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A B S T R A C T

The proliferation of mobile users with an attendant rise in energy consumption mainly at the base station
has requested new ways of achieving energy efficiency in cellular networks. Many approaches have been
proposed to reduce the power consumption at the base stations in response to the contribution of energy cost
to the increase of OPEX of the mobile operators and the rise of the carbon footprint on global climate. As
a springboard to the application of sleep mode methods in ultra-dense cellular networks, this paper provides
a comprehensive survey of the base station sleep mode strategies in heterogeneous mobile networks from
perspectives of modeling and algorithm design. Specifically, the sleep mode enabling strategies and sleep
wake-up schemes are reviewed. The base station sleep-mode techniques in ultra-dense networks are further
discussed as well as the challenges and possible solutions.

1. Introduction

With the unprecedented growth of Information and Communication
Technologies (ICT) over the past two decades, ICT has been estimated
to contribute 2 to 2.5% of the global Greenhouse Gas (GHG) emis-
sions [1]. This increase is not unconnected with the way ICT has
reshaped our personal and professional lives. This is evident in the
massive use of the internet and increased patronage of mobile commu-
nication devices and services. Mobile telecommunication is a significant
component of ICT in the contribution to climate change. In [2,3], a
conducted study estimated the contribution of mobile networks to be
2% of the global CO2 emissions in 2007 and projected to be 4% in
2020. Fig. 1 represents the global telecoms contribution to greenhouse
gas in million metric tons of carbon dioxide equivalent. Recently, there
are more than 7 billion mobile subscriptions worldwide, corresponding
to a penetration rate of 97%, up from 738 million in 2000 [4].

The introduction of smart mobile devices such as tablets, smart
phones, and Internet of Things (IoT) devices, along with the applica-
tions such as video live-streaming, conferencing, and image transfers
involve enormous volume of data traffic [5]. The huge traffic demand
comes with increased energy consumption as evident in recent network
standards such as 4G Long-Term Evolution (LTE). In fact, higher traffic-
induced energy consumption is imminent in 5G networks and beyond
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if no energy-efficient methods are employed [6]. The price paid for this
enormous growth in data rates and market penetration is a rising power
requirement and the growth pattern has driven expansion of cellular
base stations [7]. In cellular networks, over 80% of energy is consumed
by the Radio Access Network (RAN) [8].

In addition to the overall carbon footprint of mobile communica-
tions, the network energy consumption is also a major cost for mobile
operators. According to [10], energy cost has been estimated to be
about 10%–15% of the total network OPerating EXpenses (OPEX) in
mature markets. Moreover, energy cost can amount to 50% of the OPEX
in developing market and areas of unreliable electricity grid because
of the proliferation of off-grid sites [11]. Until recently, most of the
research in mobile communications had been centered on performance
metrics such as throughput, spectral efficiency, and Quality of Service
(QoS). The rise of global carbon print and mobile operators’ OPEX
heightens the incentive on research, in both academia and industry,
to reduce energy consumption of mobile networks [12,13]. In network
beyond 5G, e.g., 6G, the energy efficiency is expected to be increased
by 10–100 times, compared with that in 5G network [14–16].

One of the main objectives of the next generation of wireless com-
munications is to save energy consumption over the wireless networks
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Fig. 1. Global Telecoms footprint [9].

while achieving the 5G promised throughput and quality of service.
Energy consumption is one of the highest operating costs used with his-
torically consideration to perform almost every daily tasks. As greener
technologies, 5G networks and beyond are expected to save energy
by 90% compared to 4G with energy efficiency use case, which en-
ables performing several network services and functions using less
power [17]. 5G networks aims at transmitting more data with less
power where less wattage will be required. It will be more powerful
in terms of how power will be processed. Although 5G networks will
improve the energy efficiency, it will require more energy to perform.
The potential increase in energy consumption to serve the large number
of connected devices and machines leads to making the energy saving
even more important in terms of climate change and sustainability.

Conserving energy is important as it allows protecting the environ-
ment, saving resources, and reducing bills. Protecting the environment
improves the quality of living with fresh and clean air by reducing the
environmental pollution, which can be achieved by reducing the CO2
emission. The increase in energy usage increases the global warming.
Consequently, 5G networks are promising to adopt alternative solu-
tions to address the energy consumption trade-off while protecting the
environment, thus, decrease the global warming impact. Therefore,
energy saving in 5G allows saving the planet by minimizing the chances
of increasing the global warming for greener future by optimizing
the energy consumption and generating renewable energies [18,19].
Energy saving is primordial for Mobile Network Operators (MNOs), the
economy, and the environment for green networks [20].

Ultra-dense networks refer to networks with more cells than active
users [21]. With ultra-dense deployment, the network is comprised of
large number of small base stations consuming high energy resources,
which requires effective solutions for longer sleep mode of the base
stations. Power control of the base station corresponds to controlling
the power saving mode of the base station by switching among sleep
and awake modes [22]. As the wireless traffic represents non-uniform
pattern in spatial and temporal domains, sleep mode techniques allow
reducing the power consumption of the mobile networks significantly
by selectively turning either base stations or their transceivers to the
sleep mode. Consequently, the base station operates in two different
modes: active mode and sleep mode. In the active mode, the base
station is completely on while its transceivers are turned off in the
sleep mode. Typically, when some base stations are in the sleep mode,
the radio coverage is provided by their adjacent base stations, which
remains active in order to guarantee the radio services over the network
all the time [23]. Before 5G networks, sleep mode solutions have
been used in some of the previous standards and technologies for
energy saving purposes including WiMAX, LTE, and wireless sensor
networks [24–28]. They have been proven to be promising solutions
to increase the energy efficiency and enhance the energy management
policies.

In [24,25], sleep modes have been used in IEEE 802.16e for ac-
curate energy management over the Medium Access Control (MAC)
protocol [29]. They perform by switching the Mobile Subscriber Station
(MSS) from wake mode to sleep mode instead of the base station. MSS
switches to sleep mode after the base station approval at the listening

window and it keeps alternatively switching from the two modes during
the lifetime of its battery. In addition to its mobility, MSS alternates
between sleep window, listening window, and wake window, which
requires more energy and extend its lifetime. Longer sleep periods lead
to longer response delays that the MSS need to wake up. In [26],
sleep mode solutions have been applied by switching on–off the Mobile
Terminal (MT) radio interface for energy saving purposes in the case of
static traffic models. However, scheduling the MTs sleep windows is not
practical as it requires realistic traffic models to enhance the switching
schedule design of the mobile terminal at uplink and downlink traffic.
In [30], the authors proposed a multilevel sleep mode to control the
base station operation ON/OFF in order to model and predict the traffic
based on the support vector machine algorithm. They aim at addressing
the power consumption issues for high traffic networks. Because of the
random activity of the users, the authors proposed an optimal base
station selection solution to minimize the energy consumption while
ensuring high coverage [31]. They aim at determining which base
stations to select for sleep mode while respecting the tradeoff between
the energy efficiency and the network performance [32].

Moreover, other sleep mode solutions have been developed for wire-
less sensor networks to enable energy saving. Sleep/wake up solution
has been used with the duty cycle protocol to save the nodes’ energy
and decrease their active time. Duty cycle is one of the saving energy
protocols and it refers to the act of switching between sleep and wake
modes based on the network activity. Sleep windows can be increased
for energy saving purposes while sleep windows can be decreased for
response delay reduction purposes, which results in a trade-off between
the energy saving and the response delay. Thus, efficient solutions
for energy management and sleep scheduling are required in order to
save energy while reducing the response delays. In [24,25] analytical
models have been proposed to study and evaluate the performance
of the sleep mode solutions introduced in the 802.16e standards by
analyzing a number of performance metrics including frame response
and energy consumption. In [26], waking up scheduling solution has
been analyzed in order to optimize the sleeping periods based on
arriving packets [33]. It aims at balancing the trade-off metrics by
decreasing simultaneously the energy consumption and the response
delays. The existing sleep mode solutions have been showing some
significant results. However, with the high increase in the number of
connected devices and services, advanced sleep mode solutions are
needed to accompany the ear and satisfy the future users’ requirements.

Moreover, a number of energy efficiency resource allocation tech-
niques have been proposed as optimizing the resource allocation per-
mits reducing the energy consumption of the user devices for Multi-
access Edge Computing (MEC) [34] and device to device communi-
cation [17]. In [35], the authors proposed a reliable energy efficient
technique aiming at minimizing the energy consumption in the Multi-
access Edge Computing (MEC) network. By bringing services and com-
puting functions to the edge devices, MEC architecture operates with
energy demanding entities called mobile edge hosts, which requires
minimizing the energy consumption by the MEC network. The proposed
technique aims at minimizing the energy consumption by putting the
MEH and the access points under the sleep mode. It optimizes the
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resource allocation and the number of active base stations in a service
delay constraint.

In [36], the authors proposed an energy, performance, and cost-
efficient resource management technique, called epcAware, aiming at
achieving the network performance while minimizing the energy con-
sumption for the MEC networks. epcAware is a non-cooperative game-
based resource allocation technique able to manage energy resources.
In [37], the authors proposed an energy-efficient solution based on
adaptive resource-block allocation to allow reducing the energy con-
sumption in the 5G green communication. For lower complexity, An
adaptive resource-block allocation scheme has been proposed for opti-
mal power control in Device to Device (D2D) communications as high
energy consumption leads to rapid battery draining [38]. They pro-
posed a Zone-Based Energy Efficiency (ZBEEn) technique for spectrum
shared network [39]. ZBEEn technique performs with one transmitter
and multiple receivers via device-to-device transmission located in
distinctive zones. It aims at enhancing the battery lifetime of the D2D
users using game theory [40]. They also proposed a Sector-Based Radio
Resource Allocation (SBRRA) technique to solve the resource sharing
problem in D2D communication using cell sectorization [41]. They
proposed a Non Orthogonal Multiple Access (NOMA) based approach
to enable multiple interference cancellation using sector-based resource
allocation [42]. It allows decreasing the power consumption by the
regenerators and reducing the system complexity.

In [43], the authors investigated various energy efficiency solutions
in several scenarios including device to device communications, ultra-
dense networks, and IoT. They mainly focused on security challenges
in green cellular networks when operating with relays for energy
efficiency purposes. In [44], the authors discussed how some of the
energy efficiency solutions can lead to serious security concerns facing
the 5G networks as they operate with relays, base stations, and small
cell access point. These network elements can be attacked by several
types of attacks including bandwidth spoofing. In [45], the authors
proposed a saving energy scheme based on game theory to enable
idle users to operate as relays to save energy. In [46], the authors
proposed an energy saving based Particle Swarm Optimization (PSO)
technique to separate the control plan and the data plane in order to
minimize the energy consumption by the base station. A joint traffic
prediction technique was proposed to allow estimate the network traffic
and enhance the quality of the base station sleeping [47].

