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ABSTRACT

The ensemble Kalman Filter (EnKF) and the 4D variational method (4DVar) are the most

commonly used filters and smoothers in atmospheric science. Thesemethods typically approximate

prior densities using a Gaussian and solve a linear system of equations for the posterior mean and

covariance. Therefore, strongly nonlinear model dynamics and measurement operators can lead to

bias in posterior estimates. To improve the performance in nonlinear regimes, minimization of the

4DVar cost function typically follows multiple sets of iterations, known as an “outer loop”, which

helps reduce bias caused by linear assumptions. Alternatively, "iterative ensemble methods" follow

a similar strategy of periodically re-linearizing model and measurement operators. These methods

comewith different, possiblymore appropriate, assumptions for drawing samples from the posterior

density, but have seen little attention in numerical weather prediction (NWP) communities. Lastly,

particle filters (PFs) present a purely Bayesian filtering approach for state estimation, which avoids

many of the assumptions made by the above methods. Several strategies for applying localized

PFs for NWP have been proposed very recently. The current study investigates intrinsic limitations

of current data assimilation methodology for applications that require nonlinear measurement

operators. In doing so, it targets a specific problem that is relevant to the assimilation of remotely-

sensed measurements, such as radar reflectivity and all-sky radiances, which pose challenges for

Gaussian-based data assimilation systems. This comparison includes multiple data assimilation

approaches designed recently for nonlinear/non-Gaussian applications, as well as those currently

used for NWP.
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1. Introduction30

The ensemble Kalman Filter (EnKF; Evensen 1994; Houtekamer and Mitchell 1998; Evensen31

and van Leeuwen 2000) and the 4D variational method (4DVar; Thepáut and Courtier 1991) are32

the most commonly used filters and smoothers in atmospheric science. Ensemble/variational33

hybrid approaches (e.g., Hamill and Snyder 2000; Lorenc 2003; Buehner 2005) combine the flow-34

dependent ensemble covariance from an EnKF with climate-based covariance from variational35

methods. The methods have also become well-established and widely accepted for global weather36

prediction at major environmental prediction centers, such as the European Centre for Medium-37

Range Weather Forecasts (ECMWF) , UK Met Office, Environment and Climate Change Canada38

(ECCC), and National Centers for Environmental Prediction (NCEP). One strategy of the hybrid39

methods, denoted as ensemble-4DVar (E4DVar; Zhang et al. 2009) in thismanuscript, typically uses40

tangent linear and adjoint model operators to minimize a cost function in the same manner as the41

traditional 4DVar data assimilation system. A second strategy is 4D-ensemble-Var (4DEnVar; Liu42

et al. 2008), in which the cost function minimization is computed based on an ensemble forecast43

instead of using tangent linear and adjoint models. In the 4DEnVar, temporal covariances are44

estimated from an ensemble ofmodel trajectories that pass through the observation timewindow. In45

either case, bothmethods approximate prior densities using aGaussian and perform linearizations to46

relax these assumptions. Therefore, strongly nonlinear model dynamics or measurement operators47

cause these methods to be biased, which leads to the suboptimal use of major Earth observing48

systems, such as satellite radiometers. For example, the combined impact of highly nonlinearmodel49

dynamics and measurement operators introduces major data assimilation challenges in weather50

regimes containing clouds or precipitation. As a result, most infrared satellite assimilation studies51

mainly focus on clear-sky observations (e.g., Errico et al. 2007; Fabry and Sun 2010;Geer andBauer52
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2011; Zou et al. 2013; Okamoto et al. 2014; Minamide and Zhang 2017; Honda and Coauthors53

2018). This follows despite the known benefits of assimilating cloudy radiances for weather54

forecasting (e.g., Vukicevic et al. 2004; Stengel et al. 2009; Privé et al. 2013). Some operational55

centers are making efforts to cope with these issues and assimilate cloudy and precipitating56

microwave radiances (e.g., Zhu et al. 2016; Geer et al. 2017, 2019). For further details on significant57

advances and current plans of operational centers that are close to implementing assimilation, we58

encourage readers to review the summary presented in Geer et al. (2018).59

Several procedures have been proposed to improve the performance of these methods in nonlin-60

ear regimes. For example, in order to deal with issues within the 4DVar system (e.g., Bonavita61

et al. 2018), minimization of the 4DVar cost function typically follows multiple sets of iterations62

to re-linearize tangent linear and adjoints for the model, measurement operators, or both around an63

improved background solution. This step, known as an "outer loop," helps reduce bias caused by64

linear assumptions, thus making Gaussian error approximations more appropriate. The minimiza-65

tion strategy follows the Gauss–Newton method, which is guaranteed to approximate the posterior66

mode for local minima.67

Alternatively, a number of methods fall under the generic category of "iterative ensemble meth-68

ods", which follow a similar strategy of periodic re-linearization. Note that here “iterations”69

refers to multiple adjustments at a single time. Both 4DVar and the iterative ensemble methods70

re-linearize the observation operator. The only difference is that in 4DVar, the observation op-71

erator contains the nonlinear model. Gu and Oliver (2007) introduced the ensemble randomized72

maximal likelihood filter (EnRML) to handle nonlinearity by means of iterations of the EnKF.73

Sakov et al. (2012) proposed the iterative ensemble Kalman filter (IEnKF), which uses a deter-74

ministic update form, ensemble square root filter, while EnRML uses a stochastic update form,75

perturbed observations method. Following the introduction of ensemble Kalman smoother (EnKS;76
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van Leeuwen and Evensen 1996; Evensen and van Leeuwen 2000) for use in history matching by77

Kjervheim et al. (2011), the iterative forms of smoothers have developed into useful tools by the78

reservoir-engineering community for history matching reservoir models. Chen and Oliver (2012)79

proposed an iterative form of EnRML targeted for oil-reservoir modeling, and Bocquet and Sakov80

(2014) developed the iterative ensemble Kalman smoother (IEnKS), which extends IEnKF using a81

fixed-lag smoother with an ensemble variational method.82

Emerick and Reynolds (2012) introduced the multiple data assimilation scheme (MDA) to83

improve EnKF estimates for nonlinear cases by assimilating the same data multiple times with the84

covariance matrix of the measurement errors multiplied by the number of data assimilation. We85

note that the name “MDA” is somewhat deceiving, as it is simply an application of tempering (Neal86

1996). The process of the EnKF with MDA (EnKF-MDA) is based on the idea that a “large jump”87

between the forecast and analysis states could be reduced by assimilating the same data multiple88

times with increased measurement errors. MDA yields the same updated mean and covariance as89

would be obtained from assimilating the same data with the original measurement error covariance90

and no iterations when errors are Gaussian, and all operators are linear (Emerick and Reynolds91

2012). For the nonlinear case, EnKF-MDA partly resolves issues with nonlinearity and leads to92

smaller bias than a conventional EnKF. Emerick and Reynolds (2013) developed the EnKS with93

MDA (EnKS-MDA) for reservoir simulations, and Bocquet and Sakov (2014) showed IEnKS with94

MDA significantly outperforms standard EnKF and EnKS in strongly nonlinear regimes with a95

simplifiedmodel. However, thesemethods have seen little attention in numerical weather prediction96

