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Current methods of finding optimal experimental conditions, Edisonian systematic searches, often
inefficiently evaluate suboptimal design points and require fine resolution to identify near optimal
conditions. For expensive experimental campaigns or those with large design spaces, the shortcomings of
the status quo approaches are more significant. Here, we extend Bayesian optimization (BO) and introduce
a chemically-informed data-driven optimization (ChIDDO) approach. This approach uses inexpensive and
low-fidelity information obtained from physical models of chemical processes and subsequently combines
it with expensive and high-fidelity experimental data to optimize a common objective function. Using
common optimization benchmark objective functions, we describe scenarios in which the ChIDDO
algorithm outperforms the traditional BO approach, and then implement the algorithm on a simulated
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Introduction

Edisonian search approaches are widely used in the chemical
sciences to discover reactions, process conditions, material
compositions, or product formulations with optimal
performance for their intended application. These
experimental design methods rely on the generation of grids
of variables where experimentally accessible conditions are
systematically and/or combinatorically explored. While these
methods are simple to implement, they often evaluate a
suboptimal parameter space where the quality of information
derived depends on the numbers of combinations of variables
explored, slowing and sometimes preventing the
identification of optimal conditions." These shortcomings
represent significant impediments for expensive experimental
campaigns (e.g., during process scale-up, in fine chemicals or
pharmaceuticals) or those with large design spaces that can
only afford the implementation of coarse experimental grids,
underscoring the need for more efficient experimental
optimization methods.?
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electrochemical engineering optimization problem.

Bayesian optimization (BO) has been widely implemented
in different fields of research to accelerate experimental
optimization.>”® BO methods use a surrogate model (SM) that
describes an objective function and its probability
distribution in the design space to guide the optimization
campaign. Each time new experimental data is obtained, the
SM is updated to increase its accuracy. In this way, Bayesian
statistics and reasoning can be used to select the most
informative sequence of experiments and accelerate
optimization campaigns.’® In recent years, BO has been
implemented for various applications in the chemical
sciences including materials discovery and prediction of their
properties," '  design of reactors and chemical
processes,”>>* and the optimization of energy storage
materials and devices.***® Data-driven optimization methods
such as BO learn and evolve with new experimental data, but
they lack a priori knowledge of the physical laws that dictate
the behavior of the chemical system under study. This can
result in the need for large experimental campaigns to
accurately model and find the optimal combination of
parameters for a given objective function. On the other hand,
physical models (e.g., density functional theory, molecular
dynamics, continuum models, etc.) could be used to identify
optima without the need to perform experimental searches,
but they often lack the accuracy to effectively capture the
complexity of real systems or require inaccessibly-large
computational power. Given the advantages and
shortcomings of both optimization approaches, there is an
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opportunity to leverage a priori chemical knowledge in data-
driven optimization to reduce the data needs and allow for
faster identification of optima.

Herein, we introduce a chemically-informed data-driven
optimization (ChIDDO) approach, which is a type of multi-
information source optimization (MISO), where inexpensive
and low-fidelity information obtained from physical models
of chemical processes are combined with high-fidelity
experimental data to optimize a common objective function.
In this study, we leverage simulated data to develop a
ChIDDO approach that can be implemented broadly in
experimental campaigns. While MISO algorithms have been
previously implemented to improve BO in computational
problems,’*™*" the implementation of ChIDDO can extend
these advantages to chemical experimentation. In addition,
we introduce a new acquisition function, modified ranked
batch (MRB) that could improve the selection of a batch of
experiments.*

Experimental
BO algorithm description

BO algorithms consist of two main components: an SM and
an acquisition function. The SM is used to predict the value
of the experimental objective function, yP*?, for any set of
conditions, x. x is a vector of length d, the number of
dimensions in the design space. x is bounded by lower and
upper bounds for each dimension, x; 5z and xyg, which are
arrays of the same dimensionality of x. The SM is trained
using NP experimental evaluations of the experimental
objective function, which results in vector y** corresponding
to X“P. X*P is a matrix with N**P rows and d columns. The
i™ row of X®P, which we denote x{*P, corresponds to a d
dimensional parameter vector to be evaluated. y*? is an array
of N®P evaluations of the experimental objective function at
each condition, x{"”, in X**P. In this study we use a Gaussian
process regressor (GPR) with the radial basis function kernel
as the SM.

