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Abstract 

Topological line defects are ubiquitous in nature and appear at all physical scales, 

including in condensed matter systems, nuclear physics, and cosmology.  Particularly 

useful systems to study line defects are nematic liquid crystals (LCs), where they 

describe singular or nonsingular frustrations in orientational order and are referred to as 

disclinations. In nematic LCs, line defects could be relatively simply created, 

manipulated, and observed. We consider cases where disclinations are stabilized either 

topologically in plane-parallel confinements or by chirality. In the former case, we 

report on studies in which defect core transformations are investigated, the intriguing 

dynamics of ½ strength disclinations in LCs exhibiting negative dielectric anisotropy, 

and stabilization and manipulation of assemblies of defects. For the case of chiral 

nematics, we consider nanoparticle-driven stabilization of defect lattices. The resulting 

line defect assemblies could pave the way to several applications in photonics, sensitive 
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detectors, information storage devices.  These excitations, moreover, have numerous 

analogs in other branches of physics. Studying their universal properties in nematics 

could deepen understanding of several phenomena, which are still unresolved at the 

fundamental level. 

 

1.Introduction 

Topological defects [1] (TDs) refer to topologically stabilized localized distortions in a 

physical field describing the ordering of a system.  They appear in phase transitions in 

which the symmetry of the system is reduced. The sole condition for their appearance is 

symmetry breaking and causality [2,3] (i.e. finite speed of information propagation). 

Consequently, they are present at all physical scales [3], and thus are important in 

particle physics, condensed matter physics, and cosmology. 

In general, the ordering of a symmetry broken phase is described in terms of 

order parameter fields, which consist of two qualitatively different contributions 

[4]: amplitudes and phases. Amplitudes reflect the magnitude of the established order 

and are, in general, single-valued for a given set of control parameters such as 

temperature. Phases determine symmetry breaking “selection” among a degenerate set 

of possible states, which is infinite for continuous symmetry breaking transitions. (Note 

that  in this case “continuous” does not refer to a second order phase transition, but 

rather to the phase-field degeneracy in the symmetry broken phase). Frustrations in the 

phase-field could lead to topological defects, which appear either as point-like, line-

like, and wall-like configurations. Their topological stability could be determined using 

the group theory considerations [1,5]. 

Owing to their topological origin, the behaviour of TDs exhibits a rich variety of 
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universalities that are independent of the systems’ microscopic details. Consequently, it 

is advantageous to find systems in which TDs can be created, manipulated, and 

observed with relative ease. For this purpose, various liquid crystalline (LC) phases 

[4,6,7] satisfy these requirements and, importantly, they exhibit many diverse types of 

TDs [4,8,9]. Furthermore, the unique combination of liquid-like behavior, softness (i.e. 

strong stimuli responsivity), and optical anisotropy enables experimentally efficient 

manipulation and observations of TDs.      

Thermotropic uniaxial nematic phases represent the simplest LC configurations 

exhibiting only orientational long-range order, which is commonly described by the 

tensor nematic order parameter Q [4,6]. The latter is, at the lowest approximation, 

described by the uniaxial nematic order parameter S and the nematic director field 𝒏𝒏�, 

representing the amplitude and phase order parameter components, respectively. 

Nematic phase order is formed via an order-disorder symmetry-breaking phase 

transition on cooling from the isotropic phase. Topological arguments [5,8] reveal that 

either point or line-defects could be topologically protected in the nematic phase. 

We note that the resulting bulk equilibrium phases are defectless in achiral and 

weakly chiral LCs, see Figure 1(a) and Figure 1(b). These configurations are referred to 

as the nematic (N) and cholesteric (N*) phase [4,6], respectively. In both phases 𝑆𝑆(𝒓𝒓) is 

spatially homogeneous. Furthermore, in the N phase  𝒏𝒏�(𝒓𝒓) is aligned spatially 

homogeneously along a single symmetry direction. On the other hand, the director 

pattern in N* consists of a continuous rotation of the nematic director  𝒏𝒏�(𝒓𝒓) , which 

twists along the symmetry breaking helical axis perpendicular to the director. Relatively 

strongly chiral LCs can exhibit the so-called blue phases (BPs) [9,10], which are 

characterized by lattices of disclinations (see Figure 1(c-e)). Three qualitatively 
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different configurations have been reported, referred to as BPI (Figure 1(c)), BPII 

(Figure 1(d)), and BPIII (Figure 1(e)). These structures are fingerprinted by body-

centered cubic, simple cubic, and glass-like lattices of disclinations, respectively.  

 

 

Figure 1. Schematic presentation of the (a) nematic, b) cholesteric, c) BPI, d) BPII, e) 

BPIII liquid crystalline configurations. 

Nematic LCs represent a superb experimentally accessible playground in which 

to study the physics of topological defects [5]. Moreover, diverse defect patterns in LCs 

could be exploited in various applications such as in photonics, sensitive detectors, 

displays, and photovoltaics [11-16]. In particular, TDs in LCs can be exploited as 

efficient traps of appropriate nanoparticles [17-20] or colloids [21-23], which 

enormously increases the potential use of TDs in future applications.    

In this article we examine diverse disclination patterns in nonchiral and chiral 

nematic LCs confined within three-dimensional plane-parallel cells.  To be sure, this is 

a vast area of research, and we have chosen to focus most heavily on work from our 
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groups.  Nevertheless, there are several recent review articles that focus on related, but 

distinctly different areas. These include reviews on quasi 2D geometries by Harth and 

Stannarius [24], in which the focus is on free standing smectic films, especially in the 

smectic-C phase.  Shin and Yoon [25] examined various techniques, both surface and 

external fields, to manufacture and manipulate defects. Ultimately their goal was to 

explore various applications of defects, including particle manipulation, switchable 

electrooptics, and lenses.  A group from IIT Gandhinagar [26] examined the well-

developed field of colloids in nematic liquid crystals [27,28], their resulting defects and 

ultimately their manipulation and dynamic behaviour. Research in active nematic liquid 

crystals [29], which consist of self-propulsion of high density anisometrically-shaped 

objects, such as biopolymers and bacteria, has been growing rapidly.  The spontaneous 

generation (or destruction) of topological defects often ensues from the resulting 

motion.  Work on motile topological defects in 2D systems, and more recently on 3D, is 

reviewed by Doostmohammadi et al. [30], where they compared the active systems with 

disclination lines and closed loops generally found in passive liquid crystal systems. 

They noted that because most work on active nematics has focused on 2D systems, it is  

poorly understood how active turbulence affects the disclination lines in 3D. 

Here we focus on the more traditional passive systems and illustrate reversible 

external electric field-driven transformations among competing structures. Additionally, 

we demonstrate the impact of different nanoparticles (NPs) on BP configurations.  Our 

plan is as follows. In Sec. 2 we present a Landau-de Gennes phenomenological model 

and discuss nematic excitations. In Sec. 3 we present the basic mechanisms that enable 

the creation and stabilization of TDs in simple plane-parallel confinements. In Sec. 4 

stabilization and external electric field manipulation of diverse line defect patterns in 

nonchiral nematics are reported, with emphasis on mechanical nanopatterning to 
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implement the desired defects. Sec. 5 is devoted to the impact of different NPs on the 

stability of BPs in chiral nematics. In the final section, we summarize findings.  

2. Mesoscopic modelling 

We first introduce mesoscopic modelling, which is commonly used to describe core 

structure and assemblies of disclinations in nematic LCs. Key quantities describing 

topological properties of disclinations are introduced, as well as the excitations that 

could nucleate the defects.  

2.1. Order parameter 

One commonly describes nematic order in terms of the traceless symmetric tensor order 

parameter [4,6] 

𝑸𝑸 = ∑ 𝜆𝜆𝑖𝑖𝒆𝒆�𝑖𝑖⨂𝒆𝒆�𝑖𝑖3
𝑖𝑖= ,                                                                                                           (1) 

where 𝜆𝜆𝑖𝑖 and 𝒆𝒆�𝑖𝑖 stand for eigenvalues and eigenvectors of Q, respectively. This 

parametrization encompasses both uniaxial and biaxial states. In nematic uniaxial LCs 

the former states exist in the presence of sufficiently strong local distortions. Uniaxial 

states are expressed by 

𝑸𝑸 = 𝑆𝑆(𝒏𝒏�⨂𝒏𝒏� − 𝐼𝐼/3) ,                                                                                                     (2) 

where 𝑆𝑆 ∈ [−0.5,1] stands for the nematic uniaxial order parameter. Note that states 

with 𝑆𝑆 > 0 (𝑆𝑆 < 0) are at the mesoscopic level and are commonly geometrically 

portrayed by prolate (oblate) cylindrically symmetric objects. Disordered (isotropic) 

states correspond to 𝑆𝑆 = 0. 

A convenient parametrization emphasizing biaxial order is [31]  

𝜆𝜆1 = 2
3
𝜆𝜆0 cos(𝛾𝛾),  𝜆𝜆2 = −2

3
𝜆𝜆0 cos(𝛾𝛾 − 𝜋𝜋/3),  𝜆𝜆3 = −2

3
𝜆𝜆0 cos(𝛾𝛾 + 𝜋𝜋/3),                (3a) 

𝜆𝜆0 = �3
2
𝑇𝑇𝑇𝑇𝑸𝑸2.                                                                                                             (3b) 
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This parametrization describes the amplitude order parameter space {𝜆𝜆, 𝛾𝛾} for a fixed 

orientation of the eigenvectors {𝒆𝒆�1, 𝒆𝒆�2, 𝒆𝒆�3}, see Figure 2. Furthermore, the degree of 

biaxiality is measured by the biaxial parameter [31,32] 

𝛽𝛽2 = 1 − 6(𝑇𝑇𝑇𝑇𝑸𝑸3)2

(𝑇𝑇𝑇𝑇𝑸𝑸2)3
= 𝑠𝑠𝑠𝑠𝑠𝑠2(3 𝛾𝛾) ∈ [0,1],                                                                         (4) 

where  𝛽𝛽2 = 0 and 𝛽𝛽2 > 0 reflect uniaxial and biaxial states. In particular, the condition 

𝛽𝛽2 = 1 corresponds to states exhibiting maximal biaxiality. 

The Isotropic phase is represented by 𝜆𝜆0 = 0. Positive uniaxial states (i.e. S>0) 

for ordering along {𝒆𝒆�1, 𝒆𝒆�2, 𝒆𝒆�3} are determined by { 𝛾𝛾 =0, 𝛾𝛾 =2𝜋𝜋
3

, 𝛾𝛾 = −2𝜋𝜋/3}, and 

negative uniaxial states (i.e. S<0) by { 𝛾𝛾 = 𝜋𝜋, 𝛾𝛾 =−𝜋𝜋
3

, 𝛾𝛾 = 𝜋𝜋
3
}. The remaining values of  𝛾𝛾 

describe biaxial states. In particular, the states { 𝛾𝛾 = ± 𝜋𝜋
6

, 𝛾𝛾 =  ± 𝜋𝜋
2
 , = ± 5𝜋𝜋

6
 } correspond 

to configurations exhibiting maximal biaxiality. 