(NWP) communities. While the convergence properties of these methods are unknown, numerical97

experiments performed by Evensen (2018) suggest they can provide accurate solutions for mildly98

nonlinear problems.99
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Lastly, particle filters (PFs) present a purely Bayesian filtering approach for state estimation,100

which avoids many of the linear/Gaussian assumptions of the above methods. PFs provide a101

much more general, non-parametric estimate of the model probability density function (PDF),102

which is advantageous for non-Gaussian problems as long as a sufficient number of ensemble103

members exist. Nevertheless, these methods can easily diverge when a relatively small number104

of particles (ensemble members) are adopted for data assimilation; see Bengtsson et al. (2008),105

Bickel et al. (2008), and Snyder et al. (2008) for discussions on ensemble size requirements for PFs.106

Several strategies are proposed to overcome this filter collapse and apply PFs to data assimilation107

problems for operational NWP models very recently. One common effort to avoid filter divergence108

is to use localization, which restricts the influence of observations to nearby state variables.109

For example, Poterjoy (2016) introduced the localized PF, which assimilates observations with110

independent errors sequentially to combine sampled particles from a standard bootstrap PF with111

prior particles in a manner that satisfies a set of local constraints. Following this work, Poterjoy112

and Anderson (2016) and Poterjoy et al. (2017, 2019) demonstrate that the local PF works well for113

high-dimensional systems. For these studies, the authors compare the local PF with EnKFs for a114

simplified general circulation model and both idealized and real mesoscale convective systems in115

the Weather Research and Forecasting (WRF) model, respectively. Even more recently, Potthast116

et al. (2019) applied an alternative localized PF for global weather prediction using the Icosahedral117

Nonhydrostic Weather and Climate (ICON) model, which marks the first successful test of a PF in118

an operational framework. These studies provide an incentive to further explore the potential of119

localized PFs for weather prediction, especially considering the theoretical benefits they pose for120

assimilating remotely sensed measurements, such as satellite radiance and radar reflectivity, which121

require nonlinear measurement operators.122
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In addition to the methods described above, there are some notable developments related to123

treatment of nonlinearity and non-Gaussianity. For example, Bishop (2016) introduces the GIGG-124

EnKF algorithm, which retains the accuracy of the EnKF in the Gaussian case while lending it125

a high degree of accuracy when the forecast and observation uncertainty are gamma or inverse-126

gamma distributions. When conditions are not suitable for EnKF, such as the distribution of the127

prior and observation are not Gaussian distribution, and the observation operator is non-linear,128

Amezcua and Leeuwen (2014) apply a pre-processing step known as Gaussian anamorphosis to129

obtain state variables and observations that better fulfill the Gaussianity conditions. Fletcher (2010)130

and Fletcher and Jones (2014) present variants of variational solvers for issues with lognormal and131

mixed lognormal Gaussian distributed background and observation errors. While many methods132

have been proposed to deal with such difficult conditions, this studymainly focuses on the tempered133

iteration approach, which is relatively easy to implement in current NWP systems and can deal134

with these problems well.135

In this study, we discuss EnKF-MDA, EnKS-MDA, E4DVar, 4DEnVar, and the local PF data as-136

similation methods and their use in applications that require nonlinear measurement operators. We137

also examine the sensitivity of each method to user-specified parameters, which include ensemble138

size, covariance localization radius of influence (ROI), inflation coefficients, data assimilation win-139

dow length (DAW), and the number of iterations and outer loops. The comparisons are conducted140

with the 40-variable dynamical system introduced in Lorenz (1996, hereafter L96), using numerical141

experiments performed with conventional EnKF and EnKS techniques as benchmarks. This study142

provides a necessary first step in understanding the complexity of assimilating remotely-sensed143

measurements in weather models, which will require appropriate choices for data assimilation144

methodology going forward.145
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Threemain goals of these experiments are as follows: 1) investigate intrinsic limitations of current146

data assimilation methodology for applications that require nonlinear measurement operators;147

2) compare recently developed methods designed for nonlinear/non-Gaussian applications with148

those currently used for operational NWP; 3) inform ongoing efforts to design future geophysical149

modeling systems (e.g., NWP with Hurricane Analysis and Forecast System; HAFS), which will150

inevitably need to exploit remotely-sensed measurements.151

The manuscript is organized in the following manner. In Section 2, we present algorithmic152

descriptions of each data assimilation method. Section 3, describes settings for data assimilation153

experiments and results from the cycling experiments. The last section summarizes the main154

findings of this study and discusses the potential of the methods for real numerical weather155

prediction.156

2. Data Assimilation Methods157

In this section, we present themathematical framework for eachmethod, alongwith the dynamical158

system adopted for performing numerical experiments. We use lowercase boldface font to indicate159

vectors, uppercase boldface font to indicatematrices, and italic font to indicate scalars and nonlinear160

operators.161

In this study, let x f be an Nx-dimensional background model forecast; let y be an Ny-dimensional162

set of observations; let H be the tangent linear operator that converts the model state to the163

observation space; let R be the Ny ×Ny dimensional observation error covariance matrix; and let164

P be the Nx ×Nx dimensional error covariance matrix. Superscript f and a denote forecast and165

analysis, respectively.166

8



a. EnKF167

The EnKF is an approximate but efficient application of the Kalman Filter (Kalman 1960) and168

explicitly includes the time evolution of error statistics, which operates effectively for moderately169

nonlinear dynamical systems. In EnKF, P is represented by ensemble members statistically. There170

is no need to consider the tangent linear model operator used in KF, so EnKF has many advantages171

for nonlinear dynamics. The analyzed state xa is given by the following Kalman filter equations172

(e.g., Jazwinski 1970; Gelb et al. 1974)173

xa = x f +K(y−Hx f ) (1)

K = P f HT(HP f HT+R)−1 (2)

Pa = (I−KH)P f (I−KH)T+KRKT = (I−KH)P f . (3)

For the ensemble formulation, the covariance matrix P can be defined as174

P = EET, (4)

E = 1√
Ne−1 [δx

(1) | · · · | δx(Ne)], (5)

where δx(l) is considered as a perturbation around x(l), which is the lth member from an ensemble175

of Ne model states.176

TheKalmanfiltering algorithm requires the computation ofPa in (3). This process is equivalent to177

producing an appropriate analysis ensemble or “ensemble update," which has a sample covariance178

of Pa. For this study, all algorithms requiring an EnKF to update ensemble members use the serial179

ensemble square-root filter (serial EnSRF; Whitaker and Hamill 2002). In general, this method180

provides a deterministic update of the ensemble mean and perturbations about the ensemble mean181

separately in a manner that satisfies the analysis mean and error covariance given by Kalman filter182
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theory. The serial EnSRF assumes an ensemble update of the form183

Ea = (I− K̃H)E f . (6)

Andrews (1968) provides one solution, which involves Kalman gain matrix for perturbations of the184

form185

K̃ = P f HT[(HP f HT+R)−1/2]T[(HP f HT+R)1/2+R1/2]−1. (7)

If observations are uncorrelated (R is diagonal), each observation is treated serially, which makes186

the terms HP f HT and R scalar. In this case, (3) can be simplified by assuming K̃ = αK where α187

is a scalar value. The α was first derived by Potter (1964) as188

α =

(
1+

√
R

HP f HT+R

)−1

. (8)

Thus, the serial version requires only the computation of a scalar factor to weight the traditional189