An acquisition function is used to select the next design
condition(s) to evaluate, x"**, based on how informative the
design conditions will be in the goal of optimizing the cost
function. Here, we can choose to select a single design
condition or a batch of conditions. In the chemical sciences,
it is often convenient to run multiple experiments in parallel
based on equipment capabilities, so we chose to focus on
selecting batches of design conditions. Many different
acquisition functions for BO have been developed, and three
of the most common are expected improvement (EI),"
probability of improvement (PI),** and upper confidence
bound (UCB).*> In addition to these, we have developed a
modified ranked-batch (MRB) mode sampling function
inspired by the work of Cardoso et al.** The equations for
each of the acquisition functions are provided in the ESL{ An
acquisition function uses the current information, X** and
yP, and the SM predictions to calculate how informative a
possible design condition is expected to be based on the
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criteria for the respective acquisition function. To determine
the most informative design point to sample next, a
maximization method was used to find a local maximum of
the acquisition function score. This process was repeated 25
times at different initiation points to get closer to the global
maximum solution. The design point with the maximum
score was subsequently added to x". For this study a
minimization method was used and the negative of the
acquisition function score was minimized. The minimization
method was the L-BFGS-B method from the scipy.optimize.
minimize package. Depending on the batch size used in the
optimization campaign, n,, multiple design conditions can
be added to x"* by repeating this acquisition function
maximization step. After x"* is selected, the experimental
objective function value(s) are determined to obtain y".
Subsequently, x"*“ and y"*** are appended to x* and y**P.
The EI, PI, and UCB algorithms were run based on their
implementation in the modAL active learning framework,"®
which is described in the ESL} The general framework for the
BO algorithms presented was also based on the modAL
framework. The MRB acquisition function calculated a score
consisting of three normalized parameters: a distance score,
A, an uncertainty score, [/, and the objective function
prediction, 2. The distance score was calculated as:

d
2. .. .

> (x;~x)” is the minimum distance between

i1

the proposed set of conditions, x, and each of the known sets
of conditions, x**P. The uncertainty score, 7 is the standard
deviation of the GPR prediction at x normalized compared to
the maximum and minimum observed standard deviation.
The objective function prediction, , is y*¢ at x normalized
compared to the maximum and minimum observed
prediction. The score that is calculated at each step in the
minimization process for the respective x is:

where min

Score = A + I+ Q2 (2)

where f is a tradeoff value. A high value of § encourages more
exploration—i.e., encourages searching unknown areas of the
design space. A lower value of f encourages exploitation—i.e.,
searching locally near the current maximum prediction. All
of the acquisition functions include a tradeoff value that
decreases as more experiments are run, moving from
exploration to exploitation. For MRB, f changes linearly from
1 to 0. For UCB, f changes linearly from 4 to 0. For PI and EI,
S changes logarithmically from around 0.05 to 1 x 107,

