Generated using the official AMS IXTEX template v5.0

. Data assimilation challenges posed by nonlinear operators: A comparative

. study of ensemble and variational filters and smoothers

s Kenta Kurosawa *

. Department of Atmospheric and Oceanic Science, University of Maryland, College Park,
5 Maryland

6 Jonathan Poterjoy

7 Department of Atmospheric and Oceanic Science, University of Maryland, College Park,
e Maryland

o NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

w “Corresponding author: Kenta Kurosawa, kkurosaw @umd.edu



"

20

21

22

23

24

25

26

27

28

29

ABSTRACT

The ensemble Kalman Filter (EnKF) and the 4D variational method (4DVar) are the most
commonly used filters and smoothers in atmospheric science. These methods typically approximate
prior densities using a Gaussian and solve a linear system of equations for the posterior mean and
covariance. Therefore, strongly nonlinear model dynamics and measurement operators can lead to
bias in posterior estimates. To improve the performance in nonlinear regimes, minimization of the
4DVar cost function typically follows multiple sets of iterations, known as an “outer loop”, which
helps reduce bias caused by linear assumptions. Alternatively, "iterative ensemble methods" follow
a similar strategy of periodically re-linearizing model and measurement operators. These methods
come with different, possibly more appropriate, assumptions for drawing samples from the posterior
density, but have seen little attention in numerical weather prediction (NWP) communities. Lastly,
particle filters (PFs) present a purely Bayesian filtering approach for state estimation, which avoids
many of the assumptions made by the above methods. Several strategies for applying localized
PFs for NWP have been proposed very recently. The current study investigates intrinsic limitations
of current data assimilation methodology for applications that require nonlinear measurement
operators. In doing so, it targets a specific problem that is relevant to the assimilation of remotely-
sensed measurements, such as radar reflectivity and all-sky radiances, which pose challenges for
Gaussian-based data assimilation systems. This comparison includes multiple data assimilation
approaches designed recently for nonlinear/non-Gaussian applications, as well as those currently

used for NWP.
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1. Introduction

The ensemble Kalman Filter (EnKF; Evensen 1994; Houtekamer and Mitchell 1998; Evensen
and van Leeuwen 2000) and the 4D variational method (4DVar; Thepéut and Courtier 1991) are
the most commonly used filters and smoothers in atmospheric science. Ensemble/variational
hybrid approaches (e.g., Hamill and Snyder 2000; Lorenc 2003; Buehner 2005) combine the flow-
dependent ensemble covariance from an EnKF with climate-based covariance from variational
methods. The methods have also become well-established and widely accepted for global weather
prediction at major environmental prediction centers, such as the European Centre for Medium-
Range Weather Forecasts (ECMWF) , UK Met Office, Environment and Climate Change Canada
(ECCC), and National Centers for Environmental Prediction (NCEP). One strategy of the hybrid
methods, denoted as ensemble-4DVar (E4DVar; Zhang et al. 2009) in this manuscript, typically uses
tangent linear and adjoint model operators to minimize a cost function in the same manner as the
traditional 4DVar data assimilation system. A second strategy is 4D-ensemble-Var (4DEnVar; Liu
et al. 2008), in which the cost function minimization is computed based on an ensemble forecast
instead of using tangent linear and adjoint models. In the 4DEnVar, temporal covariances are
estimated from an ensemble of model trajectories that pass through the observation time window. In
either case, both methods approximate prior densities using a Gaussian and perform linearizations to
relax these assumptions. Therefore, strongly nonlinear model dynamics or measurement operators
cause these methods to be biased, which leads to the suboptimal use of major Earth observing
systems, such as satellite radiometers. For example, the combined impact of highly nonlinear model
dynamics and measurement operators introduces major data assimilation challenges in weather
regimes containing clouds or precipitation. As a result, most infrared satellite assimilation studies

mainly focus on clear-sky observations (e.g., Errico et al. 2007; Fabry and Sun 2010; Geer and Bauer
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2011; Zou et al. 2013; Okamoto et al. 2014; Minamide and Zhang 2017; Honda and Coauthors
2018). This follows despite the known benefits of assimilating cloudy radiances for weather
forecasting (e.g., Vukicevic et al. 2004; Stengel et al. 2009; Privé et al. 2013). Some operational
centers are making efforts to cope with these issues and assimilate cloudy and precipitating
microwave radiances (e.g., Zhu et al. 2016; Geer et al. 2017, 2019). For further details on significant
advances and current plans of operational centers that are close to implementing assimilation, we
encourage readers to review the summary presented in Geer et al. (2018).

Several procedures have been proposed to improve the performance of these methods in nonlin-
ear regimes. For example, in order to deal with issues within the 4DVar system (e.g., Bonavita
et al. 2018), minimization of the 4DVar cost function typically follows multiple sets of iterations
to re-linearize tangent linear and adjoints for the model, measurement operators, or both around an
improved background solution. This step, known as an "outer loop," helps reduce bias caused by
linear assumptions, thus making Gaussian error approximations more appropriate. The minimiza-
tion strategy follows the Gauss—Newton method, which is guaranteed to approximate the posterior
mode for local minima.

Alternatively, a number of methods fall under the generic category of "iterative ensemble meth-
ods", which follow a similar strategy of periodic re-linearization. Note that here “iterations”
refers to multiple adjustments at a single time. Both 4DVar and the iterative ensemble methods
re-linearize the observation operator. The only difference is that in 4DVar, the observation op-
erator contains the nonlinear model. Gu and Oliver (2007) introduced the ensemble randomized
maximal likelihood filter (EnRML) to handle nonlinearity by means of iterations of the EnKF.
Sakov et al. (2012) proposed the iterative ensemble Kalman filter (IEnKF), which uses a deter-
ministic update form, ensemble square root filter, while EnRML uses a stochastic update form,

perturbed observations method. Following the introduction of ensemble Kalman smoother (EnKS;
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van Leeuwen and Evensen 1996; Evensen and van Leeuwen 2000) for use in history matching by
Kjervheim et al. (2011), the iterative forms of smoothers have developed into useful tools by the
reservoir-engineering community for history matching reservoir models. Chen and Oliver (2012)
proposed an iterative form of EnRML targeted for oil-reservoir modeling, and Bocquet and Sakov
(2014) developed the iterative ensemble Kalman smoother (IEnKS), which extends IEnKF using a
fixed-lag smoother with an ensemble variational method.

Emerick and Reynolds (2012) introduced the multiple data assimilation scheme (MDA) to
improve EnKF estimates for nonlinear cases by assimilating the same data multiple times with the
covariance matrix of the measurement errors multiplied by the number of data assimilation. We
note that the name “MDA” is somewhat deceiving, as it is simply an application of tempering (Neal
1996). The process of the EnKF with MDA (EnKF-MDA) is based on the idea that a “large jump”
between the forecast and analysis states could be reduced by assimilating the same data multiple
times with increased measurement errors. MDA yields the same updated mean and covariance as
would be obtained from assimilating the same data with the original measurement error covariance
and no iterations when errors are Gaussian, and all operators are linear (Emerick and Reynolds
2012). For the nonlinear case, EnKF-MDA partly resolves issues with nonlinearity and leads to
smaller bias than a conventional EnKF. Emerick and Reynolds (2013) developed the EnKS with
MDA (EnKS-MDA) for reservoir simulations, and Bocquet and Sakov (2014) showed IEnKS with
MDA significantly outperforms standard EnKF and EnKS in strongly nonlinear regimes with a
simplified model. However, these methods have seen little attention in numerical weather prediction
(NWP) communities. While the convergence properties of these methods are unknown, numerical
experiments performed by Evensen (2018) suggest they can provide accurate solutions for mildly

nonlinear problems.
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Lastly, particle filters (PFs) present a purely Bayesian filtering approach for state estimation,
which avoids many of the linear/Gaussian assumptions of the above methods. PFs provide a
much more general, non-parametric estimate of the model probability density function (PDF),
which is advantageous for non-Gaussian problems as long as a sufficient number of ensemble
members exist. Nevertheless, these methods can easily diverge when a relatively small number
of particles (ensemble members) are adopted for data assimilation; see Bengtsson et al. (2008),
Bickel et al. (2008), and Snyder et al. (2008) for discussions on ensemble size requirements for PFs.
Several strategies are proposed to overcome this filter collapse and apply PFs to data assimilation
problems for operational NWP models very recently. One common effort to avoid filter divergence
is to use localization, which restricts the influence of observations to nearby state variables.
For example, Poterjoy (2016) introduced the localized PF, which assimilates observations with
independent errors sequentially to combine sampled particles from a standard bootstrap PF with
prior particles in a manner that satisfies a set of local constraints. Following this work, Poterjoy
and Anderson (2016) and Poterjoy et al. (2017, 2019) demonstrate that the local PF works well for
high-dimensional systems. For these studies, the authors compare the local PF with EnKFs for a
simplified general circulation model and both idealized and real mesoscale convective systems in
the Weather Research and Forecasting (WRF) model, respectively. Even more recently, Potthast
et al. (2019) applied an alternative localized PF for global weather prediction using the Icosahedral
Nonhydrostic Weather and Climate (ICON) model, which marks the first successful test of a PF in
an operational framework. These studies provide an incentive to further explore the potential of
localized PFs for weather prediction, especially considering the theoretical benefits they pose for
assimilating remotely sensed measurements, such as satellite radiance and radar reflectivity, which

require nonlinear measurement operators.
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In addition to the methods described above, there are some notable developments related to
treatment of nonlinearity and non-Gaussianity. For example, Bishop (2016) introduces the GIGG-
EnKF algorithm, which retains the accuracy of the EnKF in the Gaussian case while lending it
a high degree of accuracy when the forecast and observation uncertainty are gamma or inverse-
gamma distributions. When conditions are not suitable for EnKF, such as the distribution of the
prior and observation are not Gaussian distribution, and the observation operator is non-linear,
Amezcua and Leeuwen (2014) apply a pre-processing step known as Gaussian anamorphosis to
obtain state variables and observations that better fulfill the Gaussianity conditions. Fletcher (2010)
and Fletcher and Jones (2014) present variants of variational solvers for issues with lognormal and
mixed lognormal Gaussian distributed background and observation errors. While many methods
have been proposed to deal with such difficult conditions, this study mainly focuses on the tempered
iteration approach, which is relatively easy to implement in current NWP systems and can deal
with these problems well.