Kalman gain, and therefore is no more computationally expensive than the EnKF. In this study,190

observations are assumed to be independent of each other, which makes only the computation191

of (8) necessary. When assimilating a single observation through this formulation, K and H are192

vectors with Nx dimensions, and R is scalar. Therefore, for an individual observation, the terms193

P f HT and HP f HT reduce to scalars and can be computed even if the measurement operator is fully194

nonlinear, which is done by applying this operator on each ensemble member before calculating195

sample statistics.196

b. EnKS197

The EnKS operates by storing ensemblemembers at past times and thenmodifying them by a gain198

matrix that considers observations at the current time. Whitaker and Compo (2002) introduced199

a serial ensemble square-root smoother (serial EnSRS), which uses Monte-Carlo estimates of200

forecast-analysis error cross-covariances needed to compute the Kalman smoother gain matrix.201
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While they applied the serial EnSRS to the fixed-lag Kalman smoother proposed by Cohn et al.202

(1994), in this study, we apply it as a fixed-interval Kalman smoother.203

Here, define a subscript notation m|n to indicate a quantity at observation time m, which204

incorporates knowledge of all observations up to and including time n. In this notation, (1) can be205

expressed as206

x̄a
k |k = x̄ f

k |k−1+K(y−Hx f
k |k−1). (9)

In the serial square-root smoother, we use P f
(m,n) to denote a cross-covariance matrix between207

variables at times m and n. The gain matrix K involves the forecast error cross-covariance matrix208

P f
(k,k−l) between x f

k |k−1 and x f
k−l |k−1.209

K = P f
(k,k−l)H

T(HP f HT+R)−1, (10)

where210

P f = E f
k |k−1E f T

k |k−1 (11)

P f
(k,k−l) = E f

k |k−1E f T
k−l |k−1. (12)

In the formulation of Cohn et al. (1994), this quantity is computed directly using the dynamical211

model because they developed the fixed-lag smoother without ensembles. On the other hand, the212

fixed-lag smoother with ensembles uses the dynamical model only when creating the background213

model forecast (Whitaker and Compo 2002). This idea can be directly implemented to the fixed-214

interval smoother. Note that the basic equations for the lag-0 implementation are identical to those215

of the serial EnSRF.216

c. Multiple data assimilation (MDA)217

Emerick and Reynolds (2012) introduced the MDA scheme, which assimilates the same data218

multiple times using an inflated covariance matrix of the measurement errors. They proved the219
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equivalence between single and multiple data assimilations for the linear-Gaussian case. Although220

MDA contains approximations for the fully nonlinear case and the equivalence does not hold for221

the nonlinear case, MDA benefits from the inclusion of smaller incremental ensemble corrections.222

When the same set of observations are assimilated Na times, the inflated measurement error223

covariance matrix is used in (2),224

K = P f HT(HP f HT+αiR)−1, (13)

where225

Na∑
i=1

1
αi
= 1. (14)

Note that in this paper, we use αi = Na for i = 1, . . . ,Na for all experiments with MDA. Rommelse226

(2009) and Emerick and Reynolds (2012) suggest that when the assimilation of accurate data227

in non-Gaussian regimes requires a “large jump” between the forecast and analysis state, the228

magnitude of the jump can be overestimated by linear updates. This limitation of Gaussian data229

assimilation techniques is observed frequently for the assimilation of all-sky radiancemeasurements230

in weather models, which is one of the reasons to motivate the use of observation error inflation231

(e.g., Minamide and Zhang 2017) and other ingeneous approaches as descibed in Section 1. By232

using an inflated error covariance, a potentially large spurious update in the state vector is avoided.233

Going a step further, iterative techniques like MDA replace single updates with a series of smaller234

updates, which can correct filter or smoother updates that are too large.235

In summary, the ensemble formulation of a fixed-interval serial EnSRS, with and without MDA,236

are realized by the following procedures. For DAW length l = 0, the serial EnSRS reduces to237

the serial EnSRF, and for Na = 1, each iterative data assimilation cycle with MDA reduces to a238

single-step data assimilation scheme, such as standard EnKF and EnKS.239
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Algorithm 1: EnKS with MDA cycle

1 Function EnKS-MDA_cycle:

2 for t = 1:time do

3 if t is at the end of DAW then

4 t0← t − l

5 for i = 1:iteration Na do

6 for k = 0:DAW length l do

7 xa
t0 |t0+k ← Serial_EnSRS(x f

t0 |t0+k−1, x f
t0+k |t0+k−1, yt0+k , αiR)

8 x f
t0 |t0+k ← xa

t0 |t0+k

9 x f
t0 |t0−1← xa

t0 |t0+l

10 for m = 1:Ne do

11 x f (m)
t+1|t ← Mxa(m)

t0 |t

12 else

13 for i = 1:iteration Na do

14 xa
t |t ← Serial_EnSRS(x f

t |t−1, x f
t |t−1, yt , αiR)

15 x f
t |t−1← xa

t |t

16 for m = 1:Ne do

17 x f (m)
t+1|t ← Mxa(m)

t |t

18 return

240
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Algorithm 2: Serial EnSRS

1 Function Serial_EnSRS(x f
t−k |t−1, x f

t |t−1, y, R):

2 for j = 1:Ny do

3 E f
t−k |t−1 =

1√
Ne−1 [δx

f (1)
t−k |t−1 | · · · | δx

f (Ne)

t−k |t−1]

4 E f
t |t−1 = 1√

Ne−1 [δx
f (1)
t |t−1 | · · · | δx

f (Ne)

t |t−1 ]

5 P f = E f
t |t−1E f T

t |t−1

6 P f
(t−k,t) = E f

t−k |t−1E f T
t |t−1

7 K = P f
(t−k,t)H

( j)T[H( j)P f H( j)T+R( j)]−1

8 x̄a
t−k |t = x̄ f

t−k |t−1+K(y( j)−H( j)x f
t |t−1)

9 α = (1+
√

R(j)
H(j)P f H(j)T+R(j) )

−1

10 K̃ = αK

11 Ea
t−k |t = E f

t−k |t−1− K̃H( j)E f
t |t−1

12 xa
t−k |t = x̄a

t−k |t +Ea
t−k |t

13 x f
t−k |t−1← xa

t−k |t

14 return xa
t−k |t

241

d. E4DVar and 4DEnVar242

In this section, the equations of 4DVar, E4DVar, 4DEnVar are introduced briefly. For further243

details on these methods, we encourage readers to review the mathematical descriptions in Liu et al.244

(2009), Poterjoy and Zhang (2015), and Bannister (2017). The 4DVar method seeks a solution that245

minimizes the misfit of a control variable to the background state x f
0 at t = 0 and observations yt246

at times t = 0,1,2, ...,τ. The minimization is carried out with respect to increments δx0 from x f
0247

(Courtier et al. 1994). The cost function is expressed as the sum of background (Jb) and observation248
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(Jo) terms:249

J(δx0) = Jb(δx0)+ Jo(δx0)

=
1
2
δxT

0 B−1δx0+
1
2

τ∑
t=0
(HtMtδx0−dt)

TR−1
t (HtMtδx0−dt), (15)

where B is the background error covariance and Mt is the tangent linear model operator. The250

vector dt contains the innovations at each time along a model trajectory from x f
0 and is given by251

dt = yt −Ht[Mt(x f
0 )], (16)

where Mt and Ht are the nonlinear forecast model and observation operators, respectively. In252

practice, δx0 is replaced with Uv, where v is the new control variable, and U is a square root of the253

background error covariance matrix (B = UUT) (Lorenc 2003). The cost function in the control254

variable space and the gradient of the cost function with respect to the control variables become:255

