high order in
teractions (HOI) have been proposed as a key mechanism for the 
persistence of diverse communities (Bairey et al., 2016; Grilli et al., 
2017). HOIs have been defined in subtly different ways and they have 
sometimes been equated with the concept of indirect effects (Worthen 
and Moore 1991; Billick and Case 1994; Sanchez 2019). Nevertheless, 
we align with those authors who have pointed out the strong differences 
between these two and define them as follows (Billick and Case 1994). 
Indirect effects are changes in interactions that are solely mediated by 
population densities (Levine 1976), and therefore pass from one species 
to another via the density changes in one or more intermediary species. 
These can also be called “interaction chains” (Wootton 1993). On the 
other hand, HOIs are functional modifications in the interaction of two 
species caused by a third one, and need not pass through any change in 
population densities (Wootton 1993). Indirect effects are a logical 
consequence of pairwise interactions whenever there are more than two 
species involved, while HOIs occur through additional mechanisms that 
cannot be extrapolated from isolated pairwise interactions. The impor
tance of HOIs has been widely recognized, as they are quite common and 
can have substantial implications: ecosystem engineering, predatory 
adaptive behavior, changes in foraging, facilitation, mutualisms and 
many so-called trait-mediated effects commonly involve HOIs (Becker
man et al., 1997; Werner and Peacor 2003; Holt and Barfield 2012; Kéfi 
et al., 2012; Bairey et al., 2016). Bairey et al. (2016) computationally 
explored the role of HOIs on the linear stability and feasibility of systems 
described as virtual random networks and found that HOIs could indeed 
attenuate or even revert a negative relationship between the number of 
species and stability. 

While the findings of Bairey et al. (2016) and other recent theoretical 
work have greatly contributed to our understanding of the relationship 
between HOIs and species coexistence (Grilli et al., 2017; Singh and 
Baruah, 2020; Li et al., 2020), they rely on hypothetical networks whose 
interactions are set randomly and do not represent known ecological 
interactions, or on the assessment of some focal species (Mayfield and 
Stouffer, 2017). It thus remains unclear how HOIs may affect the func
tion of empirically-documented networks which, arguably, capture 
some aspects of their structure and dynamics in a more faithful manner. 
There are now some well-studied ecological and few agroecological 
networks that could help fill this important gap (Scheffer 1997; Yoon 
et al., 2004; Fortuna et al., 2014; Perfecto and Vandermeer, 2015; López 
Martínez 2017). Agroecosystems cover around 40% of the Earth’s sur
face (Foley et al., 2005), represent a substantial part of the world’s 
biodiversity, and have just recently begun to be analyzed from a network 
perspective (Bohan et al., 2013; López Martínez 2017). The insights 
gained from such a system-level approach hold the potential to guide our 
actions around major issues like autonomous pest control, disease out
breaks and biodiversity conservation in agricultural landscapes (Van
dermeer et al., 2010, 2018; Ramos et al., 2018). 

With this in mind, in the present study we updated and analyzed an 
empirically-based network for a coffee agroecosystem in southern 
Mexico. This biodiverse agroecosystem has been studied for about three 
decades and many of its species and interactions have been thoroughly 
described (Perfecto and Vandermeer 2015). Importantly, different HOIs 
have been found to play a key role in the dynamics of the main coffee 
pests and their natural enemies (Vandermeer et al., 2010; Perfecto et al., 
2021), motivating discussions on different formalisms to integrate HOIs 
to ecological network analyses, which remain an underdeveloped area 
(Golubski et al., 2016; Battiston et al., 2020). Thus, we analyzed the 
coffee agroecosystem network from a structural perspective in order to 
investigate the effects of HOIs on the overall robustness of this system, 
defined as its capacity to remain connected in the face of node removal 
representing species loss. To this aim, we propose a method for repre
senting networks with high order interactions as ordinary graphs and a 
method for measuring their robustness which is a modification of 

Piraveenan et al. (2013). Our work aims to contribute to the under
standing of the mechanisms underlying species coexistence in highly 
diverse systems, as well as to provide novel insights that can inform 
management practices based on the biological understanding of 
agroecosystems. 

