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Abstract

Ecosystems and their embedded ecological communities are almost always by definition collections of oscillating populations.
This is apparent given the qualitative reality that oscillations emerge from consumer-resource interactions, which are the
elementary building blocks for ecological communities. It is also likely always the case that oscillatory consumer-resource
pairs will be connected to one another via trophic cross-feeding with shared resources or via competitive interactions
among resources. Thus, one approach to understanding the dynamics of communities conceptualizes them as collections
of oscillators coupled in various arrangements. Here we look to the pioneering work of Kuramoto on coupled oscillators
and ask to what extent can his insights and approaches be translated to ecological systems. We explore the four ecologically
significant coupling arrangements of the simple case of three oscillator systems with both the Kuramoto model and with
the classical Lotka-Volterra equations. Our results show that the six-dimensional Lotka-Volterra systems behave strikingly
similarly to that of the corresponding Kuramoto systems across all coupling combinations. This qualitative similarity in the
results between these two approaches suggests that a vast literature on coupled oscillators may be relevant in furthering our

understanding of ecosystem and community organization.
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Introduction

Interacting species assemblages are composed of consumers
and their resources. If pairs of consumer-resource systems
are persistent in a given community, then the fundamentals
of ecological theory suggest that these communities are, in
principle, assemblages of oscillators. To the extent that the
consumers tend to overlap in their diets, or the resources
interact with one another, ecological communities may
be thought of as systems of coupled oscillators. Although
ecologists have long been interested in understanding large
assemblages of interacting species, relatively little research
in community ecology has drawn on the body of theory
associated with coupled oscillators to conceptualize such
systems. In many branches of science, coupled oscillators
have been used as a key metaphor for developing general
theory, from electronics to neurobiology (Norton et al. 2018;
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Laing 2017; Fukuyama and Okugawa 2017). Here we
suggest that consumer-resource oscillators can be thought
of as the building blocks of ecological communities and the
analogy of coupled oscillators can potentially be used as an
abstraction for community ecology.

The inevitability of oscillatory dynamics in ecological
systems stems from one of ecology’s most foundational
models of consumer-resource interactions, where the
simplest assumptions of one population consuming another
generate persistent oscillations (Lotka 1926; Volterra 1927).
Adding Holling’s functional response (Holling 1959), this
basic framework can generate persistent oscillations in the
form of stable limit cycles, a form that could be considered
as a starting point for envisioning ecological communities,
which is to say, as coupled oscillators (Vandermeer 1993,
1994, 2004, 2006). Restricting the analysis to the parameter
space within which limit cycle solutions exist, while limiting
from a complete ecological point of view, is potentially a
useful simplification explored here.

In this work, we deal with three oscillators, which means
three consumers and three resources. Since there are six
variables with the only necessary restriction that resources

@ Springer


http://orcid.org/0000-0002-9092-4500
http://crossmark.crossref.org/dialog/?doi=10.1007/s12080-020-00493-4&domain=pdf

248

Theoretical Ecology (2021) 14:247-254

get consumed by consumers, the number of ways one could
couple the variables together is large. Conceptualizing
the system as three oscillators (a consumer and one of the
resources) restricts the possible combinations, but there
are still many. Yet there is a way in which some ecological
assumptions can make the landscape simpler and perhaps
more intuitive. Suppose that oscillatory consumer-resource
pairs function in two distinct and ecologically relevant ways
(Vandermeer 2004). First, when two consumers share two
resources they can be thought of as coupled with one another
via trophic cross-feeding, the case of resource competition
between the two consumers. Second, resources that are in
direct competition with one another can be thought of as
being coupled via competition for some external resource.
Here we refer to these two qualitatively distinct forms as
trophic-coupling and resource-coupling, respectively.
When coupling is weak, surprising generalizations emerge
in the phase dynamics for these arrangements. For weak
trophic-coupling, the oscillators converge on a pattern
of relative in-phase synchrony, and for weak resource-
coupling, the oscillator pairs will converge on a pattern of
relative anti-phase synchrony (Vandermeer 2004) (Fig. 1).
It is almost certainly the case that consumer-resource pairs
are not exclusively resource-coupled or trophic-coupled
in nature, and incorporating both coupling types can lead
to complicated dynamics such as chaotic oscillations
(Vandermeer 2004). Even given these complications,
Beninca et al. (2009) demonstrated that the insights
from these particular forms of coupled oscillators can be
successfully applied to complex empirical communities.
Although oscillations emerge from many nonlinear
systems, oscillators themselves have been the focus of
understanding systems. One elegant perspective on coupled
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oscillators is the abstraction of Yoshiki Kuramoto (1975,
1984), which was partially inspired by the pioneering
work by Arthur Winfree on biological oscillators (1967).
Kuramoto envisioned collections of coupled oscillators as
weakly coupled limit cycles on the circle and the oscillator
conditions indicated as the angle ® made by the point
of resource and consumer on the unit circle, taken to
represent the limit cycle of the oscillator. Presuming that
synchronization will occur, Kuramoto writes

