

1 Data assimilation challenges posed by nonlinear operators: A comparative 2 study of ensemble and variational filters and smoothers

Kenta Kurosawa *

*Department of Atmospheric and Oceanic Science, University of Maryland, College Park,
Maryland*

Jonathan Poterjoy

*Department of Atmospheric and Oceanic Science, University of Maryland, College Park,
Maryland*

NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

¹⁰ *Corresponding author: Kenta Kurosawa, kkurosaw@umd.edu

ABSTRACT

11 The ensemble Kalman Filter (EnKF) and the 4D variational method (4DVar) are the most
12 commonly used filters and smoothers in atmospheric science. These methods typically approximate
13 prior densities using a Gaussian and solve a linear system of equations for the posterior mean and
14 covariance. Therefore, strongly nonlinear model dynamics and measurement operators can lead to
15 bias in posterior estimates. To improve the performance in nonlinear regimes, minimization of the
16 4DVar cost function typically follows multiple sets of iterations, known as an "outer loop", which
17 helps reduce bias caused by linear assumptions. Alternatively, "iterative ensemble methods" follow
18 a similar strategy of periodically re-linearizing model and measurement operators. These methods
19 come with different, possibly more appropriate, assumptions for drawing samples from the posterior
20 density, but have seen little attention in numerical weather prediction (NWP) communities. Lastly,
21 particle filters (PFs) present a purely Bayesian filtering approach for state estimation, which avoids
22 many of the assumptions made by the above methods. Several strategies for applying localized
23 PFs for NWP have been proposed very recently. The current study investigates intrinsic limitations
24 of current data assimilation methodology for applications that require nonlinear measurement
25 operators. In doing so, it targets a specific problem that is relevant to the assimilation of remotely-
26 sensed measurements, such as radar reflectivity and all-sky radiances, which pose challenges for
27 Gaussian-based data assimilation systems. This comparison includes multiple data assimilation
28 approaches designed recently for nonlinear/non-Gaussian applications, as well as those currently
29 used for NWP.

30 **1. Introduction**

31 The ensemble Kalman Filter (EnKF; Evensen 1994; Houtekamer and Mitchell 1998; Evensen
32 and van Leeuwen 2000) and the 4D variational method (4DVar; Thepaut and Courtier 1991) are
33 the most commonly used filters and smoothers in atmospheric science. Ensemble/variational
34 hybrid approaches (e.g., Hamill and Snyder 2000; Lorenc 2003; Buehner 2005) combine the flow-
35 dependent ensemble covariance from an EnKF with climate-based covariance from variational
36 methods. The methods have also become well-established and widely accepted for global weather
37 prediction at major environmental prediction centers, such as the European Centre for Medium-
38 Range Weather Forecasts (ECMWF) , UK Met Office, Environment and Climate Change Canada
39 (ECCC), and National Centers for Environmental Prediction (NCEP). One strategy of the hybrid
40 methods, denoted as ensemble-4DVar (E4DVar; Zhang et al. 2009) in this manuscript, typically uses
41 tangent linear and adjoint model operators to minimize a cost function in the same manner as the
42 traditional 4DVar data assimilation system. A second strategy is 4D-ensemble-Var (4DEnVar; Liu
43 et al. 2008), in which the cost function minimization is computed based on an ensemble forecast
44 instead of using tangent linear and adjoint models. In the 4DEnVar, temporal covariances are
45 estimated from an ensemble of model trajectories that pass through the observation time window. In
46 either case, both methods approximate prior densities using a Gaussian and perform linearizations to
47 relax these assumptions. Therefore, strongly nonlinear model dynamics or measurement operators
48 cause these methods to be biased, which leads to the suboptimal use of major Earth observing
49 systems, such as satellite radiometers. For example, the combined impact of highly nonlinear model
50 dynamics and measurement operators introduces major data assimilation challenges in weather
51 regimes containing clouds or precipitation. As a result, most infrared satellite assimilation studies
52 mainly focus on clear-sky observations (e.g., Errico et al. 2007; Fabry and Sun 2010; Geer and Bauer

53 2011; Zou et al. 2013; Okamoto et al. 2014; Minamide and Zhang 2017; Honda and Coauthors
54 2018). This follows despite the known benefits of assimilating cloudy radiances for weather
55 forecasting (e.g., Vukicevic et al. 2004; Stengel et al. 2009; Privé et al. 2013). Some operational
56 centers are making efforts to cope with these issues and assimilate cloudy and precipitating
57 microwave radiances (e.g., Zhu et al. 2016; Geer et al. 2017, 2019). For further details on significant
58 advances and current plans of operational centers that are close to implementing assimilation, we
59 encourage readers to review the summary presented in Geer et al. (2018).

60 Several procedures have been proposed to improve the performance of these methods in nonlin-
61 ear regimes. For example, in order to deal with issues within the 4DVar system (e.g., Bonavita
62 et al. 2018), minimization of the 4DVar cost function typically follows multiple sets of iterations
63 to re-linearize tangent linear and adjoints for the model, measurement operators, or both around an
64 improved background solution. This step, known as an "outer loop," helps reduce bias caused by
65 linear assumptions, thus making Gaussian error approximations more appropriate. The minimiza-
66 tion strategy follows the Gauss–Newton method, which is guaranteed to approximate the posterior
67 mode for local minima.

68 Alternatively, a number of methods fall under the generic category of "iterative ensemble meth-
69 ods", which follow a similar strategy of periodic re-linearization. Note that here "iterations"
70 refers to multiple adjustments at a single time. Both 4DVar and the iterative ensemble methods
71 re-linearize the observation operator. The only difference is that in 4DVar, the observation op-
72 erator contains the nonlinear model. Gu and Oliver (2007) introduced the ensemble randomized
73 maximal likelihood filter (EnRML) to handle nonlinearity by means of iterations of the EnKF.
74 Sakov et al. (2012) proposed the iterative ensemble Kalman filter (IEnKF), which uses a deter-
75 ministic update form, ensemble square root filter, while EnRML uses a stochastic update form,
76 perturbed observations method. Following the introduction of ensemble Kalman smoother (EnKS;

77 van Leeuwen and Evensen 1996; Evensen and van Leeuwen 2000) for use in history matching by
78 Kjervheim et al. (2011), the iterative forms of smoothers have developed into useful tools by the
79 reservoir-engineering community for history matching reservoir models. Chen and Oliver (2012)
80 proposed an iterative form of EnRML targeted for oil-reservoir modeling, and Bocquet and Sakov
81 (2014) developed the iterative ensemble Kalman smoother (IEnKS), which extends IEnKF using a
82 fixed-lag smoother with an ensemble variational method.

83 Emerick and Reynolds (2012) introduced the multiple data assimilation scheme (MDA) to
84 improve EnKF estimates for nonlinear cases by assimilating the same data multiple times with the
85 covariance matrix of the measurement errors multiplied by the number of data assimilation. We
86 note that the name “MDA” is somewhat deceiving, as it is simply an application of tempering (Neal
87 1996). The process of the EnKF with MDA (EnKF-MDA) is based on the idea that a “large jump”
88 between the forecast and analysis states could be reduced by assimilating the same data multiple
89 times with increased measurement errors. MDA yields the same updated mean and covariance as
90 would be obtained from assimilating the same data with the original measurement error covariance
91 and no iterations when errors are Gaussian, and all operators are linear (Emerick and Reynolds
92 2012). For the nonlinear case, EnKF-MDA partly resolves issues with nonlinearity and leads to
93 smaller bias than a conventional EnKF. Emerick and Reynolds (2013) developed the EnKS with
94 MDA (EnKS-MDA) for reservoir simulations, and Bocquet and Sakov (2014) showed IEnKS with
95 MDA significantly outperforms standard EnKF and EnKS in strongly nonlinear regimes with a
96 simplified model. However, these methods have seen little attention in numerical weather prediction
97 (NWP) communities. While the convergence properties of these methods are unknown, numerical
98 experiments performed by Evensen (2018) suggest they can provide accurate solutions for mildly
99 nonlinear problems.

100 Lastly, particle filters (PFs) present a purely Bayesian filtering approach for state estimation,
101 which avoids many of the linear/Gaussian assumptions of the above methods. PFs provide a
102 much more general, non-parametric estimate of the model probability density function (PDF),
103 which is advantageous for non-Gaussian problems as long as a sufficient number of ensemble
104 members exist. Nevertheless, these methods can easily diverge when a relatively small number
105 of particles (ensemble members) are adopted for data assimilation; see Bengtsson et al. (2008),
106 Bickel et al. (2008), and Snyder et al. (2008) for discussions on ensemble size requirements for PFs.
107 Several strategies are proposed to overcome this filter collapse and apply PFs to data assimilation
108 problems for operational NWP models very recently. One common effort to avoid filter divergence
109 is to use localization, which restricts the influence of observations to nearby state variables.
110 For example, Poterjoy (2016) introduced the localized PF, which assimilates observations with
111 independent errors sequentially to combine sampled particles from a standard bootstrap PF with
112 prior particles in a manner that satisfies a set of local constraints. Following this work, Poterjoy
113 and Anderson (2016) and Poterjoy et al. (2017, 2019) demonstrate that the local PF works well for
114 high-dimensional systems. For these studies, the authors compare the local PF with EnKFs for a
115 simplified general circulation model and both idealized and real mesoscale convective systems in
116 the Weather Research and Forecasting (WRF) model, respectively. Even more recently, Potthast
117 et al. (2019) applied an alternative localized PF for global weather prediction using the Icosahedral
118 Nonhydrostatic Weather and Climate (ICON) model, which marks the first successful test of a PF in
119 an operational framework. These studies provide an incentive to further explore the potential of
120 localized PFs for weather prediction, especially considering the theoretical benefits they pose for
121 assimilating remotely sensed measurements, such as satellite radiance and radar reflectivity, which
122 require nonlinear measurement operators.

123 In addition to the methods described above, there are some notable developments related to
124 treatment of nonlinearity and non-Gaussianity. For example, Bishop (2016) introduces the GIGG-
125 EnKF algorithm, which retains the accuracy of the EnKF in the Gaussian case while lending it
126 a high degree of accuracy when the forecast and observation uncertainty are gamma or inverse-
127 gamma distributions. When conditions are not suitable for EnKF, such as the distribution of the
128 prior and observation are not Gaussian distribution, and the observation operator is non-linear,
129 Amezcuia and Leeuwen (2014) apply a pre-processing step known as Gaussian anamorphosis to
130 obtain state variables and observations that better fulfill the Gaussianity conditions. Fletcher (2010)
131 and Fletcher and Jones (2014) present variants of variational solvers for issues with lognormal and
132 mixed lognormal Gaussian distributed background and observation errors. While many methods
133 have been proposed to deal with such difficult conditions, this study mainly focuses on the tempered
134 iteration approach, which is relatively easy to implement in current NWP systems and can deal
135 with these problems well.

136 In this study, we discuss EnKF-MDA, EnKS-MDA, E4DVar, 4DEnVar, and the local PF data as-
137 similation methods and their use in applications that require nonlinear measurement operators. We
138 also examine the sensitivity of each method to user-specified parameters, which include ensemble
139 size, covariance localization radius of influence (ROI), inflation coefficients, data assimilation win-
140 dow length (DAW), and the number of iterations and outer loops. The comparisons are conducted
141 with the 40-variable dynamical system introduced in Lorenz (1996, hereafter L96), using numerical
142 experiments performed with conventional EnKF and EnKS techniques as benchmarks. This study
143 provides a necessary first step in understanding the complexity of assimilating remotely-sensed
144 measurements in weather models, which will require appropriate choices for data assimilation
145 methodology going forward.

146 Three main goals of these experiments are as follows: 1) investigate intrinsic limitations of current
147 data assimilation methodology for applications that require nonlinear measurement operators;
148 2) compare recently developed methods designed for nonlinear/non-Gaussian applications with
149 those currently used for operational NWP; 3) inform ongoing efforts to design future geophysical
150 modeling systems (e.g., NWP with Hurricane Analysis and Forecast System; HAFS), which will
151 inevitably need to exploit remotely-sensed measurements.

152 The manuscript is organized in the following manner. In Section 2, we present algorithmic
153 descriptions of each data assimilation method. Section 3, describes settings for data assimilation
154 experiments and results from the cycling experiments. The last section summarizes the main
155 findings of this study and discusses the potential of the methods for real numerical weather
156 prediction.

157 2. Data Assimilation Methods

158 In this section, we present the mathematical framework for each method, along with the dynamical
159 system adopted for performing numerical experiments. We use lowercase boldface font to indicate
160 vectors, uppercase boldface font to indicate matrices, and italic font to indicate scalars and nonlinear
161 operators.

162 In this study, let \mathbf{x}^f be an N_x -dimensional background model forecast; let \mathbf{y} be an N_y -dimensional
163 set of observations; let \mathbf{H} be the tangent linear operator that converts the model state to the
164 observation space; let \mathbf{R} be the $N_y \times N_y$ dimensional observation error covariance matrix; and let
165 \mathbf{P} be the $N_x \times N_x$ dimensional error covariance matrix. Superscript f and a denote forecast and
166 analysis, respectively.

167 *a. EnKF*

168 The EnKF is an approximate but efficient application of the Kalman Filter (Kalman 1960) and
169 explicitly includes the time evolution of error statistics, which operates effectively for moderately
170 nonlinear dynamical systems. In EnKF, \mathbf{P} is represented by ensemble members statistically. There
171 is no need to consider the tangent linear model operator used in KF, so EnKF has many advantages
172 for nonlinear dynamics. The analyzed state \mathbf{x}^a is given by the following Kalman filter equations
173 (e.g., Jazwinski 1970; Gelb et al. 1974)

$$\mathbf{x}^a = \mathbf{x}^f + \mathbf{K}(\mathbf{y} - \mathbf{H}\mathbf{x}^f) \quad (1)$$

$$\mathbf{K} = \mathbf{P}^f \mathbf{H}^T (\mathbf{H} \mathbf{P}^f \mathbf{H}^T + \mathbf{R})^{-1} \quad (2)$$

$$\mathbf{P}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^f (\mathbf{I} - \mathbf{K}\mathbf{H})^T + \mathbf{K}\mathbf{R}\mathbf{K}^T = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^f. \quad (3)$$

174 For the ensemble formulation, the covariance matrix \mathbf{P} can be defined as

$$\mathbf{P} = \mathbf{E}\mathbf{E}^T, \quad (4)$$

$$\mathbf{E} = \frac{1}{\sqrt{N_e-1}} [\delta\mathbf{x}^{(1)} | \cdots | \delta\mathbf{x}^{(N_e)}], \quad (5)$$

175 where $\delta\mathbf{x}^{(l)}$ is considered as a perturbation around $\mathbf{x}^{(l)}$, which is the l^{th} member from an ensemble
176 of N_e model states.