2. Methods 

2.1. Study site 

The study site is “Finca Irlanda”, a 320 ha coffee plantation situated 
on the highlands of El Soconusco, Chiapas (158,110 N, 928,200 W; 900 
masl). Precipitation in the region averages 4500 mm per year and the 
vegetation type is seasonal tropical forest. Nevertheless, primary vege
tation has been almost completely replaced by coffee plantations with 
different management intensities, aside from some tiny fragments of 
original forest kept in some farms. In Finca Irlanda, there is a portion of 
such original vegetation set aside for conservation, while the manage
ment of the surrounding productive area involves keeping the shade 
provided by native trees, which, among other practices, make it a highly 
biodiverse agroecosystem (Perfecto and Vandermeer, 2015). 

It is convenient to detail some parts of the complex ecological web 
found in the study site. There are four main antagonists of coffee plants: 
the coffee leaf rust, Hemileia vastatrix, the coffee berry borer, Hypoth
enemus hampei (see Fig. 3d further), the coffee leaf miner, Leucoptera 
coffeella, and the coffee green scale, Coccus viridis (Fig. 3c). The last one 
keeps a spatially clustered mutualistic relationship with ants of the 
Azteca genus (Fig. 3e), which feed on the honeydew produced by the 
scales while protecting them from being eaten by a lady beetle, Azya 
orbigera. Thanks to this protection, the scale populations reach high 
levels within the clusters, which in turn increases their probability of 
being infected by the white halo fungus, Lecanicillium lecanii, a fungus 
that is also capable of infesting the coffee rust. By patrolling coffee plants 
where green scales feed, Azteca keeps other herbivores, like the berry 
borer beetle or the leaf miner from establishing big populations on these 
plants. However, all the effects that the Azteca ants have on the system 
are temporally inhibited by flies in the genus Pseudacteon (Family: 
Phoridae), who are parasitoids of the Azteca ants, and that cause them to 
retreat to their nests, hide or dramatically reduce their movement 
whenever they sense a fly nearby. This inhibition of Azteca leaves the 
scales and the coffee plants unprotected for a period of time, a lapse that 
has been proven to be ecologically relevant and that for example, is 
enough for allowing Azya orbigera to prey on the scales or oviposit un
derneath them, ensuring nourishment for their future larvae (Liere and 
Larsen 2010; Vandermeer et al., 2010). 

The system here described exhibits different kinds of direct in
teractions like herbivory and parasitism, but also numerous HOIs 
(Table S1). For example, Azteca ants exert a second order interaction 
when they inhibit the predation interaction among C. viridis and 
A. orbygera by harrasing the latter, mostly without harming it (Van
dermeer and Perfecto 2006; Liere and Larsen 2010; Vandermeer et al., 
2010). An example of a third order interaction is the effect of the phorid 
flies, which by paralyzing or chasing away Azteca ants, inhibit the sec
ond order interaction they exerted and thus enable the predation of 
C. viridis by A. orbygera (Hsieh et al., 2012). 

2.2. Network inference 

We used a network approach to analyze the community under study. 
Species were represented as nodes whose connections were defined by 
the ecological interactions among them. In order to define the network’s 
structure, we reviewed published information on this particular agro
ecosystem and integrated it in a common database. 

The reviewing process began with a book that collects over 20 years 
of research in the area (Perfecto and Vandermeer 2015). All referenced 
papers that explained, observationally or experimentally, at least one 
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ecological interaction among a pair of species, were examined too. The 
type of interactions and the direction of their effects were extracted, 
including qualitative information about their strength, whenever 
available. If any of the papers in this first group made reference to other 
investigations in the area, those were also revised. All the information 
was integrated in a database organized as follows: transmitter node (e.g. 
H. hampei), recipient node (e.g. Coffea), kind of interaction (e.g. +/-), 
description (e.g. females of H. hampei bore into the coffee berries to 
oviposit and their larvae feed from it) and reference (listing of the articles 
that support the interaction). For HOIs, instead of a recipient node, a 
column was added with the recipient interaction (e.g. the presence of 
Azteca prevents H. hampei from boring into the coffee, inhibiting her
bivory). Interactions that were uncertain, but suspected, were annotated 
but not considered for the construction of the network. Finally, the 
network was compared with smaller versions published previously and 
revised by experts. 

