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Abstract
Ecosystems and their embedded ecological communities are almost always by definition collections of oscillating populations. 
This is apparent given the qualitative reality that oscillations emerge from consumer-resource interactions, which are the 
elementary building blocks for ecological communities. It is also likely always the case that oscillatory consumer-resource 
pairs will be connected to one another via trophic cross-feeding with shared resources or via competitive interactions 
among resources. Thus, one approach to understanding the dynamics of communities conceptualizes them as collections 
of oscillators coupled in various arrangements. Here we look to the pioneering work of Kuramoto on coupled oscillators 
and ask to what extent can his insights and approaches be translated to ecological systems. We explore the four ecologically 
significant coupling arrangements of the simple case of three oscillator systems with both the Kuramoto model and with 
the classical Lotka-Volterra equations. Our results show that the six-dimensional Lotka-Volterra systems behave strikingly 
similarly to that of the corresponding Kuramoto systems across all coupling combinations. This qualitative similarity in the 
results between these two approaches suggests that a vast literature on coupled oscillators may be relevant in furthering our 
understanding of ecosystem and community organization.
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Introduction

Interacting species assemblages are composed of consumers 
and their resources. If pairs of consumer-resource systems 
are persistent in a given community, then the fundamentals 
of ecological theory suggest that these communities are, in 
principle, assemblages of oscillators. To the extent that the 
consumers tend to overlap in their diets, or the resources 
interact with one another, ecological communities may 
be thought of as systems of coupled oscillators. Although 
ecologists have long been interested in understanding large 
assemblages of interacting species, relatively little research 
in community ecology has drawn on the body of theory 
associated with coupled oscillators to conceptualize such 
systems. In many branches of science, coupled oscillators 
have been used as a key metaphor for developing general 
theory, from electronics to neurobiology (Norton et al. 2018; 

Laing  2017; Fukuyama and Okugawa  2017). Here we 
suggest that consumer-resource oscillators can be thought 
of as the building blocks of ecological communities and the 
analogy of coupled oscillators can potentially be used as an 
abstraction for community ecology.

The inevitability of oscillatory dynamics in ecological 
systems stems from one of ecology’s most foundational 
models of consumer-resource interactions, where the 
simplest assumptions of one population consuming another 
generate persistent oscillations (Lotka 1926; Volterra 1927). 
Adding Holling’s functional response (Holling 1959), this 
basic framework can generate persistent oscillations in the 
form of stable limit cycles, a form that could be considered 
as a starting point for envisioning ecological communities, 
which is to say, as coupled oscillators (Vandermeer 1993, 
1994, 2004, 2006). Restricting the analysis to the parameter 
space within which limit cycle solutions exist, while limiting 
from a complete ecological point of view, is potentially a 
useful simplification explored here.

In this work, we deal with three oscillators, which means 
three consumers and three resources. Since there are six 
variables with the only necessary restriction that resources 
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get consumed by consumers, the number of ways one could 
couple the variables together is large. Conceptualizing 
the system as three oscillators (a consumer and one of the 
resources) restricts the possible combinations, but there 
are still many. Yet there is a way in which some ecological 
assumptions can make the landscape simpler and perhaps 
more intuitive. Suppose that oscillatory consumer-resource 
pairs function in two distinct and ecologically relevant ways 
(Vandermeer 2004). First, when two consumers share two 
resources they can be thought of as coupled with one another 
via trophic cross-feeding, the case of resource competition 
between the two consumers. Second, resources that are in 
direct competition with one another can be thought of as 
being coupled via competition for some external resource. 
Here we refer to these two qualitatively distinct forms as 
trophic-coupling and resource-coupling, respectively. 
When coupling is weak, surprising generalizations emerge 
in the phase dynamics for these arrangements. For weak 
trophic-coupling, the oscillators converge on a pattern 
of relative in-phase synchrony, and for weak resource-
coupling, the oscillator pairs will converge on a pattern of 
relative anti-phase synchrony (Vandermeer 2004) (Fig. 1). 
It is almost certainly the case that consumer-resource pairs 
are not exclusively resource-coupled or trophic-coupled 
in nature, and incorporating both coupling types can lead 
to complicated dynamics such as chaotic oscillations 
(Vandermeer  2004). Even given these complications, 
Benincà et  al. (2009) demonstrated that the insights 
from these particular forms of coupled oscillators can be 
successfully applied to complex empirical communities.