177 The Kalman filtering algorithm requires the computation of \mathbf{P}^a in (3). This process is equivalent to
178 producing an appropriate analysis ensemble or “ensemble update,” which has a sample covariance
179 of \mathbf{P}^a . For this study, all algorithms requiring an EnKF to update ensemble members use the serial
180 ensemble square-root filter (serial EnSRF; Whitaker and Hamill 2002). In general, this method
181 provides a deterministic update of the ensemble mean and perturbations about the ensemble mean
182 separately in a manner that satisfies the analysis mean and error covariance given by Kalman filter

¹⁸³ theory. The serial EnSRF assumes an ensemble update of the form

$$\mathbf{E}^a = (\mathbf{I} - \tilde{\mathbf{K}}\mathbf{H})\mathbf{E}^f. \quad (6)$$

¹⁸⁴ Andrews (1968) provides one solution, which involves Kalman gain matrix for perturbations of the
¹⁸⁵ form

$$\tilde{\mathbf{K}} = \mathbf{P}^f \mathbf{H}^T [(\mathbf{H}\mathbf{P}^f \mathbf{H}^T + \mathbf{R})^{-1/2}]^T [(\mathbf{H}\mathbf{P}^f \mathbf{H}^T + \mathbf{R})^{1/2} + \mathbf{R}^{1/2}]^{-1}. \quad (7)$$

¹⁸⁶ If observations are uncorrelated (\mathbf{R} is diagonal), each observation is treated serially, which makes
¹⁸⁷ the terms $\mathbf{H}\mathbf{P}^f \mathbf{H}^T$ and \mathbf{R} scalar. In this case, (3) can be simplified by assuming $\tilde{\mathbf{K}} = \alpha \mathbf{K}$ where α
¹⁸⁸ is a scalar value. The α was first derived by Potter (1964) as

$$\alpha = \left(1 + \sqrt{\frac{\mathbf{R}}{\mathbf{H}\mathbf{P}^f \mathbf{H}^T + \mathbf{R}}} \right)^{-1}. \quad (8)$$

¹⁸⁹ Thus, the serial version requires only the computation of a scalar factor to weight the traditional
¹⁹⁰ Kalman gain, and therefore is no more computationally expensive than the EnKF. In this study,
¹⁹¹ observations are assumed to be independent of each other, which makes only the computation
¹⁹² of (8) necessary. When assimilating a single observation through this formulation, \mathbf{K} and \mathbf{H} are
¹⁹³ vectors with N_x dimensions, and \mathbf{R} is scalar. Therefore, for an individual observation, the terms
¹⁹⁴ $\mathbf{P}^f \mathbf{H}^T$ and $\mathbf{H}\mathbf{P}^f \mathbf{H}^T$ reduce to scalars and can be computed even if the measurement operator is fully
¹⁹⁵ nonlinear, which is done by applying this operator on each ensemble member before calculating
¹⁹⁶ sample statistics.

¹⁹⁷ *b. EnKS*

¹⁹⁸ The EnKS operates by storing ensemble members at past times and then modifying them by a gain
¹⁹⁹ matrix that considers observations at the current time. Whitaker and Compo (2002) introduced
²⁰⁰ a serial ensemble square-root smoother (serial EnSRS), which uses Monte-Carlo estimates of
²⁰¹ forecast-analysis error cross-covariances needed to compute the Kalman smoother gain matrix.

202 While they applied the serial EnSRS to the fixed-lag Kalman smoother proposed by Cohn et al.
 203 (1994), in this study, we apply it as a fixed-interval Kalman smoother.

204 Here, define a subscript notation $m|n$ to indicate a quantity at observation time m , which
 205 incorporates knowledge of all observations up to and including time n . In this notation, (1) can be
 206 expressed as

$$\bar{\mathbf{x}}_{k|k}^a = \bar{\mathbf{x}}_{k|k-1}^f + \mathbf{K}(\mathbf{y} - \mathbf{H}\mathbf{x}_{k|k-1}^f). \quad (9)$$

207 In the serial square-root smoother, we use $\mathbf{P}_{(m,n)}^f$ to denote a cross-covariance matrix between
 208 variables at times m and n . The gain matrix \mathbf{K} involves the forecast error cross-covariance matrix
 209 $\mathbf{P}_{(k,k-l)}^f$ between $\mathbf{x}_{k|k-1}^f$ and $\mathbf{x}_{k-l|k-1}^f$.

$$\mathbf{K} = \mathbf{P}_{(k,k-l)}^f \mathbf{H}^T (\mathbf{H} \mathbf{P}^f \mathbf{H}^T + \mathbf{R})^{-1}, \quad (10)$$

210 where

$$\mathbf{P}^f = \mathbf{E}_{k|k-1}^f \mathbf{E}_{k|k-1}^{fT} \quad (11)$$

$$\mathbf{P}_{(k,k-l)}^f = \mathbf{E}_{k|k-1}^f \mathbf{E}_{k-l|k-1}^{fT}. \quad (12)$$

211 In the formulation of Cohn et al. (1994), this quantity is computed directly using the dynamical
 212 model because they developed the fixed-lag smoother without ensembles. On the other hand, the
 213 fixed-lag smoother with ensembles uses the dynamical model only when creating the background
 214 model forecast (Whitaker and Compo 2002). This idea can be directly implemented to the fixed-
 215 interval smoother. Note that the basic equations for the lag-0 implementation are identical to those
 216 of the serial EnSRF.

217 *c. Multiple data assimilation (MDA)*

218 Emerick and Reynolds (2012) introduced the MDA scheme, which assimilates the same data
 219 multiple times using an inflated covariance matrix of the measurement errors. They proved the

220 equivalence between single and multiple data assimilations for the linear-Gaussian case. Although
221 MDA contains approximations for the fully nonlinear case and the equivalence does not hold for
222 the nonlinear case, MDA benefits from the inclusion of smaller incremental ensemble corrections.

223 When the same set of observations are assimilated N_a times, the inflated measurement error
224 covariance matrix is used in (2),

$$\mathbf{K} = \mathbf{P}^f \mathbf{H}^T (\mathbf{H} \mathbf{P}^f \mathbf{H}^T + \alpha_i \mathbf{R})^{-1}, \quad (13)$$

225 where

$$\sum_{i=1}^{N_a} \frac{1}{\alpha_i} = 1. \quad (14)$$

226 Note that in this paper, we use $\alpha_i = N_a$ for $i = 1, \dots, N_a$ for all experiments with MDA. Rommelse
227 (2009) and Emerick and Reynolds (2012) suggest that when the assimilation of accurate data
228 in non-Gaussian regimes requires a “large jump” between the forecast and analysis state, the
229 magnitude of the jump can be overestimated by linear updates. This limitation of Gaussian data
230 assimilation techniques is observed frequently for the assimilation of all-sky radiance measurements
231 in weather models, **which is one of the reasons to** motivate the use of observation error inflation
232 (e.g., Minamide and Zhang 2017) and other ingeneous approaches as described in Section 1. By
233 using an inflated error covariance, a potentially large spurious update in the state vector is avoided.
234 Going a step further, iterative techniques like MDA replace single updates with a series of smaller
235 updates, which can correct filter or smoother updates that are too large.

236 In summary, the ensemble formulation of a fixed-interval serial EnSRS, with and without MDA,
237 are realized by the following procedures. For DAW length $l = 0$, the serial EnSRS reduces to
238 the serial EnSRF, and for $N_a = 1$, each iterative data assimilation cycle with MDA reduces to a
239 single-step data assimilation scheme, such as standard EnKF and EnKS.

Algorithm 1: EnKS with MDA cycle

1 Function EnKS-MDA_cycle:

```

2   for  $t = 1$ :time do
3       if  $t$  is at the end of DAW then
4            $t_0 \leftarrow t - l$ 
5           for  $i = 1$ :iteration  $N_a$  do
6               for  $k = 0$ :DAW length  $l$  do
7                    $\mathbf{x}_{t_0|t_0+k}^a \leftarrow \text{Serial\_EnSRS}(\mathbf{x}_{t_0|t_0+k-1}^f, \mathbf{x}_{t_0+k|t_0+k-1}^f, \mathbf{y}_{t_0+k}, \alpha_i \mathbf{R})$ 
8                    $\mathbf{x}_{t_0|t_0+k}^f \leftarrow \mathbf{x}_{t_0|t_0+k}^a$ 
9                    $\mathbf{x}_{t_0|t_0-1}^f \leftarrow \mathbf{x}_{t_0|t_0+l}^a$ 
10              for  $m = 1:N_e$  do
11                   $\mathbf{x}_{t+1|t}^{f(m)} \leftarrow M \mathbf{x}_{t_0|t}^{a(m)}$ 
12      else
13          for  $i = 1$ :iteration  $N_a$  do
14               $\mathbf{x}_{t|t}^a \leftarrow \text{Serial\_EnSRS}(\mathbf{x}_{t|t-1}^f, \mathbf{x}_{t|t-1}^f, \mathbf{y}_t, \alpha_i \mathbf{R})$ 
15               $\mathbf{x}_{t|t-1}^f \leftarrow \mathbf{x}_{t|t}^a$ 
16          for  $m = 1:N_e$  do
17               $\mathbf{x}_{t+1|t}^{f(m)} \leftarrow M \mathbf{x}_{t|t}^{a(m)}$ 
18      return

```

Algorithm 2: Serial EnSRS

```

1 Function Serial_EnSRS( $\mathbf{x}_{t-k|t-1}^f, \mathbf{x}_{t|t-1}^f, \mathbf{y}, \mathbf{R}$ ):
2   for  $j = 1:N_y$  do
3      $\mathbf{E}_{t-k|t-1}^f = \frac{1}{\sqrt{N_e-1}}[\delta\mathbf{x}_{t-k|t-1}^{f(1)} | \dots | \delta\mathbf{x}_{t-k|t-1}^{f(N_e)}]$ 
4      $\mathbf{E}_{t|t-1}^f = \frac{1}{\sqrt{N_e-1}}[\delta\mathbf{x}_{t|t-1}^{f(1)} | \dots | \delta\mathbf{x}_{t|t-1}^{f(N_e)}]$ 
5      $\mathbf{P}^f = \mathbf{E}_{t|t-1}^f \mathbf{E}_{t|t-1}^{f\top}$ 
6      $\mathbf{P}_{(t-k,t)}^f = \mathbf{E}_{t-k|t-1}^f \mathbf{E}_{t|t-1}^{f\top}$ 
7      $\mathbf{K} = \mathbf{P}_{(t-k,t)}^f \mathbf{H}^{(j)\top} [\mathbf{H}^{(j)} \mathbf{P}^f \mathbf{H}^{(j)\top} + \mathbf{R}^{(j)}]^{-1}$ 
241
8      $\bar{\mathbf{x}}_{t-k|t}^a = \bar{\mathbf{x}}_{t-k|t-1}^f + \mathbf{K}(\mathbf{y}^{(j)} - \mathbf{H}^{(j)} \mathbf{x}_{t|t-1}^f)$ 
9      $\alpha = (1 + \sqrt{\frac{\mathbf{R}^{(j)}}{\mathbf{H}^{(j)} \mathbf{P}^f \mathbf{H}^{(j)\top} + \mathbf{R}^{(j)}}})^{-1}$ 
10     $\tilde{\mathbf{K}} = \alpha \mathbf{K}$ 
11     $\mathbf{E}_{t-k|t}^a = \mathbf{E}_{t-k|t-1}^f - \tilde{\mathbf{K}} \mathbf{H}^{(j)} \mathbf{E}_{t|t-1}^f$ 
12     $\mathbf{x}_{t-k|t}^a = \bar{\mathbf{x}}_{t-k|t}^a + \mathbf{E}_{t-k|t}^a$ 
13     $\mathbf{x}_{t-k|t-1}^f \leftarrow \mathbf{x}_{t-k|t}^a$ 
14  return  $\mathbf{x}_{t-k|t}^a$ 

```

242 *d. E4DVar and 4DEnVar*

243 In this section, the equations of 4DVar, E4DVar, 4DEnVar are introduced briefly. For further
244 details on these methods, we encourage readers to review the mathematical descriptions in Liu et al.
245 (2009), Poterjoy and Zhang (2015), and Bannister (2017). The 4DVar method seeks a solution that
246 minimizes the misfit of a control variable to the background state \mathbf{x}_0^f at $t = 0$ and observations \mathbf{y}_t
247 at times $t = 0, 1, 2, \dots, \tau$. The minimization is carried out with respect to increments $\delta\mathbf{x}_0$ from \mathbf{x}_0^f
248 (Courtier et al. 1994). The cost function is expressed as the sum of background (J_b) and observation

²⁴⁹ (J_o) terms:

$$\begin{aligned} J(\delta \mathbf{x}_0) &= J_b(\delta \mathbf{x}_0) + J_o(\delta \mathbf{x}_0) \\ &= \frac{1}{2} \delta \mathbf{x}_0^T \mathbf{B}^{-1} \delta \mathbf{x}_0 + \frac{1}{2} \sum_{t=0}^{\tau} (\mathbf{H}_t \mathbf{M}_t \delta \mathbf{x}_0 - \mathbf{d}_t)^T \mathbf{R}_t^{-1} (\mathbf{H}_t \mathbf{M}_t \delta \mathbf{x}_0 - \mathbf{d}_t), \end{aligned} \quad (15)$$

²⁵⁰ where \mathbf{B} is the background error covariance and \mathbf{M}_t is the tangent linear model operator. The
²⁵¹ vector \mathbf{d}_t contains the innovations at each time along a model trajectory from \mathbf{x}_0^f and is given by

$$\mathbf{d}_t = \mathbf{y}_t - H_t[M_t(\mathbf{x}_0^f)], \quad (16)$$

²⁵² where M_t and H_t are the nonlinear forecast model and observation operators, respectively. In
²⁵³ practice, $\delta \mathbf{x}_0$ is replaced with \mathbf{Uv} , where \mathbf{v} is the new control variable, and \mathbf{U} is a square root of the
²⁵⁴ background error covariance matrix ($\mathbf{B} = \mathbf{U}\mathbf{U}^T$) (Lorenc 2003). The cost function in the control
²⁵⁵ variable space and the gradient of the cost function with respect to the control variables become:

$$J(\mathbf{v}) = \frac{1}{2} \mathbf{v}^T \mathbf{v} + \frac{1}{2} \sum_{t=0}^{\tau} (\mathbf{H}_t \mathbf{M}_t \mathbf{Uv} - \mathbf{d}_t)^T \mathbf{R}_t^{-1} (\mathbf{H}_t \mathbf{M}_t \mathbf{Uv} - \mathbf{d}_t) \quad (17)$$

$$\nabla_{\mathbf{v}} J = \mathbf{v} + \sum_{t=0}^{\tau} \mathbf{U}^T \mathbf{M}_t^T \mathbf{H}_t^T \mathbf{R}_t^{-1} (\mathbf{H}_t \mathbf{M}_t \mathbf{Uv} - \mathbf{d}_t) \quad (18)$$

²⁵⁶ For E4DVar and 4DEnVar, using a similar substitution described above, $\delta \mathbf{x}_0$ is separated into
²⁵⁷ two terms to include a hybrid covariance in the variational cost function. For NWP applications,
²⁵⁸ the ensemble contribution of the hybrid covariance is often much greater than the static covariance
²⁵⁹ (Kleist and Ide 2015), however, such a choice is directly dependent upon the quality of ensemble,
²⁶⁰ ensemble size, and model error. For the L96 model, Poterjoy and Zhang (2015) found the static
²⁶¹ error covariance to have a major impact only when an imperfect model is used for data assimilation,
²⁶² which is not explored in the current study. Therefore, we omit the use of a static error covariance
²⁶³ to reduce the number of parameters to examine for this study. As a result, we have

$$\delta \mathbf{x}_0 = \delta \mathbf{x}_0^e = \mathbf{U}^e \mathbf{v}^e, \quad (19)$$