Several surveys and papers on energy efficient communications
techniques were published in the last decades [48–57]. These papers
provide existing methods to minimize the power consumption in mobile
communication networks, while the aforementioned works focused on
the overall approaches at the base stations or from the perspectives of
mobile operators and users. Other surveys analyze the energy saving
from only one perspective including power consumption models, or
sleep mode enabling strategies, or wake up schemes [58]. Therefore,
the previous works have mostly focused on the traditional energy
saving solutions, and thus they relied on one perspective. Thus, there
is a great need for an in-depth survey that analyzes and discusses the
different strategies and solutions to improve the power efficiency at cel-
lular networks base stations. In this paper, we discuss and analyze the
different proposed solutions of energy-efficient management and sleep
mode scheduling in ultra-dense heterogeneous networks, especially in
5G networks. We investigate the energy saving solutions through sleep
mode-based strategies from the perspectives of modeling and algorithm
design. We discuss the different power consumption models and how
to evaluate their efficiency based on a number of energy performance
metrics.

With the current expansion trend of base stations, cellular mobile
networks are evolving into ultra-dense networks, which raises concern
for scrutiny of the existing base stations sleep-mode techniques, their
complexity, challenges, and possible solutions in ultra-dense networks.
Therefore, this paper analyzes the most recent reviews on energy-
efficient sleep mode techniques in 5G and beyond networks [59].

Firstly, we presented and analyzed the base station power consumption
for energy saving and system performance. Secondly, we provided an
in-depth review of the different wake-up schemes for switching base
stations in idle mode to active mode. Then, we discussed some of the
applications and challenges of the sleep activation methods in ultra-
dense networks. To the best of our knowledge, there is no such paper
that covers most relevant models and techniques for energy saving in
ultra-dense heterogeneous networks.

Thus, the main contributions of this paper are the following:

(1) Discussion of the need of employing the energy efficiency in 5G
networks

(2) Review of the comprehensive models for base station power
consumption

(3) Review of the quantifying metrics for energy saving and system
performance

(4) Description of the different wake-up schemes for switching base
stations in idle mode to active mode

(5) Evaluation of the application of the sleep activation methods to
ultra-dense networks and their challenges.

(6) Taxonomy, comparison, and analysis of the different energy
efficiency solutions and their possible scenarios of application

(7) Discussion of various open issues, challenges, learnt lessons, and
future directions to enable advanced and efficient energy saving
techniques

The rest of this paper is organized as follows. In Section 2, we
reviewed the achieving network energy efficiency methods. Section 3
represented the base station power consumption models as well as the
energy and performance metrics. Section 4 described and discussed
the different sleep-mode enabling strategies. Section 5 discussed the
advanced sleep mode strategies and how to model them. Section 6
highlighted the sleep wake-up schemes. In Section 7, we discussed
some of the applications and challenges of the base station sleep-mode
techniques in ultra-dense networks. Section 8 summarized the learnt
lessons from exploring the energy efficiency solutions. It discussed
the open challenges to be addressed and proposed some of the future
directions for research. Finally, a conclusion is given at the end.

2. Reducing energy consumption approaches

Many approaches have been proposed to reduce the energy con-
sumption in cellular networks. These approaches are hinged on min-
imizing power consumption at different components, equipment, or
systems level of the base station. They can be performed through
power amplifiers, self-organizing networks, heterogeneous networks
deployment, renewable energy sources, and massive MIMO.

2.1. Power amplifier improvement

Power Amplifier (PA) consumes 50% of base station’s energy, out
of which 80%–90% is dissipated as heat, leaving its total efficiency as
5% to 20% [52]. Studies have been focused on how to improve the
amplifier’ hardware designs for better energy efficiency. One of the
setbacks with the amplifiers is that much energy is wasted at low load
traffic times, as the amplifiers are designed to operate at maximum
power output necessitated by the desire to maintain good signal quality.
Special architectures such as digital pre-distorted Doherty-Architectures
and Aluminum Gallium Nitride have the potential of improving the
amplifier’s power efficiency by over 50% [52,60]. The studies favored
the use of switch-mode PAs, over the conventional analog PAs, as
they generate no voltage when powered on. Hence, they could boost
component-level energy efficiency by 70%. High cost of implementa-
tion is another factor to consider in boasting the power efficiency of
PAs.



F. Salahdine et al.

2.2. Self-organizing networks

Another category of approaches in attaining low energy consump-
tion at base station is by Self-Organizing Networks (SON). SON allow
reducing the human intervention while increasing the capacity of the
network. LTE is the first cellular mobile communication with SON
implementation, but it can only work with older radio access technolo-
gies. Besides the primary functions of SON, energy saving is reported
in [61] as one of the functions provided by SON. It can deactivate the
home base station when the User Equipment (UE) is in the coverage of
another base station. However, SON based approach represents limited
efficiency in reducing the network power consumption at low load
condition because the home base station will not be deactivated as long
as a UE is present. In [62], the authors take the network traffic into
account where SON based network architecture is proposed such as E-
UTRAN Node B (eNB) dynamically interacts in mutual cooperation for
minimizing the active number of eNBs in the network and thus achieves
energy saving. A similar SON based approach was proposed in [63]
with the inclusion of multiple Relaying Nodes (RN). These relays cov-
erage areas could be dynamically changed to minimize energy usage.
More details about the applications of SON based approaches will be
discussed in Section 5.

2.3. Heterogeneous networks deployment

Energy saving at cellular base stations are also accomplished with
the current trend of Heterogeneous Networks (HetNet) deployment
in cellular mobile communication [64–70]. Since small cells (micro,
pico, and femto cells) are low power-consuming base stations, they
are deployed with Macro Base Stations (MBSs) to achieve energy ef-
ficiency of the overall network [64]1. In addition, small cells provide
the advantage of coverage extension in the areas where macro base
stations coverage do not reach and in the network areas requiring
higher capacity. Small cells are one type of the cellular base stations,
and they refer to Small Base Stations (SBSs). Base stations can be macro
or small BS. MBSs perform with large antennas providing low frequency
coverage for long distances, miles. SBSs perform with small antennas
providing high frequency coverage for small distances, yards. Using
SBS in 5G allows transmitting signals to enhance the connectivity at
certain areas. In 5G future networks, more small cells will be deployed
compared to MBSs [71].

From the perspective of the network operator, heterogeneous net-
works offer the potential of lower CAPital EXpenditure (CAPEX) due to
reduced site build budget and OPEX with low maintenance cost [66].
However, they require good planning to save energy. It has been
reported that poorly planned dense deployment of small cells incurs
extra procurement overhead and energy cost in powering the base sta-
tions [60,72]. Another constraint in a network dominated by small cells
is the higher vulnerability to radio interference as the distance between
the co-channel cells may be closer. Heterogeneous networks-based ap-
proach can be improved to achieve energy efficiency by incorporating
base station sleep-mode techniques, which will be covered in later
sections.

On the other hand, heterogeneous networks play a potential role in
enhancing the network performance by its multi-tier architecture for
energy efficiency in the 6G networks perspective. 6G networks is ex-
pected to provide efficient and optimal power control capabilities with
less complexity and high energy saving. By deploying the networks of
MBS and SBS with MIMO and Non-orthogonal multiple access (NOMA)
respectively, the energy efficiency is maximized for the heterogeneous
networks [73–75]. Based on the channel state information (perfect or
imperfect), energy efficiency is achieved with NOMA protocol deployed
to SBS network in the heterogeneous networks. Power allocation allows
increasing the energy saving in the heterogeneous networks even at
Imperfect (I-CSI) [30].

1 The short transmission distance of small cells saves energy as power
consumption is a function of propagation distance

2.4. Renewable energy sources

Another base station energy conservation strategy is the usage of
Renewable Energy Sources (RES) [76,77]. This approach is ecologically
friendly as it is based on natural sources of energy including solar,
wind, and geothermal heat, which relatively produce little or no hydro-
carbon unlike the other widely used energy sources. Energy harvesting
base stations have been used for off-grid base stations as the option
for diesel generators where fuel transportation is not cost effective,
particularly in developing countries. In [78–80], the authors proposed a
framework that involves harnessing of both on-grid and renewable en-
ergy sources. The synergy of the two power sources with load balancing
yields a considerable savings on-grid power. Although [53] suggested
the preservation of data security and fault intolerance as drawbacks of
energy harvesting base stations, the current major constraint is the cost
of components replacement.

2.5. Massive MIMO

Multiple-Input Multiple-Output (MIMO) technology has been in-
corporated into wireless broadband technologies like LTE. It involves
the use of multiple transmitters and receivers to increase capacity. As
the number of antennas increases, the imperfect channel state infor-
mation decreases [81]. The systems with large number of antennas,
concurrently serving many tens of terminals, are called massive MIMO
systems. With regards to the energy impact of massive MIMO, the
transmit power for deliverable data rate is inversely proportional to the
number of employed antennas [82]. Moreover, the power consumption
expended by each transmitting antenna is relatively very low in the
massive MIMO systems, thus, transmit power can be reduced at the base
station by a factor of the number of antennas [83]. While analyzing
the service of a user by non-coherent beamforming from multiple
transmitters, the overall system power consumption can be significantly
reduced by combining massive MIMO and small cells deployment [84].
Using multilevel beamforming allows balancing between the energy ef-
ficiency and the spectral efficiency by reducing the energy consumption
at the transmission [85]. Adopting massive MIMO is challenging as the
number of multiple antenna branches per base station may get to the
point where further increasing antennas number will incur the increase
in the base station circuit power consumption.

2.6. Comparison

The deployment of the 5G networks can break the high increase
if the energy consumption with the help of several efficient and ef-
fective energy saving solutions and strategies with high sustainability
achieved [86]. Energy saving mechanisms allow reducing the power
consumption by the cellular network. The way in which these so-
lutions are smartly developed and wisely adopted play a primordial
rule in achieving the 5G promises. These mechanisms can be clas-
sified in different categories based on how they perform, including
hardware/software based, alternative energy source based, and deploy-
ment based. Hardware based mechanisms perform by switching off the
hardware components that consume energy when it is not in activity.
Software based mechanisms allow deactivating a number of function-
alities over the mobile networks. Energy saving hardware solutions
are efficient in terms of saving up to 90% of energy consumption.
However, they represent significant response delay, which requires
more intelligent policies to balance the trade-off between the energy
efficiency and the delay. They cannot perform well in delay sensitive
scenarios where a microsecond of delay can do the difference. They also
cannot be applied in dynamic environment with real traffic scenarios.

Through comparing the energy saving deployment-based solutions,
HetNet and SON, one can conclude that they are effective solutions
with some complexity, but they require extra implementation costs
for designing and operating them. Alternative energy source-based
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solutions are efficient as they generate more sustainable energy with
less consumption from free and available resources (solar, wind, and
waterpower). They also help in protecting the environment emitting
less emissions compared to the other source of energy. Moreover, most
of these energy saving mechanisms aim at reducing the transmission
energy and not the computation energy, which needs also to be saved.