 

 

 

Figure 2. Amplitude order parameter space {𝜆𝜆0, 𝛾𝛾} of the nematic tensor order 

parameter, where  𝜆𝜆0 is the radius and 𝛾𝛾 as the angle. The Q eigenframe is determined 

by {𝒆𝒆�1, 𝒆𝒆�2, 𝒆𝒆�3}. The center and the outer radius of the circle correspond the isotropic 

phase and  𝜆𝜆0 = 𝑆𝑆𝑒𝑒𝑒𝑒 , where 𝑆𝑆𝑒𝑒𝑒𝑒 minimizes the condensation free energy penalty. The 



8 
 

states {𝛾𝛾 = 0, 𝛾𝛾 = 2𝜋𝜋
3

, 𝛾𝛾 = −2𝜋𝜋/3} describe positive uniaxial order along {𝒆𝒆�1, 𝒆𝒆�2, 𝒆𝒆�3}. 

The path indicated by the dashed red color indicates order reconstruction 

transformation, where the nematic order reconfigures from 𝒏𝒏� = 𝒆𝒆�1 to 𝒏𝒏� = 𝒆𝒆�𝟐𝟐 via 

intermediate biaxial states and a negative uniaxial state along 𝒆𝒆�𝟐𝟐 (at 𝛾𝛾 = 𝜋𝜋/3).  Note 

that this transformation does not require melting of the nematic order. In the case 

shown, the amplitude of nematic order is constant. Such cases could be realised deep in 

the nematic phase.  

 

2.2. Free energy  

Within the Landau-de Gennes mesoscopic approach, the LC free energy is traditionally 

expressed as [4,6] 

𝐹𝐹 = ∫ 𝑓𝑓𝑓𝑓𝑓𝑓 + ∫ 𝑓𝑓𝑖𝑖𝑑𝑑𝑑𝑑 ,                                                                                                     (5) 

where the first integral is carried over the LC body and the second over the LC-confining 

interface. We write the bulk free energy density 𝑓𝑓 = 𝑓𝑓ℎ + 𝑓𝑓𝑒𝑒 + 𝑓𝑓𝑓𝑓 as the sum of 

homogeneous (𝑓𝑓ℎ), elastic (𝑓𝑓𝑒𝑒), and external electric 𝑬𝑬 and magnetic 𝑯𝑯 field (𝑓𝑓𝑓𝑓) 

contributions, and 𝑓𝑓𝑖𝑖  determines interactions at the LC-limiting interface. These 

contributions are expanded in terms of the nematic order parameter. In the expansion we 

use the minimal set of symmetry allowed terms that are needed to describe phenomena 

presented in this review [4,6,33,34]: 

𝑓𝑓ℎ = 3
2
𝑎𝑎0(𝑇𝑇 − 𝑇𝑇∗)𝑄𝑄𝛼𝛼𝛼𝛼𝑄𝑄𝛼𝛼𝛼𝛼 −

9
2
𝑏𝑏𝑄𝑄𝛼𝛼𝛼𝛼𝑄𝑄𝛽𝛽𝛽𝛽𝑄𝑄𝛾𝛾𝛾𝛾 + 9

4
𝑐𝑐�𝑄𝑄𝛼𝛼𝛼𝛼𝑄𝑄𝛼𝛼𝛼𝛼�

2
,                                       (6a)                                                                                        

𝑓𝑓𝑒𝑒 = 𝐿𝐿1
(1)

2
𝑄𝑄𝛼𝛼𝛼𝛼,𝛼𝛼𝛼𝛼 + 𝐿𝐿1

(2)

2
𝑄𝑄𝛼𝛼𝛼𝛼,𝛾𝛾𝑄𝑄𝛼𝛼𝛼𝛼,𝛾𝛾 + 𝐿𝐿2

(2)

2
𝑄𝑄𝛼𝛼𝛼𝛼,𝛽𝛽𝑄𝑄𝛼𝛼𝛼𝛼,𝛾𝛾 + 𝐿𝐿3

(2)

2
𝑄𝑄𝛼𝛼𝛼𝛼,𝛾𝛾𝑄𝑄𝛽𝛽𝛽𝛽,𝛼𝛼 +

2𝐿𝐿𝑐𝑐ℎ𝑞𝑞𝑐𝑐ℎ𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼𝑄𝑄𝛼𝛼𝛼𝛼𝑄𝑄𝛼𝛼𝛼𝛼,𝛾𝛾,                                                                                                        (6b) 

𝑓𝑓𝑓𝑓 = − 𝜀𝜀0∆𝜀𝜀
2
𝐸𝐸𝛼𝛼𝑄𝑄𝛼𝛼𝛼𝛼𝐸𝐸𝛽𝛽 −

𝜇𝜇0∆𝜇𝜇
2
𝐻𝐻𝛼𝛼𝑄𝑄𝛼𝛼𝛼𝛼𝐻𝐻𝛽𝛽 ,                                                                       (6c)                                                                                                              

𝑓𝑓𝑖𝑖 = 𝑤𝑤
2

 �𝑄𝑄𝛼𝛼𝛼𝛼 − 𝑄𝑄𝛼𝛼𝛼𝛼
(𝑖𝑖)� �𝑄𝑄𝛼𝛼𝛼𝛼 − 𝑄𝑄𝛼𝛼𝛼𝛼

(𝑖𝑖)�.                                                                                                      (6d) 
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In this notation the numerical coefficients are introduce for later convenience, the 

summation over the repeated indices is applied, (… ),𝛾𝛾 = 𝜕𝜕(… )
𝜕𝜕𝑥𝑥𝛾𝛾

 denotes the partial 

derivative with respect to the Cartesian coordinate 𝑥𝑥𝛾𝛾 , and 𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼 is the Levi-Cevita 

antisymmetric tensor [35]. The remaining quantities are described below.   

The homogeneous term (Eq.(6a)) is expressed up to the fourth term in  𝑸𝑸, which is 

needed to describe the bulk spontaneous temperature driven discontinuous phase 

transition in orientational order at 𝑇𝑇 = 𝑇𝑇𝐼𝐼𝐼𝐼, and it enforces uniaxial nematic order below 

𝑇𝑇𝐼𝐼𝐼𝐼 .  Here  𝑎𝑎0, b, c represent positive temperature independent Landau 

phenomenological coefficients, and 𝑇𝑇∗ is the bulk isotropic phase supercooling 

temperature.  The value of bulk equilibrium (spatially homogeneous) uniaxial nematic 

order 𝑆𝑆𝑒𝑒𝑒𝑒 in the absence of external fields is given by 

  𝑆𝑆𝑒𝑒𝑒𝑒(𝑇𝑇 ≤ 𝑇𝑇𝐼𝐼𝐼𝐼) = 𝑆𝑆0
3+�9−8(𝑇𝑇−𝑇𝑇∗)

𝑇𝑇𝐼𝐼𝐼𝐼−𝑇𝑇∗

4
,  𝑆𝑆𝑒𝑒𝑒𝑒(𝑇𝑇 > 𝑇𝑇𝐼𝐼𝐼𝐼) = 0,                                                  (7) 

where 𝑇𝑇𝐼𝐼𝐼𝐼 = 𝑇𝑇∗ + 𝑏𝑏2

4𝑎𝑎0𝑐𝑐
 , and 𝑆𝑆0 = 𝑆𝑆𝑒𝑒𝑒𝑒(𝑇𝑇 = 𝑇𝑇𝐼𝐼𝐼𝐼) = 𝑏𝑏

2𝑐𝑐
. 

In Eq.(6b) we present symmetry allowed elastic contributions up to the quadratic Q 

expansion. These terms penalize departures from a spatially homogeneous order. The 

symmetry allowed invariants are weighted by the bare (temperature independent) 

nematic elastic constant 𝐿𝐿1
(1),  𝐿𝐿1

(2), 𝐿𝐿2
(2), 𝐿𝐿3

(2), 𝐿𝐿𝑐𝑐ℎ [4,33]; additionally, 𝑞𝑞𝑐𝑐ℎ represents the 

LC inherently preferred chirality wave vector. In the case of nematic uniaxial order (see 

Eq.(2)), which is favored by  𝑓𝑓ℎ , the elastic term is commonly expressed as 

𝑓𝑓𝑒𝑒 = 𝐾𝐾11
2

(∇ ∙ 𝒏𝒏�)2 + 𝐾𝐾22
2

(𝒏𝒏�.∇ × 𝒏𝒏� − 𝑞𝑞𝑐𝑐ℎ)𝟐𝟐 + 𝐾𝐾33
2

|𝒏𝒏� × ∇ × 𝒏𝒏�|2 −

                                       𝐾𝐾24∇ ∙ (𝒏𝒏�∇ ∙ 𝒏𝒏� + 𝒏𝒏� × ∇ × 𝒏𝒏�),                                                      (8) 

This is the so called Oseen-Frank free energy [6,36], expressed in terms of the 

temperature dependent splay (𝐾𝐾11), twist (𝐾𝐾22), bend (𝐾𝐾33), and saddle-splay (𝐾𝐾24) Frank 
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elastic constants. This expression is commonly used if one describes nematic order solely 

by 𝒏𝒏�. The temperature dependence of these constants is obtained by inserting the uniaxial 

order parameter given by Eq.(2) into Eq.(6b) and collecting the contributions that weight 

splay, twist, bend, and saddle-splay nematic distortions. Note that in earlier studies the 

saddle-splay contribution was commonly neglected because its contribution can be 

transformed to the interface enclosing the nematic body. However, it later emerged that 

this constant could strongly affect stability and structure of TDs. Frequently the single 

nematic elastic constant approximation is used. In using a representation in terms of bare 

nematic constants, one commonly imposes 𝐿𝐿 ≡ 𝐿𝐿1
(2) = 𝐿𝐿𝑐𝑐ℎ, and the remaining constants 

are set to zero. Furthermore, using Frank constants, one commonly imposes 𝐾𝐾 ≡ 𝐾𝐾11 =

𝐾𝐾22 = 𝐾𝐾33 = 𝐾𝐾24.                                    

The quantities in the external field free energy contribution in Eq.(6c) refer to 

the vacuum electric permittivity 𝜀𝜀0 and the vacuum magnetic permittivity 𝜇𝜇0. The 

quantity ∆𝜀𝜀 stands for the dielectric anisotropic response in an external electric field E, 

and ∆𝜇𝜇 quantifies the magnetic anisotropic response in an external magnetic field H.  

For positive anisotropies (i.e., ∆𝜀𝜀 > 0,∆𝜇𝜇 > 0) and negative anisotropies, the uniaxial 

LC molecules tend to align 𝒏𝒏� parallel and perpendicular to relevant external field, 

respectively.  