J(v) =
1
2

vTv+
1
2

τ∑
t=0
(HtMtUv−dt)

TR−1
t (HtMtUv−dt) (17)

∇vJ = v+
τ∑

t=0
UTMT

t HT
t R−1

t (HtMtUv−dt) (18)

For E4DVar and 4DEnVar, using a similar substitution described above, δx0 is separated into256

two terms to include a hybrid covariance in the variational cost function. For NWP applications,257

the ensemble contribution of the hybrid covariance is often much greater than the static covariance258

(Kleist and Ide 2015), however, such a choice is directly dependent upon the quality of ensemble,259

ensemble size, and model error. For the L96 model, Poterjoy and Zhang (2015) found the static260

error covariance to have a major impact only when an imperfect model is used for data assimilation,261

which is not explored in the current study. Therefore, we omit the use of a static error covariance262

to reduce the number of parameters to examine for this study. As a result, we have263

δx0 = δxe
0 = Ueve, (19)
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where δxe
0 is the increment resulting from the ensemble-estimated covariance. As described in264

Buehner (2005), Ue can then be written265

Ue = [e(1) | · · · | e(Ne)] (20)

P◦C = UeUeT, (21)

e(n) =
√

1
Ne −1

×diag(x f (n)
0 − x̄ f

0 )C
1
2 , (n = 1,2, . . . ,Ne), (22)

where ◦ indicates element wise multiplication, and C is the correlation matrix used for localizing266

the ensemble covariance. From these equations, the cost function and the gradient of E4DVar are267

found by substituting Ue for U and ve for v in (17) and (18). Using an ensemble forecast stored at268

each observation time in DAW, MtUe can be rewritten as269

MtUe = [Mte(1) | · · · |Mte(Ne)]

= [ê(1)t | · · · | ê
(Ne)
t ] (23)

270

ê(n)t =

√
1

Ne −1
×diag(x f (n)

t − x̄ f
t )C

1
2

=

√
1

Ne −1
×diag(Mt(x f (n)

0 )−Mt(x f
0 ))C

1
2 (24)

By substituting (23) into (17) and (18), the 4DEnVar cost function and the gradient can be expressed271

without the tangent and adjoint model.272

Note that while E4DVar uses tangent linear and adjoint models to propagate a localized error273

covariance through theDAW, 4DEnVar requires the localization of time covariances. Most previous274

studies use the same correlation matrix at each time thus ignoring the complexity of introducing275

a localization of time-dependent covariance (LTC) (Liu et al. 2009; Buehner et al. 2010; Liu and276

Xiao 2013; Fairbairn et al. 2014; Poterjoy and Zhang 2015).277

The method also allows for the use of either the nonlinear operator Ht or the tangent linear278

operator Ht in its place. This study explores both approaches in 4DEnVar experiments to identify279
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which option presents the largest advantage for nonlinear operators. To perform the localization,280

we calculate the tangent linear operator Ht at each time and use it to propagate a localized error281

covariance through theDAW.Moreover, this study re-runs the ensemble in outer loops for 4DEnVar,282

despite the fact that it is prohibitively costly for weather applications. This step is done to allow283

for a more direct comparison with incremental E4DVar with outer loops.284

To form a hybrid analysis, the variational solution is typically taken as the posterior mean and285

posterior perturbations from an EnKF are recentered about this solution at the middle of the time286

window (Zhang et al. 2009; Poterjoy et al. 2014). This approach is more consistent with the287

methodology adopted at major NWP modeling centers (Bannister 2017). For the current study, we288

instead add posterior perturbations to the mean analysis at the end of each DAW. This option has a289

number of advantages, namely, the EnKF assimilates measurements at the appropriate times over290

an assimilation window, thus providing an EnKF posterior mean that is theoretically equivalent to291

the 4DVar posterior mean in the absence of sampling error and nonlinearity. It also permits a more292

direct comparison of smoothers and filters explored in this study.293

In summary, the ensemble formulation of E4DVar and 4DEnVar are realized by the following294

procedures.295
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Algorithm 3: Ensemble/variational hybrid data assimilation without static error covariance

1 Function ensemble_variational_hybrid(Ue,x f
0 , y, R):

2 if 4DEnVar w/o LTC then

3 Ht ← Ht

4 while Outer Loop do

5 dt = yt −Ht[Mt(x f
0 )]

6 while Inner Loop do

7 switch Hybrid do

8 case E4DVar

9 Dt ←MtUe

10 case 4DEnVar w/ LTC .or. 4DEnVar w/o LTC

11 Dt ← [ê(1)t | · · · | ê
(Ne)
t ]

12 J(ve) = 1
2veTve + 1

2

τ∑
t=0
(HtDtve −dt)

TR−1
t (HtDtve −dt)

13 ∇ve J = ve +
τ∑

t=0
DT

t HT
t R−1

t (HtDtve −dt)

14 ve = argmin(J(ve))

15 x f
0 ← x f

0 +Ueve

16 xa
0← x f

0

17 return xa
0

296

e. The local PF297

The current study uses the local PF proposed by Poterjoy et al. (2019). For simplicity, this298

section highlights important aspects of the local PF that are relevant to the comparisons performed299

in this study. Our experiments take advantage of additional regularization, tempering, and hybrid300
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strategies that are unique to the local PF, which are briefly discussed in this section. For full details301

on this methodology, we refer readers to Poterjoy (2021).302

The local PF assimilates observations serially, performing a bootstrap PF update for particles303

projected onto the current observation in the sequence, followed by a model-space update. For a304

given observation y, the model-space update replaces the standard bootstrap re-sampling step with305

one that merges sampled particles and prior particles:306

xn
y = xy + r1 ◦ (xkn −xy)+ r2 ◦ (xkn −xy), (25)

where xn
y is an updated particle, xn is the nth prior particle, xkn is the nth sampled particle, xy is307

the localized posterior mean based on importance weights that consider all observations up to y,308

and r1 and r2 are derived to satisfy the posterior mean and variance of marginals. The sampled309

particles are selected from a bootstrap re-sampling of past updated particles using a cumulative310

distribution formed by weights calculated from particle likelihoods for y. In general, the posterior311

particles formed from linear combinations of the sampled and prior particles are localized, because312

r1 and r2 are calculated based on localized moments.313

Poterjoy et al. (2019) provide several improvements to the Poterjoy (2016) local PF, which are314

aimed at preventing particle weight collapse. In addition, Poterjoy (2021) introduces regularization315

and tempering methodology to further improve filter performance when sampling error is large. In316

short, regularization raises particle weights to a power β, which is pre-determined to yield marginal317

particle weights that have a specified "effective sample size," similar to the methodology described318

in Poterjoy et al. (2019). Regularization acts as a heuristic means of preventing weight collapse,319

similar to observation error inflation. It provides a strategy for assimilating observations through320

tempered iterations (Neal 1996), each with a unique set of β coefficients. Unlike regularization,321

tempering does not introduce bias in the posterior estimate.322
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The method also benefits from the use of a mixing parameter, γ, to increase particle diversity in323

the vicinity of observations. As described in Poterjoy (2021), r1 in (25) is multiplied by γ, which324