On the other hand, the different energy saving solutions aim mainly
at minimizing the power consumption by the different devices and com-
ponents preforming for the well-functioning of the cellular network.
These solutions can be applied in multiple wireless network scenarios
according to how they operate including real time communication,
multi-cell communication, device to device communication, wireless
sensor networks, internet of things systems [87]. Selecting which so-
lutions fits for a given scenario depends on several metrics including
channel condition, transmit power, battery level, mobility, traffic type,
graphical region, and available resources. Some of them can be applied
to more realistic scenarios including fading channels, time varying
scenarios.

Power amplifier improvement solution aims at boosting the power
amplifier efficiency by enhancing the hardware design of the amplifier
operating at the base stations to consume and waste less energy.
Energy efficient amplifier solution can be applied in several scenar-
ios including scenarios where operational conditions can be changed
with high tolerance and easy adaptation to the hardware implementa-
tion [88]. For instance, energy efficient amplifier solutions have been
used for scenarios requiring excessive energy consumption for wireless
broadband [89]. Self-organizing networks solution aims at reducing
the energy consumption at the base station by deactivating the base
stations that are not active when the user equipment is no longer in its
coverage. This solution can be applied in multiple scenarios including
low load traffic condition. In [90], self-organizing networks solutions
have been used for power saving by automatically powering on and
powering off the base stations.

Heterogeneous networks deployment solution aims at maintaining
a low power consumption of the overall network by operating small
cells base stations. This solution can be applied in multiple scenarios
including high-capacity networks, small distance communication, high
coverage scenarios, and high throughout services. Best scenario is when
high capacity is required by some network area to operate. For instance,
heterogeneous networks deployment-based solutions have been consid-
ered for efficient mobile video on demand (VoD) services delivery in 5G
networks and beyond [91]. They can ensure video delivery in ultra-
dense network with high capacity, energy efficiency, high throughput,
and low latency. Renewable energy sources solution aims at operating
the base stations with energy from natural sources [92]. This solution
can be applied in multiple scenarios including rural areas, low-income
areas, area with limited grid supply, mountain regions, and areas with
low population density [93]. For instance, renewable energy sources
solutions have been used for some areas requiring expensive electricity
grid connection [94].

Massive MIMO solution aims at reducing the transmit power at the
base station by using multiple antennas at the transmission and at the
reception. This solution can be used in multi-cell scenarios where pilot
contamination may significantly impact the energy efficiency [95]. For
instance, the authors investigated how massive MIMO and millimeter
wave can significantly decrease the power consumption of the 5G radio
frequency chains systems with high number of antennas and radio
frequency chains [96]. To sum up, hardware-based solutions cannot
perform well in delay sensitive scenarios and dynamic environment
with real traffic scenarios. Alternative energy source-based solutions
can be used for remote areas with limited grid supply resources and low
density. Deployment based solutions can be used for specific scenarios
with high capacity for different users and customized services. More-
over, investigating how much power can be saved in different scenarios
using different energy efficiency solutions can tell about which solution
to apply and in which scenario to achieve better results [97].

Table 1

Modeling factors for base station power consumption.

Modeling factor Models Remarks

Component-based Eq. (1), (2), (3), (4),
and (8)

base station unit level
components are considered

Number of sectors Eq. (1), (4), (7),
and (12)

This accounts for number of
base station sectors, active
links or antenna

Load variation Eq. (10), (12), (13),
and (14)

Variation in traffic load
profile is considered

Operation-based Eq. (5), (6), (7),
and (11)

Power evaluated and
aggregated as dynamic and
static parts

Active/Sleep mode Eq. (12), (13), (14),
and (15)

Model evaluated from power
dissipation in active mode
and the one in sleep mode

Scaling factor Eq. (9), (11), (13),
and (14)

Sub-units are scaled for
peculiar characteristics

3. Power consumption models and energy metrics

A number of power consumption energy models and metrics have
been proposed in the literature to define the base station sleep modes.
The model selection depends on a number of modeling factors including
number of sectors, load variation, and scaling factor. To measure
how much power is reduced, energy saving measurements are used in
addition to the evaluation metrics to assess the performance of the base
stations sleep mode techniques.

3.1. Power consumption models

Modeling base station power consumption is usually the start-
ing point in problem formulations towards designing sleep mode en-
ergy conservation strategies [98]. The derivations are operation-based
and/or component-based of the base station. Numerous models of
power consumption at cellular base station have been proposed and
classified according to which modeling factor is applicable. Table 1
summarizes the power consumption models categorized as a function
of the modeling factors, which are formulated from Eq. (1) to Eq. (15).
These modeling factors are component-based model, size of the base
station, traffic variation, operation of the base station, mode of the base
station, and scaling factor.

First, component-based models are informed by the active power
dissipating hardware component-level parts, which is considered as
having direct impact on the base station power consumption. Examples
of these models are formulated in Eqs. (1), (2), (3), (4), and (8).

Second, the size of the base station (macro, micro, pico, or femto)
determines the inclusiveness of some hardware components in the
model. For instance, pico and femto base stations contain more energy
efficient dedicated hardware parts, whereas macro and micro base
stations operations require less dedicated components and more recon-
figurability in hardware such as more Field Programmable Gate Arrays
(FPGAs). Moreover, the loose connection type interface between the
amplifier and the antenna constitutes antenna feeder losses in macro
base station, which is not included in small base station models due to
more compact interfaces [99]. The number of antenna sectors in MBSs
is accounted for in models such as in Eqs. (1), (4), (7), and (12).

Third, traffic variation is captured in some models. The represen-
tation of some base stations power consumption has been modeled
as fixed load, such as the models presented in Eqs. (1), (3), (4), and
(8). Variable load model, which is a more energy efficient model, is
employed to consider possibility of achieving some energy savings from
temporal traffic load fluctuation such as in Eqs. (12), (13), and (14).

The fourth modeling factor is based on the operation of the base
station. It reflects the power dissipation of the hardware components in
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Fig. 2. Block diagram of a base station transceiver [100].

relation to the traffic load. This factor leads to two power model clas-
sifications: dynamic and static power consumption models. Dynamic
power consumption model represents the power consumed when a
component is operating to deliver its functions. This is the base station
load-dependent part of the power consumption. Static power consump-
tion model represents the power expended in powering a component
regardless of the component functions. It is the power consumed when
the base station is ‘unloaded’. For example, the pair of (6) and (7)
represent the static and dynamic power models, respectively.

The mode of the base station is another perspective of the power
consumption modeling. The power dissipated when in active transmis-
sion and sleep mode are separately evaluated, and the resultant models
are then derived. Examples are the models stated in (12), (13), (14) and
(15).

The last factor is the scaling factor, which arises from the base
station sub-unit split. The scaling of sub-units is due to different char-
acteristic parameters along the hardware and architectural splits such
as analog versus digital, active powering versus cooling, and functional
split like frequency versus time-domain signal conditioning [99]. The
unparalleled behavior to change in network parameters and sizes with
relation to the power consumption is reflected in the scaling parameters
in (9). The power factors and models slope in (13) and (14).

The representative of the previously discussed models and their
equations are given from (1) to (14). Fig. 2 represents an example of a
typical base station with different components to formulate the model’s
equations [56,100]. The base station power consumption is given by

𝑃 = 𝑁𝑇𝑅𝑋

𝑃𝑜𝑢𝑡

𝜉(1−𝜎𝑓𝑒𝑒𝑑 )
+ 𝑃𝑅𝐹 + 𝑃𝐵𝐵

(1 − 𝜎𝐷𝐶 )(1 − 𝜎𝑀𝑆 )(1 − 𝜎𝑐𝑜𝑜𝑙)
(1)

where 𝑃𝑜𝑢𝑡 denotes the base station power consumption at maximum
load, 𝜉 is the PA efficiency, 𝑃𝑅𝐹 is the RF power consumption, and
𝑃𝐵𝐵 is the power dissipated by the baseband unit. The power losses
by antenna feeder, DC–DC power supply, main supply, and cooling are
denoted by 𝜎𝑓𝑒𝑒𝑑 , 𝜎𝐷𝐶 , 𝜎𝑀𝑆 and 𝜎𝑐𝑜𝑜𝑙, respectively.

Component based linear models for small base stations were pro-
posed in [101,102]. In [101], all the base station hardware components
are considered in the formulation. The active model is then represented
as

𝑃𝑜𝑛 = 𝑃𝑀𝑃 + 𝑃𝐴𝑀𝐼 + 𝑃𝐵𝐶 + 𝑃𝐹𝑃𝐺𝐴 + 𝑃𝐴𝑀𝐼𝐼

+𝑃𝑂𝐻𝐹 + 𝑃𝑇 + 𝑃𝑅 + 𝑃𝑃𝐴

(2)

where the power consumed by the microprocessor, associated memory
I, backhaul circuitry, FPGA, associated memory II, other hardware
functions, Radio Frequency (RF) transmitter, RF receiver, and RF power
amplifier denoted by 𝑃𝑀𝑃 , 𝑃𝐴𝑀𝐼 , 𝑃𝐵𝐶 , 𝑃𝐹𝑃𝐺𝐴, 𝑃𝐴𝑀𝐼𝐼 , 𝑃𝑂𝐻𝐹 , 𝑃𝑇 , 𝑃𝑅,
and 𝑃𝑃𝐴, respectively. A simplified hardware model was proposed
in [102] as:

𝑃 = 𝑃𝜇𝑝 + 𝑃𝑡𝑟𝑎𝑛𝑠 + 𝑃𝑃𝐴 + 𝑃𝐹𝑃𝐺𝐴 (3)

where 𝑃𝜇𝑝, 𝑃𝑡𝑟𝑎𝑛𝑠, 𝑃𝑃𝐴, and 𝑃𝐹𝑃𝐺𝐴 represent the power consump-
tion at the microprocessor, transmitter, power amplifier, and FPGA,
respectively.