We assumed that organisms in the empirically-grounded network co- 
occur, an assumption we regarded necessary in order to set up a model 
system in which we can interpret and keep track of the effects of HOI 
addition, without temporal changes as a confounding variable. This 
assumption is plausible because most of the field work underlying the 
network inference has been done in the same coffee plantation, a 
perennial system (“Finca Irlanda”, in Southern Mexico), during summer, 
from May to August. Although seasonality in the study site is relatively 
mild, some fluctuations have been observed between the rainy (May to 
November) and dry seasons (December to April). However, interaction 
data underlying this network has been obtained during the rainy season, 
where organisms in the network exhibit altogether the largest popula
tion sizes. 

2.3. Structure definition and general metrics 

The structure of the network was visualized with the software Gephi 
0.9.2. Because network-related methods only contemplate ensembles of 
nodes connected directly through edges (that is, first order interactions), 
it is not possible to define a network with edges connecting to other 
edges, which is the case of HOIs. For this reason, two versions of the 
network were created: the first one only captured the nodes and their 

first order interactions; the second one included HOI modified in
teractions as artificial pseudo-nodes, an artifact that allowed us to use 
the full force of network theory to analyze the system. Topological an
alyses were conducted on both versions of the network in order to 
quantify the effect of HOIs. 

The transformation process of HOIs into pseudo-nodes is depicted in 
Fig. 1. Basically, an edge that was affected by a third node was labeled 
with a new pseudo-node (e. g. a pseudo-node named “predation”), so the 
third node now had a simple edge connecting it to the new pseudo-node. 
The same logic works for second, third or any higher order interactions. 
A similar procedure was suggested by Newman (2018), where in
teractions involving more than two nodes are introduced by adding new 
nodes belonging to a different category as part of a bipartite graph. This 
new node is connected by a single edge to each original node. However, 
this procedure is limited as bipartite graphs do not account for edges 
between nodes belonging to the same category. 

Once both versions on the network were obtained, standard network 
metrics were quantified in order to characterize them and as a way of 
exploring how much pseudo-node addition changed the general struc
ture of the network. In particular, we analyzed node relevance according 
to their centrality in both webs. For this, we used two commonly used 
metrics that can also be interpreted in ecological terms: i) Degree, which 
points to nodes directly linked to many nodes in the network and is the 
simplest and most widely used measure of node connectivity (Sharma 
and Surolia, 2013), and ii) Betweenness centrality, which helps identify 
nodes acting as “bridges” between nodes or groups of nodes in a 
network; it is used to find nodes that indirectly link many nodes of the 
network, and the removal of which may affect the communication be
tween many pairs of nodes or groups of densely connected nodes 
(communities or modules) through the shortest paths between them. 
Thus, nodes with high betweenness centrality may largely influence the 
flow of matter and energy in ecological systems (Lu and Zhang, 2013; 
Raghavan Unnithan et al., 2014). Even though the structure-function 
relationship in ecological networks constitutes an old and still open 
field of research, some studies have at least partially validated the use of 
these metrics with functional data, expert knowledge or dynamical 
simulations (e.g. Endredi et al., 2018; Cagua et al., 2019; Yang et al., 
2021; Arroyo-Lambaer et al., 2021; Gouveia et al., 2021; Zamkovaya 

Fig. 1. Transformation process of second and third order interactions into pseudo-nodes. The grey nodes represent biological taxa and the blue nodes are pseudo- 
nodes representing ecological interactions which are modified by a HOI. First order edges are dark grey, second order edges are blue and third order edges are orange. 
Arrows represent positive effects, and crossed endpoints stand for negative effects. For example, the predatory interaction between A. orbigera and C. viridis is turned 
into a pseudo-node named predation in order to be modified by the refuge provision performed by Azteca, a second order interaction. The pseudo-node has two 
incoming positive arrows from the nodes that perform it because it needs both nodes to exist (predation could not occur without both prey and predator present). 
Likewise, refuge provision is inhibited by the presence of phorids, so it is turned into a second pseudo-node in order to be modified by the third order interaction 
performed by Phoridae. In the same way, this refuge-provision pseudo-node has incoming positive arrows both from Azteca and predation, because it would lose its 
meaning if any of them ceased to be present. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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et al., 2021). All calculations were made with the software Gephi 0.9.2. 