264 where $\delta\mathbf{x}_0^e$ is the increment resulting from the ensemble-estimated covariance. As described in
 265 Buehner (2005), \mathbf{U}^e can then be written

$$\mathbf{U}^e = [\mathbf{e}^{(1)} | \cdots | \mathbf{e}^{(N_e)}] \quad (20)$$

$$\mathbf{P} \circ \mathbf{C} = \mathbf{U}^e \mathbf{U}^{e\mathbf{T}}, \quad (21)$$

$$\mathbf{e}^{(n)} = \sqrt{\frac{1}{N_e - 1}} \times \text{diag}(\mathbf{x}_0^{f(n)} - \bar{\mathbf{x}}_0^f) \mathbf{C}^{\frac{1}{2}}, \quad (n = 1, 2, \dots, N_e), \quad (22)$$

266 where \circ indicates element wise multiplication, and \mathbf{C} is the correlation matrix used for localizing
 267 the ensemble covariance. From these equations, the cost function and the gradient of E4DVar are
 268 found by substituting \mathbf{U}^e for \mathbf{U} and \mathbf{v}^e for \mathbf{v} in (17) and (18). Using an ensemble forecast stored at
 269 each observation time in DAW, $\mathbf{M}_t \mathbf{U}^e$ can be rewritten as

$$\begin{aligned} \mathbf{M}_t \mathbf{U}^e &= [\mathbf{M}_t \mathbf{e}^{(1)} | \cdots | \mathbf{M}_t \mathbf{e}^{(N_e)}] \\ &= [\hat{\mathbf{e}}_t^{(1)} | \cdots | \hat{\mathbf{e}}_t^{(N_e)}] \end{aligned} \quad (23)$$

$$\begin{aligned} \hat{\mathbf{e}}_t^{(n)} &= \sqrt{\frac{1}{N_e - 1}} \times \text{diag}(\mathbf{x}_t^{f(n)} - \bar{\mathbf{x}}_t^f) \mathbf{C}^{\frac{1}{2}} \\ &= \sqrt{\frac{1}{N_e - 1}} \times \text{diag}(M_t(\mathbf{x}_0^{f(n)}) - \bar{M}_t(\mathbf{x}_0^f)) \mathbf{C}^{\frac{1}{2}} \end{aligned} \quad (24)$$

270
 271 By substituting (23) into (17) and (18), the 4DEnVar cost function and the gradient can be expressed
 272 without the tangent and adjoint model.

273 Note that while E4DVar uses tangent linear and adjoint models to propagate a localized error
 274 covariance through the DAW, 4DEnVar requires the localization of time covariances. Most previous
 275 studies use the same correlation matrix at each time thus ignoring the complexity of introducing
 276 a localization of time-dependent covariance (LTC) (Liu et al. 2009; Buehner et al. 2010; Liu and
 277 Xiao 2013; Fairbairn et al. 2014; Poterjoy and Zhang 2015).

278 The method also allows for the use of either the nonlinear operator H_t or the tangent linear
 279 operator \mathbf{H}_t in its place. This study explores both approaches in 4DEnVar experiments to identify

280 which option presents the largest advantage for nonlinear operators. To perform the localization,
281 we calculate the tangent linear operator \mathbf{H}_t at each time and use it to propagate a localized error
282 covariance through the DAW. Moreover, this study re-runs the ensemble in outer loops for 4DEnVar,
283 despite the fact that it is prohibitively costly for weather applications. This step is done to allow
284 for a more direct comparison with incremental E4DVar with outer loops.

285 To form a hybrid analysis, the variational solution is typically taken as the posterior mean and
286 posterior perturbations from an EnKF are recentered about this solution at the middle of the time
287 window (Zhang et al. 2009; Poterjoy et al. 2014). This approach is more consistent with the
288 methodology adopted at major NWP modeling centers (Bannister 2017). For the current study, we
289 instead add posterior perturbations to the mean analysis at the end of each DAW. This option has a
290 number of advantages, namely, the EnKF assimilates measurements at the appropriate times over
291 an assimilation window, thus providing an EnKF posterior mean that is theoretically equivalent to
292 the 4DVar posterior mean in the absence of sampling error and nonlinearity. It also permits a more
293 direct comparison of smoothers and filters explored in this study.

294 In summary, the ensemble formulation of E4DVar and 4DEnVar are realized by the following
295 procedures.

Algorithm 3: Ensemble/variational hybrid data assimilation without static error covariance

```

1 Function ensemble_variational_hybrid( $\mathbf{U}^e, \mathbf{x}_0^f, \mathbf{y}, \mathbf{R}$ ):
2   if 4DEnVar w/o LTC then
3      $\mathbf{H}_t \leftarrow H_t$ 
4   while Outer Loop do
5      $\mathbf{d}_t = \mathbf{y}_t - H_t[M_t(\mathbf{x}_0^f)]$ 
6     while Inner Loop do
7       switch Hybrid do
8         case E4DVar
9            $\mathbf{D}_t \leftarrow \mathbf{M}_t \mathbf{U}^e$ 
10        case 4DEnVar w/ LTC .or. 4DEnVar w/o LTC
11           $\mathbf{D}_t \leftarrow [\hat{\mathbf{e}}_t^{(1)} | \dots | \hat{\mathbf{e}}_t^{(N_e)}]$ 
12           $J(\mathbf{v}^e) = \frac{1}{2} \mathbf{v}^{eT} \mathbf{v}^e + \frac{1}{2} \sum_{t=0}^{\tau} (\mathbf{H}_t \mathbf{D}_t \mathbf{v}^e - \mathbf{d}_t)^T \mathbf{R}_t^{-1} (\mathbf{H}_t \mathbf{D}_t \mathbf{v}^e - \mathbf{d}_t)$ 
13           $\nabla_{\mathbf{v}^e} J = \mathbf{v}^e + \sum_{t=0}^{\tau} \mathbf{D}_t^T \mathbf{H}_t^T \mathbf{R}_t^{-1} (\mathbf{H}_t \mathbf{D}_t \mathbf{v}^e - \mathbf{d}_t)$ 
14           $\mathbf{v}^e = \arg \min(J(\mathbf{v}^e))$ 
15           $\mathbf{x}_0^f \leftarrow \mathbf{x}_0^f + \mathbf{U}^e \mathbf{v}^e$ 
16         $\mathbf{x}_0^a \leftarrow \mathbf{x}_0^f$ 
17        return  $\mathbf{x}_0^a$ 

```

297 *e. The local PF*

298 The current study uses the local PF proposed by Poterjoy et al. (2019). For simplicity, this
299 section highlights important aspects of the local PF that are relevant to the comparisons performed
300 in this study. Our experiments take advantage of additional regularization, tempering, and hybrid

301 strategies that are unique to the local PF, which are briefly discussed in this section. For full details
302 on this methodology, we refer readers to Poterjoy (2021).

303 The local PF assimilates observations serially, performing a bootstrap PF update for particles
304 projected onto the current observation in the sequence, followed by a model-space update. For a
305 given observation y , the model-space update replaces the standard bootstrap re-sampling step with
306 one that merges sampled particles and prior particles:

$$\mathbf{x}_y^n = \bar{\mathbf{x}}_y + \mathbf{r}_1 \circ (\mathbf{x}^{k_n} - \bar{\mathbf{x}}_y) + \mathbf{r}_2 \circ (\mathbf{x}^{k_n} - \bar{\mathbf{x}}_y), \quad (25)$$

307 where \mathbf{x}_y^n is an updated particle, \mathbf{x}^n is the n^{th} prior particle, \mathbf{x}^{k_n} is the n^{th} sampled particle, $\bar{\mathbf{x}}_y$ is
308 the localized posterior mean based on importance weights that consider all observations up to y ,
309 and \mathbf{r}_1 and \mathbf{r}_2 are derived to satisfy the posterior mean and variance of marginals. The sampled
310 particles are selected from a bootstrap re-sampling of past updated particles using a cumulative
311 distribution formed by weights calculated from particle likelihoods for y . In general, the posterior
312 particles formed from linear combinations of the sampled and prior particles are localized, because
313 \mathbf{r}_1 and \mathbf{r}_2 are calculated based on localized moments.

314 Poterjoy et al. (2019) provide several improvements to the Poterjoy (2016) local PF, which are
315 aimed at preventing particle weight collapse. In addition, Poterjoy (2021) introduces regularization
316 and tempering methodology to further improve filter performance when sampling error is large. In
317 short, regularization raises particle weights to a power β , which is pre-determined to yield marginal
318 particle weights that have a specified "effective sample size," similar to the methodology described
319 in Poterjoy et al. (2019). Regularization acts as a heuristic means of preventing weight collapse,
320 similar to observation error inflation. It provides a strategy for assimilating observations through
321 tempered iterations (Neal 1996), each with a unique set of β coefficients. Unlike regularization,
322 tempering does not introduce bias in the posterior estimate.

323 The method also benefits from the use of a mixing parameter, γ , to increase particle diversity in
324 the vicinity of observations. As described in Poterjoy (2021), \mathbf{r}_1 in (25) is multiplied by γ , which
325 introduces a smooth “jittering” of particles. The coefficients in \mathbf{r}_2 are then modified so that the
326 first two posterior moments are still maintained.

327 3. Cycling data assimilation experiments

328 We perform separate sets of data assimilation experiments to investigate limitations for nonlinear
329 applications and examine the sensitivity of the methods to user-specified parameters. These
330 parameters include the number of iterations, DAW, ensemble size, ROI, inflation, and measurement
331 operators. The first two sets of experiments focus primarily on key parameters for smoothers, which
332 are known to be sensitive to nonlinearity in model dynamics and measurement operators. These
333 parameters are the number of iterations and DAW length. The third set of experiments focuses
334 more broadly on the comparison between filters and smoothers. For this purpose, we select three
335 types of observation networks, each differing primarily in choice of measurement operator. The
336 system parameters for each of these cases are summarized in Table 1.

337 a. Experimental design

338 1) MODEL

339 We examine several aspects of the data assimilation methods by performing idealized numerical
340 experiments with the L96 model (Lorenz 1996; Lorenz and Emanuel 1998). The model consists
341 of variables x_i for $i = 1, 2, \dots, N_x$, which are equally spaced on a periodic domain. The variables
342 are evolved in time using the set of differential equations,

$$\frac{dx_i}{dt} = (x_{i+1} - x_{i-2})x_{i-1} - x_i + F, \quad (26)$$

343 with cyclic boundaries: $x_{i+N_x} = x_i$ and $x_{i-N_x} = x_i$. We integrate (26) forward numerically using
344 the fourth-order Runge-Kutta method with a time step of 0.05 [units defined arbitrarily as 6 h; see
345 Lorenz (1996)]. For this study, we fix N_x at 40 and use $F = 8.0$, which causes the model to behave
346 chaotically.

347 2) OBSERVATIONS

348 In this study, we create observation networks of $N_y = 10$, $N_y = 15$, and $N_y = 20$ observations that
349 are evenly spaced on model grid points. Note that for the case $N_y = 15$, we line up the observation
350 points so that they were evenly distributed (i.e., 1, 4, 6, 9, 12, 14, 17, 20, 22, 25, 28, 30, 33, 36,
351 39). We simulate measurements every time step (6 h) by selecting values from a truth simulation,
352 applying one of the operators discussed below, then adding uncorrelated Gaussian errors selected
353 from $N(0, \sigma_y^2 I)$, where σ^2 is the measurement error variance.

354 Experiments include three forms of measurement operator. The "Linear Case" uses an H that
355 selects model variables to be directly observed; i.e., $H(\mathbf{x}) = \hat{\mathbf{x}}$, where $\hat{\mathbf{x}}$ is a subset N_y variables in
356 \mathbf{x} chosen by H . The "Nonlinear Case 1" extends H to be quadratic: $H(\mathbf{x}) = \hat{\mathbf{x}} \circ \hat{\mathbf{x}}$. The "Nonlinear
357 Case 2" introduces log and absolute value operators to the interpolated values: $H(\mathbf{x}) = \log[ABS(\hat{\mathbf{x}})]$,
358 where ABS indicates the absolute value of each element. The second and third operators produce
359 weak and strong nonlinearities, respectively. Note that we apply a simple gross error check for the
360 third measurement operator to prevent observations from being assimilated if the value of $ABS(\hat{\mathbf{x}})$
361 is extremely small. Observation error standard deviations are set to $\sigma_y = 1.0$ for the first two
362 experiments, but reduced to $\sigma_y = 0.1$ for the third case to compensate for the smaller information
363 content provided by this observation network.

364 3) OBSERVATION TIMELINE AND VERIFICATION

365 Observations are assimilated over a 3650-day period, and root-mean-square errors (RMSEs)
366 from the last 3550 days are used to quantify the accuracy of the posterior analyses. The first
367 100 days of data assimilation act as a spinup period to allow members time to reach quasi-steady
368 posterior solutions for the given setup of the model and observation network.

369 In the first sets of experiments described below, we perform direct comparisons of the different
370 smoothers used for this study. For these experiments, we calculate RMSEs at the beginning of
371 the DAW (smoother solution), because it more directly indicates how much information is being
372 extracted from observations at future times. For experiments shown later in this section, which
373 compare different forms of smoothers and filters, we calculate RMSEs at the end of the DAW (filter
374 solution).

375 4) TREATMENT OF SAMPLING ERRORS

376 Potential sources of bias in the estimation of the posterior include small ensemble sizes relative to
377 the state dimensions, model errors, nonlinearities, and assumptions used to form data assimilation
378 algorithms. Therefore, heuristic covariance localization strategies are needed to reduce noise
379 introduced from ensemble error approximations by performing a Schur product between this
380 matrix and an empirically defined correlation matrix with a tunable length scale parameter, or ROI.
381 For this purpose, we use the fifth-order correlation function given by Eq. (4.10) of Gaspari and
382 Cohn (1999).

383 The posterior covariance is inflated by replacing ensemble perturbations with linear combinations
384 of posterior and prior perturbations, which is known as a covariance relaxation method (Zhang
385 et al. 2004):

$$\mathbf{x}_n'^a \leftarrow (1 - \alpha) \mathbf{x}_n'^a + \alpha \mathbf{x}_n'^f. \quad (27)$$

386 The α in (27) is called the “relaxation coefficient” and ranges from 0 to 1, where $\alpha = 0$ implies no
387 inflation. We adopt this inflation strategy to remain consistent with Poterjoy and Zhang (2015),
388 who perform a similar comparison of ensemble data assimilation algorithms, including hybrid
389 covariance forms of E4DVar and 4DEnVar.

390 As previously stated, the local PF uses a mixing parameter to maintain particle diversity during
391 updates. While this approach is effective at preventing filter divergence with small ensembles,
392 it does not directly increase prior or posterior error variance in the same manner as relaxation.
393 Similar to the α used in the relaxation method the coefficient γ is a scalar between 0 and 1. It
394 further mixes prior particles and resampled particles everywhere particles are updated in state
395 space, including in the vicinity of measurements.

396 *b. Results*

397 1) SENSITIVITY TO THE NUMBER OF OUTER ITERATIONS

398 The variational and MDA techniques present different iterative strategies for coping with nonlin-
399 earity in model dynamics and measurement operators. For the first set of experiments, we explore
400 the sensitivity of these methods to the number of iterations. In addition to providing a direct
401 comparison of different smoothers for a nonlinear application, these experiments help motivate
402 choices for iteration number in the filter/smooth comparisons that follow. As previously stated,
403 we also explore the advantage of LTC, which is a localization of the ensemble covariance at each
404 observation time in the window calculated with the tangent linear operator \mathbf{H}_t at each time for
405 nonlinear operators.