do, K )
- = w; + N ; sin(@; — ©)) 1)

where w; is the intrinsic frequency of oscillator i (the rate of
advancement on the circle dictated by the inherent oscillations),
K is the intensity of coupling, and N is the number of oscillators.
Clearly, the intent of the model is to view the phase of the
oscillations (not the amplitude) as the key dynamical variable.
All oscillators are identical (with the possible exception of the
intrinsic frequency), and couplings are taken to be universal
(all to all). A rather remarkable result emerges from this simple
model—with random initiations, no synchrony occurs when
coupling strengths are small, but a critical point of coupling
intensity is reached where rapid attainment of synchrony of all
oscillators is achieved. There is now a large technical literature
on this model, as well as a long history, both of which are
summarized in a reader-friendly way by Strogatz (2000).

In an ecological context, Kuramoto’s limit-cycle oscillators
could be thought of as resource-consumer pairs in the parameter
regimes that generate limit cycle behavior. Although it is
apparent to ecologists that oscillations are an essential feature
that results from the most elementary of ecological interactions,
approaches used in the field of complex systems, like those
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Fig.2 Diagrammatic represen-
tation of the analogous forms of
Lotka-Volterra and Kuramoto
for three oscillator communities.
Lotka-Volterra diagram illus-
trates the core idea of three con-
sumet/resource coupled oscilla-
tors, C;is the biomass of the ith
consumer, and R; is the biomass
of the ith resource. Connectors
indicate a positive effect with an
arrowhead and a negative effect
with a closed circle. Kuramoto
diagram illustrates the three
oscillators as nodes in a graph
and their connections, edges,
with the elements of the adja-
cency matrix (+ =lor—=—1)
indicated near the edges. % >r
shows the sum of the elements
of half of the adjacency matrix
to simply represent the four
unique coupling arrangements.
Note that the coloring scheme
of the oscillators is consistent
throughout the article

pioneered by Kuramoto, have gained relatively little traction in
the field of ecology. It is most frequently the practice in ecology,
especially in the food web literature, to couple together large
networks of ordinary differential equations (e.g., Lotka-Volterra)

Lotka-Volterra
diagram

Kuramoto
diagram

+ 1 1 +
+ 1 + +
+ | ! !

representing individual populations of consumers and resources.
Although this approach has been fruitful, it sometimes leads
to unwieldy parameterization, limiting analytical questions
to those amenable to linear stability analyses. To explore the
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potential usefulness of employing approaches such as those of
Kuramoto, here we study the concordance between his model
and the classical Lotka-Volterra models used in ecology, for the
most elementary formulation of an ecological community.

Methods

Modifying Kuramoto’s model, we write the following:

de, K .
— = o, + N ; [, ;sin(®; — ©)) 2)

where Kuramoto’s mean field approach has been
disaggregated with the adjacency matrix I' stipulating
the coupling of each pair of oscillators. Note that I'; ;> 0
indicates the oscillators i and j will synchronize “in phase”
while I';; < 0 indicates they will synchronize “anti-phase.”
If we stipulate that IT'; | = 1.0, the sum of the upper triangle
of the adjacency matrix [= %Z(sz)] canbe — 3, -1, 1, or
3 for a three-oscillator system. Figure 2 illustrates the basic
combinations of a three oscillator system with the expected
outcomes of oscillator phases based on coupling dynamics
from Vandermeer (2004).