We model the conditions at the confining substrate using Eq.(6d) [34,37]. It is 

weighted by the positive constant w, which tends to enforce the nematic order  𝑸𝑸𝑖𝑖 that is 

locally imposed by the interface. This term was originally introduced by Nobili and 

Durand [34] and exhibits the classical Rapini Papoular form [37] by setting 𝑸𝑸𝒊𝒊 =

𝑆𝑆𝑖𝑖 �𝒏𝒏�𝑖𝑖⨂𝒏𝒏�𝑖𝑖 −
𝐼𝐼
3
�. In this case the interactions tend to align the nematic director along the 

easy axis 𝒏𝒏�𝑖𝑖 and enforces the amplitude 𝑆𝑆𝑖𝑖.     
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In this contribution we will mostly use a single elastic constant (using L or 𝐾𝐾~𝐿𝐿𝑆𝑆2)  

approximation to illustrate the key features of interest. Furthermore, we will confine our 

attention to responses to an external electric field. 

The model introduces several characteristic length scales [4,6] that determine 

order of magnitude responses of the LC to different perturbations. For later convenience 

we introduce the uniaxial coherence length ξ,  biaxial coherence length ξ𝑏𝑏 , external 

electric field extrapolation length ξ𝐸𝐸 , and surface extrapolation length 𝑑𝑑𝑒𝑒 . In the nematic 

phase we define these quantitites as [4,31] 

ξ = �𝐿𝐿/
𝜕𝜕2𝑓𝑓ℎ

(𝑒𝑒𝑒𝑒)

𝜕𝜕𝑆𝑆2
,  ξ𝑏𝑏 = �𝐿𝐿/(𝑏𝑏𝑆𝑆𝑒𝑒𝑒𝑒), ξ𝐸𝐸 = �𝐿𝐿𝑆𝑆𝑒𝑒𝑒𝑒/(𝜀𝜀0∆𝜀𝜀𝐸𝐸2),                                        (9) 

where the second derivative 𝜕𝜕
2𝑓𝑓ℎ

(𝑒𝑒𝑒𝑒)

𝜕𝜕𝑆𝑆2
 is expressed for 𝑆𝑆 = 𝑆𝑆𝑒𝑒𝑒𝑒. 

2.3. Excitations 

2.3.1. Fundamental excitations 

We first consider fundamental excitation modes in nematic order. In particular, we focus 

on those that could nucleate stable arrays of disclinations. One gains insight into the 

representative fundamental excitations in nematic order by focusing on uniaxial elastic 

free energy penalties in the equal elastic constant approximation. These are determined 

by ∇𝒏𝒏� = 𝜕𝜕𝑖𝑖𝑛𝑛𝑗𝑗   , which can be decomposed into four fundamental modes [38-40], referred 

to as the bend (B), splay (SP), twist (T), and tetrahedral splay (∆) mode: 

𝜕𝜕𝑖𝑖𝑛𝑛𝑗𝑗 = −𝑛𝑛𝑖𝑖𝐵𝐵𝑗𝑗 + 𝑆𝑆𝑆𝑆
2

( 𝛿𝛿𝑖𝑖𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗) + 𝑇𝑇
2
𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑘𝑘 + ∆𝑖𝑖𝑖𝑖.                                                        (10) 

These excitations correspond to four irreducible representations of the group of 

rotations about 𝒏𝒏� [38]. They could be locally excited individually while the other modes 

are absent.  The first three modes are defined as [39], as 𝐵𝐵 = 𝒏𝒏� × ∇ × 𝒏𝒏�, 𝑆𝑆𝑆𝑆 = ∇ ∙ 𝒏𝒏�, and  

𝑇𝑇 = 𝒏𝒏� ∙ ∇ × 𝒏𝒏�.  The bend  mode B corresponds to a “pure” (i.e. other distortions are 

absent) bend elastic distortion (see Figure 3(a)).  The splay mode SP corresponds to 
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isotropic inward or outward (see Figure 3(b)) tilt deformation in the plane perpendicular 

to 𝒏𝒏�. The twist mode T exhibits a right-handed or left-handed (see Figure 3(c)) twist 

isotropically in the plane perpendicular to 𝒏𝒏�. Note that only the bend mode is equal to the 

classical bend deformation introduced in Oseen-Frank approach [36]. The remaining two 

(i.e. splay and twist modes) exhibit isotropic distortions, dubbed double-splay and double-

twist, respectively. On the contrary, their more familiar Oseen-Frank modes, classical 

splay and classical twist, distortions exhibit single (i.e. planar) splay and twist 

deformation, respectively. The remaining splay tetrahedral mode is defined by ∆𝑖𝑖𝑖𝑖=

𝜕𝜕𝑖𝑖𝑛𝑛𝑗𝑗 + 𝑛𝑛𝑖𝑖𝐵𝐵𝑗𝑗 −
𝑆𝑆𝑆𝑆
2

( 𝛿𝛿𝑖𝑖𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗) − 𝑇𝑇
2
𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑘𝑘. This deformation has the symmetry of a 

tetrahedron (see Figure 3(d)). In this model 𝒏𝒏� tips outwards along one axis and inward 

along the other axis.  

 

 

Figure 3. Fundamental excitations in orientational order: (a) bend, (b) splay, (c) twist, 

and (d) ∆ mode. 

 

Note that the classical Oseen-Frank free energy density is given by [6,36] 

𝑓𝑓 = 𝐾𝐾11
2
𝑆𝑆𝑃𝑃2 + 𝐾𝐾22

2
𝑇𝑇2 + 𝐾𝐾33

2
|𝐵𝐵|2 − 𝐾𝐾24∇ ∙ (𝒏𝒏�∇ ∙ 𝒏𝒏� + 𝒏𝒏� × ∇ × 𝒏𝒏�).                                  (11) 

Note that classical single splay, single twist, bend, and saddle-splay excitations are not 

independent. On the contrary, fundamental modes could be selectively excited. In terms 

of the Oseen-Frank free energy density they can be expressed as [39] 

𝑓𝑓 = 𝐾𝐾11−𝐾𝐾24
2

𝑆𝑆𝑃𝑃2 + 𝐾𝐾22−𝐾𝐾24
2

𝑇𝑇2 + 𝐾𝐾33
2

|𝐵𝐵|2 + 𝐾𝐾24Tr∆2.                                                (12) 
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It follows that elastic deformations corresponding to pure double-splay (𝐾𝐾11
(𝐷𝐷𝐷𝐷)), double-

twist (𝐾𝐾22
(𝐷𝐷𝐷𝐷)), bend, and tetrahedral splay are weighted by elastic constants 

𝐾𝐾11
(𝐷𝐷𝐷𝐷) = 𝐾𝐾11 − 𝐾𝐾24, 𝐾𝐾22

(𝐷𝐷𝐷𝐷) = 𝐾𝐾22 − 𝐾𝐾24, 𝐾𝐾33, and  𝐾𝐾24. The system is positive definite if 

these constants are positive, which in fact embodies the Ericksen stability condition [41]. 

Note that double-twist and tetrahedral splay excitations cannot fill the entire 3D Euclidian 

space and the resulting frustration is resolved by introducing TDs.  

 

2.3.2. Topological defects and topological invariants 

Next, we consider topologically stable localized excitations, corresponding to topological 

defects. To gain insight into their key structural and topological properties we consider 

again the simplest nematic Oseen-Frank [6,36] uniaxial description in terms of 𝒏𝒏�. In the 

2D xy-plane and in the approximation of equal Frank elastic constants, the Euler-

Lagrange equation is ∇2ψ = 0. Here we use the parametrization 𝒏𝒏� = 𝒆𝒆�𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐ψ + 𝒆𝒆�𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠ψ. 

The equation’s solution is 

ψ = 𝑠𝑠𝑠𝑠 + ψ0,                                                                                                               (13) 

where 𝜑𝜑 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑦𝑦/𝑥𝑥), ψ0 is a constant, and s is the so-called “winding number” (or 

Frank index). Configurations determined by s=0 correspond to equilibrium nematic 

configurations (i.e. ground states), where ψ0 defines a symmetry breaking direction. 

Structures with s≠0 describe singular solutions, where s is a discrete topological invariant 

possessing either half integer or full integer values. In 2D s is equivalent to the topological 

charge, which is a conserved quantity. Note that half integer values reflect the nematic 

head-to-tail invariance. Different defect structures described by Eq.(13), where the defect 

center is at the coordinate origin, are plotted in Figure 4. TDs with s>0 and s<0 are 

commonly referred as defects and antidefects, respectively. A {defect,antidect} pair, 
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bearing opposite signs of s, tends to annihilate into a defectless state, because the defects 

are in general energetically costly.  

The general solution that describes assembly of N noninteracting defects is given 

by  

ψ = ∑ 𝑠𝑠𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
𝑦𝑦−𝑦𝑦𝑖𝑖
𝑥𝑥−𝑥𝑥𝑖𝑖

�𝑁𝑁
𝑖𝑖=1 + ψ0 ,                                                                                (14) 

  where 𝑠𝑠𝑖𝑖 determines the winding number of the ith defect whose origin is placed at 

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖). 

In 3D the defect structures presented in Figure 4 correspond either to point or 

line defects. In this case Figure 4(a,b,c,f) describe line defects that are running out of the 

page. Furthermore, Figure 4(d,e) could represent either point defects or line defects. Note 

that in Figure 4 the structure of defects is presented in the uniaxial approximation, where 

the orientational field characterizing defects is given by 𝒏𝒏�. 

In this review we focus on line defects, which form either closed loops or 

originate and terminate at a surface that is in contact with a LC body. These structures are 

commonly described by the winding number s (which reflects local line defect structure), 

and by the 3D topological charge q, which is a whole integer [8].  
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Figure 4. 2D schematic representations of some typical surface topological defects 

described by Eq. (11). (a) s=1/2, 𝜓𝜓0 = 0; (b) s=-1/2, 𝜓𝜓0 = 0; (c) a pair of s=1/2 defects; 

(d) s=1, 𝜓𝜓0 = 0; (e) s=-1, 𝜓𝜓0 = 0; (f) s=1, 𝜓𝜓0 = 𝜋𝜋/2. 

 

The core structure of TDs is, in general, biaxial, and therefore requires a description in 

terms of tensor order parameter. For example, point defects in 3D could exhibit either 

uniaxial or biaxial structure. In the former case, where a cross-section of a representative 

spherically symmetric hedgehog structure is shown in Figure 4(d), the center of the defect 

is melted, and the linear core size is determined by the uniaxial correlation length ξ [42]. 

This uniaxial spherically symmetric structure is generally unstable (or metastable) with 

respect to the biaxial and cylindrically symmetric structure [43,44]. The latter is 

characterized by a ring exhibiting negative uniaxiality, which is embedded in a torus 

exhibiting maximal biaxiality. Furthermore, the defect symmetry axis is positively 

uniaxial, and the far field of an isolated defect is radial and positive uniaxial. Frustrations 
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in orientational order within the defect core may be realized via an order reconstruction 

mechanism (i.e. exchange of Q eigenvalues). Consequently, key structural changes within 

the defect core could be described by variations in the amplitude order parameter space 

(i.e. the variables 𝜆𝜆0 and 𝛾𝛾 in Eqs.(3)).  The characteristic linear size of a biaxial point 

defect is well estimated by the biaxial coherence length ξ𝑏𝑏 [44,45]. 