In this study, we discuss EnKF-MDA, EnKS-MDA, E4DVar, 4DEnVar, and the local PF data as-
similation methods and their use in applications that require nonlinear measurement operators. We
also examine the sensitivity of each method to user-specified parameters, which include ensemble
size, covariance localization radius of influence (ROI), inflation coefficients, data assimilation win-
dow length (DAW), and the number of iterations and outer loops. The comparisons are conducted
with the 40-variable dynamical system introduced in Lorenz (1996, hereafter L96), using numerical
experiments performed with conventional EnKF and EnKS techniques as benchmarks. This study
provides a necessary first step in understanding the complexity of assimilating remotely-sensed
measurements in weather models, which will require appropriate choices for data assimilation

methodology going forward.
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Three main goals of these experiments are as follows: 1) investigate intrinsic limitations of current
data assimilation methodology for applications that require nonlinear measurement operators;
2) compare recently developed methods designed for nonlinear/non-Gaussian applications with
those currently used for operational NWP; 3) inform ongoing efforts to design future geophysical
modeling systems (e.g., NWP with Hurricane Analysis and Forecast System; HAFS), which will
inevitably need to exploit remotely-sensed measurements.

The manuscript is organized in the following manner. In Section 2, we present algorithmic
descriptions of each data assimilation method. Section 3, describes settings for data assimilation
experiments and results from the cycling experiments. The last section summarizes the main
findings of this study and discusses the potential of the methods for real numerical weather

prediction.

2. Data Assimilation Methods

In this section, we present the mathematical framework for each method, along with the dynamical
system adopted for performing numerical experiments. We use lowercase boldface font to indicate
vectors, uppercase boldface font to indicate matrices, and italic font to indicate scalars and nonlinear
operators.

In this study, let x/ be an N,-dimensional background model forecast; let y be an Ny-dimensional
set of observations; let H be the tangent linear operator that converts the model state to the
observation space; let R be the Ny, X N, dimensional observation error covariance matrix; and let
P be the N, X N, dimensional error covariance matrix. Superscript f and a denote forecast and

analysis, respectively.
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a. EnKF

The EnKEF is an approximate but efficient application of the Kalman Filter (Kalman 1960) and
explicitly includes the time evolution of error statistics, which operates effectively for moderately
nonlinear dynamical systems. In EnKF, P is represented by ensemble members statistically. There
is no need to consider the tangent linear model operator used in KF, so EnKF has many advantages
for nonlinear dynamics. The analyzed state x“ is given by the following Kalman filter equations

(e.g., Jazwinski 1970; Gelb et al. 1974)

x? =x/ + K(y - Hx/) (1)
K =P/'H'(HP’H" +R)! 2)
P = (I-KH)P/(I-KH)" + KRK' = (I- KH)P’. (3)

For the ensemble formulation, the covariance matrix P can be defined as

P=EE', 4)

E= sxtM [ -] 5X(Ne)]’ (5)

;[
VN.-1

where 6x1) is considered as a perturbation around x(), which is the I'* member from an ensemble
of N, model states.

The Kalman filtering algorithm requires the computation of P in (3). This process is equivalent to
producing an appropriate analysis ensemble or “ensemble update,” which has a sample covariance
of P“. For this study, all algorithms requiring an EnKF to update ensemble members use the serial
ensemble square-root filter (serial EnSRF; Whitaker and Hamill 2002). In general, this method
provides a deterministic update of the ensemble mean and perturbations about the ensemble mean

separately in a manner that satisfies the analysis mean and error covariance given by Kalman filter
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theory. The serial EnSRF assumes an ensemble update of the form
E‘=(I1-KHE'. (6)

Andrews (1968) provides one solution, which involves Kalman gain matrix for perturbations of the
form

K =P H'[HP/H + R)"?|T[(HP'H" +R)'/2 + R'/?]. (7)

If observations are uncorrelated (R is diagonal), each observation is treated serially, which makes
the terms HP/HT and R scalar. In this case, (3) can be simplified by assuming K = oK where «

is a scalar value. The a was first derived by Potter (1964) as

1+ R
o= A\
HP/HT +R

Thus, the serial version requires only the computation of a scalar factor to weight the traditional

-1

®)

Kalman gain, and therefore is no more computationally expensive than the EnKF. In this study,
observations are assumed to be independent of each other, which makes only the computation
of (8) necessary. When assimilating a single observation through this formulation, K and H are
vectors with N, dimensions, and R is scalar. Therefore, for an individual observation, the terms
P/HT and HP/H" reduce to scalars and can be computed even if the measurement operator is fully
nonlinear, which is done by applying this operator on each ensemble member before calculating

sample statistics.

b. EnKS

The EnKS operates by storing ensemble members at past times and then modifying them by a gain
matrix that considers observations at the current time. Whitaker and Compo (2002) introduced
a serial ensemble square-root smoother (serial EnSRS), which uses Monte-Carlo estimates of

forecast-analysis error cross-covariances needed to compute the Kalman smoother gain matrix.

10
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While they applied the serial EnSRS to the fixed-lag Kalman smoother proposed by Cohn et al.
(1994), in this study, we apply it as a fixed-interval Kalman smoother.

Here, define a subscript notation m|n to indicate a quantity at observation time m, which
incorporates knowledge of all observations up to and including time n. In this notation, (1) can be

expressed as

—a _=f
Xp =X

S
Kk +K(y—ka|k_1). 9)

f

(mn) to denote a cross-covariance matrix between

In the serial square-root smoother, we use P

variables at times m and n. The gain matrix K involves the forecast error cross-covariance matrix

S S S
P(k,k—l) between X ko1 and X ket
K=P/,  H(HP'H +R)", (10)
where
f_wf ST
P =K B (1)
S _wf ST
Py = B B (12)

In the formulation of Cohn et al. (1994), this quantity is computed directly using the dynamical
model because they developed the fixed-lag smoother without ensembles. On the other hand, the
fixed-lag smoother with ensembles uses the dynamical model only when creating the background
model forecast (Whitaker and Compo 2002). This idea can be directly implemented to the fixed-
interval smoother. Note that the basic equations for the lag-0 implementation are identical to those

of the serial EnSRF.

c. Multiple data assimilation (MDA )

Emerick and Reynolds (2012) introduced the MDA scheme, which assimilates the same data

multiple times using an inflated covariance matrix of the measurement errors. They proved the

11
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equivalence between single and multiple data assimilations for the linear-Gaussian case. Although
MDA contains approximations for the fully nonlinear case and the equivalence does not hold for
the nonlinear case, MDA benefits from the inclusion of smaller incremental ensemble corrections.

When the same set of observations are assimilated N, times, the inflated measurement error

covariance matrix is used in (2),
K=P'H' HP’H" + ,R)", (13)

where
Ng

Zé:l. (14)

i=1 ¢

Note that in this paper, we use a; = N, fori = 1,...,N, for all experiments with MDA. Rommelse
(2009) and Emerick and Reynolds (2012) suggest that when the assimilation of accurate data
in non-Gaussian regimes requires a “large jump” between the forecast and analysis state, the
magnitude of the jump can be overestimated by linear updates. This limitation of Gaussian data
assimilation techniques is observed frequently for the assimilation of all-sky radiance measurements
in weather models, which is one of the reasons to motivate the use of observation error inflation
(e.g., Minamide and Zhang 2017) and other ingeneous approaches as descibed in Section 1. By
using an inflated error covariance, a potentially large spurious update in the state vector is avoided.
Going a step further, iterative techniques like MDA replace single updates with a series of smaller
updates, which can correct filter or smoother updates that are too large.

In summary, the ensemble formulation of a fixed-interval serial EnSRS, with and without MDA,
are realized by the following procedures. For DAW length / = 0, the serial EnSRS reduces to
the serial EnSRF, and for N, = 1, each iterative data assimilation cycle with MDA reduces to a

single-step data assimilation scheme, such as standard EnKF and EnKS.

12
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Algorithm 1: EnKS with MDA cycle

1 Function EnKS-MDA_cycle:

2

10

11

12

13

14

15

16

17

18

for ¢t = 1:time do

if 7 is at the end of DAW then
to—t—1

for i = 1:iteration N, do

for k = 0:DAW length [ do

a
Xlo|lo+k
f

a
X — X
t()|I()+k t()|l()+k

f a

X X
| “olo—1 folto+l

for m = 1:N, do
flm)

t+1])¢

a(m)

Mx
folt

X

else

for i = 1:iteration N, do

f

y a
Xz|t—1 - Xllt
for m =1:N, do

t+1])¢ t)t

L L g

return

« Serial_EnSRS(x’ x/

tolto+k—1° Xtg+klg+k—1° Yio+ks

i f f
Xf“ — Serlal_EnSRS(Xm_l, Xy, _p» Yes a;R)

a;R)

13
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Algorithm 2: Serial EnSRS

. . f f .
1 Function Serial_EnSRS (Xt—klt—l’ X Yo R):

2 for j =1:N, do
f _ 1 f(l) f(Ne)
3 D \/m[ k=1 | 10X ]
f _ f(1) f(Ne)
4 Et|z 1 \/_[5Xz|t 1| | ox t|t 1]
_wf ST
S Pf Et|t lEt|z 1
f _wf ST
6 P(t —k,t) Et k|t— lEt|t 1
. K = Pé . )H(j)T[H(j)pr(i)T+R(j)]—l
< _of j Nt
8 X?—k|t =X k-1 +K(y(]) _H(J)Xt|t—1)
=(1+ RY) )—1
9 a=( HOP HUT+RD)
10 K=aK
_w f
1 E? klt — Ez k|t—1 KH(])Ezlt 1
12 X?—k|t = i?—kh +E?—k|t
f
13 B Xt—k|t 1 <_Xt k|t
14 i return xt Klr

d. E4DVar and 4DEnVar

In this section, the equations of 4DVar, E4DVar, 4DEnVar are introduced briefly. For further
details on these methods, we encourage readers to review the mathematical descriptions in Liu et al.