Taking the classic Lotka-Volterra consumer resource
equations, we write the following:
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Fig.3 Time series from the four separate coupling configurations of
the three-dimensional Kuramoto and six-dimensional Lotka-Volterra
systems. (a)—(d) show the oscillator phases from the Kuramoto sys-
tems and the time series for the analogous six dimensional Lotka-
Volterra systems. The clear concordance between the Lotka-Volterra
time series and the Kuramoto oscillator phases is evident by the end
of the Lotka-Volterra time series plots. Note that only the consum-
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ers are plotted in the time series to more clearly illustrate the corre-
spondence in oscillatory dynamics between LV and Kuramoto. The
parameters for all Lotka-Volterra simulations are as follows: a = 0.7,
m=0.1, h=3.0,b=0.3, f = 0.01, and @ = 0.1. For the Kuramoto
model simulations, K = 0.01, @ = 0.01, and the model was run for
200 time steps
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where C and R denote “consumers” and “resources”
respectively and i ranges from 1 to 3. The basic parameters
of the model are as follows: a = the attack rate of the
consumers, m = the mortality rate of the consumers, A
= the functional response term of the consumer, b = the
birth rate of the resource, aij:the competitive effect of
resource j on resource i (note, a;=1), and ﬂij=the strength
of cross feeding (note, ;= 1). The parameter a represents
the strength of competition (resource coupling) between
resources, and f represents the strength of cross-feeding
(trophic coupling).

In the spirit of Kuramoto’s model, we first located
parameter space where individual consumer-resource pairs
oscillate in limit cycles (equation set 3). For all simulations
presented here, those parameters are as follows: a = 0.7,
m = 0.1, h =3.0, and b = 0.3. Given a persistent oscillator
in the Lotka-Volterra formulation, we then couple them in
four paradigmatic combinations outlined in Fig. 2, where
trophic-coupling implies eventual synchrony and resource-
coupling implies asynchrony. Manipulating a; and f; in
equation set 3, we create the parameter states for all four
coupling arrangements depicted in Fig. 2 (see Appendix
for long form equations for each coupling scenario). For all
simulations presented here, we used low values of coupling
coefficients (f = 0.01 and @ = 0.1).

Results

Employing the Kuramoto model (Eq. 2) if % ZFM =3,
the system synchronizes in-phase (i.e., all oscillators are
effectively on the same point in circle space, as in Fig. 3d);
if it is — 3, the system synchronizes precisely anti-phase
(each oscillator separated from each other by 2I1/3 radians,
as in Fig. 3c); if it is — 1, two oscillators are in-phase and
the third is anti-phase against the two in-phase oscillators
(Fig. 3b). However, if the sum is 1 a situation emerges in
which oscillator 3 is in-phase synchrony with oscillator 1,
oscillator 1 is in-phase synchrony with oscillator 2, while
oscillator 2 is anti-phase synchronous with oscillator 3, but,
qualitatively stable. The three oscillators are separated from
one another by ©, , = 0, 3 =11/3 and ©,; = 411/3 (Fig. 3a).
In all four cases (Fig. 3), while all oscillators retain the
same relative position with respect to one another, they all
together progress around the state space according to the
intrinsic frequency.

Employing the Lotka-Volterra model (Egs. 3a and 3b),
typical time series results of all four ODE simulations
are presented in Fig. 3. It is clear that the Lotka-Volterra
predictions for all four qualitatively distinct cases (Fig. 2) are
precisely what we get from the simpler Kuramoto approach.
It is worth noting that the Lotka-Volterra simulations
are quite robust as long as the coupling is not strong. As
reported elsewhere (Vandermeer, 1993, 1994, 2004, 2006) as
coupling becomes stronger, frequently complicated behavior,
including chaos and quasiperiodicity, typically emerges from
these structures. Regarding the Kuramoto simulations, the
results are seemingly completely robust in that we found no
examples of coupling (in the range 0-1) that did not yield
the same qualitative results as visualized in Fig. 3.