To initiate the algorithm, Nj,; evenly distributed random
points were chosen as the initial set of experimental
conditions. Our results show robust performance when a
random initialization approach is implemented, but other
methods that ensure good spatial coverage over the design
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space and incorporate a degree of randomness could be
implemented. The random initialization approach was done
by choosing random experiments to perform without
considering the positions of the other initial experiments. In
other words, there was no space-filling model for this
initialization approach. For the BO algorithm without the use
of a physics model (referred to as BO from this point on),
only these initial points, x{3k, were fit by the GPR to generate
the SM. After each batch of BO, (x**?, y**P) increases in size
by the batch size, ny,. For the ChIDDO algorithm, before (x**P,
yP) are passed to the GPR, a certain number of design
points from the a priori physics model (xP™*, yP™) are
appended to (xP, yP). The size of (xP™*, yP™*) decreases as
the number of experiments that are run increases. For
example, if it was decided that a total of 50 experiments
would be run before stopping the ChIDDO optimization
campaign, N, and it was chosen to start with 10
experimental points, the ChIDDO algorithm would add (Niotar
- size(x®P)) data points (40 in this case) calculated from the
physics model. These added points were uniformly
distributed random design points between the upper and
lower bounds. This method allowed for the incorporation of
knowledge of the chemical system under study to help guide
the initial choice of experiments when less experimental data
is available, and progressively increases the amount of
experimental data used to generate an SM as more empirical
evidence becomes available. A general algorithm flowchart is
shown in Fig. 1 and an example of the decision process in
action is shown in Fig. 2.

Benchmark objective functions

Common objective functions for optimization benchmarking
were selected, filling in as a representation of a chemical
sciences objective function, and they are described further in
the ESLi Each objective function has its own set of
parameters that affect the specific shape of the objective
function. For example, for the sphere objective function (an
ellipse):
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Fig. 2 Example of the decision-making process of the BO algorithm
using the sphere objective function. MRB was used as the acquisition
function, there were 10 initial random points (black dots), and

subsequent points (in red and labelled in order) were selected in
batches of 3.

d

fx) =D Pilxi+Piya) (3)

i=1

the variable, P, is an array of the 2d parameters. For each
objective function there is a base set of parameters that
results in a base-case objective function shape. To obtain
alternate models of the objective functions, P can be
randomly perturbed around the base parameters. For all of
the studies, 20 alternate models were used as the
experimental objective functions.

Depending on the specific objective function, we studied
2-, 3-, 4- and 6-dimensional spaces. Unless otherwise
specified, the experimental objective function values, y*P,
were exactly equal to the objective function calculation, given
the set of parameter values.

Use SM and Acquisition Function
to Select Experiment(s) and
Obtain New Data

4

Perform Regression
on Data to Obtain SM

—

Develop Physics-Based
Model

Fig. 1 Process diagram of the ChIDDO algorithm. The purple blocks correspond to the algorithm steps required to incorporate the physical
model. The gray blocks correspond to steps related to experimental data acquisition.
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Under conditions when noise was added, the objective
function values were calculated as:

Yo% = Y + [(Wmax ~ Ymin)(2rand(0,1) — 1)y (4)

where ynmax is the maximum value of the objective function,
Ymin 1S the minimum value of the objective function, and 7 is
the noise level, defined as the maximum allowable value that
could be added or subtracted from y;*?, which can be viewed
as a percentage of the range of y. Rand(0,1) is a random
variable drawn uniformly from 0 to 1. The 5 values that were
tested were 0.025, 0.05, and 0.1.

Updating the physics model parameters in ChIDDO

Each physics model was initially defined by a set of base-case
parameters that could be updated during the optimization
process. These base-case models were used as the a priori
knowledge in the ChIDDO algorithm. The base-case model
parameters used are provided in the ESL{ Since the initial
model parameters are only an estimate, the parameters were
updated after each batch of experiments based on the new
experimental observations. The parameters were updated by
using a non-linear least square error regressor to minimize
the error between the experimental data and the physics
model. The updated model parameters were then used to
calculate (xP™*, yP"*) for the following batch. With the
relatively simple experimental objective functions used in
this study, this method of updating the parameters is
appropriate. However, for complex objective functions with
many different unknown parameters (e.g., continuum
models, molecular dynamics), other methods for updating
parameters may be needed.

Baseline search algorithms

Two different baseline search methods were tested: a grid
search and a random search. 100 trials were done for each
search method and N experimental points were selected for
each trial. For the grid search, N equally spaced experimental
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points were selected sequentially between the lower and
upper bounds of each variable. For the random search,
conditions were chosen at random from the uniform design
space defined by the upper and lower bounds. This random
search did not consider the locations of the previous
selections, so it was possible to have poor representation of
the design space (i.e., clustering of points).