Although oscillations emerge from many nonlinear 
systems, oscillators themselves have been the focus of 
understanding systems. One elegant perspective on coupled 

oscillators is the abstraction of Yoshiki Kuramoto (1975, 
1984), which was partially inspired by the pioneering 
work by Arthur Winfree on biological oscillators (1967). 
Kuramoto envisioned collections of coupled oscillators as 
weakly coupled limit cycles on the circle and the oscillator 
conditions indicated as the angle Θ made by the point 
of resource and consumer on the unit circle, taken to 
represent the limit cycle of the oscillator. Presuming that 
synchronization will occur, Kuramoto writes

where ωi is the intrinsic frequency of oscillator i (the rate of 
advancement on the circle dictated by the inherent oscillations), 
K is the intensity of coupling, and N is the number of oscillators. 
Clearly, the intent of the model is to view the phase of the 
oscillations (not the amplitude) as the key dynamical variable. 
All oscillators are identical (with the possible exception of the 
intrinsic frequency), and couplings are taken to be universal 
(all to all). A rather remarkable result emerges from this simple 
model—with random initiations, no synchrony occurs when 
coupling strengths are small, but a critical point of coupling 
intensity is reached where rapid attainment of synchrony of all 
oscillators is achieved. There is now a large technical literature 
on this model, as well as a long history, both of which are 
summarized in a reader-friendly way by Strogatz (2000).

In an ecological context, Kuramoto’s limit-cycle oscillators 
could be thought of as resource-consumer pairs in the parameter 
regimes that generate limit cycle behavior. Although it is 
apparent to ecologists that oscillations are an essential feature 
that results from the most elementary of ecological interactions, 
approaches used in the field of complex systems, like those 

(1)
dΘi

dt
= �i +

K

N

∑

j

sin(Θi − Θj)

Fig. 1   The two qualitatively 
distinct coupling arrange-
ments for consumer-resource 
oscillators and their dynamical 
outcomes (Vandermeer 2004). 
Resource coupling (competi-
tion between resources) leads 
to asynchrony, and trophic 
coupling (cross-feeding) leads 
to synchrony. Circles represent 
negative effects, arrows positive 
effects, and dotted lines oscilla-
tor coupling
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pioneered by Kuramoto, have gained relatively little traction in 
the field of ecology. It is most frequently the practice in ecology, 
especially in the food web literature, to couple together large 
networks of ordinary differential equations (e.g., Lotka-Volterra) 

representing individual populations of consumers and resources. 
Although this approach has been fruitful, it sometimes leads 
to unwieldy parameterization, limiting analytical questions 
to those amenable to linear stability analyses. To explore the 

Fig. 2   Diagrammatic represen-
tation of the analogous forms of 
Lotka-Volterra and Kuramoto 
for three oscillator communities. 
Lotka-Volterra diagram illus-
trates the core idea of three con-
sumer/resource coupled oscilla-
tors, Ci is the biomass of the ith 
consumer, and Ri is the biomass 
of the ith resource. Connectors 
indicate a positive effect with an 
arrowhead and a negative effect 
with a closed circle. Kuramoto 
diagram illustrates the three 
oscillators as nodes in a graph 
and their connections, edges, 
with the elements of the adja-
cency matrix (+ = 1 or − = − 1) 
indicated near the edges. 1

2

∑

Γ 
shows the sum of the elements 
of half of the adjacency matrix 
to simply represent the four 
unique coupling arrangements. 
Note that the coloring scheme 
of the oscillators is consistent 
throughout the article
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potential usefulness of employing approaches such as those of 
Kuramoto,  here we study the concordance between his model 
and the classical Lotka-Volterra models used in ecology, for the 
most elementary formulation of an ecological community.

Methods

Modifying Kuramoto’s model, we write the following:

(2)
dΘi

dt
= �i +

K

N

∑

j

Γi,jsin(Θi − Θj)

where Kuramoto’s mean field approach has been 
disaggregated with the adjacency matrix Г stipulating 
the coupling of each pair of oscillators. Note that Гi,j > 0 
indicates the oscillators i and j will synchronize “in phase” 
while Гi,j < 0 indicates they will synchronize “anti-phase.” 
If we stipulate that |Гi,j| = 1.0, the sum of the upper triangle 
of the adjacency matrix [= 1

2
∑(Γi,j )] can be − 3, − 1, 1, or 

3 for a three-oscillator system. Figure 2 illustrates the basic 
combinations of a three oscillator system with the expected 
outcomes of oscillator phases based on coupling dynamics 
from Vandermeer (2004).