The characteristic loop of a biaxial hedgehog corresponds, in fact, to an s=1/2 

line defect if the loop length is increased. This could be achieved, for example, by 

applying a sufficiently strong electric field to a LC possessing positive dielectric 

anisotropy. Furthermore, an antihedgehog (i.e. the antidefect companion of the hedgehog 

structure) is characterized by a loop [44,46–48], whose enlarged structure corresponds to 

the line defect of strength s=-1/2. In general, line defects form either closed loops or 

originate and terminate at a substrate that is in contact with a LC. The line structures 

described above are “charged” in the sense that they can be assigned a 3D topological 

charge q=1, i.e. their far field nematic structure is spatially distorted. These extended 

structures are shown in Figure 5(a,b), where they are stabilized by an appropriate 

confining surface treatment, as will be described in detail in the following sections. 

Furthermore, a line defect characterized locally by |𝑠𝑠| = 1/2 could be chargeless if the 

sign of s changes along the defect line. An example of such a defect is shown in Figure 

5(c). Such a defect is characterized by q=0, and consequently its far field nematic 

structure could be undistorted (spatially homogeneous).  Note that all line defects in 3D 

are characterized by   |𝑠𝑠| = 1/2 and are topologically equivalent. The core structure of 

these defects is always biaxial [43,49]. At the defect center line these defects are 

negatively uniaxial and are embedded in a sheet exhibiting maximal biaxiality [44].  
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Figure 5. Charged (a,b) and chargeless line defects (c ). (a) s=1/2, |𝑞𝑞|=1; (b) s=-1/2, 

|𝑞𝑞|=1; |𝑠𝑠|=1/2, q=0. 

 

3. Creation and stabilization of TDs 

In general TDs are energetically expensive. If the total 3D topological charge of a LC 

body equals zero, then the system rarely exhibits steady state TDs, unless they are pinned 

by a surface imperfection or dust. Nevertheless, they are relatively ubiquitous at – least 

temporarily – when the ordered phase is condensed via a sufficiently rapid phase 

transition. In static configurations, TDs could be stabilized either energetically, by 

appropriate surface treatment of confining substrates, by chirality, or by some other 

means. In the following we describe the general Kibble [2] and Kibble-Zurek mechanism 

[3], which describe the generation of TDs in a fast phase transition quench. Afterwards 

we describe how diverse line defect structures could be stabilized in nematic LCs 

confined in a plane-parallel geometry.     

 

3.1. Kibble and Kibble-Zurekm mechanism 

Generation of TDs in a sufficiently rapid continuous symmetry-breaking phase transition 

is described by universal mechanisms. The so-called Kibble mechanism [2], which later 

evolved into the Kibble-Zurek mechanism [3], was originally introduced to explain the 

emergence and coarsening of topological defects in the Higgs field of the early 



18 
 

inflationary universe. The corresponding phase transition was assumed to be of second  

order. It was proposed that nucleated TDs seeded the anisotropic structure of the universe, 

which is reflected in the anisotropic cosmic background pattern. (Later it emerged that 

the principal mechanism behind this were quantum fluctuations). In their modeling it was 

assumed that the quench rate of the phase transition mimics the inflation speed.  

The key assumptions of the Kibble mechanism are that in a fast enough (i.e. 

quenched) phase transition the symmetry breaking choice is in general different in 

different parts of the system due to the finite speed of information propagation. Namely, 

sufficiently separated spatial regions are informationally isolated and uncorrelated. 

Consequently, the domain-type structure in the phase component of the order parameter 

field of the condensed phase forms, where TDs are enforced at the domain interfaces. The 

size of the initially formed domains (the so called protodomains) depends on the quench 

rate.  Afterwards, the description of domain formation was improved by Zurek [3], who 

demonstrated the important role of critical slowing down. Furthermore, he proposed that 

due to the universality of this mechanism, condensed matter systems could be exploited 

as a laboratory system for understanding cosmology. The key prediction of the Kibble-

Zurek mechanism refers to the linear size of protodomains ξ𝑑𝑑
(𝑝𝑝), which yields the initial 

concentration of TDs. Theoretical analysis reveals that it scales3 as ξ𝑑𝑑
(𝑝𝑝) ∝ 𝜏𝜏𝑄𝑄

𝑣𝑣/(1+η). Here 

𝜏𝜏𝑄𝑄 measures the time in which the phase transition is completed – it is inversely 

proportional to the quench rate – and 𝑣𝑣 and η are the critical exponents describing the 

amplitude order parameter correlation length and relaxation time at the phase transition. 

This prediction was tested and, in most cases, also confirmed in diverse condensed matter 

systems, such as superfluids [50,51], high-Tc superconductors [52], and liquid crystals 

[53–55]. For example, in nematic LCs [53,54] it roughly holds 𝑣𝑣~1/2 and η~1, yielding 



19 
 

ξ𝑑𝑑
(𝑝𝑝) ∝ 𝜏𝜏𝑄𝑄

1
4  [56]. After the quench the nearby defects and antidefects annihilate, and 

consequently the characteristic linear size of domains monotonically increases, and the 

universal time scaling regime ensues.  For nematic LCs (NLCs) it roughly holds that  ξ𝑑𝑑 ∝

𝑡𝑡1/2 [57,58]. Note that the coarsening mechanism is well described by a single linear 

characteristic length ξ𝑑𝑑. Numerical simulations in NLCs reveal that coarsening dynamics 

in a sufficiently fast quench exhibits at least three qualitatively different stages: i) early 

regime, ii) domain regime, iii) defect regime [57,58]. The i) early regime is dominated by 

exponential growth of the order parameter amplitude. In this stage domains are not visible 

due to the relatively weak degree of condensed order. In ii) the domain regime, domains 

exhibiting different phases of the order parameter are visible. In the iii) defect regime, 

most defects and antidefects are mutually annihilated, so that instead of domain walls the 

structure of individual TDs dominate the structural pattern. In a purely achiral NLC a 

single domain is eventually established, where TDs are absent.  

In the following we turn to various experimental techniques that enable 

stabilization of line defects in NLCs confined within plane-parallel cells. 

 

3.2. Confinement induced stabilization 

A large number of methods have been developed to effect placement of a desired 

topological defect or collection of defects in a liquid crystal cell. Here we review many 

of these, ultimately focusing on scribing a polymer alignment layer with the stylus of an 

atomic force microscope. 

 Eakin et al. [59], Crawford et al. [60], and Gorkhali [61] exploited polarized 

holography to pattern linear and square arrays of alternating TDs of integer (s = ±1) 

strength. Fleury, Pires, and Galerne adopted a more brute force approach, in which they 

created a TD array by rubbing the substrate with a PTFE (TeflonTM) rod [62].  Despite 
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the ease of these methods, they tend to produce relatively widely spaced defects.  On 

smaller scales of order a few tens of micrometers, a Colorado group led by Smalyukh 

adopted an optical tweezing approach:  Here two scanning mirrors direct a tightly 

focused laser to arbitrary coordinates within the sample, thereby generating an array of 

torons, gratings, skyrmions, and other structures — even in three dimensions [63-66].  

Yokoyama’s group has adopted a maskless exposure system for photolithography in 

which they create 2 × 2 mm patterns with resolution approach 2 µm [67].  More 

recently they developed a photolithography method based on a voltage switchable liquid 

crystal phase mask that uses the Pancharatnam-Berry phase; they have achieved 

resolution of 0.5 µm [68,69].  Led by Wei QH and Lavrentovich OD, a group at Kent 

State developed a defect patterning technique to create three dimensional defect 

networks by exploiting 2D plasmon photopatterning on the two substrates of the cell 

[70-73] ;  they have used this approach for patterning both standard calamatic and 

lyotropic chromonic liquid crystal defects. Ware, et al, photopatterned defects in a 

liquid crystal elastomer with defects that can change shape under various external 

stimuli, giving rise to 3D liquid crystal voxels [74]. A different approach has been taken 

by Yoon’s group, in which they judiciously applied voltages to patterned electrodes to 

generate patterns of desired defects [75].  Kim and Serra created regular and adjustable 

arrays of defects by incompletely etching electrodes, thus creating a periodic 

conductivity.  This facilitated application of a laterally modulated electric field [76].  A 

similar approach was adopted by Orihara’s group but using a charged dielectric layer to 

cover the electrodes [77].  Orihara’s group also created patterns by exploiting umbilical 

defects at the two substrates, adding ions, and applying an ac electric field [78].  A joint 

Dutch/Slovenian group used chemical/optical patterning [79]: They deposited a 

homeotropically-orienting silane onto a substrate, then optically etched away spatially 
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periodic square regions to create an array of planar-aligning squares in a hometropically 

aligning “sea”.  They subsequently used this surface to create skyrmion-like defect 

patterns.  Mechanical approaches for defect patterning are several.  A joint 

Chinese/Hungarian/Japanese team used a “dragging” technique to create a dynamically 

formed array of TDs at large scales by coupling a group of TDs to a dragging force, 

which sorts and orders the TDs [80].  Stannarius’ group created desired patterns of 

defects on free-standing films by physically poking the film with a tiny probe [81].  

Serra exploited a regular array of micro-pillars, sometimes in conjunction with electric 

fields, to create controllable defect arrays [82,83]. Surface topographies in a photoresist 

also have been used by a group in Stuttgart to create defects in chromonic liquid crystals 

using two-photon laser writing process [84]. 

Each technique has its own disadvantages and advantages.  On the negative side, 

most of the techniques, except those of Refs. 68, 69, and 79 cannot create features on 

the submicrometer length scale. The holography methods in Refs. 59, 60, and 61 can 

provide only limited types of patterns, and both the optical tweezing (Refs. 63-66) and 

mechanical poking (Ref. 81) approaches te Topological Point Defects of Liquid 

Crystals in Quasi-Two-Dimensional Geometries nd to be limited in range.  Chemical 

patterning (Ref. 79) has limited utility in controlling the spatial variation of the director.  

None of these techniques, except the micro-pillar array (Refs. 82 and 83) and optical 

tweezing, presents a viable means of controlling both azimuthal and polar orientations 

of the director.  But on the positive side, many of these techniques, most notably the 2D 

plasmon photopatterning technique (Refs. 70-72), allow for rapidly-created large area 

patterns. Moreover, most of the approaches that do not involve mechanical contact 

motion with the surface are “clean”, in that there is no residue.  
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In this article, however, we shall focus on mechanical nanoscribing utilizing the stylus 

of an atomic force microscope (AFM), the approach of which, as well as advantages 

and disadvantages, are described below.  More than twenty-five years ago Rüetschi, et 

al demonstrated that scribing a polymer surface with an AFM stylus creates an easy axis 

for planar nematic alignment [85]. Based on this principle, Yokoyama showed that tiny 

regions can be scribed to exhibit tristable switching behavior [86], effectively a 

forerunner of defect patterning.  At about the same time, Rosenblatt’s group 

demonstrated that AFM scribing can be used to create an ultrahigh resolution display 

having a gray scale [87], as well as initial work on liquid crystal optical gratings [88].  