2.4. The effect of high order interactions on network robustness 

We conducted a robustness analysis for both versions of the network 
(with and without HOIs). Robustness was measured by calculating the 
area under the curve that depicts the size of the biggest connected 
component as nodes are removed one by one from the network (Kas
thurirathna et al., 2013; Piraveenan et al., 2013; Navarro Díaz 2015). 
This measure is compared with the area under the curve traced by a 
complete graph, that is, a graph where every possible pair of nodes is 
connected by an edge. Thus, following Eq. (1), the relationship between 
these two areas gives us a measure of robustness (for a full derivation of 
the equation see Piraveenan et al. (2013)). 

R1 =
Ag

Ac
(%) =

200
∑N

k=0Sk − 100S0

N2 (1)  

Where Ag is the area under the curve of the evaluated graph and Ac that 
of the fully connected graph. Sk is the size of the largest component after 
k nodes have been removed, S0 denotes the initial largest component 
size, and N is the network size. According to the above equation, for a 
fully connected network of any size, the robustness coefficient (R) is 
always of 100% (taken from Kasthurirathna et al., 2013). 

For the network that includes HOIs, only real nodes could be selected 
for removal, in order to avoid the biologically meaningless action of 
removing pseudo-nodes. Following this logic, whenever a node got 
selected for removal, any pseudo-node connected to it was also elimi
nated, since pseudo-nodes lose their meaning once the species causing 
the higher order effect is eliminated. Because this modification often 
resulted in the elimination of several nodes at the time, we modified Eq. 
(1) in order to control for it. In the Piraveenan et al. (2013) derivation, 
the area under the curve of the fully connected graph assumes one node 
removal per step in the x axis. If we assume n node removal per step (in 
order to control for pseudo-node removal in the evaluated graph), this 
area is Ac = N2/2n and the robustness equation becomes: 

Rn =
Ag

Ac
(%) =

200n
∑N′

k=0Sk − 100nS0

N2 (2)  

Where n is the average number of nodes removed at each step (1.54 in 
this network) and N’ is the number of real nodes in the network (N minus 
the number of pseudo-nodes) . Eq. (1) is equivalent to Eq. (2) when n = 1 
and there are no pseudo-nodes. 

Hence, we used Eq. (1) for the network without HOIs and Eq. (2) for 
the network with HOIs. For each of these networks, two node removal 
methods were tested. With the first one, nodes were randomly selected 
and removed one by one until removing them all. This was done 200 
independent times and a robustness average was obtained. The second 
method consisted of removing nodes by degree, from highest to lowest. 

In order to discard the possibility that the differences between the 
networks with and without HOIs could be an artifact of the simple in
crease in node and edge number after HOI adition, we compared our 
results with three null models that had the same general metrics as these 
two webs but lacked the particular structural properties of the empirical 
pseudo-nodes. Following this setup, if HOIs actually confer a difference 
in robustness, that is, if their effect is not just due to the increase in node 
and edge number, we expected an increase in robustness as a result of 
HOI addition in the empirical web, but not in their null models. In order 
to test this, the robustness of each network with each removal method 
was also compared with the average robustness of 200 randomized but 
comparable networks, i.e. with the same number of nodes, average de
gree or interaction density. Three types of random networks were used: 
totally random networks (Erdős and Rényi 1960), small-world networks 
(Watts and Strogatz 1998) and scale-free networks (Barabási and Albert 
1999). The first model generates random networks from a set of nodes in 