406 Figure 1 shows mean RMSEs of EnKS-MDA, E4DVar, 4DEnVar with LTC, and 4DEnVar
407 without LTC from experiments with Nonlinear Case 1. Ensemble size N_e , relaxation coefficient α ,
408 and DAW are fixed at 10, 0.3, and 24 h, respectively. We find this window length to be sufficient

409 for exploring sensitivity to outer loops without adding computational cost. We do not show results
410 using Nonlinear Case 2 because all methods tested in this study (other than the PF) experience
411 filter divergence when measurements are simulated with this operator. These results are discussed
412 in the filter/smooth comparisons below.

413 For the observation networks tested in this study, we find that increasing the number of iterations
414 has little impact on mean error for EnKS-MDA. For E4DVar and 4DEnVar, however, we confirm
415 that multiple outer loops are required for optimal performance. Under various circumstances,
416 outer loops are also needed to prevent filter divergence with the nonlinear measurement operator.

417 For example, E4DVar with ROI fixed at 1 and a single outer loop shows a worse score than with
418 multiple iterations. We also find that the minimum number of outer loops required to prevent
419 filter divergence is sensitive to ROI. E4DVar experiments using an ROI of 3 and 5 require 2 and 3
420 outer iterations, respectively. Nevertheless, the improvements of multiple iterations beyond these
421 numbers becomes negligible once a sufficient number is reached.

422 We also find E4DVar to be more stable than 4DEnVar for the tested observation networks. Recall,
423 this method uses the tangent linear model to propagate increments along a nonlinear trajectory to
424 future times, and its adjoint to propagate sensitivity gradients backward from observation times
425 to the beginning of the DAW. The trajectory is updated between outer iterations to ensure that
426 values propagated by the tangent linear and adjoint remain small enough for linear approximations
427 to remain valid. In addition, the input of ensemble error covariance at a single time in this
428 process (at the beginning of the DAW) greatly simplifies the removal of spurious error correlations
429 through localization (Fairbairn et al. 2014; Poterjoy and Zhang 2015). For this reason, we find
430 configurations of 4DEnVar that use LTC to be more stable than configurations without LTC. Based
431 on this finding, we use this strategy for all remaining 4DEnVar experiments.

432 2) SMOOTHER PERFORMANCE AS A FUNCTION OF DATA ASSIMILATION WINDOW LENGTH

433 Several of the methods examined in this study are smoothers, which are sensitive to the choice of
434 DAW. For the next set of experiments, we compare mean RMSEs of EnKS, EnKS-MDA, E4DVar,
435 and 4DEnVar as a function of DAW (Fig. 2). As stated above, the verification for these experiments
436 focuses on the posterior smoothing density; i.e., the analysis at the beginning of the DAW. For
437 these experiments, we fix the ensemble size N_e , relaxation coefficient α , and ROI at 10, 0.3, and
438 3, respectively. The number of iterations (MDA) and outer loops (Var) are both set to 3. These
439 decisions are based on results from the previous set of experiments, showing little benefit beyond
440 3 iterations for chosen model and observation networks. **As we revisit later, in experiments with**
441 **the Nonlinear Case 1, the observation value is closer to the truth all the time, making an order of**
442 **RMSEs magnitude smaller than with the Linear Case.**

443 We start by examining the impact of MDA on the EnKS. Our experiments show that MDA
444 provides slight benefits over non-iterative configurations, even at DAW length $l = 0$ h and linear H
445 (Fig. 2a). Note that EnKS is identical EnKF for this DAW length, so no benefits are expected from
446 the iterations. One possible reason for the difference in skill between EnKS and EnKS-MDA at
447 DAW length $l = 0$ h is due to small differences in how ensemble perturbations are adjusted through
448 iterative steps. For linear cases with Gaussian prior, MDA yields the same posterior mean and
449 covariance as would be obtained without iterations. As suggested by Rommelse (2009), the extra
450 uncertainty included in measurements during each iteration ensures that adjustments from prior
451 to posterior values are dampened, which is beneficial when linear updates overestimate the true
452 impact of measurements that relate nonlinearly to model variables. Therefore, MDA provides an
453 opportunity for the EnKF to remove over-adjustments that may occur during previous iterations.
454 We suspect that a combination of serial processing of observations and iterative updates of members

455 leads to slight improvements in how the EnKF samples from the posterior density, which is assumed
456 to be non-Gaussian because of the nonlinear model. This finding explains why the MDA approach
457 yields small improvements in posterior estimates over successive data assimilation steps, **which is**
458 **also explored later.**

459 The advantage of the EnKS-MDA over the EnKS with the DAW length $l > 0\text{h}$ is shown in both
460 the linear and nonlinear cases. For both experiments, the MDA scheme resolves issues with the
461 nonlinearity of the model and observation measurement operators in DAW. EnKS is stable even
462 with the longer DAW, but the quality of the analysis starts to degrade as the DAW length is increased
463 beyond a certain point, because sampling error increases as the DAW become longer. Compared to
464 4DEnVar, EnKS is more stable with longer DAW. This indicates that the forecast error covariance
465 matrix used for smoother is approximated more accurately by cross-covariance matrix ($\mathbf{P}_{(k,k-l)}^f$)
466 in EnKS than by ensemble-based error covariance in 4DEnVar. Unlike the variational methods,
467 the EnKS samples directly from the smoothing density rather than using a hybrid strategy of re-
468 centering EnKF perturbations about a variational solution. Furthermore, the 4DEnVar experiment
469 contains higher RMSEs than E4DVar because of the difficulty required in removing sampling
470 errors from temporal error covariances when N_e is small (Fairbairn et al. 2014; Poterjoy and Zhang
471 2015).

472 3) FILTER PERFORMANCE

473 In this section, we present results from experiments that examine the sensitivity and limitations
474 of EnKF, EnKF-MDA, EnKS, EnKS-MDA, E4DVar, 4DEnVar, and the local PF to ROI, relax-
475 ation coefficient α , PF mixing coefficient γ , and the observation measurement operators. For
476 all experiments, DAW for EnKS, EnKS-MDA, E4DVar, and 4DEnVar is set to 24 h, and the
477 number of iterations and outer loops are set to 3. For the local PF, the regularization operates

478 only when the effective ensemble size N_{eff} falls below a target value of N_{eff} . The target N_{eff} is
479 fixed at $N_{\text{eff}}^t = 0.5 \times N_e$ for all experiments. We define filter divergence objectively by flagging
480 configurations that produced 100-cycle average RMSEs larger than 2 with NA for "not available"
481 in the figures.

482 Figure 3 shows mean RMSEs from the experiment with the Linear Case. Results from all
483 methods, which use a fixed ensemble size N_e of 10, are displayed in charts that show RMSE as
484 a function of tunable variables used to reduce the impact of sampling error. For example, Fig. 3
485 demonstrates that the optimal ROI and α are comparable for EnKF, EnKF-MDA, EnKS, EnKS-
486 MDA, E4DVar, and 4DEnVar. In most cases, the optimal scores are typically found near values
487 that lead to filter divergence. RMSEs from the local PF are slightly worse due to the small number
488 of particles used in these experiments. Figure 4 shows results from experiments with the same
489 settings except N_e is increased to 40. As expected, all methods become more stable and require
490 less localization (larger ROI) and less inflation (smaller α and γ) as N_e increases. Comparing the
491 results of the local PF from Fig. 3 and 4, it is clear that the larger ensemble size is required for
492 the local PF to outperform the methods with a Gaussian prior with the tested observation network.
493 EnKS shows clearly better performances than EnKF, and MDA makes EnKF and EnKS slightly
494 improved, even with a linear measurement operator because of the reason mentioned in section
495 3.b.1.

496 Results from Nonlinear Case 1 experiments using $N_e = 10$ are shown in Fig. 5. Unlike exper-
497 iments with the Linear operator, filter divergence occurs without setting strict limits on ROI and
498 inflation coefficients for all methods. Despite the nonlinear measurement operator in these exper-
499 iments, we find no benefits from the assimilation methods designed specifically for non-Gaussian
500 applications, namely EnKF-MDA and the local PF. We believe this result occurs because of the
501 accuracy and frequency at which these measurements are collected. For model variables that can

502 reach magnitudes of $O(10)$, measuring the square of these variables with an error variance of 1
503 yields highly accurate information for characterizing the posterior. This factor, combined with
504 the frequency of these measurements lead to prior and posterior members that remain close to the
505 truth at all times, thus making Gaussian assumptions more valid. We revisit this property of the
506 Nonlinear Case 1 measurement operator in the next section.

507 These experiments also continue to show clear benefits of E4DVar and 4DEnVar over EnKF,
508 both in terms of stability and accuracy. We hypothesize that the 4D data assimilation methods are
509 less sensitive to sampling noise, which becomes the dominant source of bias in mildly nonlinear
510 regimes. Likewise, we find E4DVar to be more stable than 4DEnVar when N_e is small, owing
511 mostly to the localization strategy adopted by this method. We note that all algorithms approach
512 similar RMSEs as ensemble size increases; i.e., Fig. 6 shows results with $N_e = 40$ for the same
513 observation network. The reason why E4DVar and 4DEnVar are more stable than EnKS is due
514 to the small number of ensembles and the nonlinear observations that prevent from accurately
515 estimating of the cross-covariance matrix in the Serial EnSRS.

516 Figure 7a shows the mean RMSEs from experiments of the local PF that use measurements
517 simulated with Nonlinear Case 2 and $N_e = 40$. For this configuration, filter divergence occurs in all
518 methods except the local PF, owing to the strong nonlinearity in the measurement operator. This
519 observation network presents a case where nonlinearity in the application becomes a much larger
520 factor than sampling error in ensemble-estimated prior and posterior distributions. Even with
521 $N_e = 100$, the Gaussian-based methods fail to provide stable solutions despite the potentially large
522 amount of information contained in these measurements, as indicated by the low RMSEs in the local
523 PF posterior (Fig. 7b). Since the local PF makes no parametric assumptions about prior densities,
524 non-Gaussian observation-space priors, which are produced by nonlinear measurement operators,
525 do not have a negative impact on the filter. Therefore, it can continue to extract information from the

526 observation network regardless of nonlinearity in H . These results confirm past studies, showing
527 that local PF provides benefits when N_e is sufficiently large or when the observation operator is
528 strongly nonlinear. It also demonstrates limitations in iterative techniques for cases where the
529 observation function is quadratic and the posterior may be bimodal.

530 **4) FILTER PERFORMANCE FOR SPARSE OBSERVATION NETWORKS**

531 Using the mildly nonlinear observation operator (Nonlinear Case 1), we investigate the behavior
532 of each method for increasingly sparse observation networks. These experiments use an observation
533 frequency of 24 h, which is increased from 6 h in previous experiments, and $N_y = 20, 15$, and 10
534 for equally-spaced measurements at each observation time. We also fix the DAW for smoothers at
535 48 h; see Table 1 for full summary. These results are summarized in Figs. 8 – 10 using the same
536 graphics adopted in the previous section comparing filter performance.

537 Compared to EnKF, the performance of EnKS becomes slightly worse for these observation
538 networks. As discussed in Evensen and van Leeuwen (2000), the EnKS differs from the EnKF
539 by computing updates of the model parameters using all the observations in DAW simultaneously
540 rather than using recursive updates in time. Therefore, with these settings, the recursive updates
541 of EnKF keep the model solutions close to the truth at any given time during the experiment, and
542 operate on marginal densities that are relatively close to Gaussian at any given time. While posterior
543 marginals of the smoothing density are expected to be close to Gaussian at the beginning of the
544 DAW (Morzfeld and Hodyss 2019), marginals near the end of the DAW can evolve non-Gaussian
545 characteristics because of nonlinearity in the model.

546 The benefits of MDA for EnKF are clearly shown in Fig. 8 and Fig. 9. For suboptimal
547 configurations of the EnKF, prior members exhibit a larger variance thus allowing nonlinearity
548 in H to become a significant source of bias for Gaussian methods. Therefore, the optimal EnKF

549 configuration remains almost the same with MDA, but the set of parameters over which the filter
550 remains stable becomes larger than that of the standard EnKF. For these observation networks,
551 careful choices of ROI and α are sufficient for mitigating bias caused by Gaussian assumptions,
552 but MDA helps prevent filter divergence when these parameters are improperly chosen.

553 For a long DAW (48 h) E4DVar becomes more stable than 4DEnVar with $N_y = 20$ (Fig. 8),
554 but both methods diverge when observation density is decreased further (Fig. 9–10). For these
555 experiments, we find EnKS-MDA to be more accurate than the EnKS and much more stable than
556 the variational methods. This result is anticipated in nonlinear regimes, since incremental updates
557 reduce potential over-adjustments by the ensemble smoother over the time window. As previously
558 stated, the improved performance over E4DVar and 4DEnVar for sparse observation networks (Fig.
559 9) must follow from the ability of EnKS-MDA to sample directly from the smoothing density, rather
560 than relying on a hybrid approach, which is a clear advantage of this method. Algorithmically, the
561 EnKS operates in a manner that is very similar to 4DEnVar, but with the added benefit of updating
562 ensemble perturbations about the posterior mean, rather than re-centering EnKF perturbations
563 about the posterior mode.

564 For the experiment with $N_y = 15$, we also verify the second moment of the posterior to examine
565 potential shortcomings in uncertainty estimates. The observation network and ensemble size used
566 in these simulations poses challenges for several data assimilation method used here, in that filter
567 divergence is prevented for a narrower range of parameters than previous experiments. Figure 11
568 shows the ratio of spread to RMSEs, indicating whether the ensemble spread is overestimated or
569 underestimated with respect to the RMSE. The results of all methods are presented except E4DVar
570 and 4DEnVar, which do not estimate posterior variance—recall that ensemble perturbations are
571 updated using an EnKF instead. Ideally, the spread and RMSE should be equivalent, but sampling
572 error and assumptions made during data assimilation may lead to inconsistent results. Likewise,

573 heuristic techniques for treating sampling errors, such as localization and covariance relaxation
574 can also introduce suboptimal uncertainty estimates. For all filters and smoothers examined in
575 this study, the best match between spread and RMSE tends to occur when RMSE is at a minima
576 (Fig. 11a-d). The further away from the optimal parameter settings, the larger the mismatch
577 between spread and RMSE. As such, filter divergence occurs when the spread begins to become
578 overestimated or underestimated for all methods (Fig. 11a-d).

579 Despite the difficulty posed by these observation networks, we find that the local PF can be
580 configured to produce stable results, even for data-sparse regimes, which was expected for this
581 method (Poterjoy 2021). This property of the local PF is illustrated for the $N_y = 10$ case, where it is
582 the only method that does not diverge for all parameter value (Fig. 10). These results demonstrate
583 challenges that exist for the mildly nonlinear observation operator as the spatial and temporal
584 density of measurements decreases to yield larger prior uncertainty.

585 5) LOCAL PF PERFORMANCE AS A FUNCTION OF ENSEMBLE SIZE

586 Figure 12 shows the mean RMSEs of the local PF as a function of ensemble size. These
587 experiments use a fixed PF mixing coefficient of $\gamma = 0.3$ and two N_{eff}^t values of $0.2 \times N_e$ and
588 $0.8 \times N_e$. The results are similar for the cases with the linear and mildly nonlinear measurement
589 operators (Fig. 12a and b) in that optimal ROI increases with ensemble size.