Taking the classic Lotka-Volterra consumer resource 
equations, we write the following:

a)

b)

c)

d)

Fig. 3   Time series from the four separate coupling configurations of 
the three-dimensional Kuramoto and six-dimensional Lotka-Volterra 
systems. (a)–(d) show the oscillator phases from the Kuramoto sys-
tems and the time series for the analogous six dimensional Lotka-
Volterra systems. The clear concordance between the Lotka-Volterra 
time series and the Kuramoto oscillator phases is evident by the end 
of the Lotka-Volterra time series plots. Note that only the consum-

ers are plotted in the time series to more clearly illustrate the corre-
spondence in oscillatory dynamics between LV and Kuramoto. The 
parameters for all Lotka-Volterra simulations are as follows: a = 0.7 , 
m = 0.1 , h = 3.0 , b = 0.3 , β = 0.01, and α = 0.1. For the Kuramoto 
model simulations, K = 0.01, ω = 0.01, and the model was run for 
200 time steps
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where C and R denote “consumers” and “resources” 
respectively and i ranges from 1 to 3. The basic parameters 
of the model are as follows: a = the attack rate of the 
consumers, m = the mortality rate of the consumers, h 
= the functional response term of the consumer, b = the 
birth rate of the resource, αij = the competitive effect of 
resource j on resource i (note, αii = 1), and βij = the strength 
of cross feeding (note, βij = 1). The parameter α represents 
the strength of competition (resource coupling) between 
resources, and β represents the strength of cross-feeding 
(trophic coupling).

In the spirit of Kuramoto’s model, we first located 
parameter space where individual consumer-resource pairs 
oscillate in limit cycles (equation set 3). For all simulations 
presented here, those parameters are as follows: a = 0.7 , 
m = 0.1 , h = 3.0 , and b = 0.3 . Given a persistent oscillator 
in the Lotka-Volterra formulation, we then couple them in 
four paradigmatic combinations outlined in Fig. 2, where 
trophic-coupling implies eventual synchrony and resource-
coupling implies asynchrony. Manipulating αij and βij in 
equation set 3, we create the parameter states for all four 
coupling arrangements depicted in Fig. 2 (see Appendix 
for long form equations for each coupling scenario). For all 
simulations presented here, we used low values of coupling 
coefficients (β = 0.01 and α = 0.1).

Results

Employing the Kuramoto model (Eq.  2) if 1
2

∑

Γi,j = 3 , 
the system synchronizes in-phase (i.e., all oscillators are 
effectively on the same point in circle space, as in Fig. 3d); 
if it is − 3, the system synchronizes precisely anti-phase 
(each oscillator separated from each other by 2Π/3 radians, 
as in Fig. 3c); if it is − 1, two oscillators are in-phase and 
the third is anti-phase against the two in-phase oscillators 
(Fig. 3b). However, if the sum is 1 a situation emerges in 
which oscillator 3 is in-phase synchrony with oscillator 1, 
oscillator 1 is in-phase synchrony with oscillator 2, while 
oscillator 2 is anti-phase synchronous with oscillator 3, but, 
qualitatively stable. The three oscillators are separated from 
one another by Θ1,2 = Θ1,3 = Π/3 and Θ23 = 4Π/3 (Fig. 3a). 
In all four cases (Fig. 3), while all oscillators retain the 
same relative position with respect to one another, they all 
together progress around the state space according to the 
intrinsic frequency.

(3a)
dCi

dt
=

aCi

∑3

j=1
�ijRj

1 + h
∑3

j=1
Rj

− mCi

(3b)
dRi

dt
= bRi

�

1 −

3
�

j=1

�ijRj

�

−
aCi

∑3

j=1
�ijRj

1 + h
∑3

j=1
Rj

Employing the Lotka-Volterra model (Eqs. 3a and 3b), 
typical time series results of all four ODE simulations 
are presented in Fig. 3. It is clear that the Lotka-Volterra 
predictions for all four qualitatively distinct cases (Fig. 2) are 
precisely what we get from the simpler Kuramoto approach. 
It is worth noting that the Lotka-Volterra simulations 
are quite robust as long as the coupling is not strong. As 
reported elsewhere (Vandermeer, 1993, 1994, 2004, 2006) as 
coupling becomes stronger, frequently complicated behavior, 
including chaos and quasiperiodicity, typically emerges from 
these structures. Regarding the Kuramoto simulations, the 
results are seemingly completely robust in that we found no 
examples of coupling (in the range 0–1) that did not yield 
the same qualitative results as visualized in Fig. 3.