which the edges are independently created between any pair of nodes 
with a probability p. Because the structure of ecological networks is far 
from being random, we also used small-world and scale-free networks, 
which have been proved to share structural characteristics with many 
real world networks (Montoya and Solé 2002; Barabási and Bonabeau 
2003). Small-world networks follow an algorithm that starts with a 
regular lattice where each node is connected to its k closest neighbors, 
and where each edge is then re-connected to a randomly chosen node 
with a certain probability, avoiding duplicates and self-loops. This 
construction produces networks with a high clustering coefficient and 
short paths, two particularities that have been found in many ecological 
webs (Montoya and Solé 2002). The last method builds networks with a 
preferential attachment mechanism, where nodes are added sequen
tially such that each new node is connected to a number m of existing 
nodes, where the probability to choose a node for connection is pro
portional to the number of links that this node already has. This creates 
networks with power-law degree distributions, another characteristic 
that has been widely found in ecological webs (Barabási and Bonabeau 
2003). For the Erdös Rényi method we used the values N = 34 and p =
0.095, and N = 22 and p = 0.145 for networks representing cases with 
and without HOIs, respectively (where N is the number of nodes of the 
empirical web and p is taken from their density). For the Watts-Strogatz 
method, we chose N = 34, k = 3 and p = 0.5, and N = 22, k = 3 and p =
0.5 for networks representing cases with and without HOIs, respectively 
(where k is the average degree of the empirical web and p was arbitrarily 
chosen). For the Barabasi-Albert method we chose N = 34 and m = 1, 
and N = 22 and m = 2 for networks representing cases with and without 
HOIs, respectively (where m is chosen so that the resulting average de
gree matches the empirical average degree). 

Because nodes in the empirical network with HOIs were removed 
along with their associated pseudo-nodes as discussed above, the ran
domized versions of this network needed to emulate this process too. 
This was done in the following way: First, we quantified the probability 
to remove a number n of pseudo-nodes with each real node removal in 
100 simulations of the empirical network with HOIs. Then, in the ran
domized networks (composed of 34 nodes), a subset of 22 randomly 
chosen nodes was defined to stand for the real nodes, while the 
remaining 12 nodes stood for the pseudo-nodes. This random choice of 
pseudo-nodes in each simulation controls for any bias that could emerge 
from choosing pseudo-nodes with different centrality properties (i.e. the 
contrasting effects of choosing hubs and non-hubs to stand for pseudo- 
nodes). At each removal step, a node was removed (randomly or by 
degree as explained above) from the real nodes pool alongside with n 
nodes from the pseudo-node pool, with n drawn from the probability 
distribution derived from the mentioned simulations. Again, we used 
Eq. (1) for calculating robustness of the randomized versions of the 
network without HOIs and Eq. (2) for the randomized versions of the 
network with HOIs. With these numerical experiments we were able to 
compare, on the one hand, the robustness of the two versions of our 
network, that is, with and without HOIs, and on the other hand, each 
empirical robustness with their randomized analogues. One-way 
ANOVA tests were performed to test the significance of the differences 
in robustness among the networks with and without HOIs, as well as 
between their corresponding null models, with one ANOVA run for each 
of the four network structures (one empirical and three randomized null 
models) in each of the two node removal methods (i.e. eight total 
pairwise comparisons). 

Using the same experimental design, we quantified secondary ex
tinctions in order to complement the measure of robustness with a more 
direct and easily interpreted measure. For this, we counted the number 
of nodes that became isolated along with each node removal. Because 
isolated nodes by definition have no interactions with any other nodes in 
the system, we considered them to become extinct. Thus, taking the 
primary extinctions (sequential node removal) and the secondary ex
tinctions (isolated nodes) into account, we quantified the proportion of 
remaining nodes in the community at each removal step. This approach 
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has been used by previous authors to assess and compare robustness 
across ecological systems (Cai and Liu 2016). Simulations were done 
with the library NetworkX 2.5 (Hagberg et al., 2008) in Python 3.7.1. 
and ANOVA tests were performed in RStudio 1.2.1335 (RStudio Team 
2020). Scripts are publicly available at: https://github.com/lap 
arcela/CoffeeNetworkStructure 

3. Results 

3.1. Network inference 

From literature revision, 48 interactions between 22 nodes were 
established out of 44 scientific papers and books, all conducted in our 
study site (Fig. 2). This information is organized in the supplementary 
material table S1. 

3.2. Structure definition and general metrics 

Two versions of the web were obtained with Gephi, the first one 
containing only first order interactions and the second one after adding 
pseudo-nodes for HOIs (Fig. 3). 