590 This is because the large ensemble size yields fewer sampling errors thus needing less localization.
591 For the strongly nonlinear measurement operator, however, the difference in RMSEs for the range
592 of ROI choices become small as the ensemble size increases (Fig. 12c). This result may reflect
593 either the limited information contained in these measurements. That is, because they only observe
594 the *log* of the absolute value of variables, distant multivariate updates from these measurements
595 are truly very small, thus requiring very large ensemble sizes to estimate accurately. They may

596 also suggests that sampling errors and other factors, such as assumptions made by local PF update
597 equations, become less dominant for nonlinear applications of this type.

598 Furthermore, the experiments demonstrate a dependence of optimal N_{eff}^t on ensemble size.
599 When the ensemble size is small, experiments with higher N_{eff}^t show more accurate results. As
600 the ensemble size increases, the lower N_{eff}^t shows smaller posterior RMSEs. This suggests that the
601 larger N_{eff}^t can result in over-inflation when the ensemble size is large.

602 4. Conclusions

603 In geophysical models, such as those used for numerical weather prediction, strongly nonlinear
604 model dynamics and measurement operators can cause data assimilation methods to be biased. This
605 study examines several procedures that are developed to overcome challenges posed by nonlinear
606 operators, such as periodic re-linearization of tangent linear and adjoints in variational schemes,
607 likelihood factorizations adopted by iterative ensemble filters and smoothers, and localized particle
608 filters. These methods—some of which were originally designed for applications outside the
609 weather community—are compared with methods currently used for operational NWP, namely
610 EnKFs and hybrid variational methods with and without model adjoints.

611 This study adopts the 40-variable model of Lorenz (1996) to examine the selected data assimila-
612 tion approaches. The small dimension of this model allow for extensive testing of each technique
613 using a large variety of observation networks, each varying in density and the type of observations
614 provided. For several observation networks used in this study, re-linearization of the model and
615 measurement operators between outer iterations are required to prevent filter divergence. Once a
616 sufficient number of outer iterations are reached to achieve stable results, the improvements are
617 negligible.

618 The wide range of observation networks examined in this study yields a diverse set of results,
619 which are summarized using posterior RMSEs. We acknowledge that this metric is not ideal for
620 non-Gaussian regimes, particularly those characterized as multimodal. Nevertheless, the sharp
621 failure of various techniques for non-Gaussian problems are easily identified by large values of
622 RMSEs.

623 Each method examined in this study has clear advantages for specific regimes—which are
624 identified to be a function of sampling error, nonlinearity in measurement operators, and observation
625 density. This finding motivates the use of different choices of data assimilation methodology,
626 depending on application.

627 The ensemble-variational smoother with an adjoint model, E4DVar, produces smaller RMSEs
628 than 4DEnVar for all observation networks tested in this study. It also outperforms all other methods
629 in regimes where sampling error is high, but the model solution is well-constrained by numerous
630 accurate measurements; i.e., in weakly nonlinear regimes. This study also compares variational
631 methods to an ensemble smoother, which is adapted from the fixed-lag EnSRS of Whitaker and
632 Compo (2002). For regimes where sampling error is a more dominant source of posterior bias
633 than nonlinearity, the EnKS performs better than its filter counterpart. Adding iterations to EnKF
634 and EnKS updates through MDA results in improved results for all nonlinear regimes, particularly
635 for sparse observation networks and long DAW lengths. The EnKS with MDA is also found to
636 outperform all methods for data assimilation problems characterized by high sampling error and
637 weak nonlinearity. Likewise, it provides stable results in nonlinear regimes that cause E4DVar and
638 4DEnVar to experience filter divergence. For applications of this type, EnKS-MDA benefits from
639 its ability to sample directly from the posterior smoothing density, rather than relying on a separate
640 EnKF to update perturbations about a maximum likelihood solution.

641 Furthermore, ensemble filters outperform smoothers when nonlinearity in measurement opera-
642 tors or model dynamics have a dominant role in the data assimilation applications. This finding is
643 consistent with past studies that compare filters and smoothers for problems of this type (Evensen
644 and van Leeuwen 2000). For highly nonlinear regimes, the local PF is the only method that
645 produces accurate results. The benefit of PF-based methodology, however, comes with the tradeoff
646 of being more sensitive to sampling error. Therefore, it requires large ensemble sizes to produce
647 RMSEs as low as ensemble and variational smoothers for quasi-linear regimes.

648 Owing to the nature of this study, all comparisons are performed in an idealized framework. These
649 findings will ultimately help guide future data assimilation decisions for real geophysical problems,
650 where the computational cost of exploring the sensitivity of data assimilation methodology and
651 parameters is prohibitive. The major findings of this study demonstrate when to expect Gaussian
652 filters and smoothers to be suboptimal and under what conditions iterative techniques provide added
653 value over conventional methods. Choices of nonlinear measurement operators in this study are
654 motivated by challenges faced by high-impact weather events, such as severe convective storms and
655 tropical cyclones. In particular, all-sky satellite radiance measurements provide extensive, near-
656 continuous data coverage for tropical cyclones over open oceans. These measurements are often
657 difficult to use, owing to the highly non-Gaussian (often multi-modal) observation-space priors
658 produced by nonlinear measurement operators. New operational weather prediction systems, such
659 as NOAA's Hurricane Analysis and Forecast System (HAFS), will ultimately need to overcome
660 barriers that currently exist in Gaussian-based data assimilation methodology to fully leverage
661 measurements of this type, as several operational centers have made significant advancements to
662 cope with the difficult conditions in the past years. Experiments performed in this study motivate
663 applications of iterative ensemble approaches and the local PF for problems of this type.

⁶⁶⁴ *Acknowledgments.* Funding for this work was provided by NOAA grant #NA20OAR4600281 and
⁶⁶⁵ NSF/CAREER Award #AGS1848363.

666 *Data availability statement.* All software used to generate results for this study is available upon
667 request from the corresponding author.

668 **References**

669 Amezcuia, J., and P. J. V. Leeuwen, 2014: Gaussian anamorphosis in the analysis step of the enkf:
670 a joint state-variable/observation approach. *Tellus A: Dynamic Meteorology and Oceanography*,
671 **66**, 23 493.

672 Andrews, A., 1968: A square root formulation of the Kalman covariance equations. *AIAA J.*, **6**,
673 1165–1168.

674 Bannister, R. N., 2017: A review of operational methods of variational and ensemble-variational
675 data assimilation. *Quart. J. Roy. Meteor.*, **143**, 607–633.

676 Bengtsson, T., P. Bickel, and B. Li, 2008: Curse-of-dimensionality revisited: Collapse of the
677 particle filter in very large scale systems. *Probability and Statistics: Essays in Honor of David
678 A. Freedman, D. Nolan and T. Speed, Eds.*, **2**, 316–334.

679 Bickel, P., B. Li, and T. Bengtsson, 2008: Sharp failure rates for the bootstrap particle filter in high
680 dimensions. *Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta
681 K. Ghosh*, **3**, 318–329.

682 Bishop, C. H., 2016: The gigg-enkf: ensemble kalman filtering for highly skewed non-negative
683 uncertainty distributions. *Quarterly Journal of the Royal Meteorological Society*, **142**, 1395–
684 1412.

685 Bocquet, M., and P. Sakov, 2014: An iterative ensemble Kalman smoother. *Q. J. R. Meteorol. Soc.*,
686 **140**, 1521–1535.

687 Bonavita, M., P. Lean, and E. Hólm, 2018: Nonlinear effects in 4d-var. *ECMWF*.

688 Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covari-
689 ances: Evaluation in a quasi-operational NWP setting. *Quart. J. Roy. Meteor. Soc.*, **131**, 1013–
690 1043.

691 Buehner, M., P. L. Houtekamer, C. Charette, H. Mitchell, and B. He, 2010: Intercomparison of
692 variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part
693 II. *Mon. Wea. Rev.*, **138**, 1567–1586.

694 Chen, Y., and D. S. Oliver, 2012: Ensemble randomized maximum likelihood method as an
695 iterative ensemble smoother. *Math. Geosci.*, **44**, 1–26.

696 Cohn, S. E., N. Sivakumaran, and R. Todling, 1994: A fixed-lag Kalman smoother for retrospective
697 data assimilation. *Mon. Wea. Rev.*, **122**, 2838–2867.

698 Courtier, P., J.-N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation
699 of 4D-Var, using an incremental approach. *Quart. J. Roy. Meteor. Soc.*, **120**, 1367–1387.

700 Emerick, A. A., and A. C. Reynolds, 2012: History matching time-lapse seismic data using the
701 ensemble Kalman filter with multiple data assimilations. *Comput. Geosci.*, **16**(3), 639–659.

702 Emerick, A. A., and A. C. Reynolds, 2013: Ensemble smoother with multiple data assimilation.
703 *Comput. Geosci.*, **55**, 3–15.

704 Errico, R., P. Bauer, and J.-F. Mahfouf, 2007: Issues regarding the assimilation of cloud and
705 precipitation data. *J. Atmos. Sci.*, **64**, 3785–3798.

706 Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using
707 Monte Carlo methods to forecast error statistics. *J. Geophys. Res.*, **99**C, 10 143–10 162.

708 Evensen, G., 2018: Analysis of iterative ensemble smoothers for solving inverse problems. *Com-
709 putational Geosciences*, **22**(3), 885–908.

710 Evensen, G., and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for non-linear dynamics.

711 *Mon. Wea. Rev.*, **128**, 1852–1867.

712 Fabry, F., and J. Sun, 2010: For how long should what data be assimilated for the mesoscale
713 forecasting of convection and why? Part I: On the propagation of initial condition errors and
714 their implications for data assimilation. *Mon. Wea. Rev.*, **138**, 242–255.

715 Fairbairn, D., S. R. Pring, A. C. Lorenc, and I. Roulstone, 2014: A comparison of 4DVar with
716 ensemble data assimilation methods. *Quart. J. Roy. Meteor. Soc.*, **140**, 281–294.

717 Fletcher, S., and A. S. Jones, 2014: Multiplicative and additive incremental variational data
718 assimilation for mixed lognormal gaussian errors. *Monthly Weather Review*, **142**, 2521–2544.

719 Fletcher, S. J., 2010: Mixed gaussian-lognormal four-dimensional data assimilation. *Tellus A*, **62**,
720 266–287.

721 Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimen-
722 sions. *Quart. J. Roy. Meteor.*, **125**, 723–757.

723 Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data assimilation. *Quart. J. Roy.*
724 *Meteor.*, **137**, 2024–2037.

725 Geer, A. J., S. Migliorini, and M. Matricardi, 2019: All-sky assimilation of infrared radiances sen-
726 sitive to mid- and upper-tropospheric moisture and cloud. *Atmospheric Measurement Techniques*,
727 **12**, 4903–4929.

728 Geer, A. J., and Coauthors, 2017: The growing impact of satellite observations sensitive to
729 humidity, cloud and precipitation. *Quarterly Journal of the Royal Meteorological Society*, **143**,
730 3189–3206.

731 Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather fore-
732 casting centres. *Quarterly Journal of the Royal Meteorological Society*, **144**, 1191–1217.

733 Gelb, A., J. F. Kasper, R. A. Nash, C. F. Price, and A. A. Sutherland, 1974: Applied optimal
734 estimation. *The M.I.T. Press*, 374pp.

735 Gu, Y., and D. S. Oliver, 2007: An iterative ensemble Kalman filter for multiphase fluid flow data
736 assimilation. *SPEJ*, **12**, 438–446.

737 Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis
738 scheme. *Mon. Wea. Rev.*, **128**, 2905–2919.

739 Honda, T., and Coauthors, 2018: Assimilating all-sky himawari-8 satellite infrared radiances: A
740 case of typhoon soudelor (2015). *Mon. Wea. Rev.*, **146**, 213–229.

741 Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter
742 technique. *Mon. Wea. Rev.*, **126**, 796–811.

743 Jazwinski, A. H., 1970: Stochastic processes and filtering theory. *Academic Press*, 376pp.

744 Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. *Transactions of*
745 *the ASME–Journal of Basic Engineering*, **82 (Series D)**, 35–45.

746 Kjervheim, J.-A., G. Evensen., J. Hove, and J. G. Vabø, 2011: An ensemble smoother for assisted
747 history matching. *SPE*, 141929.

748 Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data
749 assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. *Mon. Wea. Rev.*, **143**,
750 452–470.

751 Liu, C., and Q. Xiao, 2013: Antarctic applications with Advanced Research WRF using real data.
752 *Mon. Wea. Rev.*, **141**, 2721–2739.

753 Liu, C., Q. Xiao, and B. Wang, 2009: An ensemble-based four-dimensional variational data
754 assimilation scheme. Part II. *Mon. Wea. Rev.*, **137**, 1687–1704.

755 Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP: A comparison with
756 4D-Var. *Quart. J. Roy. Meteor. Soc.*, **129**, 3183–3203.

757 Lorenz, E. N., 1996: Predictability: A problem partly solved. *Proc. Seminar on Predictability*, **1**,
758 ECMWF, Reading, UK.

759 Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations:
760 Simulation with a small model. *J. Atmos. Sci.*, **55**, 399–414.

761 Minamide, M., and F. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky
762 satellite radiance. *Mon Wea. Rev.*, **145** (3), 1063–1081.

763 Morzfeld, M., and D. Hodyss, 2019: Gaussian approximations in filters and smoothers for data
764 assimilation. *Tellus A: Dynamic Meteorology and Oceanography*, **71:1**, 1–27.

765 Neal, R. M., 1996: Sampling from multimodal distributions using tempered transitions. *Stat.*
766 *Comput.*, **6**(4), 353–366.

767 Okamoto, K., A. P. McNally, and W. Bell, 2014: Progress towards the assimilation of all-sky
768 infrared radiances: an evaluation of cloud effects. *Quart. J. Roy. Meteor.*, **140**, 1603–1614.

769 Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. *Mon. Wea.*
770 *Rev.*, **144**, 59–76.

771 Poterjoy, J., 2021: Regularization and tempering for a moment-matching localized particle filter.

772 *Quart. J. Roy. Meteor. Soc.*, under revision.

773 Poterjoy, J., and J. L. Anderson, 2016: Efficient assimilation of simulated observations in a
774 high-dimensional geophysical system using a localized particle filter. *Mon. Wea. Rev.*, **144**,
775 2007–2020.

776 Poterjoy, J., R. A. Sobash, and J. L. Anderson, 2017: Convective-scale data assimilation for the
777 weather research and forecasting model using the local particle filter. *Mon. Wea. Rev.*, **145**,
778 1897–1918.

779 Poterjoy, J., L. J. Wicker, and M. Buehner, 2019: Progress in the development of a localized
780 particle filter for data assimilation in high-dimensional geophysical systems. *Mon. Wea. Rev.*,
781 **147**, 1107–1126.

782 Poterjoy, J., and F. Zhang, 2015: Systematic comparison of four-dimensional data assimilation
783 methods with and without a tangent linear model using hybrid background error covariance:
784 E4DVar versus 4DEnVar. *Mon. Wea. Rev.*, **143**, 1601–1621.

785 Poterjoy, J., F. Zhang, and Y. Weng, 2014: The effects of sampling errors on the EnKF assimilation
786 of inner-core hurricane observations. *J. Atmos. Sci.*, **142**, 1609–1630.