The principle is straightforward:  A polymer such as polyvinyl alcohol (PVA) or a 

commercial polyimide is deposited on a substrate, and the AFM stylus is programed to 

scan a predetermined pattern in in contact mode, where both the in-plane (azimuthal) 

direction and the scribing force can be varied point-by-point.  As is the case with cloth 

rubbing of a polymer alignment layer, the alignment of the liquid crystal director is due 

to a combination of entropic considerations due to the nano-grooves that are created by 

the scribing process, and anisotropic dispersive interactions between the liquid crystal 

and the now partially aligned polymer backbone and side groups [89,90]. There are 

numerous advantages to such a scheme, the most important being the tiny features that 

can be achieved.  With spacing between rub lines being as small as the tip of the stylus 

– this is typically of order 10 – 20 nm – one can realise features that generally are not 

accessible by other means.  For example, one can divide “super” pixels into much 

smaller subpixels and control the overall properties of the super pixel (orientation, 

anchoring strength) by spatially averaging over the properties of the subpixels [91]. 

Another major advantage is the ability to control not only the azimuthal component of 

the director at the surface, but the polar angle as well.  In principle this can be 
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accomplished by using appropriate alignment layer polymers that provide a wide range 

of continuous pretilt angles [92,93], ideally from planar through homeotropic alignment, 

and then varying the contact force of the stylus.  Preliminary data were obtained by 

scribing a mixture of polyimides SE-1211 (which produces homeotropic alignment) and 

RN-1175 (which produces planar alignment), both from Nissan Chemical Industries. By 

overbaking and scribing with an AFM stylus, simultaneous azimuthal and polar (from 

hometropic to 70o, i.e. nearly planar) alignment control was achieved [94]. Results of 

this sort may also be obtainable from ion beam bombardment of mixed polyimide 

surfaces, although with somewhat less spatial resolution [95].   

Nevertheless, there also are disadvantages to AFM scribing.  Perhaps the most 

important issue is the overall size of the pattern and the time involved in scribing.  

Patterns typically are limited to approximately 100 µm on a side, which requires several 

minutes of scribing, depending on the complexity of the pattern.  Multiple patterns can 

be tiled together, but the serial nature of the scribing process adds to the time involved.  

Another issue is the creation and disposal of debris that can attach to the stylus during 

the procedure.  Nevertheless, AFM scribing remains an efficacious tool because of the 

rapid turnaround times to modify a pattern and the ability to achieve high resolution and 

control both polar and azimuthal orientations simultaneously. 

 

3.3. AFM Scribing Method  

For a typical surface defect of strength s, Nehring and Saupe used the equal elastic 

constant approximation and assumed planar anchoring to obtain the solution to 

Laplace’s equation, given by Eq.(13) [96]. Notice that ψ is independent of r in the equal 

elastic constant approximation.  Because 𝒏𝒏� = −𝒏𝒏�, only half-integer and integer values 

of s are permitted:  s = ± 1
2  , ±1, ± 3

2  , ±2, .... Moreover, topological constraints require 
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that half integer singularities necessitate that the director be planar [96]. The director 

orientations ψi are summed over the entire two-dimensional surface when multiple 

defects are present, which allows one to express the director orientation in Cartesian 

coordinates using Eq.(14). 

 In principle one can convert ψ(x,y) into a series of continuous lines spaced some 

arbitrary distance apart when programming the instrument to scribe these lines into a 

polymer surface.  Of course, higher pattern resolution can be achieved by reducing the 

spacing t between lines, at least until any debris from one line begins to be deposited 

into the adjacent lines.  (This is more prevalent when the polymer is soft, and the 

scribing is forceful.) Another issue with which one must contend is the induction of an 

unwanted pretilt angle away from planar orientation.  The latter problem can be 

circumvented by alternating or randomizing the directional sense of scribing from one 

line to the next, as was implemented by Murray et al. [97]. They also dealt with the 

former problem by varying t with the local curvature:  In regions of high curvature, 

Murray et al. used tight line spacing t, whereas they increased the spacing in regions 

where the director is relatively uniform. 

To create a quasi-2D director profile through the cell, one can scribe a mirror 

image on a second substrate and bring the two patterns into register using, eg. a mask 

aligner normally used in photolithography.  The lowest practicable alignment 

registration is ~ 1 µm with this technique.  Alternatively, and this is the approach 

adopted by Murray et al. [97], one can use an unpatterned planar degenerate alignment 

layer, such as polymethylmethacrylate (PMMA) or 3-glycidyloxypropyl) 

trimethoxysilane (GLYMO) [98].   
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Figure 6. (a) computer-generated scribing pattern for a pair of s = ±1 defects spaced 

approximately 20 µm apart, where the constant ci is set equal to zero; (b) theoretical 

polarized micrograph for the liquid crystal between crossed polarizers; (c) actual 

experimental polarized micrograph of the liquid crystal cell scribed with a high density 

of lines (120-300 nm line spacing). The lines were scribed at a stylus speed of 18 µm/s 

and with a force of 3 µN.  

 

In this case the patterned surface serves as a master from which the orientational order 

is transmitted through the cell thickness, becoming locked in at the planar degenerate 

surface.  Of course, the cell thickness d needs to be thinner than the features of the 

pattern to prevent the director pattern from becoming washed out through the cell.  

Figure 6 shows the results for a pair of s ± 1 defects (with phase ψ0 = 0, see Eq.(11)).  

In principle any defect pattern can be created, as seen, for example, in Figure 7.  Kralj et 

al. published a polarized optical microscope image of a 3 × 3 array of s = ±2 defects 

[99], similar to the one shown in Figure 7. 
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Figure 7. Polarizing Optical Microscope (POM) image of an array of s = ±2 defects.  

Defects are spaced approximately 30 µm apart. 

4. Stabilization and Manipulation of Topological Defects 

The patterning of defects facilitates a variety of studies.  For example, one can examine 

more easily the structure of the defects, and the ability to alter the structure with applied 

fields without concern of defect mobility or pairs of oppositely charged defects 

undergoing mutual annihilation [100].  One also can create quasi-in-plane line 

disclinations terminating at the fixed surface defects and manipulating them with an 

electric field to create an “alphabet” of observable patterns [101]. One can examine 

dimensional crossover behavior [102], and even observe unexpected results such as the 

co-revolution of half-integer defects about a central point [103,104].  Here we discuss 

some of these phenomena. 

4.1. Structure of Defects 

There are several mechanisms that can relieve the strain energy associated with an 

integer topological defect.  The defect can decompose into a pair of half-integer defects 

[97] or escape of the director into the third dimension (Figure 8) [105,106].   
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Figure 8. Schematic of director field for a fully escaped s = +1 defect.  Notice boojums 

at the top and bottom substrates.  

 

In a theoretical study, Chiccoli et al. [107] estimated the free energy of a pair of 

strongly anchored (split) half-integer defects to be 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜋𝜋𝜋𝜋𝜋𝜋�12𝑙𝑙𝑙𝑙(2𝑅𝑅2/𝑟𝑟𝑟𝑟) + 2𝑢𝑢�, 

where K is an elastic constant; d is the cell thickness; R is a characteristic domain size; L 

is the gap between the split defects; r is a molecular size; and u is the normalized defect 

core energy.  They calculated the energy to be 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜋𝜋𝜋𝜋𝜋𝜋[𝑙𝑙𝑙𝑙(𝑅𝑅/𝑑𝑑) + 𝑔𝑔] for a fully 

escaped integer defect, where g is a constant ~ 4.1.  Thus, the two mechanisms are both 

weakly sensitive to d.  Moreover, they found that s = ±1 defects in uniaxial nematic 

cells always escape when d > 200 to 500 nm, and that defect splitting into pairs of half-

integer defects does not occur.  Regarding biaxiality, they found that escape is common 

for weakly biaxial nematics but splitting tends to occur when biaxiality is strong.   

To examine some of these issues, Murray et al. used AFM scribing to create 

regular arrays of surface defects in thin cells containing the positive dielectric 

aniostropy liquid crystal pentylcyanobiphenyl (5CB), which they examined using 

polarized microscopy as functions of d and applied voltage [100]. As predicted by 

Chiccoli, et al, they found that thinner cells (d ~ 3 𝜇𝜇m) tend to favor decomposition of 

integer defects into pairs of half integer defects, i.e. of strength s = ±½.  They found that 

on heating/cooling cycles between nematic and isotropic phases, some apparently split 



28 
 

defects can morph into unsplit integer defects, or vice versa. This observation is 

consistent with the similar logarithmic energy forms in Ref. 107, and also hints that the 

structural transition is first order; this is behavior that will be discussed later. Because 

they used a positive dielectric anisotropy liquid crystal, an electric field applied normal 

to the substrate (utilizing indium-tin-oxide (ITO) electrodes) would tend to drive the 

director out of the cell’s plane and along the z-axis.  In fact, in the thinner cells Murray, 

et al generally observed a sharp Freedericksz transition on applying this voltage, 

whereby dI/dV – here I is the intensity of the transmitted polarized light – changes 

abruptly with increasing voltage just beyond the defect cores. This behavior is 

indicative that pairs of half-integer defects are present, where topological constraints 

force the director to lie in the xy-plane in the absence of a field. As noted above, outside 

the defect core, thicker cells (d > 6 𝜇𝜇m) tend to favor escape of the nematic director.  

Murray et al. gleaned this behavior from the absence of a well-defined Freedericksz 

transition threshold in these regions:  Rather, dI/dV vs. V displayed a strongly rounded 

profile [100]. 

Murray et al. obtained additional information utilizing an electric field.  For the 

escaped radial (ER) defects, dark rings were observed to surround the defect core 

wherever the optical retardation α [ ( )
0

2 /
d

n z dzπ λ≡ ∆∫ ] equals an integer multiple of 

2π.  Here ∆n(z) is the local birefringence and λ is the wavelength of light. By 

examining the progression of the dark rings, which moved inward as the electric field 

was increased (and the z-component of the director orientation everywhere increased), 

they were able to deduce the director orientation at the core of the escaped radial defect.  

They found that the escape was not complete, i.e. the director 𝒏𝒏� possessed a radial 

component even at r = 0 [100]. 
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Topological constraints require that the director must lie in the cell’s plane in the 

regions in and around pairs of s = ±1/2 defects.  Murray et al. were able to heat the 

sample to a temperature at which the retardation α vanished nearly everywhere, and the 

cell was dark under crossed polarizers - except near the cores of the defects [100]. The 

reason for the brighter appearance near the defect cores is because the disclination lines 

are not aligned completely along the z-axis, but instead possess an in-plane component. 