introduces a smooth “jittering” of particles. The coefficients in r2 are then modified so that the325

first two posterior moments are still maintained.326

3. Cycling data assimilation experiments327

We perform separate sets of data assimilation experiments to investigate limitations for nonlinear328

applications and examine the sensitivity of the methods to user-specified parameters. These329

parameters include the number of iterations, DAW, ensemble size, ROI, inflation, and measurement330

operators. The first two sets of experiments focus primarily on key parameters for smoothers, which331

are known to be sensitive to nonlinearity in model dynamics and measurement operators. These332

parameters are the number of iterations and DAW length. The third set of experiments focuses333

more broadly on the comparison between filters and smoothers. For this purpose, we select three334

types of observation networks, each differing primarily in choice of measurement operator. The335

system parameters for each of these cases are summarized in Table 1.336

a. Experimental design337

1) Model338

We examine several aspects of the data assimilation methods by performing idealized numerical339

experiments with the L96 model (Lorenz 1996; Lorenz and Emanuel 1998). The model consists340

of variables xi for i = 1,2, . . . ,Nx , which are equally spaced on a periodic domain. The variables341

are evolved in time using the set of differential equations,342

dxi

dt
= (xi+1− xi−2)xi−1− xi +F, (26)
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with cyclic boundaries: xi+Nx = xi and xi−Nx = xi. We integrate (26) forward numerically using343

the fourth-order Runge-Kutta method with a time step of 0.05 [units defined arbitrarily as 6 h; see344

Lorenz (1996)]. For this study, we fix Nx at 40 and use F = 8.0, which causes the model to behave345

chaotically.346

2) Observations347

In this study, we create observation networks of Ny = 10, Ny = 15, and Ny = 20 observations that348

are evenly spaced on model grid points. Note that for the case Ny = 15, we line up the observation349

points so that they were evenly distributed (i.e., 1, 4, 6, 9, 12, 14, 17, 20, 22, 25, 28, 30, 33, 36,350

39). We simulate measurements every time step (6 h) by selecting values from a truth simulation,351

applying one of the operators discussed below, then adding uncorrelated Gaussian errors selected352

from N(0,σ2
y I), where σ2 is the measurement error variance.353

Experiments include three forms of measurement operator. The "Linear Case" uses an H that354

selects model variables to be directly observed; i.e., H(x) = x̂, where x̂ is a subset Ny variables in355

x chosen by H. The "Nonlinear Case 1" extends H to be quadratic: H(x) = x̂◦ x̂. The "Nonlinear356

Case 2" introduces log and absolute value operators to the interpolated values: H(x)= log[ABS(x̂)],357

where ABS indicates the absolute value of each element. The second and third operators produce358

weak and strong nonlinearities, respectively. Note that we apply a simple gross error check for the359

third measurement operator to prevent observations from being assimilated if the value of ABS(x̂)360

is extremely small. Observation error standard deviations are set to σy = 1.0 for the first two361

experiments, but reduced to σy = 0.1 for the third case to compensate for the smaller information362

content provided by this observation network.363
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3) Observation timeline and verification364

Observations are assimilated over a 3650-day period, and root-mean-square errors (RMSEs)365

from the last 3550 days are used to quantify the accuracy of the posterior analyses. The first366

100 days of data assimilation act as a spinup period to allow members time to reach quasi-steady367

posterior solutions for the given setup of the model and observation network.368

In the first sets of experiments described below, we perform direct comparisons of the different369

smoothers used for this study. For these experiments, we calculate RMSEs at the beginning of370

the DAW (smoother solution), because it more directly indicates how much information is being371

extracted from observations at future times. For experiments shown later in this section, which372

compare different forms of smoothers and filters, we calculate RMSEs at the end of the DAW (filter373

solution).374

4) Treatment of sampling errors375

Potential sources of bias in the estimation of the posterior include small ensemble sizes relative to376

the state dimensions, model errors, nonlinearities, and assumptions used to form data assimilation377

algorithms. Therefore, heuristic covariance localization strategies are needed to reduce noise378

introduced from ensemble error approximations by performing a Schur product between this379

matrix and an empirically defined correlation matrix with a tunable length scale parameter, or ROI.380

For this purpose, we use the fifth-order correlation function given by Eq. (4.10) of Gaspari and381

Cohn (1999).382

The posterior covariance is inflated by replacing ensemble perturbationswith linear combinations383

of posterior and prior perturbations, which is known as a covariance relaxation method (Zhang384

et al. 2004):385

x
′a
n ← (1−α)x

′a
n +αx

′ f
n . (27)

22



The α in (27) is called the “relaxation coefficient” and ranges from 0 to 1, where α = 0 implies no386

inflation. We adopt this inflation strategy to remain consistent with Poterjoy and Zhang (2015),387

who perform a similar comparison of ensemble data assimilation algorithms, including hybrid388

covariance forms of E4DVar and 4DEnVar.389

As previously stated, the local PF uses a mixing parameter to maintain particle diversity during390

updates. While this approach is effective at preventing filter divergence with small ensembles,391

it does not directly increase prior or posterior error variance in the same manner as relaxation.392

Similar to the α used in the relaxation method the coefficient γ is a scalar between 0 and 1. It393

further mixes prior particles and resampled particles everywhere particles are updated in state394

space, including in the vicinity of measurements.395

b. Results396

1) Sensitivity to the number of outer iterations397

The variational and MDA techniques present different iterative strategies for coping with nonlin-398

earity in model dynamics and measurement operators. For the first set of experiments, we explore399

the sensitivity of these methods to the number of iterations. In addition to providing a direct400

comparison of different smoothers for a nonlinear application, these experiments help motivate401

choices for iteration number in the filter/smoother comparisons that follow. As previously stated,402

we also explore the advantage of LTC, which is a localization of the ensemble covariance at each403

observation time in the window calculated with the tangent linear operator Ht at each time for404

nonlinear operators.405

Figure 1 shows mean RMSEs of EnKS-MDA, E4DVar, 4DEnVar with LTC, and 4DEnVar406

without LTC from experiments with Nonlinear Case 1. Ensemble size Ne, relaxation coefficient α,407

and DAW are fixed at 10, 0.3, and 24 h, respectively. We find this window length to be sufficient408
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for exploring sensitivity to outer loops without adding computational cost. We do not show results409

using Nonlinear Case 2 because all methods tested in this study (other than the PF) experience410

filter divergence when measurements are simulated with this operator. These results are discussed411

in the filter/smoother comparisons below.412

For the observation networks tested in this study, we find that increasing the number of iterations413

has little impact on mean error for EnKS-MDA. For E4DVar and 4DEnVar, however, we confirm414

that multiple outer loops are required for optimal performance. Under various circumstances,415

outer loops are also needed to prevent filter divergence with the nonlinear measurement operator.416