787 Potter, J., 1964: W matrix augmentation. M.I.T. Instrumentation Laboratory Memo SGA. *Mas-*
788 *sachusetts Institute of Technology, Cambridge, MA*, 5–64.

789 Potthast, R., A. Walter, and A. Rhodin, 2019: A localized adaptive particle filter within an
790 operational NWP framework. *Mon. Wea. Rev.*, **147**, 345–362.

791 Privé, N. C., Y. Xie, J. Woollen, S. E. Koch, R. Atlas, and R. Hood, 2013: Evaluation of the
792 Earth Systems Research Laboratory's global Observing System Simulation Experiment system.
793 *Tellus*, **65A**, 19 011.

794 Rommelse, J., 2009: Data Assimilation in Reservoir Management. *Ph.D. thesis, Technical Univer-*
795 *sity of Delft, Delft, The Netherlands.*

796 Sakov, P., D. S. Oliver, and L. Bertino, 2012: An iterative EnKF for strongly nonlinear systems.
797 *Mon. Wea. Rev.*, **140**, 1988–2004.

798 Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle
799 filtering. *Mon. Wea. Rev.*, **136**, 4629–4640.

800 Stengel, M., P. Unden, M. Lindskog, P. Dahlgren, N. Gustafsson, and R. Bennartz, 2009: Assim-
801 ilation of SEVIRI infrared radiances with HIRLAM 4D-Var. *Quart. J. Roy. Meteor. Soc.*, **135**,
802 2100–2109.

803 Thepaut, J.-N., and P. Courtier, 1991: Four-dimensional variational data assimilation using the
804 adjoint of a multilevel primitive-equation model. *Quart. J. Roy. Meteor. Soc.*, **117**, 1225–1254.

805 van Leeuwen, P. J., and G. Evensen, 1996: Data assimilation and inverse methods in terms of a
806 probabilistic formulation. *Mon. Wea. Rev.*, **124**, 2898–2913.

807 Vukicevic, T., T. Greenwald, M. Zupanski, D. Zupanski, T. V. Haar, and A. S. Jones, 2004:
808 Mesoscale cloud state estimation from visible and infrared satellite radiances. *Mon. Wea. Rev.*,
809 **132**, 3066–3077.

810 Whitaker, J., and G. Compo, 2002: An ensemble Kalman smoother for reanalysis. *Proc. Symp.*
811 *on Observations, Data Assimilation and Probabilistic Prediction, Orlando, FL, Amer. Meteor.*
812 *Soc.*, 144–147.

813 Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observa-
814 tions. *Mon. Wea. Rev.*, **130**, 1913–1924.

815 Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability
816 on convective-scale data assimilation with an ensemble Kalman filter. *Mon. Wea. Rev.*, **132**,
817 1238–1253.

818 Zhang, F., M. Zhang, and J. A. Hansen, 2009: Coupling ensemble Kalman filter with four-
819 dimensional variational data assimilation. *Adv. Atmos. Sci.*, **26**, 1–8.

820 Zhu, Y., and Coauthors, 2016: All-sky microwave radiance assimilation in NCEP’s GSI analysis
821 system. *Mon. Wea. Rev.*, **144**, 4709–4735.

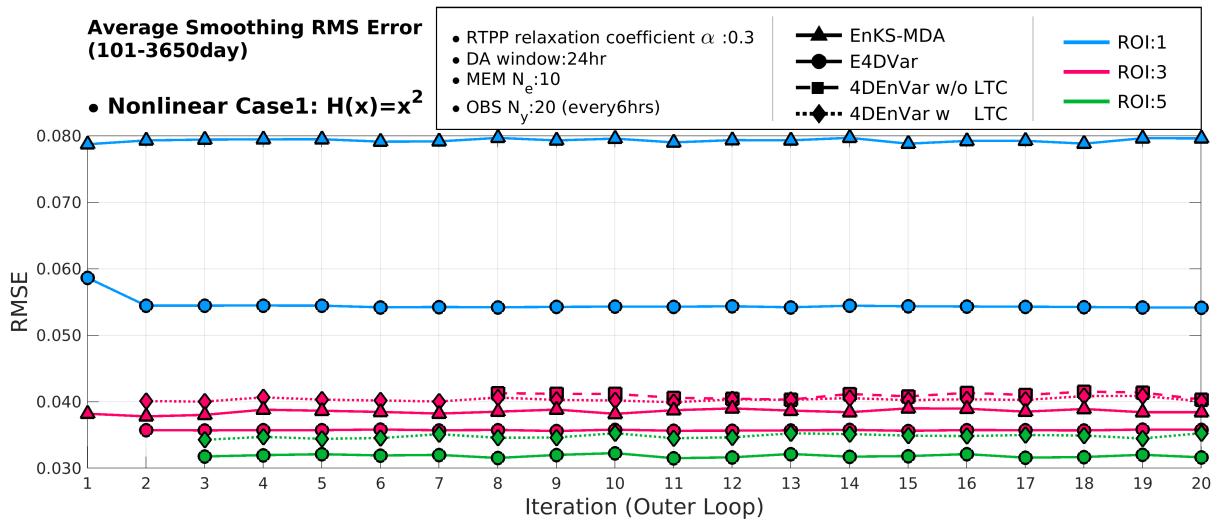
822 Zou, X., F. Weng, B. Zhang, L. Lin, Z. Qin, and V. Tallapragada, 2013: Impacts of assimilation
823 of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. *J.*
824 *Geophys. Res. Atmos.*, **118**, 11 558–11 576.

825 LIST OF TABLES

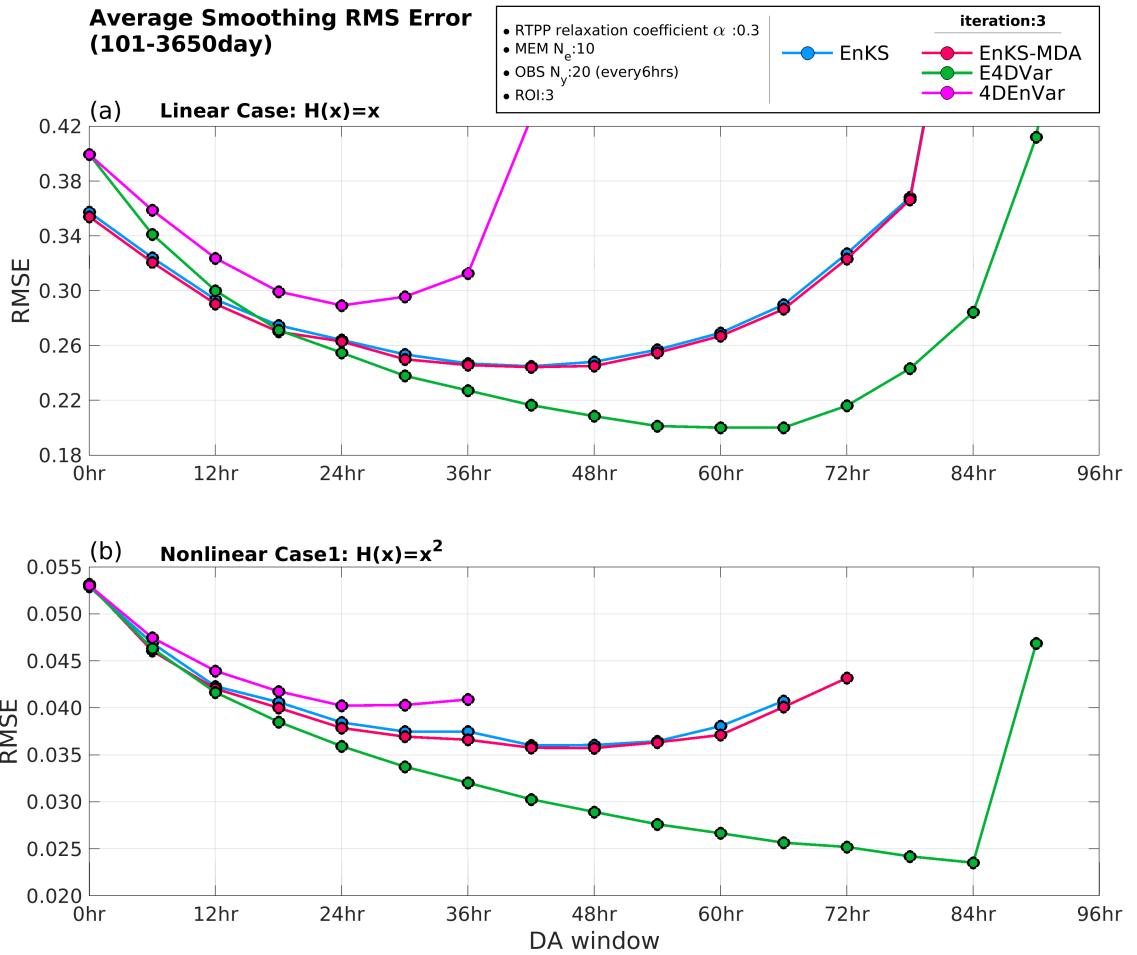
TABLE 1. Configuration of cycling data assimilation experiments.

Expt	$H(x)$	σ_y	N_e	ROI	α, γ	N_y	Δt (h)
Linear Case	x	1.0	10,40	Variable	Variable	20	6
Nonlinear Case 1	x^2	1.0	10,40	Variable	Variable	20,15,10	6,24
Nonlinear Case 2	$\log(x)$	0.1	40,100	Variable	Variable	20	6

LIST OF FIGURES



867 FIG. 1. Mean analysis RMSEs as a function of the number of iteration or outer loop. Results are shown for
 868 the Nonlinear Case1. Values are from the experiment with EnKS-MDA (triangle), E4DVar (circle), 4DEnVar
 869 without LTC (square), and 4DEnVar with LTC (diamond), and ROI set to 1 (blue), 3 (red), and 5 (green). The
 870 RMSEs are calculated at the start of the DAW (smoother solution).



871 FIG. 2. Mean analysis RMSEs as a function of smoother lag. Results are shown for (a) Linear Case and (b)
872 Nonlinear Case 1, with the EnKS (blue), the EnKS-MDA (red), the E4DVar (green), and the 4DEnVar (magenta).
873 The number of iterations and outer loops is fixed at 3 for both cases. The RMSEs are calculated at the start of
874 the DAW (smoother solution).

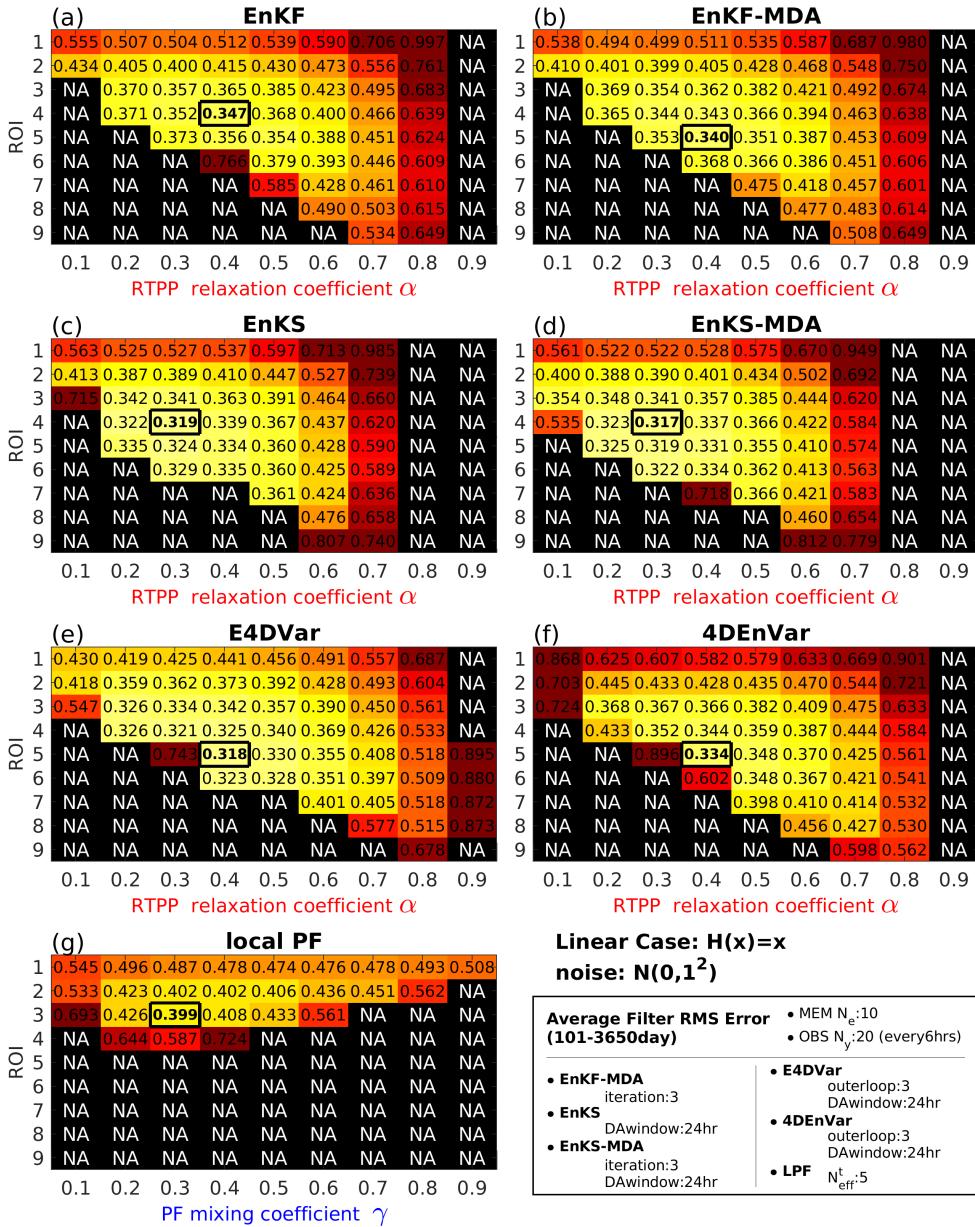


FIG. 3. Mean analysis RMSEs estimated for a range of relaxation coefficient α (a-f) and PF mixing coefficient γ (g) and ROI. Results are shown for experiments with the Linear Case and ensemble size is fixed at 10. Black shading indicates higher RMSEs, NA indicates that filter divergence occurs during the experiment, and the smallest errors are indicated by the black box. The RMSEs are calculated at the end of the DAW (filter solution).