In [103,104], the authors proposed a distinct model for macro and
micro base stations in which the power consumption models were

formulated with focus on the network architecture in terms of the
transmission parameters and the operational hardware. For the macro
base station, the power consumption model, 𝑃𝐵𝑆,𝑀𝑖𝑐𝑟𝑜, is given as:

𝑃𝐵𝑆,𝑀𝑎𝑐𝑟𝑜 = 𝑁𝑆𝑒𝑐𝑡𝑜𝑟 ⋅𝑁𝑃𝐴𝑝𝑆𝑒𝑐 ⋅
(
𝑃𝑇𝑋

𝜇𝑃𝐴
+ 𝑃𝑆𝑃

)
×

×(1 + 𝐶𝐶 ) ⋅ (1 + 𝐶𝐶𝑃𝑆𝐵𝐵)
(4)

where 𝑁𝑆𝑒𝑐𝑡𝑜𝑟 is the number of base station sectors, 𝑁𝑃𝐴𝑝𝑆𝑒𝑐 is the
power amplifier power consumption per sector, 𝑃𝑇𝑋 is the station
transmission power, 𝜇𝑃𝐴 is the power amplifier efficiency, 𝑃𝑆𝑃 is the
signal processing overhead, 𝐶𝐶 is the cooling power loss, and 𝐶𝐶𝑃𝑆𝐵𝐵

is the battery backup and power supply loss. However, this macro base
station model assumes that the power consumption is not dynamic
while the base station can experience periods of low and high traffic
in practice. This dynamic behavior is accommodated in the model of
the micro base station, which is given as:

𝑃𝐵𝑆,𝑀𝑖𝑐𝑟𝑜 = 𝑃𝑠,𝑀𝑖𝑐𝑟𝑜 + 𝑃𝑑,𝑀𝑖𝑐𝑟𝑜 (5)

where 𝑃𝑠,𝑀𝑖𝑐𝑟𝑜 denotes the static power and it is derived from the
formula

𝑃𝑠,𝑀𝑖𝑐𝑟𝑜 =
(
𝑃𝑇𝑋

𝜇𝑃𝐴
⋅ 𝐶𝑇𝑋,𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑆𝑃 ,𝑠𝑡𝑎𝑡𝑖𝑐

)
⋅ (1 + 𝐶𝑃𝑆 ) (6)

and the dynamic power form

𝑃𝑑,𝑀𝑖𝑐𝑟𝑜 =
(
𝑃𝑇𝑋

𝜇𝑃𝐴
(1 − 𝐶𝑇𝑋,𝑠𝑡𝑎𝑡𝑖𝑐 )𝐶𝑇𝑋,𝑁𝐿 + 𝑃𝑆𝑃 ,𝑁𝐿

)
×

×𝑁𝐿 ⋅ (1 + 𝐶𝑃𝑆 )
(7)

where 𝑃𝑇𝑋 , 𝑁𝐿, 𝐶𝑇𝑋,𝑁𝐿, 𝑃𝑆𝑃 ,𝑁𝐿, 𝜇𝑃𝐴, 𝐶𝑇𝑋,𝑠𝑡𝑎𝑡𝑖𝑐 , 𝑃𝑆𝑃 ,𝑠𝑡𝑎𝑡𝑖𝑐 , and 𝐶𝑃𝑆

represent the maximum transmission power per PA, number of active
links, dynamic mode signal processing per link, PA efficiency, static
mode transmission power, static mode signal processing, and power
supply loss, respectively.

In [105], the authors proposed a similar model to (4), which is based
on the inclusion of power expended due to backhauling. The considered
backhauling performs in cooperation between base stations in clusters,
such as in Coordinated Multipoint (CoMP) [106]. For the base station
in a cluster, its power consumption is derived by

𝑃 =
(
𝑃𝑇𝑋

𝜇𝑃𝐴
+ 𝑃𝑆𝑃

)
⋅ (1 + 𝐶𝐶 ) ⋅ (1 + 𝐶𝐶𝑃𝑆𝐵𝐵) + 𝑃𝑏ℎ (8)

where the additional term 𝑃𝑏ℎ denotes the power due to backhauling.
Furthermore, this model can be approximated as

𝑃 = 𝑎𝑃𝑇𝑋 + 𝑏𝑃𝑆𝑃 + 𝑐𝑃𝑏ℎ (9)

where a, b, and c depict the scaling factors with the corresponding
power [51,107]. There are other linear approximation of the model
excluding backhauling and simplifying the formulas [108–114].

Traffic loads have been proposed for base station modeling [114–
117]. A load-dependent formula that does not only entail the dynamic
and static modes of the base station, but also includes the instantaneous
weight of the traffic load is given as

𝐸𝑖 = (1 − 𝑞𝑖)𝜌𝑖𝑃𝑖 + 𝑞𝑖𝑃𝑖 (10)

where 𝜌𝑖 is the load at the base station i, 𝑃𝑖 represents the power of
the base station i at maximum usage, and the static power of the base
station is represented by the scaling 0 ≤ 𝑞𝑖 ≤ 1 [116]. For 3G networks,
𝑞𝑖 ranges from 0.5 to 0.8 [116,118]. While this model encompasses the
power consumption in the two distinct modes, it does not express the
influence of the traffic load. Based on the physical layer model of the
cellular networks, the power consumption takes into consideration the
static and dynamic modes, and it is given as

𝑃 = 𝜂−1𝑃𝑡 + 𝑃𝑐 + 𝐿𝑃𝑙 (11)

where 𝜂−1𝑃𝑡 is the static power consumption of the base station, 𝜂
is the transmission power efficiency, 𝑃𝑡 is the pilot signal maximum
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transmission power, 𝑃𝑐 is the constant operational power [119], 𝐿𝑃𝑙
is the dynamic power consumption, L is the product of the number
of network users, and 𝑃𝑙 is the base station serving power. A simpler
model with no dynamic power transmission is adopted in [120,121].

In [122–128], a linear approximation model has been proposed when
representing small cell energy consumption, where the main opera-
tional modes—active and sleep—are approximated as

𝑃 =

{
𝑁𝑣𝑃𝑎𝑐𝑡𝑖𝑣𝑒 + 𝛥𝑣𝑃𝑡𝑟𝑎𝑛𝑠,𝑣 0 < 𝑃𝑡𝑟𝑎𝑛𝑠,𝑣 ≤ 𝑃𝑣,𝑚𝑎𝑥

𝑁𝑣𝑃𝑠𝑙𝑒𝑒𝑝,𝑣 0 < 𝑃𝑡𝑟𝑎𝑛𝑠,𝑣 = 0
(12)

where 𝑁𝑣 is the number of antennas in base station v, 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 is the
power consumption of the hardware at the BS, 𝑃𝑠𝑙𝑒𝑒𝑝,𝑣 is the base station
power consumed at sleep mode, 𝛥𝑣 ≥ 1 is the power amplifier inef-
ficiency, 𝑃𝑡𝑟𝑎𝑛𝑠,𝑣 is the transmitted power, and 𝑃𝑣,𝑚𝑎𝑥 is the maximum
transmit power constraint of the base station. This model does not
only account for traffic load but also load variation, as the 𝛥𝑣 scales
according to the load dependent power consumption. It does not take
into consideration the variations at the MBS where only SBSs are put
on sleep mode.

Conversely, the following model considers when the MBS is put on
sleep mode and its load is transferred to SBSs. Let the index from 0 to
𝑆 denotes the base stations in a cell such that 0 represents the MBSs,
and SBSs if otherwise. 𝑞𝑗 is the binary sleep indicator of the MBS mode
(0 for sleeping and 1 for active) [129]. For a base station 𝑠 in 𝑗𝑡ℎ cell
denoted by BS(j,s), the power consumption is given as:

𝑃𝑗,0 =

{
𝑃𝑀0 + 𝛥𝑀𝑊 𝑃𝑡𝑀𝜌𝑗,0, if 𝑞𝑗 = 1
𝑃𝑀𝑠𝑙𝑒𝑒𝑝, if 𝑞𝑗 = 0

(13)

𝑃𝑗,𝑠≠0 = 𝑃𝑆0 + 𝛥𝑆𝑊 𝑃𝑡𝑆𝜌𝑗,𝑠 (14)

The MBS power consumption is depicted by (13) and the SBS power
consumption model is presented by (14). 𝑃𝑀0 is the fixed power factor,
𝛥𝑀 is the power model slope, 𝑊 is the total channel bandwidth, 𝜌𝑗,0
is the traffic load, 𝑃𝑡𝑀 is the transmit power spectrum density of MBS,
𝑃𝑆0 is the SBS fixed power factor, 𝛥𝑆 is the power slope, 𝑃𝑡𝑆 is the
SBS transmit power spectrum density, and 𝜌𝑗,0 is the station associated
traffic load. Although the models presented by (11)–(14) assume equal
transmission power allocation to each resource block (RB) per base
stations, they take into consideration the effect of the traffic load
and the total channel bandwidth. The base station power consumption
scales linearly with the bandwidth [100].

Energy saving model providing more spatially realistic model than
the regular grid is formulated based on the stochastic geometry model-
ing [130]. The base station power consumption per unit area is given
by:

𝐸 = 𝜆𝑎𝑃𝑎 + (𝜆𝐵 − 𝜆𝑎)𝑃𝑠 = 𝜆𝐵𝑃𝑎(𝜌 + (1 − 𝜌)𝜃) (15)

where 𝜆𝑎, 𝑃𝑎, 𝑃𝑠, 𝜌, and 𝜃 are the base station density in sleep mode,
the active mode power, the sleep mode power, the traffic load, and
the ratio between sleep mode and active mode power, respectively.
The base station distribution is modeled with an ergodic Poisson Point
Process (PPP) with density 𝜆𝐵 .

3.2. Energy saving measurement

How much energy is saved? In order to quantify a measure of energy
efficiency of a cellular networks, different frameworks are used to
evaluate the energy saving resulting from different schemes. In [131],
energy measurement in wireless communication systems can be ap-
proached either by projecting energy to the system performance or by
comparing the output power to the input. Energy measurement metrics
can be classified into two categories: absolute and relative metrics. Ab-
solute metrics are based on system performance while relative metrics
relates the energy output to the input and depicts the improvement in
energy efficiency of the system. Table 2 summarizes and classifies the
different energy saving measurements metrics.

Absolute metrics

A number of absolute metrics have been proposed over the literature
including bit per joule, energy efficiency, area green efficiency, power
consumption, power consumption in rural areas, and power consump-
tion in urban areas. Bit-per-Joule metric is one of the commonly used
absolute metrics and it is given by

𝐸𝑒 =
𝑅

𝐸
= 𝑅

𝑃𝑇
(16)

where 𝐸 denotes the energy in Joule, 𝑃 denotes the power in Watt,
which is the required power to deliver 𝑅 bits over a period of 𝑇

seconds [102,109,132–135]. Bit-per-Joule metric refers to the ratio of
the network throughput and the power consumed by the base station.
In [137–149], more complicated formulas of the Bit-per-Joule metric
has been discussed, which indicates that the reciprocal of this metric is
the Energy Consumption Ratio (ECR) and the Energy per bit. The former,
in Joules/bits or Watts/bps, is the ratio of the energy consumption
to the system capacity [64,136], and the latter is the ratio of the
network consumption to the system throughput [100,137]. In [128],
the authors proposed other formulas of the bit per joule metric in built
upon its generic definition. The unit of Energy-per-bit is Joule/bits;
thus, this metric is essentially equivalent to the ECR. Bit-per-Joule can
be also defined as the ratio of data rate and the power consumed in
𝑏𝑖𝑡∕𝑠∕𝑊 𝑎𝑡𝑡 [133].

Energy Efficiency (EE) has also been evaluated from the perspective
of area spectral density. In [138], in computing the energy saving in
energy harvesting cooperative relay in cellular network, the Energy
efficiency is expressed as

𝐸𝐸 =
Area Spectral Efficiency

Network Power consumption
(17)

Similarly, the ratio of the network spectral efficiency and the net-
work power consumption is adopted in [145]. Another performance
metric based on the spectral efficiency is proposed in [139], which
is called Generalized Area Spectral Efficiency (GASE), 𝜂. It is defined
as the ratio of the ergodic capacity of the link, denoted by C, and the
coverage area of the transmission, denoted by A.