Discussion

The ubiquity of oscillatory dynamics in ecology has long 
been appreciated (Platt and Denman 1975; Huisman and 
Weissing 2001; Blasius et al. 2020). Empirically, across a 
range of spatiotemporal scales from large scale dynamics of 
the hare-lynx system (Blasius et al. 1999) to the microcosm 
experiments of Huffaker (1958), and theoretically emerging 
from the simplest conceptualizations of consumer-resource 
interactions (Lotka 1926; Volterra 1927), synchronization 
of coupled consumer-resource oscillators is well-known, 
both from an implied spatial coupling (e.g., predator 
or prey migrating among habitat patches (Koelle and 
Vandermeer 2005) and direct energy transfer (e.g., different 
predators coupling among different prey in the same habitat 
(Vandermeer  2006)). Here we demonstrate that for the 
four most obvious qualitatively distinct yet ecologically 
significant coupling patterns in a six-species community 
(three oscillators), weak coupling leads to precisely the 
pattern predicted by Kuramoto’s phase coupled system. 
These results suggest a wholly distinct vision of ecological 
communities in which the “agents” are not population 
densities, but rather oscillators.

There are evident limitations in the analysis as 
presented here, but, we argue, those limitations suggest 
that the approach holds much potential. For example, the 
introduction of dissipating oscillators into the mix is an 
evident expansion of the system, one that has not been 
examined, at least not in the context of the Lotka-Volterra 
and Kuramoto connection. Another important element 
is the possibility of studying coupled chaotic oscillators 
with the Kuramoto framework, certainly a challenging 
possibility. Blasius and colleagues (1999) have already 
indirectly entered this topic with their UPCA pattern 
(uniform phase chaotic amplitude), which is, in a sense, 
putting chaotic dynamics in a Kuramoto-like framing 
(although chaotic, the lynx/hare cycle synchronizes 
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phases across Canada). Contrarily, one might ask what 
a UACP pattern (uniform amplitude, chaotic phase) 
would look like and how it could be generated, perhaps a 
more direct application of the Kuramoto metaphor since 
amplitudes are fixed and the interest is in the dynamics of 
the phases. On the other hand, the existence of chimeric 
elements (individual oscillators that refuse to synchronize 
in any way with synchronous groups of oscillators) may 
already be examples of chaos or chaos-like behavior in 
the Kuramoto framing (Kotwal et al. 2017; Laing 2009).

There is a rich and diverse literature on synchronization, 
popularly summarized for a generalist audience by Steven 
Strogatz in his book “Sync.” (2012). Ecological applications 
are less common but the field is growing. For example, some 
authors have examined correlations with external forcing, 
either regular or stochastic (Vasseur and Fox 2007; Reuman 
et al. 2008) in driving or sometimes quenching synchronized 
systems, and spectral analysis (Vasseur and Gaedke 2007) 
recalls the original insights of Platt and Denman (1975). 
And, of course, it has long been acknowledged that a 
metapopulation in which subpopulations oscillate in sync is 
far more likely to undergo global extinction (Matter 2001).

By reorienting the focus of ecological analogy from 
individual populations to collections of oscillators, the 
dynamical nature of the system becomes the central focus 
rather than questions of stability or persistence. As in other 
sciences, the collective dynamics of coupled oscillators can 
provide a useful heuristic for exploring the general properties 
of large and complex systems of the sort that ecologists 
have long cited with awe (Hutchinson 1961; Lawton 1999; 
Vellend 2010). Furthermore, by highlighting the ability to 
move between classical models in ecology and classical 
models in the coupled oscillator literature, we suggest that 
both approaches can be used in tandem and exploited for 
their strengths. Approaches to Kuramoto effectively increase 
the tractability of large complex systems by halving the 
dimensionality and providing an elegant and intuitive way 
to visualize the oscillatory dynamics, while approaches to 
Lotka-Volterra permit investigation of how basic biological 
parameters influence dynamics. The most obvious utility 
of such an approach is where synchronous dynamics are 
the focus of investigation (e.g. Earn et al. 1998; Blasius 
et al. 1999; Liebhold et al. 2004) and may have practical 
implications for the management of fisheries (Kaemingk 
et al. 2018), the planning complex biological control systems 
in agroecosystems (Vandermeer et al. 2019), or conservation 
(Earn et al. 2000).