For example, E4DVar with ROI fixed at 1 and a single outer loop shows a worse score than with417

multiple iterations. We also find that the minimum number of outer loops required to prevent418

filter divergence is sensitive to ROI. E4DVar experiments using an ROI of 3 and 5 require 2 and 3419

outer iterations, respectively. Nevertheless, the improvements of multiple iterations beyond these420

numbers becomes negligible once a sufficient number is reached.421

We also find E4DVar to be more stable than 4DEnVar for the tested observation networks. Recall,422

this method uses the tangent linear model to propagate increments along a nonlinear trajectory to423

future times, and its adjoint to propagate sensitivity gradients backward from observation times424

to the beginning of the DAW. The trajectory is updated between outer iterations to ensure that425

values propagated by the tangent linear and adjoint remain small enough for linear approximations426

to remain valid. In addition, the input of ensemble error covariance at a single time in this427

process (at the beginning of the DAW) greatly simplifies the removal of spurious error correlations428

through localization (Fairbairn et al. 2014; Poterjoy and Zhang 2015). For this reason, we find429

configurations of 4DEnVar that use LTC to be more stable than configurations without LTC. Based430

on this finding, we use this strategy for all remaining 4DEnVar experiments.431
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2) Smoother performance as a function of data assimilation window length432

Several of the methods examined in this study are smoothers, which are sensitive to the choice of433

DAW. For the next set of experiments, we compare mean RMSEs of EnKS, EnKS-MDA, E4DVar,434

and 4DEnVar as a function of DAW (Fig. 2). As stated above, the verification for these experiments435

focuses on the posterior smoothing density; i.e., the analysis at the beginning of the DAW. For436

these experiments, we fix the ensemble size Ne, relaxation coefficient α, and ROI at 10, 0.3, and437

3, respectively. The number of iterations (MDA) and outer loops (Var) are both set to 3. These438

decisions are based on results from the previous set of experiments, showing little benefit beyond439

3 iterations for chosen model and observation networks. As we revisit later, in experiments with440

the Nonlinear Case 1, the observation value is closer to the truth all the time, making an order of441

RMSEs magnitude smaller than with the Linear Case.442

We start by examining the impact of MDA on the EnKS. Our experiments show that MDA443

provides slight benefits over non-iterative configurations, even at DAW length l = 0 h and linear H444

(Fig. 2a). Note that EnKS is identical EnKF for this DAW length, so no benefits are expected from445

the iterations. One possible reason for the difference in skill between EnKS and EnKS-MDA at446

DAW length l = 0 h is due to small differences in how ensemble perturbations are adjusted through447

iterative steps. For linear cases with Gaussian prior, MDA yields the same posterior mean and448

covariance as would be obtained without iterations. As suggested by Rommelse (2009), the extra449

uncertainty included in measurements during each iteration ensures that adjustments from prior450

to posterior values are dampened, which is beneficial when linear updates overestimate the true451

impact of measurements that relate nonlinearly to model variables. Therefore, MDA provides an452

opportunity for the EnKF to remove over-adjustments that may occur during previous iterations.453

We suspect that a combination of serial processing of observations and iterative updates ofmembers454
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leads to slight improvements in how the EnKF samples from the posterior density, which is assumed455

to be non-Gaussian because of the nonlinear model. This finding explains why the MDA approach456

yields small improvements in posterior estimates over successive data assimilation steps, which is457

also explored later.458

The advantage of the EnKS-MDA over the EnKS with the DAW length l > 0h is shown in both459

the linear and nonlinear cases. For both experiments, the MDA scheme resolves issues with the460

nonlinearlity of the model and observation measurement operators in DAW. EnKS is stable even461

with the longer DAW, but the quality of the analysis starts to degrade as the DAW length is increased462

beyond a certain point, because sampling error increases as the DAW become longer. Compared to463

4DEnVar, EnKS is more stable with longer DAW. This indicates that the forecast error covariance464

matrix used for smoother is approximated more accurately by cross-covariance matrix (P f
(k,k−l))465

in EnKS than by ensemble-based error covariance in 4DEnVar. Unlike the variational methods,466

the EnKS samples directly from the smoothing density rather than using a hybrid strategy of re-467

centering EnKF perturbations about a variational solution. Furthermore, the 4DEnVar experiment468

contains higher RMSEs than E4DVar because of the difficulty required in removing sampling469

errors from temporal error covariances when Ne is small (Fairbairn et al. 2014; Poterjoy and Zhang470

2015).471

3) Filter performance472

In this section, we present results from experiments that examine the sensitivity and limitations473

of EnKF, EnKF-MDA, EnKS, EnKS-MDA, E4DVar, 4DEnVar, and the local PF to ROI, relax-474

ation coefficient α, PF mixing coefficient γ, and the observation measurement operators. For475

all experiments, DAW for EnKS, EnKS-MDA, E4DVar, and 4DEnVar is set to 24 h, and the476

number of iterations and outer loops are set to 3. For the local PF, the regularization operates477
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only when the effective ensemble size Neff falls below a target value of Neff . The target Neff is478

fixed at N t
eff = 0.5× Ne for all experiments. We define filter divergence objectively by flagging479

configurations that produced 100-cycle average RMSEs larger than 2 with NA for "not available"480

in the figures.481

Figure 3 shows mean RMSEs from the experiment with the Linear Case. Results from all482

methods, which use a fixed ensemble size Ne of 10, are displayed in charts that show RMSE as483

a function of tunable variables used to reduce the impact of sampling error. For example, Fig. 3484

demonstrates that the optimal ROI and α are comparable for EnKF, EnKF-MDA, EnKS, EnKS-485

MDA, E4DVar, and 4DEnVar. In most cases, the optimal scores are typically found near values486

that lead to filter divergence. RMSEs from the local PF are slightly worse due to the small number487

of particles used in these experiments. Figure 4 shows results from experiments with the same488

settings except Ne is increased to 40. As expected, all methods become more stable and require489

less localization (larger ROI) and less inflation (smaller α and γ) as Ne increases. Comparing the490

results of the local PF from Fig. 3 and 4, it is clear that the larger ensemble size is required for491

the local PF to outperform the methods with a Gaussian prior with the tested observation network.492

EnKS shows clearly better performances than EnKF, and MDA makes EnKF and EnKS slightly493

improved, even with a linear measurement operator because of the reason mentioned in section494

3.b.1.495

Results from Nonlinear Case 1 experiments using Ne = 10 are shown in Fig. 5. Unlike exper-496

iments with the Linear operator, filter divergence occurs without setting strict limits on ROI and497

inflation coefficients for all methods. Despite the nonlinear measurement operator in these exper-498

iments, we find no benefits from the assimilation methods designed specifically for non-Gaussian499

applications, namely EnKF-MDA and the local PF. We believe this result occurs because of the500

accuracy and frequency at which these measurements are collected. For model variables that can501
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reach magnitudes of O(10), measuring the square of these variables with an error variance of 1502

yields highly accurate information for characterizing the posterior. This factor, combined with503

the frequency of these measurements lead to prior and posterior members that remain close to the504

truth at all times, thus making Gaussian assumptions more valid. We revisit this property of the505

Nonlinear Case 1 measurement operator in the next section.506

These experiments also continue to show clear benefits of E4DVar and 4DEnVar over EnKF,507

both in terms of stability and accuracy. We hypothesize that the 4D data assimilation methods are508

less sensitive to sampling noise, which becomes the dominant source of bias in mildly nonlinear509

regimes. Likewise, we find E4DVar to be more stable than 4DEnVar when Ne is small, owing510

mostly to the localization strategy adopted by this method. We note that all algorithms approach511

similar RMSEs as ensemble size increases; i.e., Fig. 6 shows results with Ne = 40 for the same512

observation network. The reason why E4DVar and 4DEnVar are more stable than EnKS is due513

to the small number of ensembles and the nonlinear observations that prevent from accurately514

estimating of the cross-covariance matrix in the Serial EnSRS.515

Figure 7a shows the mean RMSEs from experiments of the local PF that use measurements516

simulated with Nonlinear Case 2 and Ne = 40. For this configuration, filter divergence occurs in all517

methods except the local PF, owing to the strong nonlinearity in the measurement operator. This518

observation network presents a case where nonlinearity in the application becomes a much larger519

factor than sampling error in ensemble-estimated prior and posterior distributions. Even with520