𝜂 = 𝐶

𝐴
(18)

Area Green Efficiency (AGE) metric aims at quantifying energy sav-
ings at the macrocell area in an heterogeneous network with femtocells
as the 2nd tier [140]. With the total power savings in macrocells and
femtocells denoted by 𝑃𝑀 and 𝑃𝑓 , respectively, AGE is represented by

𝐴𝐺𝐸 =
𝑃𝑀 + 𝑃𝑓

𝜋(𝑅𝑀 + 𝑅𝑓 )2
(19)

where 𝑅𝑀 is the radio of the macrocell and 𝑅𝑓 is the radius of the
femtocell.

Area Power Consumption (APC) metric is defined as the ratio of the
total power consumed by the base stations and the area of the target
coverage [104]. It is given as

𝐴𝑃𝐶 =
Total power consumed by all base stations

Area of coverage
(20)

Power consumption in rural areas metric has been proposed by
the European Technical Standards Institute (ETSI), which focus on
load conditions in the target coverage area. It aims at measuring the
power consumed in rural areas where there is low density of mobile
users [52]. It can be seen as the reciprocal of the APC metric, and it is
given by

𝑃𝐼𝑟𝑢𝑟𝑎𝑙 =
Total coverage Area
Power consumption

(21)

Power consumption in urban areas metric is used for areas with high
density of users. It is characterized by the number of busy hours of the
network with respect to the power consumption and it given as

𝑃𝐼𝑢𝑟𝑏𝑎𝑛 =
Number of users in peak hours

Power consumption
(22)
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Table 2

Energy savings measurement metrics.

Category Performance parameter Metric Unit References

Absolute metrics
Throughput/Capacity

Bit-per-Joule bits/Joule [102,109,132–135]
Energy Consumption Ratio (ECR) Joules/bit, Watts/bps [64,136]
Energy-per-bit Joules/bit [100,137]

Area spectral efficiency
Energy efficiency (𝑏𝑝𝑠∕(𝐻𝑧 ⋅ 𝑚2))∕𝑊 𝑎𝑡𝑡 [138]
Generalized Area Spectral Efficiency (GASE) (𝑏𝑖𝑡𝑠∕𝑠𝑒𝑐∕𝐻𝑧)∕𝑚2 [139]

Coverage area
Area Power Consumption (APC) 𝑊 ∕𝑚2 [104]
Area Green Efficiency(AGE) 𝑘𝑊 𝑎𝑡𝑡∕𝑘𝑚2 [140]
Performance Indicator(PI) 𝐾𝑚2∕𝑊 𝑎𝑡𝑡 [52]

Number of users 𝑢𝑠𝑒𝑟𝑠∕𝑊 𝑎𝑡𝑡

Relative metrics
Energy gain

Energy Consumption Gain (ECG) % [64,141,142]
Energy Reduction Gain (ERG) % [141,142]
Network Power Gain (NPG) % [62]
Energy savings % [62,143]

In either case, the higher the 𝑃𝐼 , the higher the overall energy effi-
ciency.

Relative metrics

A number of relative metrics have been proposed including energy
consumption gain, energy reduction gain, network power gain, and
energy saving. In heterogeneous network involving deployment of
macrocells and relays or femtocells, Energy Consumption Gain (ECG)
and Energy Reduction Gain (ERG) are introduced to compute the
overall energy consumption in such cellular networks [141]. With
the macro-only network tagged baseline network and macro-relay or
macro-femto network labeled joint network, the ECG is given in terms
of percentage of the operational powers and the embodied energies as

𝐸𝐶𝐺𝑜𝑝 =
(𝑃 𝑡𝑜𝑡

𝑜𝑝
)𝑏𝑎𝑠𝑒

(𝑃 𝑡𝑜𝑡
𝑜𝑝

)𝑗𝑜𝑖𝑛𝑡
× 100% (23)

𝐸𝐶𝐺𝑒𝑚 =
(𝑃 𝑡𝑜𝑡

𝑒𝑚
)𝑏𝑎𝑠𝑒

(𝑃 𝑡𝑜𝑡
𝑒𝑚

)𝑗𝑜𝑖𝑛𝑡
× 100% (24)

where the total operational powers for baseline and joint networks, in
Watt, are represented by (𝑃 𝑡𝑜𝑡

𝑜𝑝
)𝑏𝑎𝑠𝑒 and (𝑃 𝑡𝑜𝑡

𝑜𝑝
)𝑗𝑜𝑖𝑛𝑡, respectively. (𝑃 𝑡𝑜𝑡

𝑒𝑚
)𝑏𝑎𝑠𝑒

and (𝑃 𝑡𝑜𝑡
𝑒𝑚

)𝑗𝑜𝑖𝑛𝑡 are the total embodied energies in baseline and joint
networks, measured in Joule (W/s). The ECG has been applied to legacy
base station (macro-only) networks [64,142]. The ERG is derived by
modifying the formulas of ECG.

𝐸𝑅𝐺 =

(
1 −

(𝑃 𝑡𝑜𝑡
𝑜𝑝

+ 𝐸𝑡𝑜𝑡
𝑒𝑚
)𝑗𝑜𝑖𝑛𝑡

(𝑃 𝑡𝑜𝑡
𝑜𝑝

+ 𝐸𝑡𝑜𝑡
𝑒𝑚
)𝑏𝑎𝑠𝑒

)
× 100% (25)

In [62], the authors introduced an energy measure metric for base
station sleep mode activation by self-organizing networks. This metric
allows estimating the energy saved is termed of the Network Power Gain
(NPG), which is given as

𝑁𝑃𝐺 =
(
Power in the original network per area

Power in the SON per area
− 1

)
×

×100%
(26)

There are some other forms of evaluating power conserved from
base station sleep mode strategies in relation to the legacy network
and are scheme specific [62,143]. For instance, energy saving can be
expressed as

𝐸𝑆 =
𝐸𝐶 − 𝐸𝐶𝑠

𝐸𝐶
× 100% (27)

where 𝐸𝐶 is the energy consumption of the network when it is always
active and 𝐸𝐶𝑠 is the energy consumption of the network when sleep
mode strategy is applied.

3.3. Performance metrics

While the main objective of the base station sleep mode tech-
niques is to improve the overall energy efficiency of cellular networks,
there is a possibility to achieve the objective at the expense of other
performance metrics. Therefore, the avoidance of conflict with core
performance metrics is considered in devising, planning, and employing
energy improving strategies. The performance metric considered in
each sleep mode strategy depends on which approach is used to reduce
the power consumption. For instance, invocation of N-policy in Mobile
Users (MU) queue for network service as a power reduction strategy
will necessitate a consideration of the delay as one of the metrics to
qualify the QoS of the network.

Similarly, the coverage/outage probability will be a candidate met-
ric to indicate the effect of energy savings when randomly switching
off some base stations. Temporal disengaging some base stations into
sleep mode instantaneously reduces the network density, which may
necessitate the consideration of the network capacity and/or the spec-
tral efficiency. Other options include using the coefficient of variation
to capture the impact of the ping-pong effect of the base station mode
changes, and the impact on SINR from path loss between MUs and the
base stations due to switching. These performance metrics and where
they have been applied are summarized below.

(1) Signal to Interference Plus Noise Ratio (SINR): The trade-off be-
tween the energy efficiency and the SINR implies improvement
of the former and reduction of the latter. Low SINR hampers
the quality of reception by the MUs. Therefore, the sleep mode
strategies aimed at minimizing the energy consumption are sub-
ject to the SINR threshold. In determining the adequate QoS,
the received SINR of MU is computed with, among others, the
transmit power of the base station and the path loss between the
base station and the MU [142,144].

(2) Coverage/outage probability: The coverage or success probabil-
ity metric is related to SINR as it indicates the probability that
the SINR at the MU is equal or larger than a QoS threshold.
It can be utilized as the metric for sleep mode techniques,
which considers segment of the area of interest to receive SINR
greater than the QoS threshold. Outage probability, in con-
trast, is the probability that the area segment is below the QoS
threshold [101,146].

(3) Throughput/network capacity: The increase in the density of the
base station deployment to accommodate the rise in the number
of MUs should increase the network throughput, but at the cost
of increasing the power consumption [136,137]. The through-
put is usually computed using Shannon formula. Sleep mode
techniques are checked against the throughput for meeting QoS.
In [147], a throughput-power consumption model is proposed
as Achieved Capacity over Power Consumption Ratio (ACPCR)
measured in bits/(s*Watts), which is the ratio of maximum
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throughput to the power consumption. Higher ACPCR indicates
better system performance. The Network Capacity Utilization
Improvement (NCUI) is proposed to quantify the network in
Erlang capacity utilization [62]. It indicates the network per-
formance with SON activated base station sleep mode versus
conventional base station network, and it captures the traffic and
active MUs. It is expressed as:

𝑁𝐶𝑈𝐼 =
(
CUE of the proposed SON
CUE of a legacy network

− 1
)
× 100% (28)

where Capacity Utilization Efficiency (CUE) is the ratio between
the network total traffic and the total active time of all the
base stations. Network capacity with respect to cell size in sleep
mode is used in [64]. It is termed capacity density, measured in
𝑏𝑖𝑡𝑠∕𝑠𝑚2, which is the ratio of the average cell capacity to the
cell area. Simulations show that for base stations without sleep
mode, reducing the cell size only reduces the energy consump-
tion and thus increases the capacity density. With sleep mode,
reduction of the cell size decreases the energy consumption and
increases the capacity density.

(4) Spectral efficiency: Switching off some base stations as well as
variation of traffic load impacts the Network Spectral Efficiency
(NSE). In [145], the selection criteria of sleep mode base stations
are very crucial to NSE, as random base station selection for
sleeping lowers the NSE while strategic base station selection
yields higher NSE. Area Spectral Efficiency (ASE) is another per-
formance metric used in evaluating energy efficiency in cellular
network. It reflects the average data rates per unit bandwidth
per unit area covered by a base station or equivalently, the
number of active MUs per Hertz per unit area. In [104], it
was shown that increasing SBSs deployment density increases
both energy and ASE. Therefore, the base station sleep modes
strategies are planned to reduce the energy consumption while
taking the number of active users, reflected by ASE, into ac-
count. For instance, traffic load increase lowers the NSE while
the average ASE increase provides an indication of traffic load
variation [120].

(5) Coefficient of variation: The ping-pong effect can raise the en-
ergy consumption due to intermittent on-and-off switching of
base stations [148]. Therefore, the coefficient of variation is
used to capture the measure of base station modes variation to
evaluate the stability of the base station sleep mode strategy
and the impact on energy consumption. Lower coefficient of
variation of the base stations number in sleep mode implies more
stable modes and longer duration of the base stations in sleep
mode, hence, more energy savings.

(6) Delay time: In [128], the authors investigated the trade-off
between the delay and the energy consumption where they
demonstrated how the energy consumption can be traded for
delay in the base station sleep mode operation. The relationship
between the trade-off and the base station control policies refers
to multiple vacation policy and the 𝑁 policy gives better energy
efficiency than the single vacation policy.