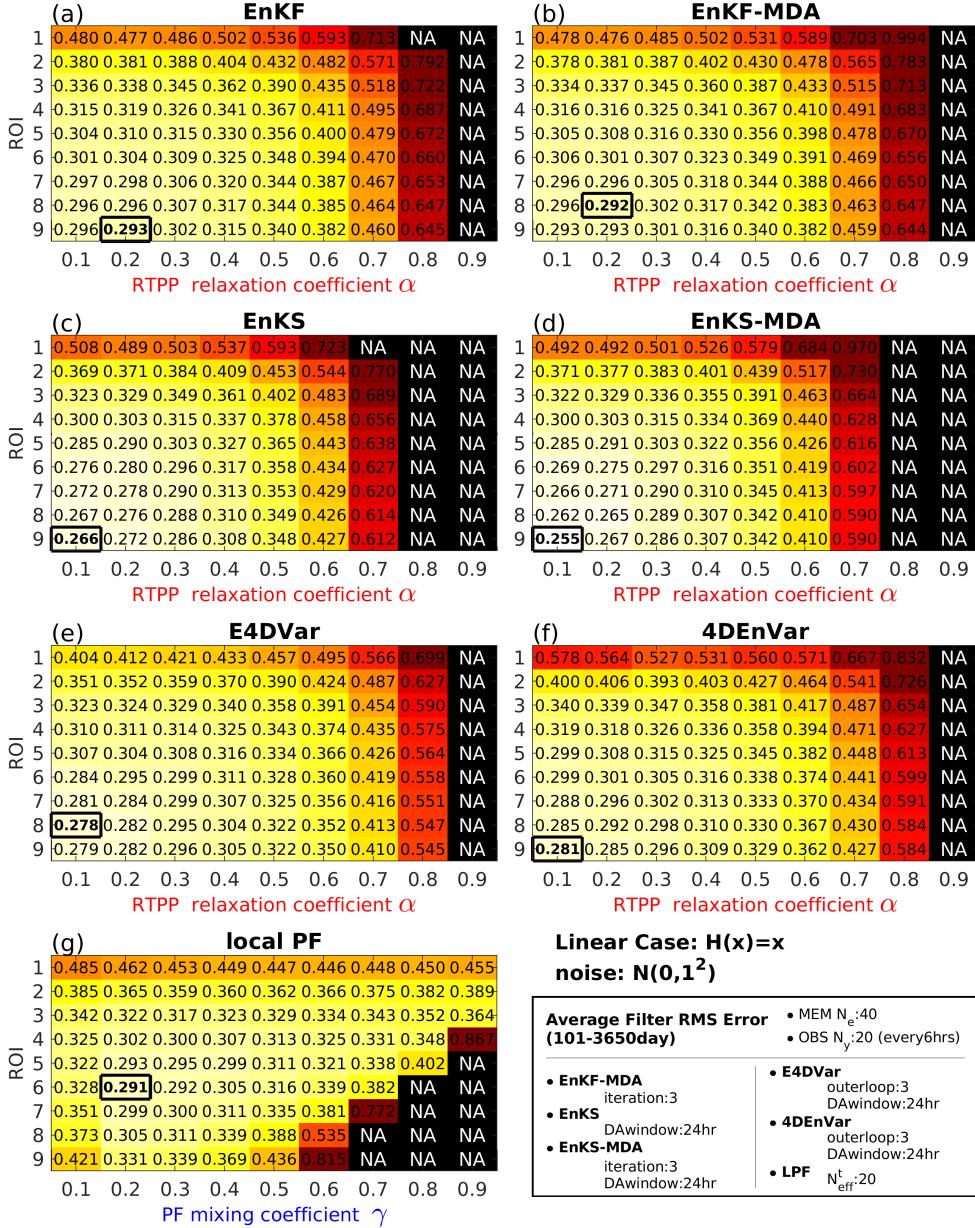
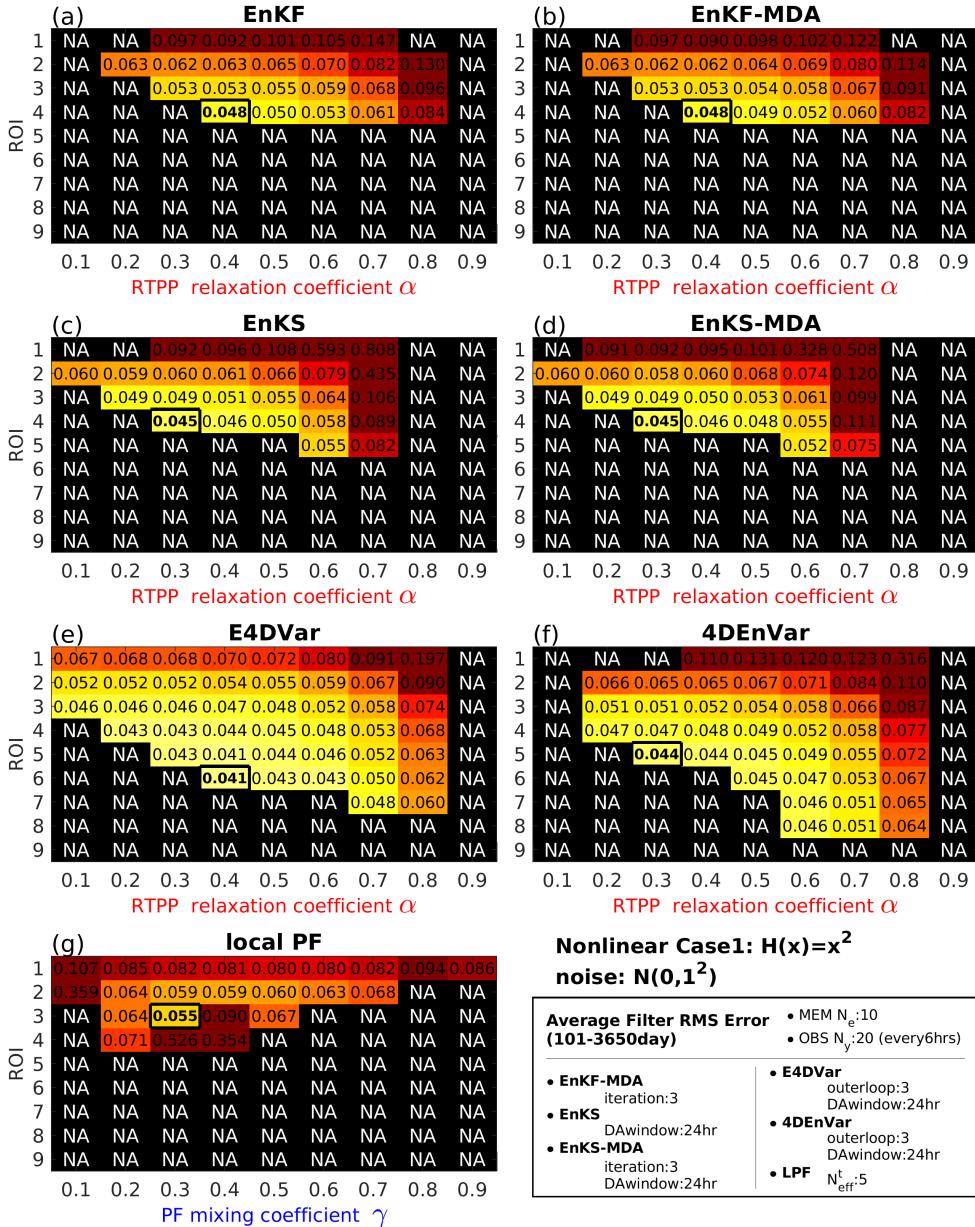


FIG. 4. As in Fig.3, but for ensemble size fixed at 40.



879 FIG. 5. Mean analysis RMSEs estimated for a range of relaxation coefficient α (a-f) and PF mixing coefficient
880 γ (g) and ROI. Results are shown for experiments with the Nonlinear Case 1 and ensemble size is fixed at 10.
881 Black shading indicates higher RMSEs, NA indicates that filter divergence occurs during the experiment, and the
882 smallest errors are indicated by the black box. The RMSEs are calculated at the end of the DAW (filter solution).

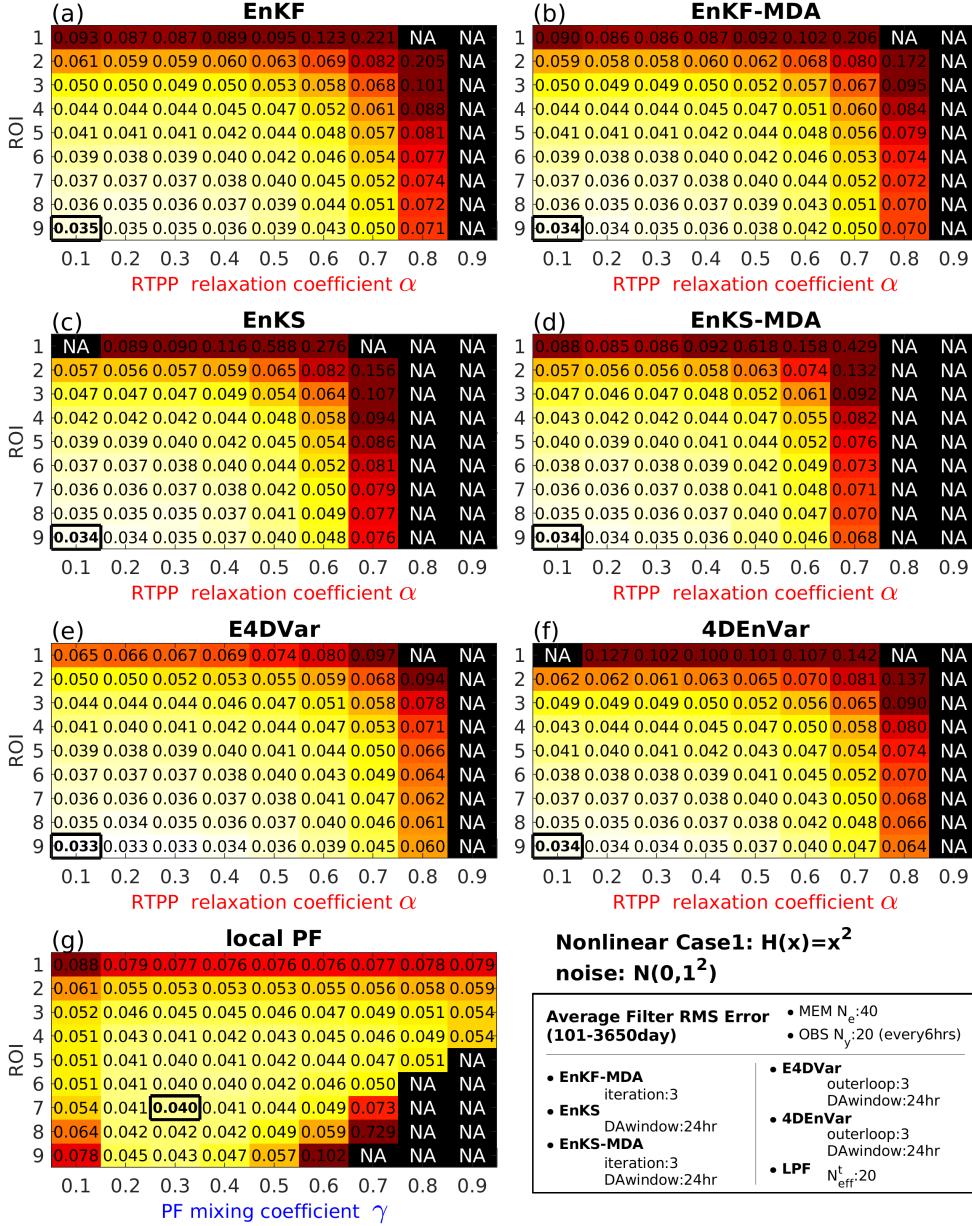
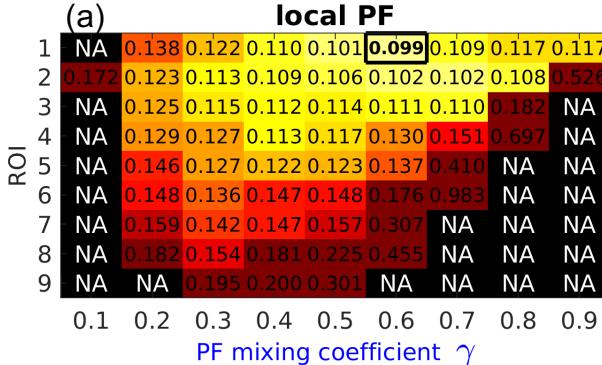
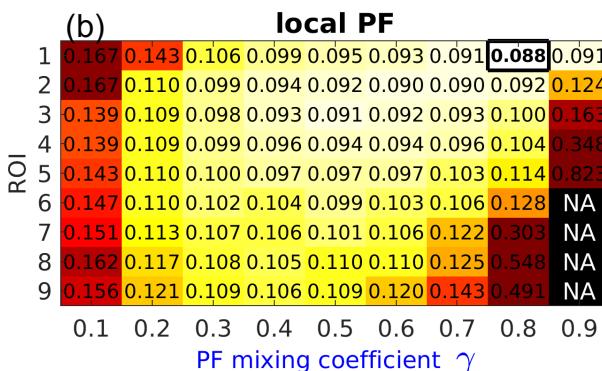


FIG. 6. As in Fig.5, but for ensemble size fixed at 40.



Nonlinear Case2: $H(x)=\log(|x|)$
noise: $N(0,0.1^2)$

Average Filter RMS Error (101-3650day)		• MEM $N_e:40$	• OBS $N_y:20$ (every6hrs)
• EnKF-MDA	iteration:3	• E4DVar	outerloop:3 DAwindow:24hr
• EnKS	DAwindow:24hr	• 4DEnVar	outerloop:3 DAwindow:24hr
• EnKS-MDA	iteration:3 DAwindow:24hr	• LPF	$N_{eff}^t:20$



Nonlinear Case2: $H(x)=\log(|x|)$
noise: $N(0,0.1^2)$

Average Filter RMS Error (101-3650day)		• MEM $N_e:100$	• OBS $N_y:20$ (every6hrs)
• EnKF-MDA	iteration:3	• E4DVar	outerloop:3 DAwindow:24hr
• EnKS	DAwindow:24hr	• 4DEnVar	outerloop:3 DAwindow:24hr
• EnKS-MDA	iteration:3 DAwindow:24hr	• LPF	$N_{eff}^t:50$

883 FIG. 7. Mean analysis RMSEs estimated for a range of PF mixing coefficient γ and ROI. Filter divergence
884 occurs in all methods except the local PF, so only results of the local PF are shown for experiments with the
885 Nonlinear Case 2 and ensemble size is fixed at 40 (a) and 100 (b). Black shading indicates that filter divergence
886 occurs during the experiment, and the smallest errors are indicated by the black
887 box. The RMSEs are calculated at the end of the DAW (filter solution).