Without HOIs, the network is composed of 22 nodes and 68 in
teractions, while incorporating HOIs makes it a network of 34 nodes and 
104 interactions. Both networks have an approximate average degree of 

3. Centrality analysis showed that C. viridis, Coffea, H. hampei, Azteca, 
Pheidole ctp. and Pseudomyrmex spp are the nodes with the highest 
rankings in both networks and for different centrality metrics (Fig. 4). 
Thus, even though HOI addition results in a larger web, relevant prop
erties like connectivity and single-node centralities remain largely un
altered. Additional metrics for both versions of the network are available 
in Table S2. 

3.3. The effect of high order interactions on network robustness 

Fig. 5 presents the results of the robustness analyses for the empirical 
coffee networks with and without HOIs, as well as the results for the 
three different types of randomized networks with comparable struc
tures. In the case of the empirical networks, the addition of HOIs did not 
significantly change the network robustness under random node 
removal, but robustness increased significantly under directed node 
removal. In contrast, for the three types of randomized networks that we 
used as null models, those with the same node number, edge degree and 
density as the empirical network with HOIs significantly lost robustness 
under the two node removal protocols, except for the completely 
random networks (Erdos-Renyi) under random removal, which showed 
no significant changes. Additionally, in the node removal by degree, 
taking HOIs into account made the empirical network more robust than 
all its randomized counterparts. Statistically significant differences are 

Fig. 2. Complete network before transformation from HOIs to pseudo-nodes. Black lines are first order interactions, blue lines are second order interactions and red 
lines are third order interactions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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supported by p values <0.05 and large effect sizes as measured by eta 
squared, epsilon squared and omega squared indexes (Lakens 2013). The 
details of these statistical analyses can be found in the table S3 of the 
Supplementary material. Because all randomized analogues of the 
network with HOIs have the tendency to lose robustness, while the 
robustness of the actual empirical networks is either unchanged or 
increased by HOIs, we can say that the effects observed in the empirical 
networks are indeed a result of the particular structural properties 
conferred by HOI addition and not of simply increasing the number of 
interactions. Indeed, it seems that high order interactions favor robust 
network structures that may enable the coexistence of diverse systems. 

In parallel, our quantification of secondary extinctions showed the 

same tendency (Fig. 6). The proportion of remaining nodes after 
sequential node removal and secondary extinctions shows that HOI 
addition results in a less abrupt diversity decline in the empirical net
works, while the null models showed no differences (overlapped red and 
blue lines) or even a more abrupt diversity decline (more pronounced 
decline showed by the red lines). We believe this strengthens the results 
obtained by the robustness measure, and allows us to say with a clearer 
picture that HOIs increase the robustness of the system. 

4. Discussion 

We have integrated a vast set of empirical evidence into a coffee- 

Fig. 3. A: Community network with first, second and third order interactions. Grey nodes represent biological taxa and blue nodes are pseudo-nodes representing 
ecological interactions which are subject to being modified by a HOI. Node size is determined by its degree. First order edges are grey, second order edges are blue 
and third order edges are orange. B: Coffee plants (Coffea). C: Coffee green scale (Coccus viridis), a potential pest in the system. D: Coffee berry borer (Hypothenemus 
hampei), one of the main coffee pests, about to penetrate a coffee grain. E: Azteca ant, an important regulator of this interaction network. Photographs: Wikimedia 
Commons by Jmhullnot at https://commons.wikimedia.org/wiki/File:CoffeeBerry.jpg (B), John Vandermeer (C, D), Alex Wild (E). (For interpretation of the refer
ences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Node centrality analysis for the network without HOIs (above) and with HOIs (below). C. viridis, Coffea, H. hampei, Azteca, Pheidole ctp and Pseudomyrmex spp 
are the highest ranking nodes in both networks. 
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associated network that includes both simple and high order ecological 
interactions (Fig. 3). This network has enabled us to test the role of HOIs 
on the network’s robustness for a system of great ecological and agri
cultural importance. We find that the robustness of the coffee-associated 
network structure, measured through an operational index and through 
a secondary extinction analysis, is unchanged or increased by HOI 
addition, and that random reconfigurations indicate that this effect is 
not simply due to edge addition (Fig. 5 and 6). This goes in agreement 
with previous studies considering hypothetical networks and different 
measures of system function like stability or feasibility, where the 
addition of simple interactions has been found to have negative re
percussions on system function while HOI addition has a neutral or a 
positive effect (May 1972; Bairey et al., 2016; Grilli et al., 2017; Singh 
and Baruah, 2020; Li et al., 2020). Our results therefore support the idea 
that HOIs contribute to the maintenance of highly diverse ecological 
communities. 