4. Sleep mode enabling methods

A number of methods and strategies have been proposed to acti-
vate the base station sleep or idle modes to reduce the overall sys-
tem power consumption. These methods are: specific cells switching,
load adaptiveness, switching threshold, relay deployment, coordinated
multi-point, cell discontinuous transmission, self-organizing networks
based, delay tolerance, voting, network function virtualization, and
Advanced Sleep Modes (ASMs). Switching specific cells method is easy
to implement, but it does not guarantee an optimal choice of the
cells to be switched off. Load adaptiveness method takes the network
traffic profile into account and ensures that the least loaded cells are

put into idle mode, however, it is prone to creating coverage holes.
Switching threshold as one of the load dependent methods represents
low complexity, but it is not applicable where the traffic profile is
erratic.

Relays based methods have been deployed due to their low operat-
ing cost, but the proper network planning is required to ensure optimal
placement. Coordinated Multi-Point (CoMP) schemes are helpful for
minimizing coverage holes. Cell discontinuous transmission and self-
organizing networks provide high energy savings; however, high cost
is incurred in incorporating them in network planning. Applying some
delays method to achieve lower base station power consumption is
flexible and it does not require hardware cost. However, it is not
applicable where or when non-delay tolerant users are served. Voting
method ensures the best candidate base station is put to sleep, but if
not combined with other algorithms, it is not immune to challenges
like coverage holes. Network function virtualization provides relatively
better energy control with high potential savings, but its application
is still nascent. Fig. 3 summarizes and classifies these sleep mode
strategies.

4.1. Specific cell(s) switching

Through the neighboring base stations taking over radio support to
the MUs, only some specific base stations are powered off to conserve
energy. Sleep mode is restricted only to these base stations while the
rest always remain active. In [149], the authors proposed a specific cell
switching technique where only the central cell is switched off. This
technique is premised on cluster cells deployment with overlapping
coverage. It is relatively simple and targets only the spatially center
cell. It relies on the base station selection based on its spatial location
instead of the traffic weight, which limits its efficiency in saving energy.
As the most central cell does not necessarily imply the one with the
least traffic, this method may not be optimal.

4.2. Load adaptiveness

One of the ideas behind the conceptualization of sleep mode is
to disengage some base stations in a cluster when the traffic load is
reduced. In [150], temporal variation of the traffic load and its relation-
ship to the base station power consumption has been investigated by
considering the load fluctuation at different hours in a certain location.
In [100,150], the authors discussed the spatial variation of the traffic
load in Europe as a case study where switching based on thresholds
is applied. However, these two studies are dependable for energy
reduction schemes only when one is fixed and the other fluctuates
as regards to temporal and spatial traffic profile. In certain locations
such as campus, the variation could be either way intermittently. Load
aware adaptive schemes are devised to accommodate any form of
load variation, such as in [101] where small cells in heterogeneous
networks are put on sleep mode based on their load level. The base
station switching according to traffic load profile is challenged by the
coverage holes that may occur due to ineffective coverage support from
the cells. consequently, Cell Overlap minimization with intersection
covered (COMIC) load aware algorithm has been proposed to minimize
the energy consumption and eliminate coverage holes [151]. While
the simulation results show that the energy savings is improved with
maintained network coverage, the complexity of the algorithm is high.
Load balancing is also used to put the base stations to sleep mode and
decrease energy consumption [123].

4.3. Switching threshold

Switching off the base stations based on certain thresholds tech-
niques have been proposed by several studies including [109,152,153].
In [152], the authors proposed a network QoS based threshold tech-
nique for putting eNBs to sleep mode. A re-transmission tolerance
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Fig. 3. Categories of sleep mode strategies.

range determined by QoS, such as delay and throughput, is used to
select which nodes to put to sleep. This low complexity technique
considers the load level of each base station in the sleep activation
threshold. In [153], the authors proposed a sleep mode triggered by
dual thresholds where the triggering thresholds for switching are the
traffic load and the cell-edge QoS constraint.

Moreover, a switching threshold technique with three modes has
been proposed where the base stations could be put on active, low
power, or sleep mode according to the load threshold [109]. In low
power mode, the base station operates at low capacity, hence at lower
power than when active. While in sleep mode, neighboring base sta-
tions, each intermittently monitor their traffic usage, share this infor-
mation among themselves in order to decide on reactivation of the
base station to either low power or active modes corresponding to the
new threshold reached. The introduction of low power mode saves
more energy compared to the dual mode thresholds, which implies
that the reduced power mode that would have been in active mode
now contributes to the margin of the energy conservation. However,
the proposed technique relied on a simplified model that assumes a
co-location of MBS per SBS, and both cannot be active at the same
time. The assumption does not represent the current deployment of
heterogeneous networks.

4.4. Relay deployment

Leveraging on the base station energy consumption reduction using
relay deployment, the combination of relays and base station switching
has been proposed to improve the energy efficiency [154,155]. Sleep
mode with optimal placement of relays in a network is considered
in [156] where the Simulation results confirm that the power saving
with optimized method of relay location when combined with base
station switching off at low loads. In [157], a similar approach has been
proposed with more sophisticated schemes to minimize the coverage
and the power consumption, and optimally place relay stations for the
uncovered users. Multi-hop, cooperative, and energy harvesting relays
have been used with the base station sleep-mode [138,158]. Combining
these schemes provides better results in terms of energy efficiency.

4.5. Coordinated multi-point (CoMP) schemes

In [76,159], coordinated multi-point with cell zooming or sleep
mode has been proposed to improve the SINR. CoMP with sleep mode
produces more energy savings than with cell zooming. In addition, at
sleep mode, zooming out by active cells can improve performance at
minimizing coverage holes. The performance is achieved with the co-
operative characteristic of CoMP by allowing MUs situated in coverage
holes and cell edges communicate with multiple base stations. CoMP
with sleep mode gives 48% energy efficiency over Non-CoMP with all
active base stations [159]. A form of CoMP with sleep mode, called
Sleep Mode with Dynamical Clustering (SMDC), has been proposed to
maximize the energy efficiency [132]. SLeep-WAke (SLAKE) algorithm
has been proposed to put a base station to sleep mode with cooperation
among cells in a cluster [160]. However, the decision to go to sleep de-
pends on the acceptance of the base station, and the request to already
sleeping base stations to bear its traffic load depends on the current
traffic threshold. Multi-cell cooperation is required for acceptance of
transferred traffic load so that the requesting base station can go to
sleep.

4.6. Cell discontinuous transmission

Discontinuous Transmission (DTX) is the energy saving mode of a
base station in which some components of the cells are left to remain
active to ensure prompt response when needed. Some of the early work
on DTX highlighted the energy saving capability of employing DTX in
the network planning [161,162]. When included in the network plan-
ning, a 42% energy reduction is reported by [117] as compared to when
the base stations are put to idle mode. Employing DTX in the network
planning is unscalable and highly costly, which limits its efficiency.
For the aforementioned increase in [117], the cost surges by 110%.
In addition, this technique cannot be a retrofit as it comes with the
network planning stage in which there is no room for direct adaption
to existing networks. For the corresponding energy saving at MUs, the
discontinuous reception (DRX) potentials are noted in [163,164].

4.7. Self-organizing networks

The abstraction of self-organizing network has been introduced in
the 3GPP standard (3GPP TS 32.521). Since deployment of the SBSs
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is less planned compared to the MBSs deployment, self-organizing
network-based algorithm is being harnessed to provide distributed
control for the mobile networks. Its control algorithms can be used
to put some base stations to sleep mode for energy savings. In [165],
MUs access are categorized into registered and non-registered users.
Priority access to the network is allowed only by registered users, and
the base stations with no such users can be put to sleep mode. While in
sleep mode, only registered users can activate the sleeping base station.
In [166], SON utilization for energy savings by timed sleep mode has
been proposed to coordinate and invoke the sleep mode at a pre-defined
time interval while coverage demand is satisfied using the adjacent base
stations.

4.8. Delay tolerance

In [167], the trade-off between the energy consumption and the
delay in hyper-cellular networks has been explored as some resources
could be saved by compromising on certain QoS performance. To
formulate strategies hinging on delay tolerance, the base station is
modeled as an M/G/1 vacation queue in [167], where the base station
is put to sleep mode if there is no network access request from MUs
and remains in this mode until 𝑁 MUs queue builds up (N-Policy).
This technique shows some limits where increasing the number of
MUs results in mean power consumption decrease, and above the limit
monotonic decrease of power is not achieved. Thus, there are delay
bounds in which the base stations energy savings is increased.

In [168], the authors proposed two sleep mode strategies based
on the cooperation of the MUs in accommodating some delays called
Delay-Tolerant Users (DTU). Based on the assumption that DTUs are
identifiable by the network, the cellular network with the strategy
persistent DTU serves the Non-DTUs in its minimum-BSS on mode while
the DTUs are left on queue until their number builds up to certain
threshold where all the base stations are switched on. In Opportunistic
DTU strategy, a minimum and maximum traffic loads are set. Below
the minimum, all MUs are allowed to access at minimum-BSs on mode.
Between the two thresholds, all users are allowed to access despite the
possibility of insufficient network resource, hence delay-tolerance is
expected. At greater than the maximum threshold, all the base stations
are woken up. The energy saving increased when conducting a daily
traffic pattern analysis. These two strategies are flexible and scalable
as they do not involve the use or replacement of hardware and do not
require to be integrated in the network planning stage. They are limited
by the assumption of the DTUs availability versus Non-DTUs and their
identification, which could pose constraints in real practice.

4.9. Voting

In [129], voting scheme has been explored to enable sleep mode
of the base station. A cluster is assumed to be comprised of many
MBS, each to a cell and multiple SBSs within a cell. Sleep mode
mechanism is applied to the macro base station. When compared with
the neighboring macro base station, the MBS with the lowest traffic
load value is put to sleep. Each station votes for the base station with
the lower load metric value. The vote is updated as the load information
is shared among neighbors. To meet the network QoS requirement,
the number of current users is taken into consideration. Therefore, the
metric value, with which comparison is made, is determined as the ratio
of the number of the current associated MUs to the number of votes.
Though this technique includes the selection of active base stations at
each cycle of pre-voting, the wake-up mechanism before the selection
is not considered.

4.10. Network function virtualization

Despite the cellular network virtualization is still in its nascent
stage, its potential in base station energy consumption reduction by
sleep mode strategy has been investigated [148]. A virtualized network
function of cell management architecture, called Software-Defined En-
ergy Efficient Base STAtion (SieSTA), has been proposed to enable sleep
modes of the base stations. It aims minimizing the power consumption
while satisfying the coverage of all users. With a threshold of minimum
and maximum traffic load determined for the base stations, Siesta
matches the covered MUs for each base station with different statuses
such as the power increased mode, active mode, and sleep mode. It
improved the energy efficiency of the network and supported higher
number of base stations in sleep mode with longer sleep duration.