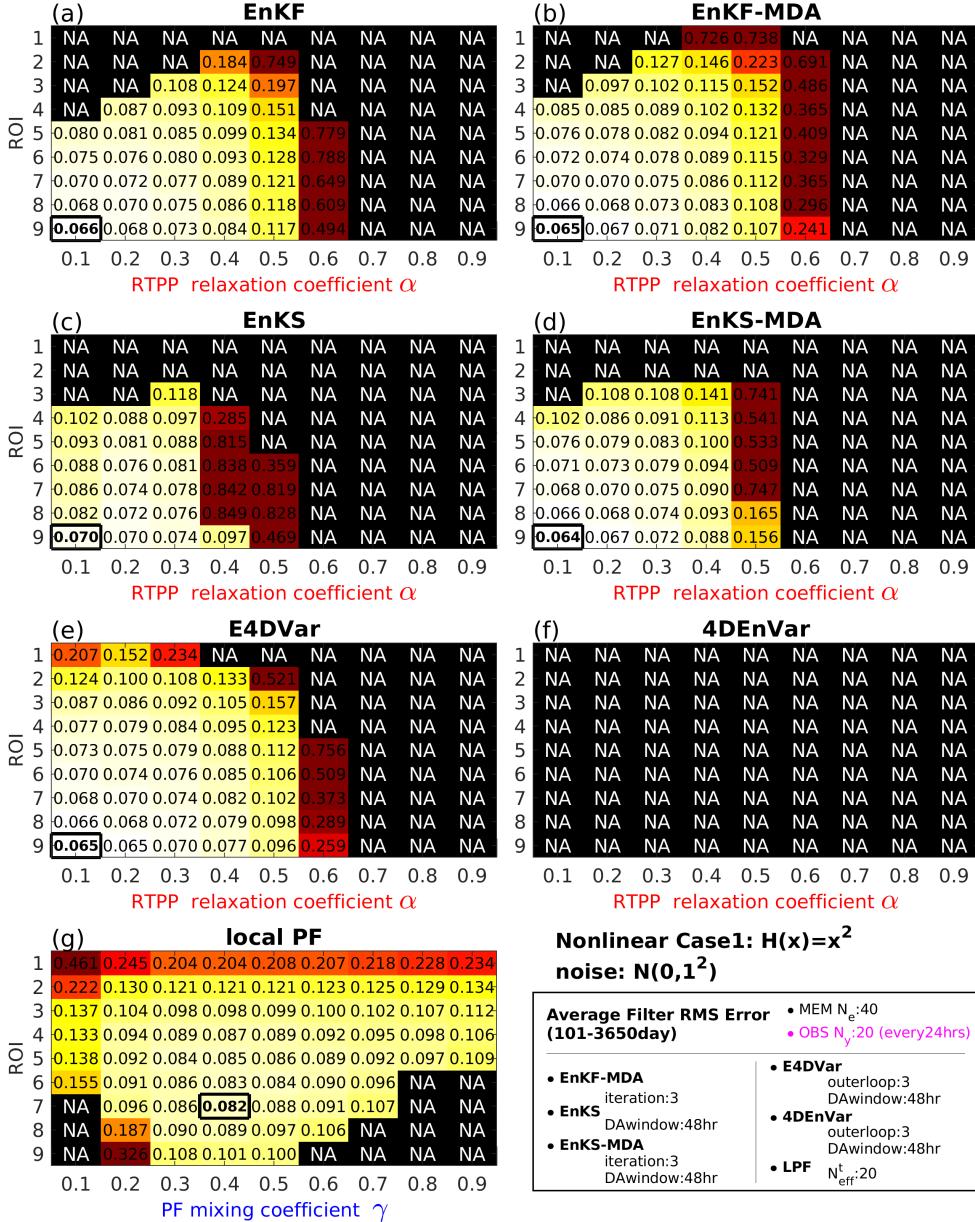


FIG. 8. As in Fig.6, but for the frequency of observations and DAW fixed at 24 h and 48 h, respectively.

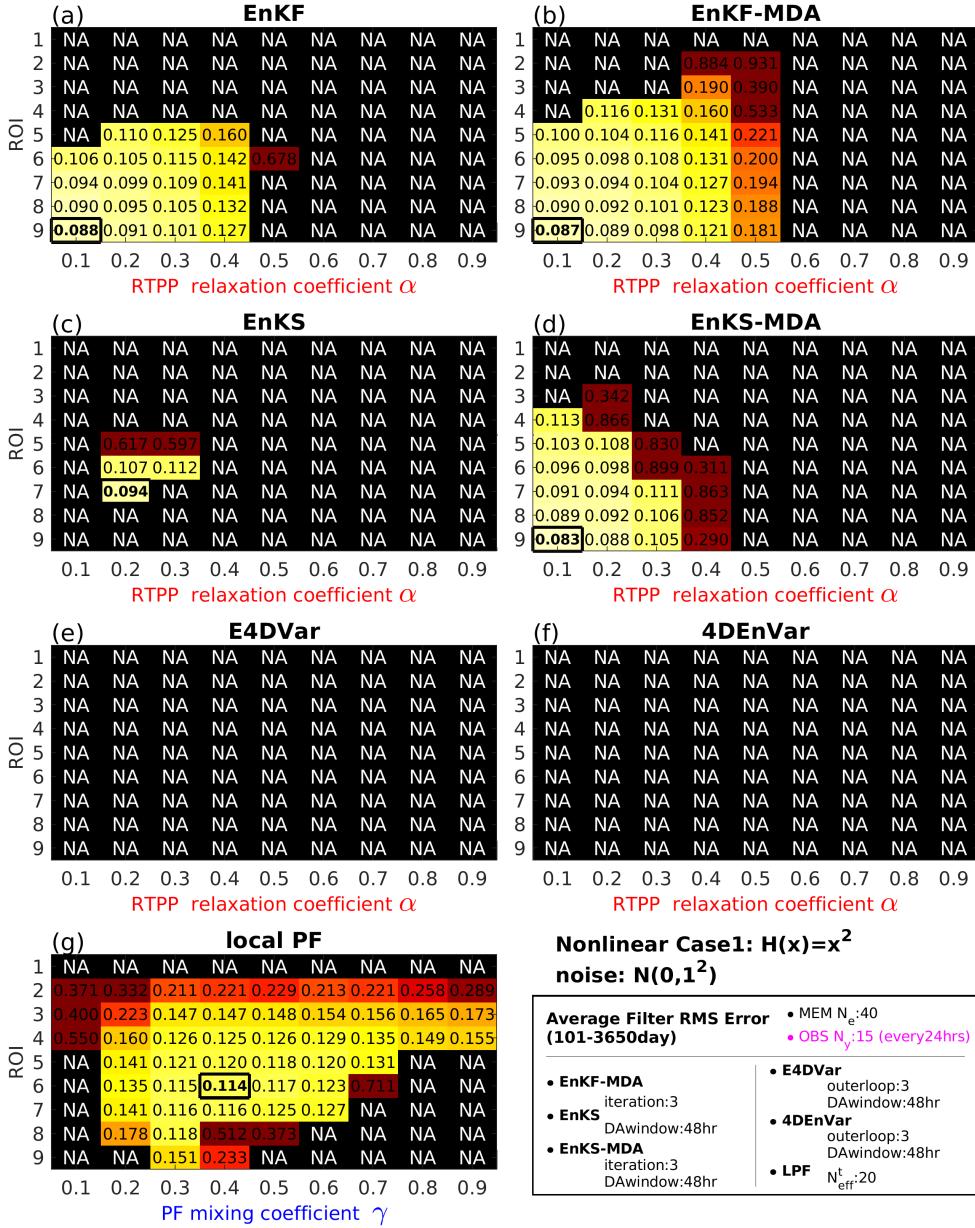
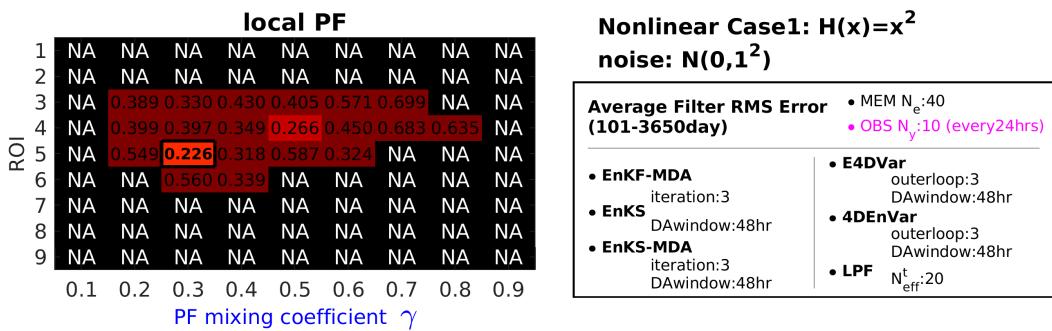
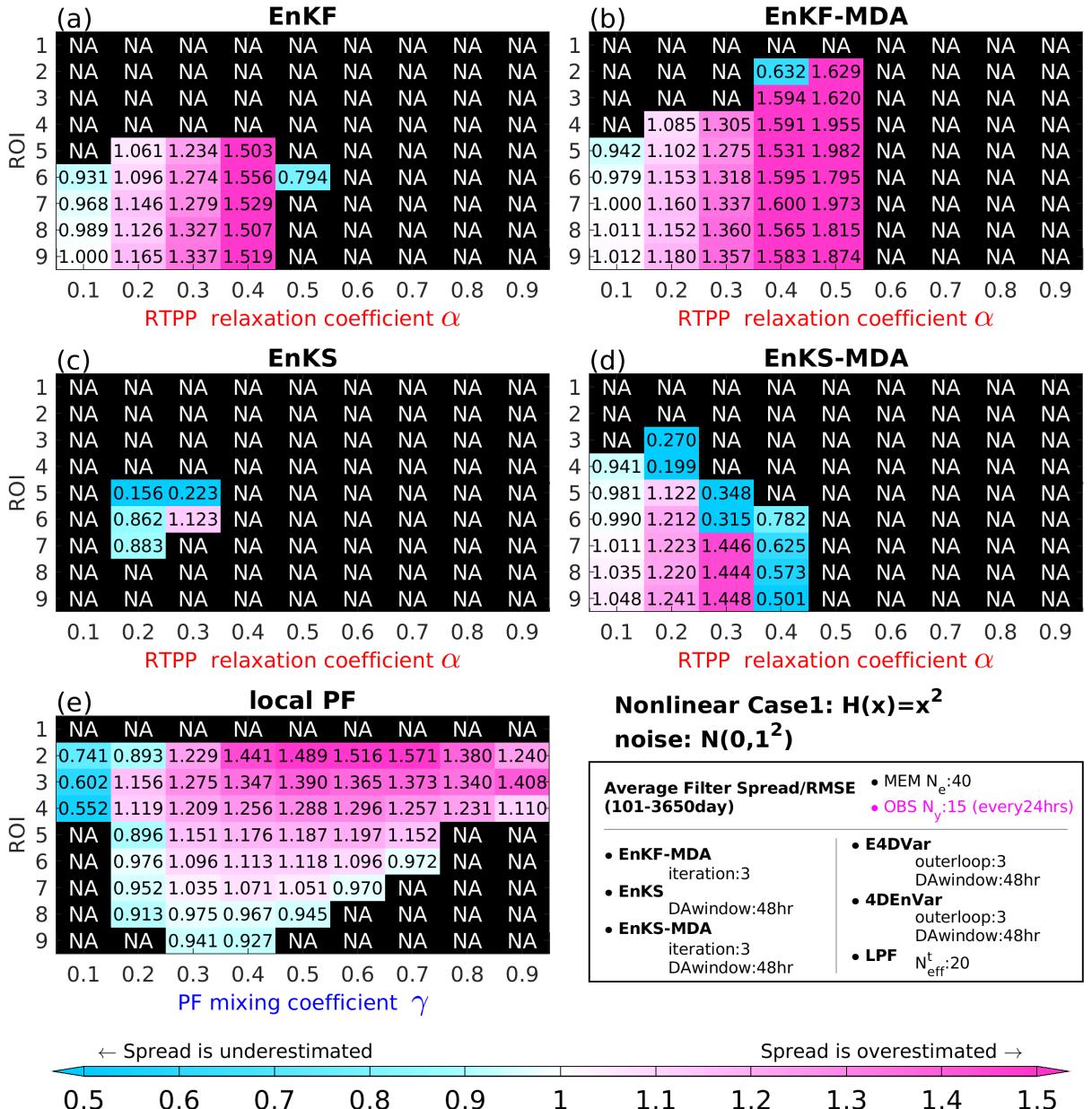


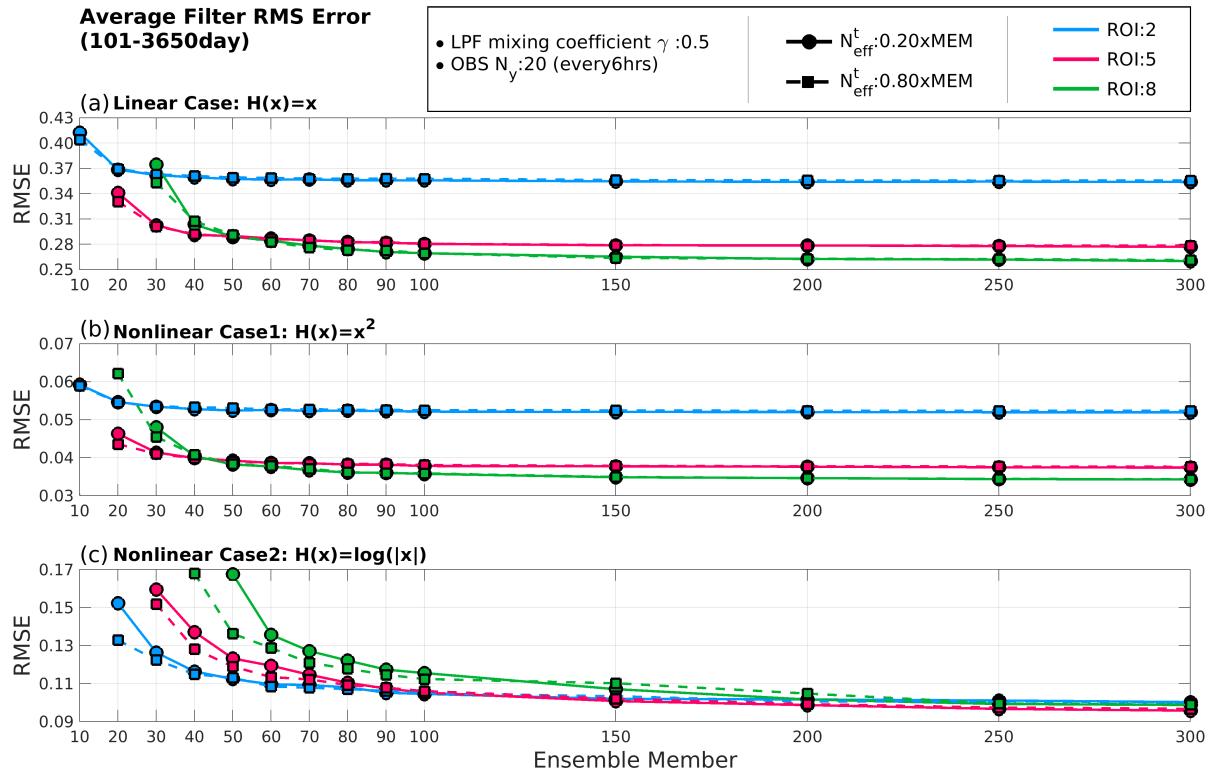
FIG. 9. As in Fig.8, but for the number of observations fixed at 15.



888 FIG. 10. As in Fig.8, but for the number of observations fixed at 10. Filter divergence occurs in all methods
889 except the local PF, so only results of the local PF are shown.



890 Fig. 11. Ratio of ensemble spread to mean analysis RMSEs estimated for a range of relaxation coefficient α
891 (a-d) and PF mixing coefficient γ (e) and ROI. The experimental setting is the same as in Fig.9. NA indicates
892 that filter divergence occurs during the experiment. The RMSEs and spread are calculated at the end of the DAW
893 (filter solution).



894 FIG. 12. Mean analysis RMSEs of the local PF as a function of ensemble size. Results are shown for (a) Linear
 895 Case, (b) Nonlinear Case 1, and (c) Nonlinear Case 2. Values are from the experiment with N_{eff} fixed at 0.20
 896 $\times N_e$ (solid lines) and $0.80 \times N_e$ (dashed lines), and ROI fixed at 2 (blue), 5 (red), and 8 (green).