Ne = 100, the Gaussian-based methods fail to provide stable solutions despite the potentially large521

amount of information contained in thesemeasurements, as indicated by the lowRMSEs in the local522

PF posterior (Fig. 7b). Since the local PF makes no parametric assumptions about prior densities,523

non-Gaussian observation-space priors, which are produced by nonlinear measurement operators,524

do not have a negative impact on the filter. Therefore, it can continue to extract information from the525

28



observation network regardless of nonlinearity in H. These results confirm past studies, showing526

that local PF provides benefits when Ne is sufficiently large or when the observation operator is527

strongly nonlinear. It also demonstrates limitations in iterative techniques for cases where the528

observation function is quadratic and the posterior may be bimodal.529

4) Filter performance for sparse observation networks530

Using the mildly nonlinear observation operator (Nonlinear Case 1), we investigate the behavior531

of eachmethod for increasingly sparse observation networks. These experiments use an observation532

frequency of 24 h, which is increased from 6 h in previous experiments, and Ny = 20, 15, and 10533

for equally-spaced measurements at each observation time. We also fix the DAW for smoothers at534

48 h; see Table 1 for full summary. These results are summarized in Figs. 8 – 10 using the same535

graphics adopted in the previous section comparing filter performance.536

Compared to EnKF, the performance of EnKS becomes slightly worse for these observation537

networks. As discussed in Evensen and van Leeuwen (2000), the EnKS differs from the EnKF538

by computing updates of the model parameters using all the observations in DAW simultaneously539

rather than using recursive updates in time. Therefore, with these settings, the recursive updates540

of EnKF keep the model solutions close to the truth at any given time during the experiment, and541

operate onmarginal densities that are relatively close toGaussian at any given time. While posterior542

marginals of the smoothing density are expected to be close to Gaussian at the beginning of the543

DAW (Morzfeld and Hodyss 2019), marginals near the end of the DAW can evolve non-Gaussian544

characteristics because of nonlinearity in the model.545

The benefits of MDA for EnKF are clearly shown in Fig. 8 and Fig. 9. For suboptimal546

configurations of the EnKF, prior members exhibit a larger variance thus allowing nonlinearity547

in H to become a significant source of bias for Gaussian methods. Therefore, the optimal EnKF548
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configuration remains almost the same with MDA, but the set of parameters over which the filter549

remains stable becomes larger than that of the standard EnKF. For these observation networks,550

careful choices of ROI and α are sufficient for mitigating bias caused by Gaussian assumptions,551

but MDA helps prevent filter divergence when these parameters are improperly chosen.552

For a long DAW (48 h) E4DVar becomes more stable than 4DEnVar with Ny = 20 (Fig. 8),553

but both methods diverge when observation density is decreased further (Fig.9–10). For these554

experiments, we find EnKS-MDA to be more accurate than the EnKS and much more stable than555

the variational methods. This result is anticipated in nonlinear regimes, since incremental updates556

reduce potential over-adjustments by the ensemble smoother over the time window. As previously557

stated, the improved performance over E4DVar and 4DEnVar for sparse observation networks (Fig.558

9) must follow from the ability of EnKS-MDA to sample directly from the smoothing density, rather559

than relying on a hybrid approach, which is a clear advantage of this method. Algorithmically, the560

EnKS operates in a manner that is very similar to 4DEnVar, but with the added benefit of updating561

ensemble perturbations about the posterior mean, rather than re-centering EnKF perturbations562

about the posterior mode.563

For the experiment with Ny = 15, we also verify the second moment of the posterior to examine564

potential shortcomings in uncertainty estimates. The observation network and ensemble size used565

in these simulations poses challenges for several data assimilation method used here, in that filter566

divergence is prevented for a narrower range of parameters than previous experiments. Figure 11567

shows the ratio of spread to RMSEs, indicating whether the ensemble spread is overestimated or568

underestimated with respect to the RMSE. The results of all methods are presented except E4DVar569

and 4DEnVar, which do not estimate posterior variance—recall that ensemble perturbations are570

updated using an EnKF instead. Ideally, the spread and RMSE should be equivalent, but sampling571

error and assumptions made during data assimilation may lead to inconsistent results. Likewise,572

30



heuristic techniques for treating sampling errors, such as localization and covariance relaxation573

can also introduce suboptimal uncertainty estimates. For all filters and smoothers examined in574

this study, the best match between spread and RMSE tends to occur when RMSE is at a minima575

(Fig. 11a-d). The further away from the optimal parameter settings, the larger the mismatch576

between spread and RMSE. As such, filter divergence occurs when the spread begins to become577

overestimated or underestimated for all methods (Fig. 11a-d).578

Despite the difficulty posed by these observation networks, we find that the local PF can be579

configured to produce stable results, even for data-sparse regimes, which was expected for this580

method (Poterjoy 2021). This property of the local PF is illustrated for the Ny = 10 case, where it is581

the only method that does not diverge for all parameter value (Fig. 10). These results demonstrate582

challenges that exist for the mildly nonlinear observation operator as the spatial and temporal583

density of measurements decreases to yield larger prior uncertainty.584

5) Local PF performance as a function of ensemble size585

Figure 12 shows the mean RMSEs of the local PF as a function of ensemble size. These586

experiments use a fixed PF mixing coefficient of γ = 0.3 and two N t
eff values of 0.2× Ne and587

0.8×Ne. The results are similar for the cases with the linear and mildly nonlinear measurement588

operators (Fig. 12a and b) in that optimal ROI increases with ensemble size.589

This is because the large ensemble size yields fewer sampling errors thus needing less localization.590

For the strongly nonlinear measurement operator, however, the difference in RMSEs for the range591

of ROI choices become small as the ensemble size increases (Fig. 12c). This result may reflect592

either the limited information contained in these measurements. That is, because they only observe593

the log of the absolute value of variables, distant multivariate updates from these measurements594

are truly very small, thus requiring very large ensemble sizes to estimate accurately. They may595
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also suggests that sampling errors and other factors, such as assumptions made by local PF update596

equations, become less dominant for nonlinear applications of this type.597

Furthermore, the experiments demonstrate a dependence of optimal N t
eff on ensemble size.598

When the ensemble size is small, experiments with higher N t
eff show more accurate results. As599

the ensemble size increases, the lower N t
eff shows smaller posterior RMSEs. This suggests that the600

larger N t
eff can result in over-inflation when the ensemble size is large.601

4. Conclusions602

In geophysical models, such as those used for numerical weather prediction, strongly nonlinear603

model dynamics andmeasurement operators can cause data assimilationmethods to be biased. This604

study examines several procedures that are developed to overcome challenges posed by nonlinear605

operators, such as periodic re-linearization of tangent linear and adjoints in variational schemes,606

likelihood factorizations adopted by iterative ensemble filters and smoothers, and localized particle607

filters. These methods—some of which were originally designed for applications outside the608

weather community—are compared with methods currently used for operational NWP, namely609