This is because the half-integer defects are more strongly pinned at the pattern substrate 

but remain somewhat mobile at the opposing planar degenerate substrate. Owing to the 

mutual repulsion of the half-integer defects, there is an in-plane component of the 

disclination line, resulting in an effective retardation α ≠ 2π.  By examining the 

intensity of these spots Murray et al. were able to deduce the angle made by the 

disclination line with respect to the z-axis [100]. 

4.2. Defect switching 

As discussed above, there are a variety of ways that an s = +1 surface defect on 

opposing substrates, and the intermediate disclination line, may relax the total energy: 

biaxial order reconstruction [108,109], core melting, director escape [105,106,110], and 

decomposition into a pair of s = +1/2 defects [100]. The latter two are the most 

commonly observed and have been the subject of the most active investigations.  As 

described above, sample thickness has been a major focus in these studies, and defects 

can interconvert between escaped and split on heating into the isotropic and recooling 

into the nematic phase [100]. An important issue is whether these interconversions can 

occur via a continuous process, or whether an intermediate melting of the defect core 

occurs, indicative of a discontinuous pathway in which the two end states are 

topologically distinct.  To examine this question, Susser et al. patterned an s = +1 defect 

that gave rise to an escaped radial director profile for a negative dielectric anisotropy 
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liquid crystal [103 ], i.e. ∆ε < 0.  They applied an ac electric field, which has the effect 

of driving the director into the xy-plane.  Importantly, once the director field lies nearly 

in the xy-plane, it becomes possible for the defect to decompose into a pair of +1/2 

defects. For the discontinuous pathway, the symmetry in the escaped radial core must 

change from positive to negative uniaxial via melting at some specific threshold field.  

This permits the appearance of an s = +1 defect, which subsequently splits into a pair of 

+1/2 defects, the core of which relieves the imposed frustrations via order 

reconstruction [43] as an intermediate step.  For a continuous pathway, strong planar 

anchoring at the patterned surface would permit splitting of the ER defect to occur at 

that surface – this is because the director already lies in the xy-plane at the surface due 

to the strong anchoring – resulting in an elongated disclination arch between the two 

surface defects. This arch would rise to the opposing surface with increasing electric 

field until it makes contact with the that surface, resulting in a pair of independent half-

integer defects.  They also studied the reverse process (split pair to a single escaped 

defect), in which a positive dielectric anisotropy liquid crystal is used. 

 Using the Merck liquid crystal materials ZLI-4330 (∆ε < 0) and 5CB (∆ε > 0), 

Susser et al. performed optical measurements and found that there is well-defined 

threshold field at which the transitions occur [103]. Moreover, there was no indication 

of the arched disclination that would be required for the continuous pathway. They also 

carried out numerical simulations, which were in good quantitative agreement with the 

experimental results.  From their observations, they concluded that the interconversion 

between escaped radial and a pair of split half-integer defects is discontinuous, with 

core melting as an intermediate step and with the two end states being topologically 

distinct. 
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4.3. Co-Revolving defects 

In their work to elucidate the interconversion from an s = +1 escaped radial defect to s = 

+1/2 defect pairs, and vice versa, Susser et al. observed that the half integer defects co-

revolve a common central point when the electric field is above some critical value 

[103]. More recently they examined the origin of this phenomenon in more detail [104].  

Figure 9 shows a pair of these counterclockwise co-revolving half-integer defects in an 

applied electric field E = 6.5 V m-1 at frequency ν = 250 Hz. The images are temporally 

spaced 1/15 s apart and the bar corresponds to 10 µm.   

 Perhaps their most important observation is that the phenomenon occurs only for 

negative dielectric anisotropy liquid crystals.  This immediately suggests that the co-

revolution is related to the ubiquitous electrohydrodynamic (EHD) instability often 

known as the Carr-Helfrich (C-H) instability [111-113]. Based upon this observation, 

Susser et al. investigated the co-revolution as functions of both applied electric field and 

frequency of the applied field [104]. Moreover, they studied the behaviour of the EHD 

instability, which also can be seen as “ripples” in Figure 9.  Some of their salient 

observations are: 

i. At low fields neither the EHD instability nor the co-revolutions are 

present. 

ii. Above some frequency-dependent threshold field they observed 

stationary C-H domains.  At approximately the same field they began to 

observe “wobble” of the defect pair, as the azimuthal coordinates of the 

defects would fluctuate antipodally about some central point.  They 

measured the rms amplitude 
1/22ϕ∆  and period of this wobble vs. 

applied frequency ν. 
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iii. At still higher fields they found that the wobble was interspersed with 

half and full revolutions of the defect, which set in at approximately the 

same field as the movement of 

the C-H domains. 

iv. At a still higher field Erev3 they 

found that the defects co-revolve 

at an angular frequency ω that is 

related to both the field and 

applied frequency ν.  Erev3 was 

found to be proportional to ν1/2. 

v. At a fixed field above Erev3 the 

angular frequency ω was not 

always stable.  Instead, it could hold some value for a few seconds, then 

jump to a different value, and then jump again.  This was not explained 

in their work, but we believe that it may be due to the phenomenon of 

intermittency that may occur in dynamic systems [114]. 

Susser et al. developed an E-ν phase diagram in which they superimposed the 

co-revolution and the EHD behaviours, finding strong overlaps.  From these results they 

speculated that the phenomenon is analogous to the Lehmann effect, in which 

cholesteric liquid crystal droplets rotate when there is a temperature gradient along the 

cell normal [115].  For the co-revolving defects, they suggested that the EHD instability 

induces chirality in the system and that it is instrumental in creating charge flow.  The 

latter effect, in addition to the mechanical field stress from the EHD instability, serves 

an analogue for thermal flow in the classical Lehmann effect.  Nevertheless, at this time 

there is no detailed theory for the co-revolution. 

 

Figure 9. Co-revolving defects.  

See text for details.  Here the 

liquid crystal is Merck ZLI-4330. 
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4.4. “Wiring” of Defects: Reconfigurable Multistable Defect Patterns 

 

Figure 10. Schematic diagram showing the end-on view of defects. For d > ~ 0.5a, the 

defects run along the patterned and terminate on the nearest neighbour defect of 

opposite sign. The s = ±1 patterned defects, which have decomposed into pairs of +1/2 

or -1/2 surface defects, are shown in blue. The disclination lines (in red) run between an 

s = +1/2 defect at one site and an s = -1/2 defect at the adjacent site. 

  

To this point the discussion has centred on disclination lines that emanate from a defect 

at one surface and traverse the cell thickness to terminate at the opposing substrate.  

This occurs when the cell is sufficiently thin, typically d < the in-plane spacing a 

between defects.  For thicker cells, the energy cost of the disclinations starting and 

terminating on the same substrate is smaller, and the defects can follow approximately 

the trajectory shown in Figure 10.  Calculations [116]  predict that the crossover from 

in-plane to defects normal to the surface occurs when a/d ~ 1.1, although this will 

depend on the nature of the surface anchoring and the relative elastic constants. Based 

on this idea, Harkai et al. examined a square 4 × 4 lattice of alternating s = +1 and -1 

patterned defects that decompose into half integer defects [101]. The in-plane spacing 

was approximately 20 µm, and when forming a cell with the opposing substrate being 

treated for planar degenerate alignment, the cell gap d was 16 µm. On filling the cell 
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with 5CB, disclination lines were observed to run between adjacent defects, despite a/d 

being of ~ 0.8.  

 

 

Figure 11. a) Polarizing microscope image of typical disclination viewed between 

polarizers. Black bar is 20 µm. [After Ref. 101], b) Schematic representation of the 

disclination pattern in which chargeless defects connect nearby split s=1 (full red 

circles) and s=-1 surface defects (open red circles).  

 

 Numerically calculated nematic textures exhibiting seven different symmetries 

emerging from the enforced 4 x 4 array of alternating 𝑠𝑠 = ±1 surface imposed defects. 

Left: The top cell view of the line defect patterns where regions with strongly 

suppressed order parameter values are shown. The solid and open circles indicate 

origins of nucleating s=+1 and s=-1 defect sites. Right: The corresponding typical 

optical microscopy textures obtained under crossed polarizers [After Ref. 101]. 

In order to manipulate the disclination lines, Harkai et al. arranged two pairs of 

in-plane electrodes so that a field could be applied along the x-axis or the y-axis.    

Figure 11 shows the pattern at zero applied field after an ac electric field had been 

applied for some time along the y-axis, i.e. vertically in the figure, and subsequently 
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brought back to zero.  A field was then applied along the x-axis, and Figure 12 shows a 

series of images of disclination line with successively increasing fields.  Figure 12c 

shows the penultimate configuration: For larger fields no further change is observed.   

 

 

Figure 12. Disclination patterns on increasing the electric field applied along the x-axis.  

The configuration in c is achieved at the highest applied field.  [After Ref. 101] 

 

Importantly, each configuration is stable, that is, on reaching a configuration such as in 

Figure 12(a) or Figure 12 (b) and reducing the field to zero, that configuration remains 

stable.  One would need to increase the field further to achieve a different arrangement 

(culminating in Figure 12c) or apply an electric field along the orthogonal (y) axis. 
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Figure 13. Numerically calculated nematic textures exhibiting seven different 

symmetries emerging from the enforced 4 x 4 array of alternating 𝑠𝑠 = ±1 surface 

imposed defects. Left: The top cell view of the line defect patterns where regions with 

strongly suppressed order parameter values are shown. The solid and open circles 

indicate origins of nucleating s=+1 and s=-1 defect sites. Right: The corresponding 

typical optical microscopy textures obtained under crossed polarizers. [After Ref. 101]  

In Figure 13 we plot all possible (meta) stable configurations of chargeless disclinations 

enabled by an imposed 4 × 4 array pattern of alternating 𝑠𝑠 = ±1 surface defects in 

relatively thick cells, so that the dislocation lines are confined within the master substrate. 

The structures were obtained numerically by minimizing the free energy of the system 
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[101]. We plot only the disclination lines (i.e. cores of defects, where the nematic order 

is strongly suppressed) in the xy-plane perspective and the corresponding interference 

patterns, simulating the optical polarized microscopy experiment under crossed 

polarizers. Each line defect in the figure connects a pair of nearest-neighbor daughter 

defects of opposite sign. This setting enables an “alphabet” of 18 different disclination 

configurations and in Figure 13 we show only seven irreducible configurations, 

exhibiting different symmetries. All other patterns can be obtained from this set via 

rotations. Note that one can transform between different disclination configurations by 

rewiring just few pairs of facing disclinations.  

 

 

Figure 14. Schematic representation of rewiring between different irreducible patterns. 