(2009), Poterjoy and Zhang (2015), and Bannister (2017). The 4DVar method seeks a solution that

f

minimizes the misfit of a control variable to the background state x; at # = 0 and observations y;

f

at times = 0,1,2,...,7. The minimization is carried out with respect to increments dxo from X

(Courtier et al. 1994). The cost function is expressed as the sum of background (J;) and observation

14
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(J,) terms:

J(6x0) = Jp(6X0) + Jo(6X0)

1 _ I © _
- Eang L5xo + 3 Z(HIM,éxo —d) R (H,M;6x0 —d,), (15)
t=0

where B is the background error covariance and M; is the tangent linear model operator. The

vector d; contains the innovations at each time along a model trajectory from Xg and is given by
d; = yi— Hi[Mi(x))], (16)

where M, and H, are the nonlinear forecast model and observation operators, respectively. In
practice, 0Xg is replaced with Uv, where v is the new control variable, and U is a square root of the
background error covariance matrix (B = UUT) (Lorenc 2003). The cost function in the control

variable space and the gradient of the cost function with respect to the control variables become:

1 1 v
J(v) = EvTv +3 Z(H,Mth —d)"R;{(H;M,Uv-d,) (17)
t=0
T
VyJ =v+ ) UM/H/R; (H,M,Uv-d,) (18)
t=0

For E4DVar and 4DEnVar, using a similar substitution described above, dxg is separated into
two terms to include a hybrid covariance in the variational cost function. For NWP applications,
the ensemble contribution of the hybrid covariance is often much greater than the static covariance
(Kleist and Ide 2015), however, such a choice is directly dependent upon the quality of ensemble,
ensemble size, and model error. For the L96 model, Poterjoy and Zhang (2015) found the static
error covariance to have a major impact only when an imperfect model is used for data assimilation,
which is not explored in the current study. Therefore, we omit the use of a static error covariance

to reduce the number of parameters to examine for this study. As a result, we have
6xo = ox( = U°V*, (19)

15
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where 6x is the increment resulting from the ensemble-estimated covariance. As described in
Buehner (2005), U¢ can then be written
U¢ = [e(l) |- e(Ne)] (20)

PoC = UUT, (21

1
e = /m xdiagx! ™ -x)C3,  (n=1,2,...,N,), (22)

where o indicates element wise multiplication, and C is the correlation matrix used for localizing
the ensemble covariance. From these equations, the cost function and the gradient of E4DVar are
found by substituting U¢ for U and v* for v in (17) and (18). Using an ensemble forecast stored at

each observation time in DAW, M,U¢ can be rewritten as

MU = [Mie!V | - | Me™)]

S CRART A (23)

A(n 1 . (n) = 1
eg ) = w/mxdlag(xfc" —x{)C2
1 1
=\ X diag(Mi(x) ")~ Mi(x))C? (24)
e

By substituting (23) into (17) and (18), the 4DEnVar cost function and the gradient can be expressed

without the tangent and adjoint model.

Note that while E4DVar uses tangent linear and adjoint models to propagate a localized error
covariance through the DAW, 4DEnVar requires the localization of time covariances. Most previous
studies use the same correlation matrix at each time thus ignoring the complexity of introducing
a localization of time-dependent covariance (LTC) (Liu et al. 2009; Buehner et al. 2010; Liu and
Xiao 2013; Fairbairn et al. 2014; Poterjoy and Zhang 2015).

The method also allows for the use of either the nonlinear operator H; or the tangent linear

operator H; in its place. This study explores both approaches in 4DEnVar experiments to identify

16
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which option presents the largest advantage for nonlinear operators. To perform the localization,
we calculate the tangent linear operator H, at each time and use it to propagate a localized error
covariance through the DAW. Moreover, this study re-runs the ensemble in outer loops for 4DEnVar,
despite the fact that it is prohibitively costly for weather applications. This step is done to allow
for a more direct comparison with incremental E4DVar with outer loops.

To form a hybrid analysis, the variational solution is typically taken as the posterior mean and
posterior perturbations from an EnKF are recentered about this solution at the middle of the time
window (Zhang et al. 2009; Poterjoy et al. 2014). This approach is more consistent with the
methodology adopted at major NWP modeling centers (Bannister 2017). For the current study, we
instead add posterior perturbations to the mean analysis at the end of each DAW. This option has a
number of advantages, namely, the EnKF assimilates measurements at the appropriate times over
an assimilation window, thus providing an EnKF posterior mean that is theoretically equivalent to
the 4DVar posterior mean in the absence of sampling error and nonlinearity. It also permits a more
direct comparison of smoothers and filters explored in this study.

In summary, the ensemble formulation of E4DVar and 4DEnVar are realized by the following

procedures.

17



Algorithm 3: Ensemble/variational hybrid data assimilation without static error covariance

1 Function ensemble_variational_hybrid(Ue,xf , Y%, R):

2 if 4DEnVar w/o LTC then
3 L H;, — H;
4 while Outer Loop do
5 d=y,-H, [Mt(xg)]
6 while Inner Loop do
7 switch Hybrid do
8 case E4DVar
O D, — M,U*
10 case 4DEnVar w/ LTC .or. 4DEnVar w/o LTC
1 D; « [éﬁ” |- éﬁN“)]
12 J(v¢) = %VETVE + % iO(H,D,Ve -d)"R;1(H,D,v¢ - d,)
=
13 Veed =0+ iOD,THtTR;l(HtD,ve —d)
=
14 v¢ = argmin(J(v¢))
15 Xg — Xé- + U°v¢
16 X, — X(’;
17 return x;

7 e. The local PF

= The current study uses the local PF proposed by Poterjoy et al. (2019). For simplicity, this
= section highlights important aspects of the local PF that are relevant to the comparisons performed

w0 1in this study. Our experiments take advantage of additional regularization, tempering, and hybrid

18
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strategies that are unique to the local PF, which are briefly discussed in this section. For full details
on this methodology, we refer readers to Poterjoy (2021).

The local PF assimilates observations serially, performing a bootstrap PF update for particles
projected onto the current observation in the sequence, followed by a model-space update. For a
given observation y, the model-space update replaces the standard bootstrap re-sampling step with

one that merges sampled particles and prior particles:

X, = Xy+rio(x" —X))+ry0(x" -X,), (25)

n

y is an updated particle, x" is the n'" prior particle, x* is the n'" sampled particle, Xy is

where x
the localized posterior mean based on importance weights that consider all observations up to y,
and r; and r, are derived to satisfy the posterior mean and variance of marginals. The sampled
particles are selected from a bootstrap re-sampling of past updated particles using a cumulative
distribution formed by weights calculated from particle likelihoods for y. In general, the posterior
particles formed from linear combinations of the sampled and prior particles are localized, because
r1 and rj are calculated based on localized moments.

Poterjoy et al. (2019) provide several improvements to the Poterjoy (2016) local PF, which are
aimed at preventing particle weight collapse. In addition, Poterjoy (2021) introduces regularization
and tempering methodology to further improve filter performance when sampling error is large. In
short, regularization raises particle weights to a power S, which is pre-determined to yield marginal
particle weights that have a specified "effective sample size," similar to the methodology described
in Poterjoy et al. (2019). Regularization acts as a heuristic means of preventing weight collapse,
similar to observation error inflation. It provides a strategy for assimilating observations through

tempered iterations (Neal 1996), each with a unique set of S coeflicients. Unlike regularization,

tempering does not introduce bias in the posterior estimate.

19



323

324

325

327

328

329

330

331

334

338

339

342

The method also benefits from the use of a mixing parameter, y, to increase particle diversity in
the vicinity of observations. As described in Poterjoy (2021), ry in (25) is multiplied by y, which
introduces a smooth “jittering” of particles. The coefficients in rp are then modified so that the

first two posterior moments are still maintained.

3. Cycling data assimilation experiments

We perform separate sets of data assimilation experiments to investigate limitations for nonlinear
applications and examine the sensitivity of the methods to user-specified parameters. These
parameters include the number of iterations, DAW, ensemble size, ROI, inflation, and measurement
operators. The first two sets of experiments focus primarily on key parameters for smoothers, which
are known to be sensitive to nonlinearity in model dynamics and measurement operators. These
parameters are the number of iterations and DAW length. The third set of experiments focuses
more broadly on the comparison between filters and smoothers. For this purpose, we select three
types of observation networks, each differing primarily in choice of measurement operator. The

system parameters for each of these cases are summarized in Table 1.

a. Experimental design

1) MobEL

We examine several aspects of the data assimilation methods by performing idealized numerical
experiments with the L96 model (Lorenz 1996; Lorenz and Emanuel 1998). The model consists
of variables x; for i = 1,2,...,N,, which are equally spaced on a periodic domain. The variables

are evolved in time using the set of differential equations,

d .
% = (Xiy1 —Xi—2)Xi-1 — X + F, (26)
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with cyclic boundaries: x;,y = x; and x;_y,_ = x;. We integrate (26) forward numerically using
the fourth-order Runge-Kutta method with a time step of 0.05 [units defined arbitrarily as 6 h; see
Lorenz (1996)]. For this study, we fix N, at 40 and use F' = 8.0, which causes the model to behave

chaotically.