EnKFs and hybrid variational methods with and without model adjoints.610

This study adopts the 40-variable model of Lorenz (1996) to examine the selected data assimila-611

tion approaches. The small dimension of this model allow for extensive testing of each technique612

using a large variety of observation networks, each varying in density and the type of observations613

provided. For several observation networks used in this study, re-linearization of the model and614

measurement operators between outer iterations are required to prevent filter divergence. Once a615

sufficient number of outer iterations are reached to achieve stable results, the improvements are616

negligible.617
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The wide range of observation networks examined in this study yields a diverse set of results,618

which are summarized using posterior RMSEs. We acknowledge that this metric is not ideal for619

non-Gaussian regimes, particularly those characterized as multimodal. Nevertheless, the sharp620

failure of various techniques for non-Gaussian problems are easily identified by large values of621

RMSEs.622

Each method examined in this study has clear advantages for specific regimes—which are623

identified to be a function of sampling error, nonlinearity inmeasurement operators, and observation624

density. This finding motivates the use of different choices of data assimilation methodology,625

depending on application.626

The ensemble-variational smoother with an adjoint model, E4DVar, produces smaller RMSEs627

than 4DEnVar for all observation networks tested in this study. It also outperforms all othermethods628

in regimes where sampling error is high, but the model solution is well-constrained by numerous629

accurate measurements; i.e., in weakly nonlinear regimes. This study also compares variational630

methods to an ensemble smoother, which is adapted from the fixed-lag EnSRS of Whitaker and631

Compo (2002). For regimes where sampling error is a more dominant sources of posterior bias632

than nonlinearity, the EnKS performs better than its filter counterpart. Adding iterations to EnKF633

and EnKS updates through MDA results in improved results for all nonlinear regimes, particularly634

for sparse observation networks and long DAW lengths. The EnKS with MDA is also found to635

outperform all methods for data assimilation problems characterized by high sampling error and636

weak nonlinearity. Likewise, it provides stable results in nonlinear regimes that cause E4DVar and637

4DEnVar to experience filter divergence. For applications of this type, EnKS-MDA benefits from638

its ability to sample directly from the posterior smoothing density, rather than relying on a separate639

EnKF to update perturbations about a maximum likelihood solution.640
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Furthermore, ensemble filters outperform smoothers when nonlinearity in measurement opera-641

tors or model dynamics have a dominant role in the data assimilation applications. This finding is642

consistent with past studies that compare filters and smoothers for problems of this type (Evensen643

and van Leeuwen 2000). For highly nonlinear regimes, the local PF is the only method that644

produces accurate results. The benefit of PF-based methodology, however, comes with the tradeoff645

of being more sensitive to sampling error. Therefore, it requires large ensemble sizes to produce646

RMSEs as low as ensemble and variational smoothers for quasi-linear regimes.647

Owing to the nature of this study, all comparisons are performed in an idealized framework. These648

findings will ultimately help guide future data assimilation decisions for real geophysical problems,649

where the computational cost of exploring the sensitivity of data assimilation methodology and650

parameters is prohibitive. The major findings of this study demonstrate when to expect Gaussian651

filters and smoothers to be suboptimal and under what conditions iterative techniques provide added652

value over conventional methods. Choices of nonlinear measurement operators in this study are653

motivated by challenges faced by high-impact weather events, such as severe convective storms and654

tropical cyclones. In particular, all-sky satellite radiance measurements provide extensive, near-655

continuous data coverage for tropical cyclones over open oceans. These measurements are often656

difficult to use, owing to the highly non-Gaussian (often multi-modal) observation-space priors657

produced by nonlinear measurement operators. New operational weather prediction systems, such658

as NOAA’s Hurricane Analysis and Forecast System (HAFS), will ultimately need to overcome659

barriers that currently exist in Gaussian-based data assimilation methodology to fully leverage660

measurements of this type, as several operational centers have made significant advancements to661

cope with the difficult conditions in the past years. Experiments performed in this study motivate662

applications of iterative ensemble approaches and the local PF for problems of this type.663
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Fig. 1. Mean analysis RMSEs as a function of the number of iteration or outer loop. Results are shown for

the Nonlinear Case1. Values are from the experiment with EnKS-MDA (triangle), E4DVar (circle), 4DEnVar

without LTC (square), and 4DEnVar with LTC (diamond), and ROI set to 1 (blue), 3 (red), and 5 (green). The

RMSEs are calculated at the start of the DAW (smoother solution).
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Fig. 2. Mean analysis RMSEs as a function of smoother lag. Results are shown for (a) Linear Case and (b)

Nonlinear Case 1, with the EnKS (blue), the EnKS-MDA (red), the E4DVar (green), and the 4DEnVar (magenta).

The number of iterations and outer loops is fixed at 3 for both cases. The RMSEs are calculated at the start of

the DAW (smoother solution).
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Fig. 3. Mean analysis RMSEs estimated for a range of relaxation coefficient α (a-f) and PF mixing coefficient

γ (g) and ROI. Results are shown for experiments with the Linear Case and ensemble size is fixed at 10. Black

shading indicates higher RMSEs, NA indicates that filter divergence occurs during the experiment, and the

smallest errors are indicated by the black box. The RMSEs are calculated at the end of the DAW (filter solution).
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Fig. 4. As in Fig.3, but for ensemble size fixed at 40.
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Fig. 5. Mean analysis RMSEs estimated for a range of relaxation coefficient α (a-f) and PF mixing coefficient

γ (g) and ROI. Results are shown for experiments with the Nonlinear Case 1 and ensemble size is fixed at 10.

Black shading indicates higher RMSEs, NA indicates that filter divergence occurs during the experiment, and the

smallest errors are indicated by the black box. The RMSEs are calculated at the end of the DAW (filter solution).
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Fig. 6. As in Fig.5, but for ensemble size fixed at 40.
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(a)

(b)

Fig. 7. Mean analysis RMSEs estimated for a range of PF mixing coefficient γ and ROI. Filter divergence

occurs in all methods except the local PF, so only results of the local PF are shown for experiments with the

Nonlinear Case 2 and ensemble size is fixed at 40 (a) and 100 (b). Black shading indicates higher RMSEs, NA

indicates that filter divergence occurs during the experiment, and the smallest errors are indicated by the black

box. The RMSEs are calculated at the end of the DAW (filter solution).
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Fig. 8. As in Fig.6, but for the frequency of observations and DAW fixed at 24 h and 48 h, respectively.
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Fig. 9. As in Fig.8, but for the number of observations fixed at 15.
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Fig. 10. As in Fig.8, but for the number of observations fixed at 10. Filter divergence occurs in all methods

except the local PF, so only results of the local PF are shown.
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Fig. 11. Ratio of ensemble spread to mean analysis RMSEs estimated for a range of relaxation coefficient α

(a-d) and PF mixing coefficient γ (e) and ROI. The experimental setting is the same as in Fig.9. NA indicates

that filter divergence occurs during the experiment. The RMSEs and spread are calculated at the end of the DAW

(filter solution).
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Fig. 12. Mean analysis RMSEs of the local PF as a function of ensemble size. Results are shown for (a) Linear

Case, (b) Nonlinear Case 1, and (c) Nonlinear Case 2. Values are from the experiment with Neff fixed at 0.20

×Ne (solid lines) and 0.80 ×Ne (dashed lines), and ROI fixed at 2 (blue), 5 (red), and 8 (green).
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