The once popular idea that ecosystems are at, or 
moving towards, Lyapunov stability is considered passé 
(e.g., Morozov et  al.  2019). The growing appreciation 
among ecologists that ecosystems and communities 
are dominated by nonlinear processes often outside of 
equilibrium (DeAngelis and Waterhouse 1987) suggests 

that our tool kits to understand ecosystems need to evolve 
along with our analogies of them, as suggested long ago 
(Platt and Denman 1975). We suggest that networks of 
oscillators, rather than networks of populations, represent a 
potentially new paradigm for the examination of ecological 
communities.
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Appendix

1

2

∑

� = 1 for the Lotka-Volterra system of ordinary differen-
tial equations has C1 with trophic-coupling on R2 and R3, C2 
with trophic-coupling on R1, C3 with trophic-coupling on R1, 
and R2 and R3 resource coupled. Initial conditions for Fig. 2 
are as follows: R1 = 0.05, R2 = 0.10, R3 = 0.35, C1 = 0.06, 
C2 = 0.11, and C3 = 0.36.

for 1
2

∑

Γ = −1 for the Lotka-Volterra system of ordi-
nary differential equations has C1 with trophic-coupling 
on R2; C2 with trophic-coupling on R1, R2, and R3 with 

(4a)

Ṙ1 = bR1

(

1 − R1

)

−
aR1C1

1 + ahR1

− 𝛽
aR2C2

1 + ahR2

− 𝛽
aR3C3

1 + ahR3

(4b)Ċ1 =
aR1C1

1 + ahR1

− mC1 + 𝛽
aR2C1

1 + ahR2

+ 𝛽
aR3C1

1 + ahR3

(4c)Ṙ2 = bR2

(

1 − R2 − 𝛼R3

)

−
aR2C2

1 + ahR2

− 𝛽
aR1C1

1 + ahR1

(4d)Ċ2 =
aR2C2

1 + ahR2

− mC2 + 𝛽
aR1C2

1 + ahR1

(4e)Ṙ3 = bR3

(

1 − R3 − 𝛼R2

)

−
aR3C3

1 + ahR3

− 𝛽
aR1C1

1 + ahR1

(4f)Ċ3 =
aR3C3

1 + ahR3

− mC3 + 𝛽
aR1C3

1 + aR1
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resource-coupling; and R1 and R3 with resource-coupling. 
Initial conditions for Fig.  2 are as follows: R1  =  0.60, 
R2 = 0.30, R3= 0.10, C1 = 0.61, C2 = 0.31, and C3 = 0.11.

for 1
2

∑

� = −3 has pairwise resource-coupling between 
all resources and no trophic-coupling. Initial conditions 
for Fig. 2 are as follows: R1 = 0.50, R2 = 0.55, R3 = 0.45, 
C1 = 0.51, C2 = 0.56, and C3 = 0.46.

for 1
2

∑

Γ = 3 has pairwise trophic-coupling between all 
consumers and resources and no resource-coupling. Ini-
tial conditions for Fig. 2 are follows: R1 = 0.10, R2 = 0.20, 
R3 = 0.45, C1 = 0.11, C2 = 0.21, and C3= 0.46.

(5a)Ṙ1 = bR1

(

1 − R1 − 𝛼R3

)

−
aR1C1

1 + ahR1

− 𝛽
aR2C2

1 + ahR2

(5b)Ċ1 =
aR1C1

1 + ahR1

− mC1 + 𝛽
aR2C1

1 + ahR2

(5c)Ṙ2 = bR2

(

1 − R2 − 𝛼R3

)

−
aR2C2

1 + ahR2

− 𝛽
aR1C1

1 + ahR1

(5d)Ċ2 =
aR2C2

1 + ahR2

− mC2 + 𝛽
aR1C2

1 + ahR1

(5e)Ṙ3 = bR3

(

1 − R3 − 𝛼R2 − 𝛼R1

)

−
aR3C3

1 + ahR3

(5f)Ċ3 =
aR3C3

1 + ahR3

− mC3

(6a)Ṙ1 = bR1

(

1 − R1 − 𝛼R2 − 𝛼R3

)

−
aR1C1

1 + ahR1

(6b)Ċ1 =
aR1C1

1 + ahR1

−mC1

(6c)Ṙ2 = bR2

(

1 − R2 − 𝛼R1 − 𝛼R3

)

−
aR2C2

1 + ahR2

(6d)Ċ2 =
aR2C2

1 + ahR2

−mC2

(6e)Ṙ3 = bR3

(

1 − R3 − 𝛼R1 − 𝛼R2

)

−
aR3C3

1 + ahR3

(6f)Ċ3 =
aR3C3

1 + ahR3

−mC3
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1 + ahR2
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