2) OBSERVATIONS

In this study, we create observation networks of Ny, = 10, Ny, = 15, and N, = 20 observations that
are evenly spaced on model grid points. Note that for the case N, = 15, we line up the observation
points so that they were evenly distributed (i.e., 1, 4, 6, 9, 12, 14, 17, 20, 22, 25, 28, 30, 33, 36,
39). We simulate measurements every time step (6 h) by selecting values from a truth simulation,
applying one of the operators discussed below, then adding uncorrelated Gaussian errors selected
from N (O, O'yzl ), where o2 is the measurement error variance.

Experiments include three forms of measurement operator. The "Linear Case" uses an H that
selects model variables to be directly observed; i.e., H(x) = X, where X is a subset N, variables in
x chosen by H. The "Nonlinear Case 1" extends H to be quadratic: H(x) = XoX. The "Nonlinear
Case 2" introduces log and absolute value operators to the interpolated values: H(x) =log[ABS(X)],
where ABS indicates the absolute value of each element. The second and third operators produce
weak and strong nonlinearities, respectively. Note that we apply a simple gross error check for the
third measurement operator to prevent observations from being assimilated if the value of ABS(X)
is extremely small. Observation error standard deviations are set to o, = 1.0 for the first two
experiments, but reduced to o, = 0.1 for the third case to compensate for the smaller information

content provided by this observation network.
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3) OBSERVATION TIMELINE AND VERIFICATION

Observations are assimilated over a 3650-day period, and root-mean-square errors (RMSEs)
from the last 3550 days are used to quantify the accuracy of the posterior analyses. The first
100 days of data assimilation act as a spinup period to allow members time to reach quasi-steady
posterior solutions for the given setup of the model and observation network.

In the first sets of experiments described below, we perform direct comparisons of the different
smoothers used for this study. For these experiments, we calculate RMSEs at the beginning of
the DAW (smoother solution), because it more directly indicates how much information is being
extracted from observations at future times. For experiments shown later in this section, which
compare different forms of smoothers and filters, we calculate RMSEs at the end of the DAW (filter

solution).

4) TREATMENT OF SAMPLING ERRORS

Potential sources of bias in the estimation of the posterior include small ensemble sizes relative to
the state dimensions, model errors, nonlinearities, and assumptions used to form data assimilation
algorithms. Therefore, heuristic covariance localization strategies are needed to reduce noise
introduced from ensemble error approximations by performing a Schur product between this
matrix and an empirically defined correlation matrix with a tunable length scale parameter, or ROI.
For this purpose, we use the fifth-order correlation function given by Eq. (4.10) of Gaspari and
Cohn (1999).

The posterior covariance is inflated by replacing ensemble perturbations with linear combinations
of posterior and prior perturbations, which is known as a covariance relaxation method (Zhang
et al. 2004):

X —(l-a)x+ax) . 27)
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The « in (27) is called the “relaxation coefficient” and ranges from O to 1, where o = 0 implies no
inflation. We adopt this inflation strategy to remain consistent with Poterjoy and Zhang (2015),
who perform a similar comparison of ensemble data assimilation algorithms, including hybrid
covariance forms of E4DVar and 4DEnVar.

As previously stated, the local PF uses a mixing parameter to maintain particle diversity during
updates. While this approach is effective at preventing filter divergence with small ensembles,
it does not directly increase prior or posterior error variance in the same manner as relaxation.
Similar to the @ used in the relaxation method the coefficient y is a scalar between 0 and 1. It
further mixes prior particles and resampled particles everywhere particles are updated in state

space, including in the vicinity of measurements.

b. Results
1) SENSITIVITY TO THE NUMBER OF OUTER ITERATIONS

The variational and MDA techniques present different iterative strategies for coping with nonlin-
earity in model dynamics and measurement operators. For the first set of experiments, we explore
the sensitivity of these methods to the number of iterations. In addition to providing a direct
comparison of different smoothers for a nonlinear application, these experiments help motivate
choices for iteration number in the filter/smoother comparisons that follow. As previously stated,
we also explore the advantage of LTC, which is a localization of the ensemble covariance at each
observation time in the window calculated with the tangent linear operator H; at each time for
nonlinear operators.

Figure 1 shows mean RMSEs of EnKS-MDA, E4DVar, 4DEnVar with LTC, and 4DEnVar
without LTC from experiments with Nonlinear Case 1. Ensemble size N,, relaxation coefficient «,

and DAW are fixed at 10, 0.3, and 24 h, respectively. We find this window length to be sufficient
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for exploring sensitivity to outer loops without adding computational cost. We do not show results
using Nonlinear Case 2 because all methods tested in this study (other than the PF) experience
filter divergence when measurements are simulated with this operator. These results are discussed
in the filter/smoother comparisons below.

For the observation networks tested in this study, we find that increasing the number of iterations
has little impact on mean error for EnKS-MDA. For E4DVar and 4DEnVar, however, we confirm
that multiple outer loops are required for optimal performance. Under various circumstances,
outer loops are also needed to prevent filter divergence with the nonlinear measurement operator.
For example, E4DVar with ROI fixed at 1 and a single outer loop shows a worse score than with
multiple iterations. We also find that the minimum number of outer loops required to prevent
filter divergence is sensitive to ROI. E4DVar experiments using an ROI of 3 and 5 require 2 and 3
outer iterations, respectively. Nevertheless, the improvements of multiple iterations beyond these
numbers becomes negligible once a sufficient number is reached.

We also find E4DVar to be more stable than 4DEnVar for the tested observation networks. Recall,
this method uses the tangent linear model to propagate increments along a nonlinear trajectory to
future times, and its adjoint to propagate sensitivity gradients backward from observation times
to the beginning of the DAW. The trajectory is updated between outer iterations to ensure that
values propagated by the tangent linear and adjoint remain small enough for linear approximations
to remain valid. In addition, the input of ensemble error covariance at a single time in this
process (at the beginning of the DAW) greatly simplifies the removal of spurious error correlations
through localization (Fairbairn et al. 2014; Poterjoy and Zhang 2015). For this reason, we find
configurations of 4DEnVar that use LTC to be more stable than configurations without LTC. Based

on this finding, we use this strategy for all remaining 4DEnVar experiments.
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2) SMOOTHER PERFORMANCE AS A FUNCTION OF DATA ASSIMILATION WINDOW LENGTH

Several of the methods examined in this study are smoothers, which are sensitive to the choice of
DAW. For the next set of experiments, we compare mean RMSEs of EnKS, EnKS-MDA, E4DVar,
and 4DEnVar as a function of DAW (Fig. 2). As stated above, the verification for these experiments
focuses on the posterior smoothing density; i.e., the analysis at the beginning of the DAW. For
these experiments, we fix the ensemble size N,, relaxation coefficient @, and ROI at 10, 0.3, and
3, respectively. The number of iterations (MDA) and outer loops (Var) are both set to 3. These
decisions are based on results from the previous set of experiments, showing little benefit beyond
3 iterations for chosen model and observation networks. As we revisit later, in experiments with
the Nonlinear Case 1, the observation value is closer to the truth all the time, making an order of
RMSEs magnitude smaller than with the Linear Case.

We start by examining the impact of MDA on the EnKS. Our experiments show that MDA
provides slight benefits over non-iterative configurations, even at DAW length / = 0 h and linear H
(Fig. 2a). Note that EnKS is identical EnKF for this DAW length, so no benefits are expected from
the iterations. One possible reason for the difference in skill between EnKS and EnKS-MDA at
DAW length / = 0 h is due to small differences in how ensemble perturbations are adjusted through
iterative steps. For linear cases with Gaussian prior, MDA yields the same posterior mean and
covariance as would be obtained without iterations. As suggested by Rommelse (2009), the extra
uncertainty included in measurements during each iteration ensures that adjustments from prior
to posterior values are dampened, which is beneficial when linear updates overestimate the true
impact of measurements that relate nonlinearly to model variables. Therefore, MDA provides an
opportunity for the EnKF to remove over-adjustments that may occur during previous iterations.

We suspect that a combination of serial processing of observations and iterative updates of members
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leads to slight improvements in how the EnKF samples from the posterior density, which is assumed
to be non-Gaussian because of the nonlinear model. This finding explains why the MDA approach
yields small improvements in posterior estimates over successive data assimilation steps, which is
also explored later.

The advantage of the EnKS-MDA over the EnKS with the DAW length / > Oh is shown in both
the linear and nonlinear cases. For both experiments, the MDA scheme resolves issues with the
nonlinearlity of the model and observation measurement operators in DAW. EnKS is stable even
with the longer DAW, but the quality of the analysis starts to degrade as the DAW length is increased
beyond a certain point, because sampling error increases as the DAW become longer. Compared to
4DEnVar, EnKS is more stable with longer DAW. This indicates that the forecast error covariance

AR

matrix used for smoother is approximated more accurately by cross-covariance matrix (P(k k1)

in EnKS than by ensemble-based error covariance in 4DEnVar. Unlike the variational methods,
the EnKS samples directly from the smoothing density rather than using a hybrid strategy of re-
centering EnKF perturbations about a variational solution. Furthermore, the 4DEnVar experiment
contains higher RMSEs than E4DVar because of the difficulty required in removing sampling
errors from temporal error covariances when N, is small (Fairbairn et al. 2014; Poterjoy and Zhang

2015).