5. Advanced sleep modes

Advanced sleep mode techniques perform by shutting down the base
station progressively according to the activation and deactivation times
of its components. When there is no traffic or users to serve, the base
stations switch to the sleep mode or idle state. Advanced sleep modes
are based on the lean carrier radio access offered by the 5G networks
with configurable signaling periodicities. They enable the base station
to alternate between active and sleep modes periodically [169]. They
have been a promising solution for the 5G networks to enable energy
efficiency. Several levels of the advanced sleep mode are defined based
on the transition periods between the activation and the deactivation
modes. Each network operator imposes how to manage these levels
based on its policies and the traffic load in order to balance between
the energy consumption and the response delay. Based on the transition
time, advanced sleep modes can be classified into four levels, namely
SM1, SM2, SM3, and SM4 [170]. SM1 refers to the shortest mode
with short transition time while SM2 refers to the longest mode with
long transition time. SM3 requires shutting down all the base station
component at the sleeping window. SM4 corresponds to the deepest
level [171].

A number of approaches and tools have been proposed to enhance
the sleep mode management by the trade-off between the energy gain
and the latency. For instance, the authors proposed a management
strategy to enable advanced sleep modes when users requesting services
while the base station is in the sleeping mode. The proposed technique
performs by increasing the sleep mode duration of the base stations,
which needs to wake up periodically for signaling. It can reduce the
energy consumption up to 90% in low load traffic scenarios with
significant latency [172]. However, this strategy does not take in con-
sideration the delay sensitive scenarios such as 5G services with 1 ms
as acceptable latency. In [169], the authors proposed a management
strategy based on Q-learning for delay sensitive cases where very low
load traffic scenarios were considered. However, this strategy does not
analyze how the algorithm can perform at high load traffic scenarios.
In [170], the authors extended their previous works by proposing a
traffic aware management strategy based on the Q-learning algorithm
for latency and energy sensitive scenarios in 5G networks. The pro-
posed management strategy aims at finding the optimal combinations
between the traffic load, latency, and energy gain. Several traffic loads
levels (low, high, and moderate) are considered to find the optimal
strategy to enhance the energy saving while respecting the latency
constraint imposed by the operator.

In [173], the authors proposed a sleep window size selection algo-
rithm in order to find the optimal sleep period considering the delay
constraint. They analyzed the trade-off between the packet queuing
delay and the energy efficiency of the terminal. In [174], the authors
proposed a distributed reinforcement learning based algorithm for
base station management and control. The proposed algorithm allows
controlling the base station states according to the 5G requirement’s de-
fined by the periodicity of synchronization signaling bursts. It performs
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by analyzing different sleep mode levels to select the best level that by
balances the trade-off between the saved energy and the response delay.
Maximizing this trade-off allows saving up to 90% of energy in delay
tolerance scenarios. In [175], reinforcement learning based Q-learning
algorithm has been used also for energy efficiency to maximize the
energy saving-delay trade-off in multilevel sleep modes environment.
This location aware algorithm performs by controlling the base station
states according to the geographical location of its neighbors’ users and
their mobile velocity. Maximizing this trade-off allows saving up to
92% of energy with respect to delay constraint.

In the context of 5G networks, there is always a trade-off between
the saved energy and the response delay of the base station for waking
up, which requires balancing between these two metrics to enable en-
ergy efficiency with time constraints [176,177]. A number of sleeping
control strategies have been proposed enabling the advanced sleep
modes for selecting the optimal sleeping policies and strategies [178–
180]. Examples of these strategies are based on Markov decision pro-
cess, qu, stochastic traffic models, and analytical derivation. Markov
decision process-based strategy is based on the Markov decision process
for scalable management of the base station states. It aims at finding
the optimal advanced sleep mode policy that enables modeling the base
station states and orchestrates the sleep mode levels.

In [178], the authors proposed a scalable management technique
based on Markov decision process for base station optimal control.
However, this approach is complex because of the high dimension re-
quired of the state space. In [179], the authors simplified their previous
work by proposing a simplified model with less state space dimension.
The simplified algorithm performs by finding the optimal sleep level
based on the traffic load in order to maximize the trade-off between
the saved power and the latency. It allows saving up to 91% of energy
with delay tolerance. In [180], the authors proposed a data driven
base station algorithm, called DeepNap, based on deep Q-network for
dynamic sleeping control. DeepNap algorithm performs by learning
the optimal way to save energy from system belief vectors or high
dimensional raw of observations. It allows modeling the non-stationary
of the real-world traffic for energy saving in such scenarios. Most of
the sleeping control strategies enables designing optimal algorithms to
balancing between the energy saving and the response delay. However,
most of these algorithms cannot be applied in complex and the real
scenarios and they do not take in consideration the real time network
decisions.

6. Wake up schemes

A number of wake-up schemes have been proposed in the literature
to wake up the sleeping base stations at the end of the idle mode
to resume normal operations [181–183]. These schemes are: stand-
alone self-activation, activation by macro base station, queuing based
activation, and wake up by access reward. No technique is one-size-fits-
all. Stand-alone self-activation is a simple and low overhead wake-up
scheme, but it is prone to the energy inefficiency when more than nec-
essary number of base stations are self-wake. Activation by Macro base
station scheme provides the advantages of central coordination from
the SBS, which precludes the downside of the self-activation. However,
some form of its implementation may trigger all supported SBSs instead
of the required number for the traffic. Queuing based activation scheme
is not suitable for non-delay tolerant users, but it harnesses the Energy-
Delay Trade-off (EDT), which guarantees the required level of users
to be supported before switching the base stations. Wake-up by access
rewards allows longer sleep duration and prompts wake-up due to the
assigned rewards to the modes. It is prone to high complexity.

6.1. Stand-alone self activation

In [181], small cell self-activation scheme has been proposed for
heterogeneous networks where macro base stations are always put on.
The sleeping SBS has its uplink receiver turned on to intermittently
measure the interference plus noise (𝐼+𝑁). The detection of an increase
in (𝐼 +𝑁) when a connection request is made from MU to the MBS will
trigger the SBS to wake up and connect to the MU if it has higher (𝐼+𝑁)
than the macro base station.

6.2. Activation by macro base station

In [181], the macro base station is used to wake up the sleeping
SBSs. When the number of MUs requesting connection with the MBS
is greater than a pre-determined threshold, the MBS wakes up all the
SBSs in the coverage area. However, this strategy does not select which
SBS is woken up to assist and instead all are woken, which limits the
efficiency of this method in terms of energy saving. An indicator, called
Timing Advance (TA), is used to indicate how far the MU is from
its serving base station. Each MU’s uplink signal is transmitted with
time TA ahead of the sub frame boundary. The TA of each SBS is also
intermittently received. At the MUs connection request, the MBS is able
to determine the distance with the TA and wake up the corresponding
SBS closest to the MU. This method precludes unnecessary switching
on of all the SBSs in the coverage area.

6.3. Queuing based activation

For a case where sleep mode is formulated as a queue model, the
base station is put to sleep mode when the network is ‘empty’ and
waits for some time. While waiting, the base station is woken up
when a user arrives. The pattern of sleep is referred to a hysteresis
sleep. In [182], the authors proposed and implemented three wake up
schemes, namely single sleep, multiple sleep, and N-limited scheme, as
illustrated in Fig. 4. In Single Sleep (SS) scheme, the base station wakes
up from sleep mode after a certain pre-determined time. While it is
easy to implement, it is insensitive to QoS degradation that may arise
from ‘blind’ sleeping. In Multiple Sleep (MS) scheme, the sleeping base
station wakes up when it discovers a waiting user, as it listens to the
network status at a predefined time interval. When no waiting user is
detected while listening, it continues sleeping. This approach solves the
setback of the single sleep scheme, but it requires additional power for
periodical listening to the network status. In the N-limited scheme, the
base station wakes up when there are 𝑁 users waiting in the network.
While guaranteeing higher energy efficiency due to the energy-delay
trade-off (EDT), additional network elements are required to keep the
counts.

6.4. Wake-up by access reward

In [183], game theoretical approach has been applied where assess-
ing to network by MUs is rewarded. A reward assignment is used to
wake up an idle base station with higher reward assigned to the MUs
requesting access. Conversely, the base station in sleep mode is given
less revenue relative to the active ones. Thus, MUs requiring service
are encouraged to wake up the idle base station, which is equally
motivated.

7. Base station sleep-mode in ultra-dense mobile networks

Dense networks have been part of the current cellular network
deployment under the category of heterogeneous network. However,
they are only prevalent in fragmentary areas such as indoor and hotspot
where they provide complementary support to the mobile network. To
meet the ever-increasing demand traffic demand, which may amount
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Fig. 4. The transition diagram of base station operation phases with different wake-up
schemes [182]. 𝑃𝐼𝐷 , 𝑃𝑇𝑅, 𝜂, 𝑃𝑆𝐿, 𝑃𝑆𝑇 and 𝐷 denotes the idle power, transmission
power, load-dependent power efficiency, sleep power, setup power and close-down
time, respectively.

to a 1000-fold demand surge over the coming decade, the focus is re-
cently being geared towards ultra-dense base station deployment [184].
Ultra-dense networks refer to networks with more cells than active
users [21]. With ultra-dense deployment, the network is comprised of
large number of SBSs consuming high energy resources.

The evolution of different generation of cellular network technolo-
gies, with higher capacity delivery than its predecessor, is characterized
by higher spatial base station density. In 3G cellular networks, dense
deployment of MBS to support higher demand areas, such as urban
areas, has a density of 4–5 base stations∕𝑘𝑚2. LTE/LTE-A (4G) networks
comprise of, as complement to the MBS, SBS deployment for high-
capacity traffic need of specific areas (e.g. hotspot, heavy users’ office
complexes) leading to SBS density of 8—10 base stations∕𝑘𝑚2. In
the anticipated 5G networks where a base station will be equipped
with hundreds of antennas (also referred to as massive MIMO an-
tenna) for gigabit-level transmission and coupled with the option of
millimeter-wave communication technology with attendant short dis-
tance propagation due to degradation in the atmosphere, the 5G base
station density is expected to be 40–50 base stations ∕𝑘𝑚2 [185].
Therefore, the future base station deployment will be ultra-dense, better
still, 5G ultra-dense networks.

As the ultra-dense cellular network differs from the conventional
network, direct adaptation of sleep modes invocation and wake-up
strategies of base stations in conventional networks to ultra-dense
networks may be inefficient and inapt. Thus, this transition from a con-
vectional network to an ultra-dense network is facing several challenges
related to the network architecture, use of high frequency signals (such
as millimeter-wave frequency band), higher spatial base station density,
higher traffic load, and smaller cell size. There is a great need for
potential solutions in adapting the aforementioned base station sleep
mode and wake-up strategies to ultra-dense network.