Disclinations marked by dashed lines are rewired during the transformation. This may 

be accomplished by using a spatially-dependent electric field. The coloured squares 

above the arrows schematically indicate the spatial profile of the external electric field 

E. Black and white colours mark a relatively large and zero value of E, respectively. 

The diffuse regions correspond to spatially slow variation of field E.  
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In Figure 14 we schematically sketch how all members of the irreducible set could be 

reached starting from the configuration shown in Figure 13(a). In the figures we indicate 

rewiring lines by dashed lines. For each transformation we sketch the spatial profile of 

the in-plane electric field, which enables this transformation, where the magnitude of the 

field is related to darkness of the colour. Note that all patterns are found to remain stable 

after the transformation-enabling electric field is switched off. 

 There are numerous applications for these electrically re-wireable line defects.  

For example, they could be used to trap nanoparticles or nonlinearly control electrical 

conductivity.  They could be used as controlled nano or microwires, or even for 

applications as prosaic as multi-stable signage (Ref. [101]). 

4.5 Electric field-induced 3D to 2D crossover of disclination lines 

As we have seen above, disclination lines may terminate at defects on the same 

substrate or on opposing substrates.  The work of Harkai et al. demonstrated how quasi-

in-plane disclination lines may be “rewired” with an in-plane electric field [101], where 

the director field that surrounds the disclination is key to manipulating the disclinations.  

But importantly, disclination lines that connect an s = +1/2 and s =-1/2 (“opposite sign”) 

surface defect are qualitatively different from a disclination that connects a pair of s = 

+1/2 (“same sign”) surface defects, as can be seen in Figure 15. Figure 15a shows a 

schematic representation of a disclination line that connects a pair of opposite sign 

defects, which corresponds to the approximate lowest energy state as calculated by 

Afghah et al. [117].  Notice that the director field surrounding the disclination line 

remains in the xy-plane, i.e. the director field is two-dimensional. On the other hand, the 

director field surrounding the disclination that connects a pair of same sign defects in 

Figure 15b is fully three-dimensional, with an s = -1/2 defect at the apex of the 

disclination being the lowest energy configuration. These sorts of differences were 
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discussed previously by Kleman and Lavrentovich [4] and by Mermin [1], although the 

theoretical work of Afghah et al. [117] and experimental work of Ferris et al. [102] 

focus on the actual crossover of the director field from three to two dimensions in the 

presence of an electric field. 

 

 

Figure 15. Schematic representation of the disclination lines and associated director 

fields in the presence of: a) a pair of opposite defects of strength ±1/2 and b) same sign 

defects of strength +1/2, as shown by the blue dots. The red double-headed arrows 

represent the director symmetry axes at different points. Notice along the disclination 

line in (a) that the director at the apex lies in the xy-plane, but in (b) the director lies 

along the z-axis (Courtesy of A.J. Ferris). 

   

Consider a negative dielectric anisotropy liquid crystal, whose director’s lowest 

energy state is perpendicular to an electric field.  If the field is applied along the z-axis, 

the director field along the disclination in Figure 15a. remains largely unperturbed, as it 

already lies mostly in the xy-plane everywhere in the cell.  On the other hand, the 

director field in Figure 15b will be pushed into the xy-plane, which requires an 

increasing z-component of the disclination trajectory.  The only way to accomplish this 
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is for the disclination arch to extend upward toward the opposing substrate. Afghah et 

al. [117] predicted and Ferris et al. demonstrated experimentally [102] that this indeed 

occurs, where for sufficiently large field the disclination makes contact with the 

opposing substrate and splits.  This would leave a pair of unconnected disclination lines 

extending from each of the two same sign defects on the patterned substrate to the other 

substrate.  For each of these disclination lines, the now 2D director field is 

perpendicular to the line and therefore lies in the xy-plane.  The results show that 

disclination lines surrounded by a 3D director field can connect any pair of half-integer 

surface defects, as these disclinations can be topologically transformed.  The 2D 

director field, however, cannot transform continuously because the related disclination 

lines are topologically inequivalent. Thus, only certain defect pairs can be connected via 

a disclination line surrounded by a director field that lies in the xy-plane.  Because a pair 

of s = +1/2 defects cannot be connected by the 2D director field, the 3D disclination 

arch is ejected on application of a strong electric field, which forces the director to 

adopt a 2D configuration.  

 

5. Chirality and nanoparticle-driven stabilization 

Next, we consider chiral LCs. Strong enough chirality could stabilize blue phases (BPs), 

which exhibit lattices of disclinations. These structures could be nucleated by double-

twist excitations, which tend to establish locally double-twist cylinders (DTC). We first 

analyse suitable LC elastic conditions for such configurations. Afterward, we report 

how the stability of such structures could be manipulated by using appropriate 

nanoparticles.   
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5.1 Stabilization of double-twist cylinder units 

The representative double-twist - type mode is parametrized in cylindrical coordinates 

{𝜚𝜚,𝜑𝜑, 𝑧𝑧} by [38,118,119] 

𝒏𝒏� = −𝒆𝒆�𝜑𝜑 sin(𝑄𝑄𝑄𝑄) + 𝒆𝒆�𝑧𝑧 cos(𝑄𝑄𝑄𝑄).                                                                                                       (13) 
 
It is characterized by the periodicity 𝑄𝑄 [118], which is in BPs comparable to the value of 

inherent LC chirality parameter qch, which corresponds to 2π/pitch of the helix. Note 

that DTC structures are in addition to chirality favored also by the saddle-splay 

elasticity. Namely, the corresponding elastic free energy term in a cell of thickness d 

yields [118] 

 
𝐹𝐹24 = −2𝜋𝜋𝐾𝐾24𝑑𝑑 sin2(𝑄𝑄𝑄𝑄),                                                                                                                  (14) 
 
where Eq.(13) is used and R stands for the radius of the cylindrical LC body. In the case 

of the so-called meron structures, which make the basic unit element of a BP structure 

confined to a sufficiently thin cell [118-121], it holds  that 𝑄𝑄𝑄𝑄 = 𝜋𝜋/2 and 𝐹𝐹24 =

−2𝜋𝜋𝐾𝐾24𝑑𝑑. For example, in samples characterized by 𝐾𝐾24~10−12 J/m and  𝑑𝑑~100 nm, 

we find that 𝐹𝐹24
𝑘𝑘𝐵𝐵𝑇𝑇

~ 105 at a room temperature T. Therefore, the free energy gain of this 

excitation is large with respect to thermal fluctuations. 

 
For the case of meron DTC structure, it can be visualized why disclinations need 

to be introduced to satisfy the imposed orientational frustrations. The schematic 

illustration in Figure 16. shows a lattice of merons within the xy-plane, where the local 

meron structures are described by Eq. (13). Note that the total winding number within 

the whole xy-plane should equal zero. This is apparent by focusing on a representative 

“topologically neutral” region within the dashed rectangle. One finds two singular s=-

1/2 disclinations and one non-singular escaped s=1 structure, which are locally 
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described by Eq.(13). One sees that meron-packing leads to singular disclinations at 

boundaries separation DTCs.  

 

 

Figure16. Schematic structure of a lattice of merons shown in the xy-plane. The dashed 

rectangle represents a chargeless “lattice unit”, consisting of an escaped s=1 nonsingular 

defect and two s=-1/2 singular defects. 

 

Note further, that the saddle-splay elasticity promotes non-splitting of the escaped s=1 

structure. For this purpose, we express the saddle splay free energy elastic contribution 

as [4] 

 
𝑓𝑓24 = −𝐾𝐾24∇. (𝒏𝒏�∇.𝒏𝒏� − (∇𝒏𝒏�)𝒏𝒏�) = −2𝐾𝐾24𝐾𝐾𝐺𝐺 .                                                                                  (15) 
 
 
Here 𝐾𝐾𝐺𝐺 stands for the Gaussian curvature of a hypothetical surface characterized by its 

surface normal pointing along 𝒏𝒏�. Several 2D studies demonstrate [122-126] that surface 

patches exhibiting 𝐾𝐾𝐺𝐺 > 0 (𝐾𝐾𝐺𝐺 < 0) attract defects bearing s>0 (s<0). Note further that 

the 𝐾𝐾24 contribution renormalizes the local temperature. Namely, it roughly holds [4,33]  

𝐾𝐾24~𝐿𝐿𝑆𝑆2. Focusing on the quadratic condensation term and the saddle-splay elastic 
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term Δ𝑓𝑓 close to the isotropic to nematic phase transition, where quadratic terms in S 

dominate, it follows that 

 
Δ𝑓𝑓 = 𝑎𝑎0(𝑇𝑇 − 𝑇𝑇∗)𝑆𝑆2 − 2𝐾𝐾24𝐾𝐾𝐺𝐺 = 𝑎𝑎0�𝑇𝑇 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒∗ �𝑆𝑆2,                                                                      (16) 
 
where 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒∗ = 𝑇𝑇∗ + 2𝐿𝐿

𝑎𝑎0
𝐾𝐾𝐺𝐺 . Therefore, the effective local transition temperature is due to 

the saddle-splay term shifted by Δ𝑇𝑇~ 2𝐿𝐿
𝑎𝑎0
𝐾𝐾𝐺𝐺. Consequently, within the central DTC 

regions (which host s=1 nonsingular structures) the transition temperature is locally 

increased, which favors condensation of nematic order, and disfavors splitting into pairs 

of two singular s=1/2 disclinations. 

5.2 Nanoparticle-driven stabilization and manipulation of disclination lattices 

We next focus on the stability of liquid-crystalline blue phase (BP) configurations. BPs 

host qualitatively different disclination lattices, exhibiting periodicities in the visible 

wavelength regime. Consequently, they could be exploited in various applications, 

particularly in photonics and tunable soft lasers [127,128]. However, BPs are stable only 

in a narrow temperature interval, which limits severely their applicability. For this 

purpose, it is of interest to identify mechanisms that efficiently widen the BP temperature 

stability range [17,18]. In this review, we consider nanoparticle-driven stabilization 

mechanisms. 

The pioneering research in this direction was performed by Kikuchi et al. [17]. In 

their work, they stabilized BPI over a wide temperature range by assembling polymer 

chains within the disclination lines. NP-driven stabilization was first demonstrated by 

Yoshida et al. for a mixture of liquid crystals [129] by means of Au NPs with a diameter 

of 3.7 nm. NP-driven stabilization in single liquid crystal compounds was reported by 

Karatairi et al. [18] and Cordoyiannis et al. [130]. The majority of studies suggest that 

that optimal results are achieved by using sufficiently small [131] (less than 100 nm) and 



44 
 

appropriately surface-treated [132-134] NPs. These studies indicate that spherical NPs 

are efficient mostly in widening the stability regime of BPIII structure for liquid crystal 

compounds exhibiting all three BPs. Several investigations focused on the impact of NPs 

geometry on stabilization, where researchers used reduced-graphene oxide [135] (r-GO), 

MoS2 [136], laponite nanoplatelets [137], and reduced-graphene oxide additionally 

coated with CoPt NPs [138] (CoPt-coated r-GO). The anisotropic NPs prove to be more 

efficient in increasing the stability range of BPI. In Table 1 we summarize the impacts of 

different (spherical and anisotropic) NPs on the stability of BP phases. In Figure 17 the 

maximum achieved range of BPs for various NPs dispersed in liquid crystal CE8 are 

schematically depicted. In all these studies, high-resolution ac calorimetry and polarizing 

optical microscopy have been combined to determine stability range of BPs [139]. Some 

representative heat capacity profiles and typical BP textures visualized in these studies 

are presented [133,138,139] in Figure 18. 