3) FILTER PERFORMANCE

In this section, we present results from experiments that examine the sensitivity and limitations
of EnKF, EnKF-MDA, EnKS, EnKS-MDA, E4DVar, 4DEnVar, and the local PF to ROI, relax-
ation coefficient @, PF mixing coeflicient y, and the observation measurement operators. For
all experiments, DAW for EnKS, EnKS-MDA, E4DVar, and 4DEnVar is set to 24 h, and the

number of iterations and outer loops are set to 3. For the local PF, the regularization operates
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only when the effective ensemble size N.g falls below a target value of Neg. The target Neg is
fixed at N e’ g = 0.5XN, for all experiments. We define filter divergence objectively by flagging
configurations that produced 100-cycle average RMSEs larger than 2 with NA for "not available"
in the figures.

Figure 3 shows mean RMSEs from the experiment with the Linear Case. Results from all
methods, which use a fixed ensemble size N, of 10, are displayed in charts that show RMSE as
a function of tunable variables used to reduce the impact of sampling error. For example, Fig. 3
demonstrates that the optimal ROI and « are comparable for EnKF, EnKF-MDA, EnKS, EnKS-
MDA, E4DVar, and 4DEnVar. In most cases, the optimal scores are typically found near values
that lead to filter divergence. RMSEs from the local PF are slightly worse due to the small number
of particles used in these experiments. Figure 4 shows results from experiments with the same
settings except N, is increased to 40. As expected, all methods become more stable and require
less localization (larger ROI) and less inflation (smaller @ and y) as N, increases. Comparing the
results of the local PF from Fig. 3 and 4, it is clear that the larger ensemble size is required for
the local PF to outperform the methods with a Gaussian prior with the tested observation network.
EnKS shows clearly better performances than EnKF, and MDA makes EnKF and EnKS slightly
improved, even with a linear measurement operator because of the reason mentioned in section
3.b.1.

Results from Nonlinear Case 1 experiments using N, = 10 are shown in Fig. 5. Unlike exper-
iments with the Linear operator, filter divergence occurs without setting strict limits on ROI and
inflation coefficients for all methods. Despite the nonlinear measurement operator in these exper-
iments, we find no benefits from the assimilation methods designed specifically for non-Gaussian
applications, namely EnKF-MDA and the local PF. We believe this result occurs because of the

accuracy and frequency at which these measurements are collected. For model variables that can
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reach magnitudes of O(10), measuring the square of these variables with an error variance of 1
yields highly accurate information for characterizing the posterior. This factor, combined with
the frequency of these measurements lead to prior and posterior members that remain close to the
truth at all times, thus making Gaussian assumptions more valid. We revisit this property of the
Nonlinear Case 1 measurement operator in the next section.

These experiments also continue to show clear benefits of E4DVar and 4DEnVar over EnKF,
both in terms of stability and accuracy. We hypothesize that the 4D data assimilation methods are
less sensitive to sampling noise, which becomes the dominant source of bias in mildly nonlinear
regimes. Likewise, we find E4DVar to be more stable than 4DEnVar when N, is small, owing
mostly to the localization strategy adopted by this method. We note that all algorithms approach
similar RMSEs as ensemble size increases; i.e., Fig. 6 shows results with N, = 40 for the same
observation network. The reason why E4DVar and 4DEnVar are more stable than EnKS is due
to the small number of ensembles and the nonlinear observations that prevent from accurately
estimating of the cross-covariance matrix in the Serial EnSRS.

Figure 7a shows the mean RMSEs from experiments of the local PF that use measurements
simulated with Nonlinear Case 2 and N, = 40. For this configuration, filter divergence occurs in all
methods except the local PF, owing to the strong nonlinearity in the measurement operator. This
observation network presents a case where nonlinearity in the application becomes a much larger
factor than sampling error in ensemble-estimated prior and posterior distributions. Even with
N, =100, the Gaussian-based methods fail to provide stable solutions despite the potentially large
amount of information contained in these measurements, as indicated by the low RMSEs in the local
PF posterior (Fig. 7b). Since the local PF makes no parametric assumptions about prior densities,
non-Gaussian observation-space priors, which are produced by nonlinear measurement operators,

do not have a negative impact on the filter. Therefore, it can continue to extract information from the
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observation network regardless of nonlinearity in H. These results confirm past studies, showing
that local PF provides benefits when N, is sufficiently large or when the observation operator is
strongly nonlinear. It also demonstrates limitations in iterative techniques for cases where the

observation function is quadratic and the posterior may be bimodal.

4) FILTER PERFORMANCE FOR SPARSE OBSERVATION NETWORKS

Using the mildly nonlinear observation operator (Nonlinear Case 1), we investigate the behavior
of each method for increasingly sparse observation networks. These experiments use an observation
frequency of 24 h, which is increased from 6 h in previous experiments, and Ny, = 20, 15, and 10
for equally-spaced measurements at each observation time. We also fix the DAW for smoothers at
48 h; see Table 1 for full summary. These results are summarized in Figs. 8 — 10 using the same
graphics adopted in the previous section comparing filter performance.

Compared to EnKF, the performance of EnKS becomes slightly worse for these observation
networks. As discussed in Evensen and van Leeuwen (2000), the EnKS differs from the EnKF
by computing updates of the model parameters using all the observations in DAW simultaneously
rather than using recursive updates in time. Therefore, with these settings, the recursive updates
of EnKF keep the model solutions close to the truth at any given time during the experiment, and
operate on marginal densities that are relatively close to Gaussian at any given time. While posterior
marginals of the smoothing density are expected to be close to Gaussian at the beginning of the
DAW (Morzfeld and Hodyss 2019), marginals near the end of the DAW can evolve non-Gaussian
characteristics because of nonlinearity in the model.

The benefits of MDA for EnKF are clearly shown in Fig. 8 and Fig. 9. For suboptimal
configurations of the EnKF, prior members exhibit a larger variance thus allowing nonlinearity

in H to become a significant source of bias for Gaussian methods. Therefore, the optimal EnKF
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configuration remains almost the same with MDA, but the set of parameters over which the filter
remains stable becomes larger than that of the standard EnKF. For these observation networks,
careful choices of ROI and « are sufficient for mitigating bias caused by Gaussian assumptions,
but MDA helps prevent filter divergence when these parameters are improperly chosen.

For a long DAW (48 h) E4DVar becomes more stable than 4DEnVar with N, = 20 (Fig. 8),
but both methods diverge when observation density is decreased further (Fig.9-10). For these
experiments, we find EnKS-MDA to be more accurate than the EnKS and much more stable than
the variational methods. This result is anticipated in nonlinear regimes, since incremental updates
reduce potential over-adjustments by the ensemble smoother over the time window. As previously
stated, the improved performance over E4DVar and 4DEnVar for sparse observation networks (Fig.
9) must follow from the ability of EnKS-MDA to sample directly from the smoothing density, rather
than relying on a hybrid approach, which is a clear advantage of this method. Algorithmically, the
EnKS operates in a manner that is very similar to 4DEnVar, but with the added benefit of updating
ensemble perturbations about the posterior mean, rather than re-centering EnKF perturbations
about the posterior mode.

For the experiment with N, = 15, we also verify the second moment of the posterior to examine
potential shortcomings in uncertainty estimates. The observation network and ensemble size used
in these simulations poses challenges for several data assimilation method used here, in that filter
divergence is prevented for a narrower range of parameters than previous experiments. Figure 11
shows the ratio of spread to RMSEs, indicating whether the ensemble spread is overestimated or
underestimated with respect to the RMSE. The results of all methods are presented except E4DVar
and 4DEnVar, which do not estimate posterior variance—trecall that ensemble perturbations are
updated using an EnKF instead. Ideally, the spread and RMSE should be equivalent, but sampling

error and assumptions made during data assimilation may lead to inconsistent results. Likewise,
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heuristic techniques for treating sampling errors, such as localization and covariance relaxation
can also introduce suboptimal uncertainty estimates. For all filters and smoothers examined in
this study, the best match between spread and RMSE tends to occur when RMSE is at a minima
(Fig. 1la-d). The further away from the optimal parameter settings, the larger the mismatch
between spread and RMSE. As such, filter divergence occurs when the spread begins to become
overestimated or underestimated for all methods (Fig. 11a-d).

Despite the difficulty posed by these observation networks, we find that the local PF can be
configured to produce stable results, even for data-sparse regimes, which was expected for this
method (Poterjoy 2021). This property of the local PF is illustrated for the N, = 10 case, where it is
the only method that does not diverge for all parameter value (Fig. 10). These results demonstrate
challenges that exist for the mildly nonlinear observation operator as the spatial and temporal

density of measurements decreases to yield larger prior uncertainty.

5) LocaL PF PERFORMANCE AS A FUNCTION OF ENSEMBLE SIZE

Figure 12 shows the mean RMSEs of the local PF as a function of ensemble size. These
experiments use a fixed PF mixing coefficient of y = 0.3 and two N’ values of 0.2 x N, and
0.8 X N,. The results are similar for the cases with the linear and mildly nonlinear measurement
operators (Fig. 12a and b) in that optimal ROI increases with ensemble size.

This is because the large ensemble size yields fewer sampling errors thus needing less localization.
For the strongly nonlinear measurement operator, however, the difference in RMSEs for the range
of ROI choices become small as the ensemble size increases (Fig. 12c¢). This result may reflect
either the limited information contained in these measurements. That is, because they only observe
the log of the absolute value of variables, distant multivariate updates from these measurements

are truly very small, thus requiring very large ensemble sizes to estimate accurately. They may
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also suggests that sampling errors and other factors, such as assumptions made by local PF update
equations, become less dominant for nonlinear applications of this type.