7.0.1. Dichotomy of macro and small cells

MBSs have two distinct roles in the architecture of an ultra-dense
network. In the conventional cellular networks, the base station man-
ager coordinates the MBSs in the core network and all the backhaul
traffic is conveyed by the designated gateway to the core network. In
the heterogeneous networks, SBS manager manages the SBSs and the
traffic from backhaul forwarded to the core network. An overlap is
resulted between the MBS and the SBS and the Handover of the MUs is
also possible. Though the development of architectures of ultra-dense
networks is not completely closed yet, there is no overlap between MBS
and SBS in 5G ultra-dense networks [185]. MBS allows transmitting
management data while the SBS handles the user traffic. Therefore,
sleep mode strategies based on the cooperation between MBS and SBS
may not be feasible in ultra-dense networks. Since the architecture
design for ultra-dense network is continually evolving, a cooperative
layer of MBS and SBS to foster sleep mode activation and handover can
be designed in ongoing research in transitioning over the ultra-dense
network.

7.0.2. Smaller cell size

Spatial base station densification comes with a relatively smaller
cell size. To achieve provision of data rates in the order of 10 Gb/s
according to the Mobile and wireless communications Enablers for
Twenty-twenty Information Society (METIS) project objective by 2020,
ultra-dense networks are acknowledged to be promising in deliver-
ing high capacity and data rate to meet the growing connected de-
vices base [186]. With the transmission bandwidth required to meet
this demand, efforts are devoted in the direction of harnessing the
millimeter-wave band. However, the millimeter-wave communications
range would be about 100 m radius due to the degradation in the
atmosphere, which results in high density of spatial deployed SBSs and
smaller cell size [185]. With the coverage reduction, cell zooming range
of each SBS in ultra-dense should be anticipated. Sleep mode strategies
relying on certain extents of zooming range from MBS and/or SBS
to support the sleeping base stations may not be directly transferable
to ultra-dense networks. Using multiple relays is one of the potential
solutions adaptable from the conventional base station deployment.
Strategic deployment of relays can be utilized for coverage support
when a set of SBSs are put on sleep mode, as well as incorporated in the
wake-up algorithm. CoMP based sleep mode technique is potentially
adaptable as denser networks will not forestall cluster cooperation.

7.0.3. Traffic fluctuation

Network densification increases the spatial and temporal load fluc-
tuations. The probability that a base station is not supporting any
traffic or only low traffic is sometimes possible [187]. Therefore, it
is imperative to put some base stations to sleep at low or no traffic
loads. However, the high fluctuations of localized user traffic as well
as the nature and the margin of traffic load variation will be different
in ultra-dense networks [186]. For most sleep mode strategies, traffic
load threshold dependents on to trigger of the activation of idle mode
as well as wake-up mode. Temporal and spatial load variation in
ultra-dense networks may be unpredictable as there are more spatially
localized high data users. Some of these users can be moving leading
to inefficiency in applying load threshold used to put the base stations
to sleep in conventional networks. For traffic load threshold-based base
station methods in ultra-dense networks, there may not be one-fits-all
algorithms. Optimization algorithms with consideration of local traffic
peculiarity and fluidity will be required when applying saving energy
methods to ultra-dense networks [188].
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7.0.4. Complexity issues

Most of the algorithms proposed attempt to solve an optimization
problem aiming at maximizing certain quality of service while minimiz-
ing the power consumption at the base station. As efficient as they may
seem, the densification of the base stations will increase the complexity
if these algorithms were replicated in an ultra-dense network, if assum-
ing they are feasible. For instance, the polynomial time algorithm, Sleep
Mode with Dynamic Clustering (SMDC), represented in [132] can get
more compounded with higher complexity in an ultra-dense network.
The complexity gets higher with high number of cells and users [189].
Harnessing Cloud Radio Access Networks (CRAN) in multi-cell cooper-
ation algorithms have a potential of reducing the complexity, as CRAN
efficiently centralizes the computational resources [187].

8. Open issues and future works

This section represents some of the learnt lessons from exploring
the area of energy efficiency. It also discusses the open issues and
challenges facing the existing energy efficiency solutions and how to
address them through a number of future research direction.

8.1. Learnt lessons

A number of key lessons can be learnt from the investigation of the
energy efficiency solutions in ultra-dense networks, including:

1- 5G emerging technologies are expected to enhance the next
generation of wireless communication network through a number of
improvements in terms of energy efficiency, data rate, number of
connected devices, latency, and capacity. 5G networks combine several
advanced solutions to meet these expectations in such heterogeneous
ultra-dense networks by balancing the trade-off between the energy
efficiency and the network performance. Switching some base stations
from sleep mode to wake up mode based on the traffic load conditions
allows ensuring the network performance while saving energy, espe-
cially at off-peak traffic conditions. It allows serving UEs with coverage
areas ensured by the remaining active base stations. Thus, one of the
lessons learned from the energy efficiency solutions is the ability to
serve several UEs with full coverage over the network area by only few
active base stations with lower energy costs.

2- Although some energy efficiency solutions represent good results
with high performance, they can also impact the network in terms of
security, architecture, and cost. Thus, there is a need for adaptive and
flexible solutions that can fit the right scenario in an energy-aware
environment.

3- Multiple solutions can be combined to decrease the power con-
sumption while achieving network performance.

4- Moreover, power consumption can be negligible as the expense
of the gain resulted from the point of view of some deployment ar-
chitectures or versus other metrics. An example refers to reducing the
spectrum efficiency when enhancing the energy efficiency. Moreover,
energy efficiency can be ensured when operating with low frequencies
at the network backhaul.

5- Moreover, energy efficiency solutions allow measuring how
greener is the network, which enables green communications over the
5G networks.

6- We can conclude that there is no one solution that can fit all
5G scenarios. We can also conclude that there is no unique set to
achieve energy efficiency while meeting the other requirements for
the 5G networks. Therefore, in addition to designing new and efficient
customized solutions to ensure the next generation of wireless com-
munication expectations, getting the best from the existing solutions
already deployed in the network can be also considered while exploring
new technologies.

8.2. Challenges

Some energy efficiency solutions are complex to implement, sen-
sitive to interferences, and security concerns. Energy efficiency can
be considered as the priority target for some wireless communication
applications, and it is still facing several challenges to meet the 5G
networks expectations. For instance, latency and throughput are pri-
orities for video conferencing applications while energy efficiency is
crucial for smart metering application as low-cost devices with long
battery life. For massive MIMO based solution, pilot contamination
impacts the energy efficiency as adjacent cells reuse the same pilot.
The pilot resource contamination prevents saving energy in multi-cell
scenarios, which requires finding a solution to balance the utilization
of the time–frequency resource for uplink and downlink transmission.
As future work, designing efficient pilot mitigation strategies with less
complexity can be investigated to achieve high energy efficiency with
massive MIMO based solutions.

For the heterogeneous network deployment-based solutions, the
increase of the base station density is one of the challenges limiting the
energy efficiency of the SBSs, which impacts the energy saving over
the heterogeneous network. As a small cell network, heterogeneous
network uses the coordinated multi-point to enhance the spectrum
efficiency while reducing the inter site interferences. Thus, massive
traffic is generated to ensure data sharing and coordination among
small cells, which consumes more energy and bandwidth leading to
network congestion and handover issues. Moreover, sharing the het-
erogeneous resources and the network infrastructure leads to severe
vulnerabilities opening the door to security concerns. For SON based
solutions, deploying SON to allow self-optimization of the network
resources to save energy consumption. It can rapidly adapt to dynamic
network and update its parameters. However, it is still facing some
challenges related to its design, computational complexity, and cost.
Designing and deploying efficient SON algorithms requires network el-
ement to operate, which results in increase in energy consumption. The
implementation of most of the energy saving solutions is challenged by
the compatibility and reference signaling requirements.

8.3. Future directions

Towards green communication networks, device to device commu-
nication can also be considered as one of the research opportunities to
enhance the energy efficiency [190]. It allows measuring the devices
capabilities to communicate while conserving energy by offloading the
data traffic coming from the base stations [191]. With the green expec-
tation of the 5G networks and beyond, energy harvesting is deserving
more investigation to explore its capabilities at achieving high energy
efficiency under the future scenarios of the wireless networks [192].
Towards energy transfer over the network, efficient energy harvest-
ing techniques are required to recycle the energy by extracting and
transferring renewable energies, thus, the energy can be harvested
forever. Designing new hardware devices compatible with the energy
requirement by the future wireless networks where devices can have
extended battery life from alternative energy sources from the wireless
communication. Elaborating research in cooperative small cell groups
may help solving some of the issues facing the heterogeneous networks
with small cell base stations for energy saving purposes. Examples of
these issues include handover in small cell networks. Thus, designing
and deploying energy efficient transmission strategies is required to
ensure low energy consumption in the 5G networks.

Moreover, developing new network protocols to minimize the en-
ergy consumption is also an open research area to enhance the sleep
mode solutions. For instance decreasing the network traffic volume
allows increasing the sleep mode periods based on new protocols able
to eliminate the control packets. Multiple solutions can be combined
to decrease the power consumption while achieving network perfor-
mance. Combining all the energy efficient solutions in one holistic
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solution can be also considered as an open research direction to be
investigated. More research in this direction is required to investigate
how a holistic solution can achieve high benefits to the network.

Artificial intelligence is one of the nominated solutions to solve the
energy efficiency challenges by developing new and advanced learning
models able to predict how much energy resources are required to
operate a given task or service. It allows the devices to learn from past
experiments and respond intelligently and deal with the randomness in
the network. More research in this direction is required to investigate
how artificial intelligence-based approaches can be applied for energy
efficiency purposes. These approaches include deep learning, and re-
inforcement learning. Moreover, the artificial intelligence can be used
to design and optimize the future architecture by considering varying
traffic pattern for cost-efficient network. Dynamic energy resource
allocation is also an interesting topic for researchers when applying
artificial intelligence for prediction purposes at the edge devices. Edge
artificial intelligence can be accomplished through federated learning
models.

9. Conclusion

In this paper, we presented and categorized the different techniques
for enabling sleep mode of the base stations in the 5G heterogeneous
cellular networks with the ultimate goal of reducing the power con-
sumption. We discussed the cost consequence of the increase of power
consumption at cell sites as well as the effect on global carbon footprint.
We reviewed the power consumption models, energy saving measure-
ments, and performance evaluation metrics. We discussed and classified
the different sleep mode techniques into different classes according to
the nature of hardware, algorithms, or applications peculiar to each
grouping of a varied number of techniques. The admission of the
fact that the activation of a mode is as important as the deactivation
from that mode informed the survey of wake-up schemes in putting a
sleeping base station into active mode whenever its service is required.
We also discussed the different wake-up schemes for energy efficiency
purposes.

The ever-increasing demand for high data rates and densification
of base stations necessitate the need to prepare towards the soonest
ubiquity of ultra-dense networks. Thus, we discussed the possibilities
of adapting the presented sleep mode enabling methods to ultra-dense
networks. Energy saving is one of the primordial objectives of the future
mobile networks, which still require more research efforts to design
and develop effective solutions for energy saving while serving the
increasing demand in energy utilization. As future directions, artificial
intelligence is the future of the next generation of mobile networks, and
it can be also an effective solution for energy saving. When the artificial
intelligence meets the 6G networks, advanced and efficient solutions
will be provided for energy efficiency.
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