In our study, the robustness of the network was first evaluated with 
the change in size of the biggest connected component as the nodes were 
gradually removed, at random or by targeting nodes of higher degree 
first. This way of conceptualizing robustness assumes that the connec
tion between network components is related to the function and integ
rity of the system, implying that a fully connected network can maintain 
its elements and overall functions better than a disaggregated or 
partially disconnected network (Albert et al., 2000; Dekker and Colbert 
2004; Piraveenan et al., 2013; Sheykhali et al., 2020). Indeed, previous 
work on the coffee agroecosystem for which the network under study 
has been uncovered suggests that some agroecosystemic functions, such 
as pest control, rely on the dynamics of the whole system and on the 
documented interactions taking place (Vandermeer et al., 2010). In the 
particular case of agroecosystems, the integrity of the network, in other 
words the maintenance of its diversity, is also likely to be associated 
with yield and yield stability in the face of diverse perturbations 

Fig. 5. Robustness of the coffee-associated network, with and without HOIs, as well as random, small-world and scale free networks with same n, mean degree and 
density. A: When removing nodes by degree, the empirical network (orange bars) is significantly more robust when HOIs are added, while the three types of 
randomized networks (grey bars) lose robustness when their structures are comparable to that with HOI addition. B: Under random node removal, the empirical web 
(orange bars) and the totally random networks (grey, left) are not significantly changed by the addition of HOIs; while small-world (grey, middle) and scale-free 
networks (grey, right) loose robustness under HOI addition. 

Fig. 6. Proportion of remaining nodes after sequential node removal and secondary extinctions. Left (marked in orange): empirical networks. Right (marked in gray): 
randomized networks. Above: Random node removal. Below: By degree node removal. In red we show the data of the networks with HOIs or similar general structure 
and in blue we show the data of the networks without HOIs or similar general structure. Each dot is the average of 200 networks and vertical shadows are standard 
deviations. HOI addition in the empirical networks (left) result in a slower diversity decline, while randomized null models (right) show the opposite or no tendency. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(Gaudin et al., 2015; Manns and Martin 2018). Additionally, we 
strengthened our analysis with a direct quantification of secondary ex
tinctions along the primary node removal sequence. In this case, the 
assumption is simply that species loss results in co-extinctions whenever 
it leaves other species isolated. This second approach confirmed our 
results, supporting the idea that HOIs increase the robustness of the 
system and that the robustness index that we used is a good measure of 
the overall state of the system. 

The node removal methods that we used have been explored in many 
ecological network studies, and our results confirm the general tendency 
of ecological networks to be less robust to directed loss of the most 
connected species than to random species loss (Dunne et al., 2002; 
Kaiser-Bunbury et al., 2010; Roopnarine 2010; Cai and Liu 2016). Thus, 
it is remarkable that under directed node removal, HOI addition bears 
the larger positive influence on robustness. While the extinction of the 
most connected species in most communities might be unlikely, given 
that they are often the most abundant ones (Dáttilo et al., 2014;Vázquez 
et al., 2005; Vázquez et al., 2007), we should bear in mind that we are 
dealing with an agroecosystem, which by definition if human-managed 
and which can be subjected to directed emotions (for example, in the 
case of pests). These intentional removals may very well be directed to 
largely abundant species, making the study of directed node removal all 
the more relevant. 