Furthermore, the experiments demonstrate a dependence of optimal Néﬁ. on ensemble size.
When the ensemble size is small, experiments with higher N é ¢ show more accurate results. As
the ensemble size increases, the lower N é ¢ shows smaller posterior RMSEs. This suggests that the

larger N!. can result in over-inflation when the ensemble size is large.

4. Conclusions

In geophysical models, such as those used for numerical weather prediction, strongly nonlinear
model dynamics and measurement operators can cause data assimilation methods to be biased. This
study examines several procedures that are developed to overcome challenges posed by nonlinear
operators, such as periodic re-linearization of tangent linear and adjoints in variational schemes,
likelihood factorizations adopted by iterative ensemble filters and smoothers, and localized particle
filters. These methods—some of which were originally designed for applications outside the
weather community—are compared with methods currently used for operational NWP, namely
EnKFs and hybrid variational methods with and without model adjoints.

This study adopts the 40-variable model of Lorenz (1996) to examine the selected data assimila-
tion approaches. The small dimension of this model allow for extensive testing of each technique
using a large variety of observation networks, each varying in density and the type of observations
provided. For several observation networks used in this study, re-linearization of the model and
measurement operators between outer iterations are required to prevent filter divergence. Once a
sufficient number of outer iterations are reached to achieve stable results, the improvements are

negligible.
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The wide range of observation networks examined in this study yields a diverse set of results,
which are summarized using posterior RMSEs. We acknowledge that this metric is not ideal for
non-Gaussian regimes, particularly those characterized as multimodal. Nevertheless, the sharp
failure of various techniques for non-Gaussian problems are easily identified by large values of
RMSEs.

Each method examined in this study has clear advantages for specific regimes—which are
identified to be a function of sampling error, nonlinearity in measurement operators, and observation
density. This finding motivates the use of different choices of data assimilation methodology,
depending on application.

The ensemble-variational smoother with an adjoint model, E4DVar, produces smaller RMSEs
than 4DEnVar for all observation networks tested in this study. It also outperforms all other methods
in regimes where sampling error is high, but the model solution is well-constrained by numerous
accurate measurements; i.e., in weakly nonlinear regimes. This study also compares variational
methods to an ensemble smoother, which is adapted from the fixed-lag EnSRS of Whitaker and
Compo (2002). For regimes where sampling error is a more dominant sources of posterior bias
than nonlinearity, the EnKS performs better than its filter counterpart. Adding iterations to EnKF
and EnKS updates through MDA results in improved results for all nonlinear regimes, particularly
for sparse observation networks and long DAW lengths. The EnKS with MDA is also found to
outperform all methods for data assimilation problems characterized by high sampling error and
weak nonlinearity. Likewise, it provides stable results in nonlinear regimes that cause E4DVar and
4DEnVar to experience filter divergence. For applications of this type, EnKS-MDA benefits from
its ability to sample directly from the posterior smoothing density, rather than relying on a separate

EnKF to update perturbations about a maximum likelihood solution.

33



641

643

646

648

649

650

651

652

653

654

657

660

662

663

Furthermore, ensemble filters outperform smoothers when nonlinearity in measurement opera-
tors or model dynamics have a dominant role in the data assimilation applications. This finding is
consistent with past studies that compare filters and smoothers for problems of this type (Evensen
and van Leeuwen 2000). For highly nonlinear regimes, the local PF is the only method that
produces accurate results. The benefit of PF-based methodology, however, comes with the tradeoff
of being more sensitive to sampling error. Therefore, it requires large ensemble sizes to produce
RMSE:s as low as ensemble and variational smoothers for quasi-linear regimes.

Owing to the nature of this study, all comparisons are performed in an idealized framework. These
findings will ultimately help guide future data assimilation decisions for real geophysical problems,
where the computational cost of exploring the sensitivity of data assimilation methodology and
parameters is prohibitive. The major findings of this study demonstrate when to expect Gaussian
filters and smoothers to be suboptimal and under what conditions iterative techniques provide added
value over conventional methods. Choices of nonlinear measurement operators in this study are
motivated by challenges faced by high-impact weather events, such as severe convective storms and
tropical cyclones. In particular, all-sky satellite radiance measurements provide extensive, near-
continuous data coverage for tropical cyclones over open oceans. These measurements are often
difficult to use, owing to the highly non-Gaussian (often multi-modal) observation-space priors
produced by nonlinear measurement operators. New operational weather prediction systems, such
as NOAA’s Hurricane Analysis and Forecast System (HAFS), will ultimately need to overcome
barriers that currently exist in Gaussian-based data assimilation methodology to fully leverage
measurements of this type, as several operational centers have made significant advancements to
cope with the difficult conditions in the past years. Experiments performed in this study motivate

applications of iterative ensemble approaches and the local PF for problems of this type.
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TasLE 1. Configuration of cycling data assimilation experiments.

Expt H(x) oy Ne ROI ay Ny, At (h)
Linear Case X 1.0 10,40 Variable  Variable 20 6
Nonlinear Case 1 x2 1.0 10,40 Variable  Variable  20,15,10 6,24
Nonlinear Case 2 log(|x|) 0.1 40,100  Variable Variable 20 6
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Mean analysis RMSEs as a function of the number of iteration or outer loop. Results are
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ROI set to 1 (blue), 3 (red), and 5 (green) The RMSEs are calculated at the start of the DAW
(smoother solution). e

Mean analysis RMSEs as a function of smoother lag. Results are shown for (a) Linear Case
and (b) Nonlinear Case 1, with the EnKS (blue), the EnKS-MDA (red), the E4DVar (green),
and the 4DEnVar (magenta). The number of iterations and outer loops is fixed at 3 for both
cases. The RMSEs are calculated at the start of the DAW (smoother solution).

Mean analysis RMSEs estimated for a range of relaxation coefficient « (a-f) and PF mixing
coefficient y (g) and ROI. Results are shown for experiments with the Linear Case and
ensemble size is fixed at 10. Black shading indicates higher RMSEs, NA indicates that filter
divergence occurs during the experiment, and the smallest errors are indicated by the black
box. The RMSEs are calculated at the end of the DAW (filter solution).

As in Fig.3, but for ensemble size fixed at 40.

Mean analysis RMSEs estimated for a range of relaxation coefficient o (a-f) and PF mixing
coeflicient y (g) and ROI. Results are shown for experiments with the Nonlinear Case 1 and
ensemble size is fixed at 10. Black shading indicates higher RMSEs, NA indicates that filter
divergence occurs during the experiment, and the smallest errors are indicated by the black
box. The RMSEs are calculated at the end of the DAW (filter solution).

As in Fig.5, but for ensemble size fixed at 40.

Mean analysis RMSEs estimated for a range of PF mixing coefficient y and ROI. Filter
divergence occurs in all methods except the local PF, so only results of the local PF are
shown for experiments with the Nonlinear Case 2 and ensemble size is fixed at 40 (a) and
100 (b). Black shading indicates higher RMSEs, NA indicates that filter divergence occurs
during the experiment, and the smallest errors are indicated by the black box. The RMSEs
are calculated at the end of the DAW (filter solution).

As in Fig.6, but for the frequency of observations and DAW fixed at 24 h and 48 h, respectively.

As in Fig.8, but for the number of observations fixed at 15.

As in Fig.8, but for the number of observations fixed at 10. Filter divergence occurs in all
methods except the local PF, so only results of the local PF are shown.

Ratio of ensemble spread to mean analysis RMSEs estimated for a range of relaxation
coeflicient @ (a-d) and PF mixing coefficient y (e) and ROI. The experimental setting is the
same as in Fig.9. NA indicates that filter divergence occurs during the experiment. The
RMSEs and spread are calculated at the end of the DAW (filter solution).

Mean analysis RMSEs of the local PF as a function of ensemble size. Results are shown
for (a) Linear Case, (b) Nonlinear Case 1, and (c) Nonlinear Case 2. Values are from the
experiment with Neg fixed at 0.20 XN, (solid lines) and 0.80 XN, (dashed lines), and ROI
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Fic. 1. Mean analysis RMSEs as a function of the number of iteration or outer loop. Results are shown for
the Nonlinear Casel. Values are from the experiment with EnKS-MDA (triangle), E4DVar (circle), 4DEnVar
without LTC (square), and 4DEnVar with LTC (diamond), and ROI set to 1 (blue), 3 (red), and 5 (green). The

RMSE:s are calculated at the start of the DAW (smoother solution).
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10.266 0.271 0.290 0.310 0.345 0.413
10.262 0.265 0.289 0.307 0.342 0.410
.255]0.267 0.286 0.307 0.342 0.410

0.1 0.2 0.3 04 05 0.6 0.7 0.8
RTPP relaxation coefficient &

4DEnVar

0.9

(f)

0.400 0.406 0.393 0.403 0.427 0.464
10.340 0.339 0.347 0.358 0.381 0.417 0.487
10,319 0.318 0.326 0.336 0.358 0.394 0.471
10.299 0.308 0.315 0.325 0.345 0.382 0.448
10.299 0.301 0.305 0.316 0.338 0.374 0.441
10.288 0.296 0.302 0.313 0.333 0.370 0.434
[0.285 0.292 0.298 0.310 0.330 0.367 0.430
[o-281]0.285 0.296 0.309 0.329 0.362 0.427

0.1 02 0.3 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient &

Linear Case: H(x)=x
noise: N(0,12)

« MEM Ne:40
« OBS Ny:20 (every6hrs)