Table 1. The blue phase range obtained for various types of spherical and anisotropic 

nanoparticles dispersed in chiral liquid crystal CE8 is presented: CdSSe quantum 

dots[133], spherical Au nanoparticles [139], MoS2 nanoplatelets [136], laponite clay 

nanoplatelets [137], r-GO nanosheets [135], CoPt-coated r-GO nanosheets [138]. 

Nanoparticle Blue phase 

core Shape average size  

(nm) 

total range 

 (K) 

most stabilized 

phase 

CdSSe spherical 3.4 7.2 BPIII 

Au spherical 10 7.3 BPIII 

MoS2 nano-platelet 10 9.0 BPI 

laponite clay nano-platelet 25 6.0 BPI 

r-GO nano-sheet 50 7.5 BPI 

CoPt-coated r-GO nano-sheet 50 7.8 BPI 
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Figure 17. The range of BPs for the maximum NP concentration dispersed in CE8 is presented 

here; the temperature regime occupied by each of the BPIII, BPII and BPI phases is represented 

by different color. From the top to bottom: CE8 + CoPt-coated r-GO (χ = 0.001); CE8 + r-GO (χ 

= 0.001); CE8 + laponite clay (χ = 0.02); CE8 + MoS2 (χ = 0.02); CE8 + Au (χ = 0.02); CE8 + 

CdSSe (χ = 0.05); pure CE8. 
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Figure 18. Representative heat capacity temperature profiles are shown for several mixtures of 

CE8 with NPs: CE8 + CdSSe, χ = 0.05 (a); CE8 + Au, χ = 0.02 (b); CE8 + CoPt-coated r-GO, χ 

= 0.001 (c); pure CE8 (d). The insets show the BP that is mostly stabilized, being BPIII for CdSSe 

and Au, and BPI for CoPt-coated r-GO. 
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The key mechanisms behind NP-driven stabilization were introduced in Refs.[17,18,134]. 

They are referred to as the Defect Core Replacement [17,18] (DCR) and Adaptive Defect 

Core Targeting [134] (ADCT) mechanism. The DCR mechanism describes the reduction 

of condensation free energy penalty of cores of defects by trapping appropriate NPs 

within them. In this way, the relatively high energy penalty of defect cores (where a 

structure is in general strongly biaxial) at temperatures well below the isotropic phase is 

(at least partially) replaced by the non-singular NP’s volume. However, to achieve the 

stabilization [134] i) NPs should be efficiently directed towards cores of disclinations, 

and ii) they should not too strongly disorder the LC order parameter phase structure 

surrounding trapped NPs. First, NPs should slightly distort the LC order 

parameter phase, which enables NP to probe nearby surroundings in order to find TDs. 

Namely, the locally perturbed phase component typically responds on a geometrically 

frustration-imposed length scale. This is in general larger than the amplitude order 

parameter correlation length, which is typically in the nanometer scale well below the 

isotropic phase transition [6]. Furthermore, NPs trapped within cores of TDs should not 

too strongly disturb the surrounding LC structure because this introduces additional 

elastic free energy penalties. These penalties should not overshadow the condensation 

benefits owing to the DCR mechanism. The latter two conditions are the key features of 

the ADCT mechanism. Cordoyiannis et al. [134] demonstrated that the two mechanisms 

are apparently universal, since the same NPs have proven efficient in stabilizing line 

defects in both orientational order (disclinations in BPs) and translational order (screw 

dislocations in Twist Grain Boundary A phase). Note that the cores of these defects are 

completely different. The core of disclinations is strongly biaxial and the orientational 

order is relatively strongly distorted [43,44,49]. On the other hand, within the screw 

dislocation, the orientational order is relatively weakly distorted [4]. However, a stair-
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case-like translational configuration within the defect core requires local melting of 

smectic A translational order.     

6. Conclusions 

In this review we considered diverse nematic structures enabled by the stabilization of 

orientational order line defects in plane-parallel confinements.  One may consider bulk 

nematic equilibrium in achiral or weakly chiral LCs as prosaic – even uninteresting. In 

the achiral  case one finds spatially homogeneous orientational order along a single 

symmetry breaking direction, and in the latter case there is a relatively simple helicoidal 

twisting of planar nematic planes. However, imposed geometric frustrations could 

energize and stabilize a rich pallete of structures. Our attention has been devoted to 

structures dominated by disclinations, where frustration is imposed by topological 

treatment of confining substrates or by chirality. We have examined the theoretical 

consequences of defect stabilisation; explored experimental methods to induce the 

desired formation of defects; focused on a number of experimental studies that involve 

AFM patterning of defects; and examined the effects of chirality, the blue phases, and 

nanoparticle capture. 

Note that different numerical approaches have been used to study the core 

structures of individual defects and their assemblies. These involve primarily static or 

dynamic continuum approaches [117,140] in terms of nematic tensor order parameter as 

well as different lattice simulations [141,142,143]. In the latter case Brownian molecular 

dynamics [143] and Monte Carlo simulations [142] have been commonly employed, 

where both single elastic constant and anisotropic [142,143] (Frank) elastic constant cases 

have been simulated. These different approaches reveal robust results according to the 

core structure of defects: s=1/2 line defects have biaxial structure [43,44,48], and cores 

of point defects in general appear as a ring-like [44,46,48] nematic pattern. These 
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numerical results are also consistent with experimental observations, although some 

discrepancies [49] are reported for |𝑠𝑠|=1/2 defects. These are attributed to relatively 

strong coupling between the amplitude and phase component of the order parameter field. 

Furthermore, numerical studies reveal that anisotropy of nematic elastic constants in have 

in most cases only qualitative effects (e.g. different core sizes and velocities of defects 

and antidefects [19,143] and quantitative geometric features of defect assemblies [142]) 

while qualitative phenomena remain robust.        

The collection of diverse families of configurations “explodes” if  different 

geometries and/or LC phases are used. For example, in chiral smectic LCs, Twist Grain 

Boundary (TGB) phases could be stabilized, which consist of bulk-like smectic blocks 

[144,145,146] separated by boundaries that host lattices of screw disclinations. Note 

that the TGBA phase represents a LC analog of the Abrikosov phase superconductors. 

In this analogy smectic screw disclinations play the role of vortices in superconductors 

[144]. Recent studies [138] show that the stability and structure of these defect lattices 

in chiral thermotropic LCs could be efficiently manipulated by doping the LC with 

appropriate NPs, where the same universal mechanism are exploited as in stabilization 

of BP phases.  

Assemblies of defects, exhibiting singularities in both orientational and 

translational order, could be formed in Smectic-A (SmA) films covering a flat substrate 

enforcing tangential order, while the SmA-air interface imposes homeotropic anchoring 

[147]. The resulting antagonistic anchoring stabilizes the formation of periodic smectic 

hemicylinders, separated by grain boundaries, and hosting smectic edge disclinations. In 

addition, smectic hemicylinders host planar wall defects, at which smectic layer stacking 

suffers discontinuous reorientation. Such structures could be used to assemble appropriate 

NPs, the role of which is to introduce additional functionality into the system (e.g. 
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conducting wires [14] formed by assembled NPs). Various patterns of NPs could be 

formed by exploiting the trapping competition of the existing qualitatively different 

defect structures, i.e. crew line defects and wall defects. 

Additional qualitatively new features could emerge by exploiting LC 

elastomers [74]. Such configurations can exhibit configurational changes through 

external stimuli such as bending and stretching. The resulting dynamic control of shapes 

may enable multifunctionality of devices. In particular, programmable shape change 

could be realized by controlled localized nematic order within local volume elements, 

which controls the inherent mechanical response. For example, one could nucleate 

complex 3D LC structures through programmable shape transformation of a bounding 

soft responsive 2D sheet [148].   

Finally, colloidal particles could introduce qualitatively new LC structures rich 

in TDs. If such particles are immersed in LCs, they could enforce additional TDs in the 

surrounding [21] LC medium if they impose sufficiently strong anchoring. Such defects 

can mediate the elastic forces among colloidal particles, which could be exploited as a 

self-assembling mechanism in which complex hierarchical superstructures could form by 

judicious selection of LC, confining geometries and/or boundary conditions, and shapes 

of colloidal particles [140,149]. One could also form diverse configurations by immersing 

LC shells [150-154] (i.e. thin LC films covering colloids) within an isotropic fluid. Due 

to their curvature [155,156], TDs are inevitably formed for nontoroidal topologies of 

colloids. (They also might be formed for toroidal geometries if strong enough local 

curvatures are present [157]). Nelson [150] proposed that such systems could be exploited 

for scaled  soft crystals with a characteristic lattice size in the micometer regime, where 

the topological defects within shells play the role of atomic valence of real crystals. It 

was suggested that by changing number and spatial position of TDs within LC shells, one 
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could create programmable crystal structures that could exhibit symmetries not 

encountered in solid “real”-atom based crystals.  And of course, different symmetries 

open the door to different functionalities. 

The resulting complex tunable systems enable diverse application. Examples 

include optical applications [158,159], switchable 2D diffraction gratings and tunable 

lens [25], haptic displays [160], smart windows [161], sensitive detectors [12], artificial 

muscles [162], soft robotics [163], substrates for flexible devices in aerospace, medicine, 

or consumer goods [74], actuators [164], flexible electronics [165], energy storage 

devices (e.g. batteries, supercapacitors)  [166], and solar harvesting [167]. 

In addition, investigations of the dynamic and static behaviours of disclinations 

might deepen our basic understanding of natural phenomena. Coarsening dynamics of 

defects in fast-enough quenches yields some insight into the behaviour of the early 

universe, where disclinations roughly mimic cosmic strings [2]. Chargeless disclination 

are reminiscent to the intriguing Majorana particles [168], which can simultaneously act 

as particles and antiparticles. We remark that these particles could represent neutrinos, 

whose intriguing behaviour is not understood. Furthermore, it seems that physical fields 

represent fundamental entities of nature [169]. Consequently, topological defect localized 

excitations might represent “fundamental particles” in the Standard Model parlance. In 

fact, Skyrme [170] was the first proposer of this phenomenon. LCs represent an ideal 

platform in which Skyrmions [171] and related topological excitations could be 

experimentally studied relatively easily. Consequently, several issues could be analysed 

in detail, thus deepening our understanding of several open problems in physics.  
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