Simplified physics model

To study how the algorithm performs when a physical
model does not accurately represent the chemical process of
interest, an objective function was built as a linear
combination of two physics models, while the physics
model used in ChIDDO was based on only one of them.
The values of the combined objective function were
calculated as:

mixed

y =+ (1 -1y, (5)

where r is the mixing ratio, y; is the value of the first
objective function, and y, is the value of the second objective
function. For example, the Rosenbrock function could be
added to the sphere function with an r of 0.9. In this case,
the objective function would more closely, but not perfectly,
resemble the Rosenbrock function, as seen in Fig. 3.

Electrochemical model description

To simulate testing the BO/ChIDDO algorithms on an
experimental chemical system, a hypothetical electrochemical
system of reactions was considered:

A+B+e —C (6)
2A+B+e - D (7)
3A+B+e — E (8)
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Fig. 3 Example of the addition of two dissimilar objective functions. The Rosenbrock function and sphere function are shown using their

respective base case parameters.
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The chosen reaction resembles the
electrohydrodimerization of acrylonitrile to adiponitrile, the
largest organic electrosynthetic —process practices in
industry."*7*®

The rates of these reactions were modelled by Butler-
Volmer kinetics in the form:

Ji=18 11 ()" exp((a ) /RT) (10)

where J; is the current density of the respective reaction, i, j?
is the exchange current density of the respective reaction,
""" is the electrode surface concentration of the respective
reactant, j (A or B), y; is the order of reaction for the
respective reactant and reaction, ¢; is the average charge
transfer coefficient between the two reactants for the
respective reaction, F is Faraday's constant, #; is the
overpotential for the respective reaction, R is the gas
constant, and 7T is the temperature in K.

The reactions are simulated in a 1-D domain, representing
the diffusion boundary layer, on one end bounded by the
bulk electrolyte solution and the other end the electrode
surface. The Nernst-Planck equation was used to model the
concentration change of each species using diffusion,
migration, and generation terms:

0’c; Dz ¢ 0P

J ij
= D = J = 11
ot F><Ax+ ax2+RTaxax (11)

where ¢; is the concentration of the respective reactant or
product, j, > j; is the sum of the production/consumption
rates for the respective species over each reaction, i, that the
species participates in, Ax is the spacing between each point
in the model, z is the charge of the species (chosen to be 1),
and 09®/0x is the potential gradient.

The Faradaic efficiency (FE) of product D was the value to
be optimized. FE is a metric that measures how much of the
current participates in the desired reaction. In this case, FE
is calculated by dividing the amount of D produced by the
total of all produced species (including D). In this system, the
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concentrations of the reactants could have a large effect on
the FE. Therefore, the optimization variables in the 2D
design space for this reaction were the bulk concentrations
of reactants A and B. Due to the reaction rates and reaction
orders of the different reactions, an optimal set of reactant
concentrations could be located in the design space.

Data availability

The code used for all the experiments can be found in a
public repository.*

Results

BO improvements over Edisonian approach

To demonstrate the advantages of implementing a BO
strategy over an Edisonian approach, we studied the
performance of the different optimization approaches on
common benchmark functions. Each of these benchmark
functions has a different shape and optimization complexity,
and by running the algorithms on these different objective
functions, we attempted to gain insights into the behavior of
the different algorithms. For conciseness, here we present
the results for various optimization runs using the sphere
function (Fig. 4). A full list of the objective functions, their
equations, the base parameters, and optimization results can
be found in the ESLf

In our framework, we consider experimental sets, S, which
consist of N*P number of experiments with conditions x*P
resulting in output performance, y*P. The purpose of the BO
algorithm is to maximize y“* in the fewest number of
experiments. The output of the algorithm generates a set of
(xP) y*P) results that can be plotted and compared to
Edisonian experimental sets that follow either a grid or a
random search approach. We evaluate two performance
metrics: the normalized deviation from the optimum value,
dy, and the minimum distance from the optimum, d,,
identified by each set of experiments. These two quantities
are calculated as,