Average Filter RMS Error
(101-3650day)

e E4DVar
. EnKF-_I;/IDI-:_ 3 outerloop:3
EnkS Iteration: DAwindow:24hr
.
DAwindow:24hr * 4DEnvar .
EnKS-MDA outerloop:3
e En -'t Con3 DAwindow:24hr
iteration:

LPF
DAwindow:24hr ° N.g:20

Fic. 4. As in Fig.3, but for ensemble size fixed at 40.
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(a) EnKF (b) EnKF-MDA
1 1
2 2
3 3
_4 NA 4
2 5 NA 5
6 6
7 7
8 8
9 9
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient & RTPP relaxation coefficient &
(c) EnkKS (d) EnKS-MDA

ROI

0.1 0.2 03 04 05 06 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient &¢ RTPP relaxation coefficient (¢
(e) E4DVar (f) 4DEnVar
1 1
2 2
3 3
_4 4
S5 5 NA
6 6 NA ).0¢
7 . 7 {7 0.046 0.051/0.065 [l
8 NA NA NA NA NA NA 8 [\/:\80.046 0.0510.064 N/
9 NA NA NA NA NA NA 9 NA NA NA NA NA
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient & RTPP relaxation coefficient &¢
(9) local PF Nonlinear Casel: H(x)=x2
1 noise: N(O,lz)
2 0.064 0.059 0.059 0.060 0.063
3 0.0640.055| NA Average Filter RMS Error *MEMN_:10
_4 NA [\ (101-3650day) * OBS N, :20 (every6hrs)
Q5
« E4DV.
e« 6 ° EnKF-i:l?a‘?:ionB aoLterIoop:3
7 « EnKS - DAwindow:24hr
3 DAwindow:24hr . 405"!3;”00’):3
9 s S . DAwindow:24hr
DAwindow:24hr o LPF s

PF mixing coefficient 7y

&9 FiG. 5. Mean analysis RMSEs estimated for a range of relaxation coefficient a (a-f) and PF mixing coefficient
s0 7y (g) and ROI. Results are shown for experiments with the Nonlinear Case 1 and ensemble size is fixed at 10.
s Black shading indicates higher RMSEs, NA indicates that filter divergence occurs during the experiment, and the

s2 smallest errors are indicated by the black box. The RMSE:s are calculated at the end of the DAW (filter solution).
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ROI
CONOUAWNKR

ROI ROI
CONOU AWN R

LCoOo~NOULDWNEKE

ROI

EnKF

(a)

10.061 0.059 0.059 0.060 0.063
10.050 0.050 0.049 0.050 0.053 0.058
10.044 0.044 0.044 0.045 0.047 0.052 0.061
10.041 0.041 0.041 0.042 0.044 0.048 0.057
10.039 0.038 0.039 0.040 0.042 0.046 0.054
10.037 0.037 0.037 0.038 0.040 0.045 0.052
10.036 0.035 0.036 0.037 0.039 0.044 0.051
[0-035J0.035 0.035 0.036 0.039 0.043 0.050
0.1 0.2 03 04 05 06 0.7 0.8
RTPP relaxation coefficient &

EnkKS

10.057 0.056 0.057 0.059
10.047 0.047 0.047 0.049 0.054 0.064
10.042 0.042 0.042 0.044 0.048 0.058
0.039 0.039 0.040 0.042 0.045 0.054
f0.037 0.037 0.038 0.040 0.044 0.052
10.036 0.036 0.037 0.038 0.042 0.050
t0.035 0.035 0.035 0.037 0.041 0.049
[0-034]0.034 0.035 0.037 0.040 0.048
0.1 0.2 03 04 05 0.6 0.7 0.8
RTPP relaxation coefficient (¢

E4DVar

(e)

0.050 0.050 0.052 0.053 0.055 0.059
0.044 0.044 0.044 0.046 0.047 0.051 0.058
0.041 0.040 0.041 0.042 0.044 0.047 0.053
0.039 0.038 0.039 0.040 0.041 0.044 0.050
0.037 0.037 0.037 0.038 0.040 0.043 0.049(0.064
0.036 0.036 0.036 0.037 0.038 0.041 0.047 0.062
0.035 0.034 0.035 0.036 0.037 0.040 0.046 0.061

.033]0.033 0.033 0.034 0.036 0.039 0.0450.060

0.1 0.2 03 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient &

(g) local PF

9 0.045 0.043 0.0470.057

0.1 0.2 03 0.4 05 06 0.7 0.8
PF mixing coefficient 7y

0.9

CoOo~NOOULE WNHE

EnKF-MDA

0.059 0.058 0.058 0.060 0.062
0.050 0.049 0.049 0.050 0.052 0.057
10.044 0.044 0.044 0.045 0.047 0.051 0.060
10.041 0.041 0.041 0.042 0.044 0.048 0.056
10.039 0.038 0.038 0.040 0.042 0.046 0.053
10.037 0.036 0.037 0.038 0.040 0.044 0.052
10.036 0.035 0.036 0.037 0.039 0.043 0.051

.034]0.034 0.035 0.036 0.038 0.042 0.050

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient &¢

CoOoO~NOOUTA WN P

EnKS-MDA

10.057 0.056 0.056 0.058 0.063
{0.047 0.046 0.047 0.048 0.052 0.061
{0.043 0.042 0.042 0.044 0.047 0.055
{0.040 0.039 0.040 0.041 0.044 0.052
10.038 0.037 0.038 0.039 0.042 0.049
{0.036 0.036 0.037 0.038 0.041 0.048
{0.035 0.035 0.036 0.037 0.040 0.047
.034]0.034 0.035 0.036 0.040 0.046

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient (¢

CoOoO~NOOUL A WNKE

4DEnVar

0.062 0.062 0.061 0.063
10.049 0.049 0.049 0.050 0.052 0.056
10.043 0.044 0.044 0.045 0.047 0.050 0.058
10.041 0.040 0.041 0.042 0.043 0.047 0.054
0.038 0.038 0.038 0.039 0.041 0.045 0.052
0.037 0.037 0.037 0.038 0.040 0.043 0.050
10.035 0.035 0.036 0.037 0.038 0.042 0.048
.034]0.034 0.034 0.035 0.037 0.040 0.047 0,064 {1

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient &

Nonlinear Casel: H(x)=x2

noise: N(0,12)

(101-3650day)

o EnKF-MDA
iteration:3

« EnKS
DAwindow:24hr

e EnKS-MDA
iteration:3
DAwindow:24hr

Average Filter RMS Error

« MEM Ne:40
« OBS Ny:20 (every6hrs)

e E4DVar
outerloop:3
DAwindow:24hr
e 4DEnVar
outerloop:3
DAwindow:24hr

«LPF t .
Neff'zo

Fic. 6. As in Fig.5, but for ensemble size fixed at 40.
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883

884

887

local PF

Nonlinear Case2: H(x)=log(|x|)

1 0.122 0.1100.101]0.099]0.1090.117 0.11 noise: N(0,0.12)
2 0.1230.1130.109 0.106 0.102 0.102 0.108
3 B\V§0.1250.1150.112 0.114 0.111 0.110 Average Filter RMS Error *MEM N, :40
_ 4 B\/A\0.1290.127 0.1130.117 0.130 (101-3650day) e OBS Ny:20 (every6hrs)
Q5 0.127 0.122 0.123
= . . . e E4DVar
6 ° EnKF-irlr)a‘:ionB outerloop:3
7 « EnKS e : DAwindow:24hr
) DAwindow:24hr ® 4DEn\c’)3:erloo 3
« EnKS-MDA rioop:
9 ) ; DAwindow:24hr
|tera.t|on:3. eLPF \t -
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 DAwindow:24hr eff
PF mixing coefficient 7y
local PF Nonlinear Case2: H(x)=log(|x]|)

1 0.106 0.099 0.095 0.093 0.091]0.088]0.091 noise: N(0,0.12)

2 0.110 0.099 0.094 0.092 0.090 0.090 0.092 0.124

3 0.109 0.098 0.093 0.091 0.092 0.093 0.100 Average Filter RMS Error * MEM N,:100
_4 0.109 0.099 0.096 0.094 0.094 0.096 0.104 (101-3650day) « 0BS N, :20 (every6hrs)
o5 0.1100.100 0.097 0.097 0.097 0.103 0.114  E4DVar

6 0.1100.102 0.104 0.099 0.103 0.1060.128 s B 3 outerloop:3

7 0.1130.107 0.106 0.101 0.106 0.122 <Enks « ADERAindow 24

8 0.117 0.108 0.105 0.110 0.110/0.125 . EnKS_'inAI;VAndowi“hr outerloop:3

9 0.1210.109 0.106 0.109 0.120 eration:3 L pp DAwindow:2ahr

0.1 02 03 04 05 06 0.7 0.8 0.9 DAwindow:24hr Netr 50

PF mixing coefficient 7y

FiG. 7. Mean analysis RMSEs estimated for a range of PF mixing coefficient y and ROI. Filter divergence
occurs in all methods except the local PF, so only results of the local PF are shown for experiments with the
Nonlinear Case 2 and ensemble size is fixed at 40 (a) and 100 (b). Black shading indicates higher RMSEs, NA
indicates that filter divergence occurs during the experiment, and the smallest errors are indicated by the black

box. The RMSE:s are calculated at the end of the DAW (filter solution).
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EnKF-MDA

1§ NA I8 NA NA NA
2 J 2 B\AN\VANg0.127 0.146
3 BVAN\Ag0.108 0.124 0.197 3 VA 0.097 0.102 0.115 0.152

4 [V0.087 0.0930.109 0.151
0.080 0.081 0.085 0.099 0.134
6 [0.0750.076 0.080 0.093 0.128
7 10.0700.072 0.077 0.089 0.121

8 10.068 0.0700.075 0.086 0.118 0.066 0.068 0.073 0.083 0.108
9 [0-066J0.068 0.0730.084 0.117 .065]0.067 0.071 0.082 0.107