While the coffee-associated system was studied here as an undirected 
network, the type and sign of its HOIs could inform the mechanism 
through which HOIs affect the overall robustness. For example, in this 
ecological system all documented HOIs are negative, meaning that they 
work as inhibitors of the ecological interaction they modify, thereby 
diminishing their intensity (although they sometimes form double 
negatives, as third order interactions inhibit previous inhibitions, 
amounting to a general positive effect). This may have several impli
cations for the system’s dynamics. For example, refuge provisioning, 
where one species protects another from one or several predators, may 
not only help explain prey survival (which is important for maintaining 
the predator), but also how predators avoid competitive exclusion 
(Vandermeer and Perfecto 2019). It is possible that these mechanisms, 
coupled with spatial and temporal heterogeneity, may create the 
necessary conditions for coexistence. However, it is important to bear in 
mind that individual HOIs may have effects in different directions. 
Especially in the case of agroecosystems, where effects are measured 
also in terms of human-based values like productivity, the effect of in
dividual HOIs should not be universally assumed as positive. For 
instance, it has been shown that the ant Wasmannia auropunctata can 
indirectly protect the coffee leaf miner against potential predators, 
potentially limiting the effectiveness of biological control elements 
(Perfecto et al., 2021). Nevertheless, we could not compare the effects of 
positive and negative HOIs in this study as we worked with undirected 
networks, such a question remains an interesting pathway for future 
research. 

The structural analyses of the coffee-associated network also allowed 
us to identify nodes with high centrality according to different metrics 
(Fig. 4). We identified five nodes that systematically exhibited a high 
centrality, independently of the centrality measure and the presence or 
absence of pseudo-nodes: C. viridis, Coffea, H. hampei, Azteca, Pheidole 
ctp. and Pseudomyrmex spp. This is in agreement with the crucial role of 
the coffee plant in this agroecosystem, as well as the effect of its po
tential pests and pest enemies in its growth and development (Vander
meer et al., 2010). However, at this point we cannot rule out the 
possibility that the high centrality of these nodes is due to a bias in 
sampling and research efforts. We therefore cautiously interpret the 
results on node degree and betweenness centrality; rather than high
lighting specific nodes as potential keystone species or indicators, we 
used these metrics mainly to characterize the overall structure of the 
network and found that the high centrality of these nodes was generally 
unaltered by pseudo-node addition, which suggests that this method for 
representing HOIs is able to conserve key aspects of the network. 

A key assumption in our analysis is that robustness depends upon 
network structure, a simplification that does not take temporal dy
namics into account. The relationship between structure and function in 
networks is certainly unclear and remains an active and open field of 
research, with key questions largely unexplored. However, there is an 
important body of literature on this matter, from which some structural 
metrics and robustness analyses like the ones we used have emerged as 
potential indicators of network functioning and dynamics. For instance, 
computational and empirically-based studies on social-ecological sys
tems have employed purely structural measures in order to identify 
nodes that can lead to large cascading effects, as well as potential in
dicators of overall system integrity (see for recent examples: Kai
ser-Bunbury et al., 2010; Lü et al., 2016; Cai and Liu, 2016; Griffith et al., 
2019; Horcea-Milcu et al., 2020; Puche et al., 2020; Cagua et al., 2019; 
Arroyo-Lambaer et al., 2021; Gouveia et al., 2021; Yang et al., 2021; 
Zamkovaya et al., 2021, among many others). Hence, even though the 
study of network structure alone cannot account for temporal phe
nomena, it has proven to be useful and valuable in its simplicity. On the 
other hand, dynamical approaches contribute with an important and 
complementary perspective, and there are novel methods being actively 
developed that promise to enrich our understanding of robustness in 
ecological systems (Neubert and Caswell 1997; Arnoldi et al., 2016; 
Saavedra et al., 2017; Saavedra et al., 2020). We are currently pursuing 
dynamical analyses that might help uncover the role of HOIs and highly 
central nodes on the dynamics of populations in the coffee-associated 
network. With these, we expect to be able to discuss the scope of the 
structural approach considered here in its relationship to 
spatial-temporal dynamics. Studies have historically found different 
relationships between the amount and type of interactions in a network 
and several measures of its stability and robustness (see Landi et al., 
2018 for a thorough revision on this matter). Hence, complementing the 
present study with a dynamical analysis will allow us to get a more 
realistic vision of the system and what the consideration of HOIs may or 
may not entail. 

To conclude, our results support the hypothesis that HOIs can 
contribute to the maintenance and robustness of highly diverse 
ecological systems, and agroecological systems in particular. In agree
ment with previous empirical and theoretical studies, our work points to 
the importance of agroecological management and practices that are 
based on a deep ecological understanding of productive systems, as well 
as to the importance of a high diversity of taxons and interactions for the 
robustness and functioning of agroecosystems. 
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