(A) Sphere 2D (B) Sphere 3D (C) Sphere 4D

0.10r . T T T 0.30 w T T T 0.40 7 T T T T T
\ — BO :I — BO pild — BO
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\ — Grid 0200 & — Giid 0-30r B — Gid
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Number of Experiments, N

Number of Experiments, N

Fig. 4 d, versus number of experiments, N, comparing BO and ChIDDO with the Edisonian random and grid search. (A) 2D sphere, (B) 3D sphere,
(C) 4D sphere. For each curve, 20 separate searches, S, were performed, and the average of the results are the lines shown. The shadow around
each of the lines represents the standard deviation. For each of the BO/ChIDDO experiments, the MRB acquisition function was used. The

objective function parameter information is provided in the ESIf
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dy = minM (12)
ymax _ymin
d
de = min, | > (x&P - xopt)? (13)

=1

where yna.c is the maximum possible value of the cost
function within the constraints of the experimental
parameters and Y, is the minimum possible value of the
cost function within the constraints of the experimental
parameters.

In the following studies, the different algorithms (BO and
ChIDDO) are run on 20 different sphere functions which
serve as simulated experimental objective functions. Since
the experimental objective functions are different, there was
some variance in the results between the 20 runs. Therefore,
the graphs shown in the following figures show the average
of the 20 runs as a solid line, and a shadow around the solid
line representing the standard deviation of the 20 runs. In
Fig. 4, d, is plotted against the number of experiments, N,
comparing the Edisonian methods with BO and ChIDDO.
The plots for d, can be found in the ESL} Fig. 4A shows how
the different search algorithms compare using the 2D sphere
objective function. Even for this simple, parabolic function,
the systematic grid search and random search underperform
comparatively to BO or ChIDDO. d, values after 30
experiments, d,3,, were 0.008 and 0.023 for the grid and
random search algorithms, respectively. In comparison, d;,
for BO and ChIDDO were both on the order of 107°. As the
design space moves to higher dimensions, Fig. 4B and C
show that the differences between the algorithms increase
with dimension size. For the 3D sphere objective function
the enhancements are more drastic, with dy3, being two
orders of magnitude smaller for BO compared to the
Edisonian algorithms. Because of the larger design space to
sample, the grid and random search methods are not capable
of searching a fine enough space to find values close to the
optimal. It is of interest that the dy;, for BO and ChIDDO
were very similar, possibly because the sphere objective
function has a well-defined optimum and is therefore easy to
identify. As the number of dimensions increases, ChIDDO
tends to find near optimal values with fewer experiments
than BO. This enhancement is likely because ChIDDO relies
on the physics model initially to help more rapidly locate
optimal conditions.

Comparison of different acquisition functions

In order to compare how the different acquisition
functions behave at identifying optima in objective
functions of different dimensionality, Hartmann functions
with 3, 4, and 6 dimensions were analyzed and the results
are shown in Fig. 5. This objective function was chosen
due to its more complex structure (i.e., multiple local
optima). Results from other objective functions are
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Fig. 5 d, versus number of experiments, N, comparing the MRB, El, PI,
and UCB acquisition functions using BO and ChIDDO. (A) 3D
Hartmann - BO, (B) 3D Hartmann - ChIDDO, (C) 4D Hartmann - BO,
(D) 4D Hartmann - ChIDDO, (E) 6D Hartmann - BO, (F) 6D Hartmann -
ChIDDO. For each curve, 25 separate searches, S, were performed,
and the average of the results are the lines shown. The shadow around
each of the lines represents the standard deviation.

provided in the ESIj Fig. 5A and B show a comparison of
performance when different acquisition functions are used
on a 3D Hartmann function. The d,3, values for MRB, EI,
PI, and UCB using BO were 0.041, 0.069, 0.045, and
0.183, respectively. It appears that all the acquisition
functions behaved similarly except for UCB, which shows
an order of magnitude worse performance. By the end of
the run, it appears that all the acquisition functions reach
a similar value of d, For the comparison on the 3D
Hartmann function using ChIDDO shown in Fig. 5B, PI
and MRB appeared to perform the best with d;, values
of 0.003 and 0.032, respectively, compared with EI (0.056)
and UCB (0.182).