Discussion

The ubiquity of oscillatory dynamics in ecology has long
been appreciated (Platt and Denman 1975; Huisman and
Weissing 2001; Blasius et al. 2020). Empirically, across a
range of spatiotemporal scales from large scale dynamics of
the hare-lynx system (Blasius et al. 1999) to the microcosm
experiments of Huffaker (1958), and theoretically emerging
from the simplest conceptualizations of consumer-resource
interactions (Lotka 1926; Volterra 1927), synchronization
of coupled consumer-resource oscillators is well-known,
both from an implied spatial coupling (e.g., predator
or prey migrating among habitat patches (Koelle and
Vandermeer 2005) and direct energy transfer (e.g., different
predators coupling among different prey in the same habitat
(Vandermeer 2006)). Here we demonstrate that for the
four most obvious qualitatively distinct yet ecologically
significant coupling patterns in a six-species community
(three oscillators), weak coupling leads to precisely the
pattern predicted by Kuramoto’s phase coupled system.
These results suggest a wholly distinct vision of ecological
communities in which the “agents” are not population
densities, but rather oscillators.

There are evident limitations in the analysis as
presented here, but, we argue, those limitations suggest
that the approach holds much potential. For example, the
introduction of dissipating oscillators into the mix is an
evident expansion of the system, one that has not been
examined, at least not in the context of the Lotka-Volterra
and Kuramoto connection. Another important element
is the possibility of studying coupled chaotic oscillators
with the Kuramoto framework, certainly a challenging
possibility. Blasius and colleagues (1999) have already
indirectly entered this topic with their UPCA pattern
(uniform phase chaotic amplitude), which is, in a sense,
putting chaotic dynamics in a Kuramoto-like framing
(although chaotic, the lynx/hare cycle synchronizes
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phases across Canada). Contrarily, one might ask what
a UACP pattern (uniform amplitude, chaotic phase)
would look like and how it could be generated, perhaps a
more direct application of the Kuramoto metaphor since
amplitudes are fixed and the interest is in the dynamics of
the phases. On the other hand, the existence of chimeric
elements (individual oscillators that refuse to synchronize
in any way with synchronous groups of oscillators) may
already be examples of chaos or chaos-like behavior in
the Kuramoto framing (Kotwal et al. 2017; Laing 2009).

There is a rich and diverse literature on synchronization,
popularly summarized for a generalist audience by Steven
Strogatz in his book “Sync.” (2012). Ecological applications
are less common but the field is growing. For example, some
authors have examined correlations with external forcing,
either regular or stochastic (Vasseur and Fox 2007; Reuman
et al. 2008) in driving or sometimes quenching synchronized
systems, and spectral analysis (Vasseur and Gaedke 2007)
recalls the original insights of Platt and Denman (1975).
And, of course, it has long been acknowledged that a
metapopulation in which subpopulations oscillate in sync is
far more likely to undergo global extinction (Matter 2001).

By reorienting the focus of ecological analogy from
individual populations to collections of oscillators, the
dynamical nature of the system becomes the central focus
rather than questions of stability or persistence. As in other
sciences, the collective dynamics of coupled oscillators can
provide a useful heuristic for exploring the general properties
of large and complex systems of the sort that ecologists
have long cited with awe (Hutchinson 1961; Lawton 1999;
Vellend 2010). Furthermore, by highlighting the ability to
move between classical models in ecology and classical
models in the coupled oscillator literature, we suggest that
both approaches can be used in tandem and exploited for
their strengths. Approaches to Kuramoto effectively increase
the tractability of large complex systems by halving the
dimensionality and providing an elegant and intuitive way
to visualize the oscillatory dynamics, while approaches to
Lotka-Volterra permit investigation of how basic biological
parameters influence dynamics. The most obvious utility
of such an approach is where synchronous dynamics are
the focus of investigation (e.g. Earn et al. 1998; Blasius
et al. 1999; Liebhold et al. 2004) and may have practical
implications for the management of fisheries (Kaemingk
et al. 2018), the planning complex biological control systems
in agroecosystems (Vandermeer et al. 2019), or conservation
(Earn et al. 2000).