0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient &¢ RTPP relaxation coefficient &¢

EnKS (d) EnKS-MDA
I8 NA NA NA NA I NA NA NA NA NA NA
Pl NA NA NA NA Pl NA NA NA NA NA NA
Bl NA NA [BEE] NA 3 Bi/:\W0.108 0.108 0.141

10.085 0.085 0.089 0.102 0.132
10.076 0.078 0.082 0.094 0.121
10.072 0.074 0.078 0.089 0.115
10.0700.070 0.075 0.086 0.112

ROI
ul

O oo~NOY U A

(c)

_ 410.1020.088 0.097 410.102 0.086 0.091 0.113
2 510.093 0.081 0.088 5 10.076 0.079 0.083 0.100
6 10.0880.076 0.081 610.0710.0730.079 0.094
7 10.086 0.074 0.078 7 10.068 0.070 0.075 0.090
80.082 0.072 0.076 8 10.066 0.068 0.074 0.093 0.165 L
9 [0.070J0.070 0.074 0.097 9 [0.064J0.067 0.072 0.088 0.156 I\
0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient & RTPP relaxation coefficient ¢
1 1
2 2
3 10.087 0.086 0.092 0.105 0.157 [N 3
_ 410.0770.079 0.084 0.095 0.123 I\ 4
g 510.073 0.075 0.079 0.088 0.112 5
6 1{0.0700.074 0.076 0.085 0.106 6
7 10.068 0.070 0.074 0.082 0.102 7
8 0.066 0.068 0.072 0.079 0.098 8
9 [0.065J0.065 0.070 0.077 0.096 9
0.1 0.2 0.3 04 05 0.6 0.7 0.8 09
RTPP relaxation coefficient & RTPP relaxation coefficient ¢
(9) local PF Nonlinear Casel: H(x)=x?
; noise: N(0,12)
3 Average Filter RMS Error *MEMN_:40
_ 4 (101-3650day) « OBS Ny:ZO (every24hrs)
25 « EADVar
6 ¢ EnKF-MDA outerloop:3
7 E iteration:3 DAwindow:48hr
e En . . 4DEnVar
8 DAwindow:48hr * outerloop:3
9 ¢ EnKS-MDA DAwindow:48hr
|tera_t|on:3 « LPF N 20
0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 DAwindow:48hr eff

PF mixing coefficient 7y

Fic. 8. As in Fig.6, but for the frequency of observations and DAW fixed at 24 h and 48 h, respectively.
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ROI

ROI

ROI

ROI

EnKF-MDA

1 Ay 1

2 BN 2

3 A 3

N NA 4

5 EAY0.110 0.125 0.160 5(0.100 0.104 0.116 0.141

6 {0.106 0.105 0.115 0.142 6 10.095 0.098 0.108 0.131/0:200

7 10.094 0.099 0.109 0.141 7 10.093 0.094 0.104 0.127/0-194

810.090 0.095 0.105 0.132 810.090 0.092 0.101 0.123/0.188

9 [0.088J0.091 0.101 0.127 9 [0.087]0.089 0.098 0.121[0.181

0.1 0.2 03 04 05 0.6 0.7 0.8 09 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient &x RTPP relaxation coefficient &x

EnKS-MDA

1 1
2 2
3 3
4 4 lo.
5 510.1030.108
6 NA 6 [0.096 0.098
7 NA NA 710.091 0.0940.111
8 NA NA NA 8 10.089 0.092 0.106
9 NA NA NA 9|

0.1 0.2 03 04 05 0.6 0.7 0.8 09 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9

RTPP relaxation coefficient (¢ RTPP relaxation coefficient (¢
(e) E4DVar (f) 4DEnVar

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

0.1 0.2 03 04 05 0.6 0.7 0.8 09 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9

RTPP relaxation coefficient &¢ RTPP relaxation coefficient (¢

(9) local PF Nonlinear Casel: H(x)=x>
; N noise: N(0,12)
3 0.147 0.147 0.148 0.154 0.156 0.165 0.17 Average Filter RMS Error *MEMN_:40
4 0.1600.126 0.1250.126 0.129 0.135 0.149 0.15 (101-3650day) * OBS N,:15 (every24hrs)
5 0.1410.1210.120 0.118 0.120 0.131 NI « E4DVar
6 0.1350.115[0.114J0.117 0.123 + EnKF-MDA outerloop:3
7 0.1410.116 0.116 0.125 0.127 «Enks oM ADERvVindow:48hr
8 0.1780.118 DAwindow:48hr O terioop:3
9 N Yo.151 o EnKS- MDA 3 Lpp DAWindow:4ghr

01 02 03 04 05 06 0.7 0.8 0.9 DAwindow:aghr | * 77 Ney20

PF mixing coefficient 7y

F1G. 9. As in Fig.8, but for the number of observations fixed at 15.
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local PF Nonlinear Casel: H(x)=x>

% noise: N(0,12)
3 Average Filter RMS Error ¢ MEMN:40
_ 4 (101-3650day) e OBS Ny‘10 (every24hrs)
8 5 e EADVar
6 e EnKF-MDA outerloop:3
7 EnKS iteration:3 DAwindow:48hr
e En . . e 4DEnVar
) DAwindow:48hr outerloop:3
9 * EnKS-MDA DAwindow:48hr
iteration:3 eLPF t .
01 02 03 04 05 06 07 0.8 0.9 DAwindow:48hr Nerr20

PF mixing coefficient -y

088 Fic. 10. As in Fig.8, but for the number of observations fixed at 10. Filter divergence occurs in all methods

w0 except the local PF, so only results of the local PF are shown.
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890

892

893

1 1 NA NA NA NA
2 2
3 3
_4 4 J\I41.085 1.3051.591 1.955
O 5 Y1061 1.234 1503 5 10.942 1.102 1.275 1.531 1.982
6 [0.931 1.096 1.274/1.556 0.794 NV 6 0.9791.153 1.318/1.595 1.795
7 10.968 1.146 1.279 1.520 TN /Y 7 11.000 1.160 1.337 1:600 1.973
8 10.989 1.126 1.327 1.507 MR /Y 811.0111.152 1.360 1.565 1.815
9 11.000 1.165 1.337 1519 [N\ 91.0121.180 1.357 1.583 1.874

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient & RTPP relaxation coefficient &

(c) EnkS

(d) EnKS-MDA

1 I NA NA NA
2 b NA NA NA
3 3 B\ 0.270 m\-
_ 4 4 10.941/0.199 VI
Q5 510.9811.122/0.348
6 610.9901.2120.315 0.782
7 7 1.0111.2231.446 0.625
8 8 11.0351.2201.444 0.573
9 9 11.0481.2411.4480.501
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
RTPP relaxation coefficient & RTPP relaxation coefficient ¢
(e) local PF Nonlinear Casel: H(x)=x>
noise: N(0,12)
Average Filter Spread/RMSE * MEM N_:40
_ 410.5521.1191.209 1.256 1.288 1.296 1.257 1.231 1.110 (101-3650day) * OBS N, :15 (every24hrs)
o 0.8961.1511.176 1.187 1.197 1.152 [NIN KE-MDA < EADVar
0.9761.096 1.113 1.118 1.096 0.972 [li\IN * EnkKF-MDA outerloop:3
iteration:3 DAwindow:48hr
0.952 1.035 1.071 1.051 0.970 [NIN «ENKS « 4DEnVar '
0.913 0.975 0.967 0.945 NN EnKS zA[‘;VA”dOW:“'Shr outerloop:3
NA [EENREPY] NA NA NA : iteration:3 Lpp D window:4ghr
. - . t .
0.1 02 03 0.4 05 0.6 07 08 0.9 DAwindow:48hr Ner20
PF mixing coefficient 7y

+ Spread is underestimated Spread is overestimated —
I I I I I I [ I I I

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-]

Fic. 11. Ratio of ensemble spread to mean analysis RMSEs estimated for a range of relaxation coefficient «
(a-d) and PF mixing coefficient vy (e) and ROI. The experimental setting is the same as in Fig.9. NA indicates
that filter divergence occurs during the experiment. The RMSEs and spread are calculated at the end of the DAW

(filter solution).
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Average Filter RMS Error

(101-3650day) o LPF mixing coefficient y :0.5 - N;ﬁ:O.ZOxMEM ROI:2
¢ OBS N _:20 (every6hrs) N = ROI:5
4 —m— N_:0.80xMEM ROIS
(a) Linear Case: H(x)=x :
0.43 e I T I
0.40 _
L 0.37 _
wn @ 9 -Q-
S 034
o 0.31
0.28
025 L 1 110 0] —':- ; ;:—
10 20 30 40 50 60 70 80 90 100 150 200 250 300
(b) Nonlinear Casel: H(x)=x>
0.07 T T T T T T T ]
o.oaL e
w \
g 0.05 =3 o 9
* 0.04 M =2 —8
0.03 S S NN N N S SR (N :’
10 20 30 40 50 60 70 80 90 100 150 200 250 300

(c) Nonlinear Case2: H(x)=log(|x|)
1 T T T 1

RMSE
o
T

| | | | [
10 20 30 40 50 60 70 80 90 100 150 200 250 300

Ensemble Member

804 Fic. 12. Mean analysis RMSEs of the local PF as a function of ensemble size. Results are shown for (a) Linear
ss Case, (b) Nonlinear Case 1, and (c) Nonlinear Case 2. Values are from the experiment with N.g fixed at 0.20

s XN, (solid lines) and 0.80 XN, (dashed lines), and ROI fixed at 2 (blue), 5 (red), and 8 (green).
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