Fig. 5C and D show the comparison on the 4D
Hartmann function using BO and ChIDDO, respectively.
Interestingly, all the acquisition functions perform similarly
with dy3, values on the order of 10~* or lower and they all
reach low values very quickly. The comparison on the 6D
Hartmann function is shown in Fig. 5E and F. When using
BO, all the acquisition functions appear to perform
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Fig. 6 d, versus number of experiments, N, comparing different noise
levels, 7, represented by lines of different colors. (A) 3D Hartmann -
BO, (B) 3D Hartmann - ChIDDO, (C) 4D Hartmann - BO, (D) 4D
Hartmann - ChIDDO, (E) 6D Hartmann - BO, (F) 6D Hartmann -
ChIDDO. For each curve, 25 separate searches, S, were performed,
and the average of the results are the lines shown. The shadow around
each of the lines represents the standard deviation. For each of these
studies, the MRB acquisition function was used.

similarly with dy3, values of 0.218 (MRB), 0.134 (EI), 0.195
(P1), and 0.205 (UCB). It is important to note that the
standard deviations for the 6D graphs are much larger than
for the smaller dimensions. This indicates that the
different random starting conditions affected the d, values
more for the 6D space compared with the 3D and 4D
spaces, due to the larger complexity of the optimization
process with increased dimensionality. Fig. 6F shows the
comparison using ChIDDO. The d,;, values for MRB, EI, PI,
and UCB were 0.079, 0.021, 0.027, and 0.149, respectively.
In addition, the standard deviation of d, is much smaller
for ChIDDO than for BO, indicating a more consistent
optimization.

When comparing the performance of BO to ChIDDO, it
appears that the ChIDDO algorithm performs similarly or
better for all of the objective functions. These results show
that the ChIDDO algorithm does improve the performance
initially, since the physics model information has a larger
impact when fewer experiments are available.

This journal is © The Royal Society of Chemistry 2022
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Quantifying the effect of experimental noise

So far, we have assumed that experiments run under
conditions, x;, result in exact values of the objective function
of interest, f(x;) = y. However, experimental measurements
often possess a significant degree of noise. To quantify the
effect of the experimental noise and to determine the
robustness of the BO and ChIDDO algorithms to noisy
experiments, different levels of random noise were added to
the objective functions.

Fig. 6 compares d,, for different levels of noise using the
BO and ChIDDO algorithms with the MRB acquisition
function. For the case of the 3D Hartmann using BO
(Fig. 6A), the d, for the highest noise level studied (ie. n =
0.1) appears to be slightly higher than the other noise values
until about the 37th experiment when d, approaches the
same value for all noise levels. For the 3D Hartmann function
using ChIDDO in Fig. 6B, the observations are similar to that
of BO as the noise had only a small impact on the
optimization. Interestingly, the d) values for the experiments
with noise are not substantially different to the experiments
without noise, demonstrating the robustness of BO and
ChIDDO.

This behavior is also observed for the case of 4D
Hartmann function in Fig. 6C and D. When using BO, the d,
for # = 0.1 remains higher than for the other noise levels
until approximately the 32nd experiment when the d, values
start to converge for other noise levels. In the case of the 4D
Hartmann function using ChIDDO, the d, values for each
noise level are similar after the 25th experiment. Prior to this,
the d, values for » = 0.1 are higher than that of the other
noise levels. Contrary to the 3D Hartmann function, the
experiments with no noise for both ChIDDO and BO have
lower d,, values than the experiments with noise.