The once popular idea that ecosystems are at, or
moving towards, Lyapunov stability is considered passé
(e.g., Morozov et al. 2019). The growing appreciation
among ecologists that ecosystems and communities
are dominated by nonlinear processes often outside of
equilibrium (DeAngelis and Waterhouse 1987) suggests

@ Springer

that our tool kits to understand ecosystems need to evolve
along with our analogies of them, as suggested long ago
(Platt and Denman 1975). We suggest that networks of
oscillators, rather than networks of populations, represent a
potentially new paradigm for the examination of ecological
communities.
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Appendix

% Y I = 1for the Lotka-Volterra system of ordinary differen-
tial equations has C; with trophic-coupling on R, and R;, C,
with trophic-coupling on R;, C; with trophic-coupling on R,
and R, and R; resource coupled. Initial conditions for Fig. 2
are as follows: R, = 0.05, R, = 0.10, R; = 0.35, C, = 0.06,
C,=0.11, and C; = 0.36.

. R,C R,C R;C
R1=bR1(1—R1)—all P A P T )
1 +ahR, 1 +ahR, 1 + ahR,
(4a)
¢ = aR,C, Co+p aR,C, ny aR;C,
VT TranR, "V TP T anR, T T ank;, Y
. aRr,C aR,C

1+ahR, " 1+ahR,

_aR, G, o+ p aR,C,
2 Tvank, "2 T PTTang, (4d)
. aR;Cy aR,C,
R; =bR;(1 —R; —aR,) — — —
s = bR (1= Ry =)~ g, P Tk, O
aR;C; aR,C;
= — = +
T+ ahR, s ﬁl +aR, (40

for % Y I' = —1 for the Lotka-Volterra system of ordi-
nary differential equations has C, with trophic-coupling
on R,; C, with trophic-coupling on R;, R,, and R; with
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resource-coupling; and R, and R; with resource-coupling. . aR,C, aR,C, aRyC;y
Initial conditions for Fig. 2 are as follows: R, = 0.60, &1 = bR,(1=Ry) - 1+ahR, "1+ahR, "1+ ahR,
R,=0.30,R;=0.10,C,;=0.61,C,=0.31,and C; =0.11. (7a)
; aR,C, aR,C, . aR,C, aR,C, aR;C,
= -R, - - - Ci=———-mC + +
Ri=bR,(1=R = aRy) = e =P G0 O = T, O M Tk, Y T ank, D)
aR,C, ar,C, ; aR,C, aR,C, aR;C;
= —_— R, =bR,(1-R,) — - -
L R S () Re=bRo(1=Ro) = Tk ~ P T aik,
(7c)
; aRr,C, aR,C, . ar,C, aR,C, aR;C,
= - R, - - - Cy=———-mCy+ +
Ro=bRy(1 =Ry —aks) = e = Prar 69 O Toam, - "O 4 raw, P irar, 9
aR,C, aR,C, : aR,C, aR,C, aR,C,
=22 ki e R, =bR,(1 —R,) — - -
2= Trank, "t P TR, () Re=bR(1=Ry) = e Pk, P T ank,
(7e)
. aR;Cy . aR;Cy aR,Cs aR,C;
R, =bR,(1 =R, — aR, — aR,) — —>—— C.= 2823 Lo+
s = bR(1 =Ry —afy —aly) - 0 Ge) G= Tk, MO Tar, Vv ak, Y
aR;C5 c 5
3T T e s
I+ ahR, References

for% Y'I' = —3 has pairwise resource-coupling between
all resources and no trophic-coupling. Initial conditions
for Fig. 2 are as follows: R; = 0.50, R, = 0.55, Ry = 0.45,
C,=0.51,C,=0.56, and C; = 0.46.

- aR,C,
Rl —le(l—Rl —aRz—(XR3)—m (6a)
1
= ﬂ —mC 6b
"7 1+ ahgR, ! (6b)
; 1 aR,C,
R, =bR,(1 =R, —aR, — aR;) T Tr ik, (6¢)
aR,C,
=—== _—mC
2= Trank, MO (6d)
s b aR;C;
Ry =bR;(1 =Ry —aR, — aR,) — 5 aik,] (6¢)
_ ARG )
ST T anR, "0 (65

for% >'T" = 3 has pairwise trophic-coupling between all
consumers and resources and no resource-coupling. Ini-
tial conditions for Fig. 2 are follows: R, = 0.10, R, = 0.20,
R;=045,C,=0.11,C,=0.21, and C3= 0.46.
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