Fig. 6E and F show the noise comparisons for the 6D
Hartmann function. When using BO, all noise levels present
similar values for d, until experiment 30th, and a slightly
higher values for # = 0.1 beyond that point. These results
indicate that the BO algorithm may be more resistant to
noise effects in low-dimensionality design spaces and that
overall noise effects are weak within the levels studied.
Fig. 6F shows that the ChIDDO algorithm performs much
better overall for the 6D Hartmann function compared to BO.
When ChIDDO is implemented on 3, 4 and 6D Hartmann
functions, our observations suggest that noise has only a
small impact on the optimization but the values of d, are
lower than those found with BO for a given number of
experiments.

Quantifying effects of physical model accuracy

Experiments in the chemical sciences are often performed
under complex geometries, involve multiple kinetic and
transport processes, and require molecular-level descriptions
of the species involved for an accurate representation.
Detailed multidimensional models of these complex
chemical systems are often intractable, requiring simplified
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Fig. 7 d, versus number of experiments, N, for different objective
function mixing ratios, r. Larger r means more similarity between
physics model and experimental objective function. (A) 3D sphere
mixed with 3D Hartmann using sphere as the simplified physics model.
(B) 3D sphere mixed with 3D Hartmann using Hartmann as the
simplified physics model. (C) 6D sphere mixed with 6D Hartmann using
sphere as the simplified physics model. (D) 6D sphere mixed with 6D
Hartmann using Hartmann as the simplified physics model. For each
curve, 25 separate searches, S, were performed, and the average of the
results are the lines shown. The shadow around each of the lines
represents the standard deviation. For all of these graphs, ChIDDO was
used as the AL algorithm and MRB was used as the acquisition
function.

semi-empirical models that capture the experimental
observations with a lower level of accuracy. These simplified
physical models can still be used in ChIDDO algorithms as
they serve as a guide to the optimization and can be
complemented and improved by experimental data. To
understand how less accurate models affect the
performance of ChIDDO, we attempted to optimize a mixed
objective function that consisted of a linear combination of
two functions (eqn (5)), while ChIDDO used a physics model
that described only one of the functions. Fig. 7A and B
show d, as a function of number of experiments for the
combination of the 3D sphere and 3D Hartmann objective
functions, while Fig. 7C and D present similar results for
6D objective functions. For the example where the sphere
function is used as the physics model, an r of 0.1 indicates
that the output value for each set of conditions is 10% of
the 3D sphere output value plus 90% of the 3D Hartmann
output value. Therefore, a low r indicates that the physics
model and the experimental points are dissimilar.
Conversely, when r is high, the physics model and the
objective function are close to each other, and one would
expect d, to decrease more rapidly with the number of
experiments than in the case of low values of r
Interestingly, it appears that the similarity between the
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physics model and the objective functions only makes a
small difference in performance. In these figures it is
important to note that since there is a combination of
objective functions, the optimum values change for each r,
resulting in different d), values after the initial points are
run. However, the curves in Fig. 7A for r = 0.1 and Fig. 7B
for r = 0.9 are based on the same objective function values.
From these results, it can be observed that using the
Hartmann function as the physics model allowed for
improved performance. This could be due to the fact that
the Hartmann function incorporates a higher degree of
complexity than the sphere function. For these objective
functions with parameters that are easy to regress, the
simplified physics model was able to be modified enough
to predict values close to the combined objective function.
Even with little similarity between the simplified physics
model and the combined objective function (r = 0.1), the
algorithm had adequate performance. However, when
implementing more complex physics models that cannot be
regressed as easily to match the experimental values, a
simplified = physics model may show inadequate
performance.

Simulation of an electrochemical optimization

In the previous sub-sections, we demonstrated the
development of ChIDDO using model functions that are
difficult to optimize but that are not based on chemical
processes. To illustrate the implementation of ChIDDO in a
chemical process, we attempted to optimize the Faradaic
efficiency (FE) of product D in the simulated set of
electrochemical reactions described in eqn (6)-(9). This is a
common objective function in electrochemical processes,
where it is often desirable to selectively generate a single
product. We studied how BO and ChIDDO performed on
electrochemical models with two, three, and four
dimensions. For two dimensions, the bulk concentrations of
two reactants were the two variables (0.1-1 mol dm™).
Voltage (2-4 V) was used as the third variable and
temperature (25-80 °C) was used as the fourth variable. Fig. 8
shows the performance of the BO and ChIDDO algorithms
on the different dimension electrochemical models. For the
2D and 3D optimizations, the performance of BO and
ChIDDO was similar. However, when the fourth dimension
was added, ChIDDO outperformed BO, especially at a low
number of experiments. This shows that the physics model
allowed the algorithm to identify areas close to maximum
without having to search the entire space.

The electrochemical model used in this study has 4
different parallel reactions (eqn (6)-(9)). It is common when
simulating a complex reaction network that not all the
intermediates or products are known. To test the robustness
of the ChIDDO algorithm to incomplete physics models, eqn
(8) and/or (9) was removed from the set of physics model
reactions. When the full model was used as the physics
model, a continuous improvement can be seen as more

This journal is © The Royal Society of Chemistry 2022
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represents the standard deviation. For all of these graphs, ChIDDO was used as the AL algorithm and MRB was used as the acquisition function.

experiments are incorporated, as seen in Fig. 9. However,
when one or two reactions are not included in the physics
model, the algorithm is not able to improve the optimal value
after the first few experiments. This could be the case if the
simplified physics model does not agree with the values of
the true objective function, leading to experimental selections
that are far from the optimal values. After observing the
model data from the simplified models, the objective values
for the design space have different shapes and magnitudes
than the experimental objective function. Examples of the
simplified physics model data are shown in the ESL} After a
large number of experiments, the GPR prediction starts to
become dominated by the experimental results and the
exploration rate decreases, ultimately prompting the
algorithm to select suboptimal experiments in close
proximity to regions with low d, values found during the early
stage of the optimization. This indicates that it is important
to have high accuracy in the physics model, or to extend the
exploration phase of the algorithm if the information used in
the physics model has large uncertainty.

This journal is © The Royal Society of Chemistry 2022

Conclusions

This work introduced the ChIDDO approach, an optimization
methodology where information from physical models of
chemical processes is used synergistically with experimental
data to potentially improve BO performance. Our results
show that both BO and ChIDDO outperform systematic grid
or random searches. The ChIDDO algorithm improves the
initial performance of the optimization of various types of
objective functions, but as more experimental results become
available, the performance of BO and ChIDDO tend to
converge. The advantages of the inclusion of physical models
are more pronounced in optimization problems of high
dimensions. This is evident in the case of the 6D Hartmann
function, where d, values for ChIDDO were substantially
lower than the BO d, values, while in the case of 3D and 4D
Hartmann optimizations the difference is minimal. Similar
results were observed when using data with and without
noise. Interestingly, the standard deviation between different
experiments was smaller when using ChIDDO, indicating a
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more consistent optimization regardless of the experimental
observations. We also explored scenarios when the physics
model may not accurately describe the experimental objective
function. In these scenarios, the effect of the inaccuracy of
the physics model depends on how easy the physics model
can be regressed and modified to take into account the
experimental points. For the more constrained physics model
used in the electrochemical models, the effect of an
inaccurate physics model was drastic. Overall, the importance
and potential performance improvements afforded by the
physics model information progressively decreases as
experimental information increases, and ChIDDO approaches
become increasingly similar to BO. Our findings suggest that
while the inclusion of physical models of chemical processes
may aid the optimization of processes with a large number of
optimization parameters, the improvements provided in low-
dimensionality optimization problems, such as the 2-D
electrochemical reaction optimization example presented, are
not significant and data-only approaches are appropriate to
rapidly identify optima.
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