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Abstract: Mapping crop types and land cover in smallholder farming systems in sub-Saharan Africa 

remains a challenge due to data costs, high cloud cover, and poor temporal resolution of satellite 

data. With improvement in satellite technology and image processing techniques, there is a potential 

for integrating data from sensors with different spectral characteristics and temporal resolutions to 

effectively map crop types and land cover. In our Malawi study area, it is common that there are no 

cloud-free images available for the entire crop growth season. The goal of this experiment is to pro-

duce detailed crop type and land cover maps in agricultural landscapes using the Sentinel-1 (S-1) 

radar data, Sentinel-2 (S-2) optical data, S-2 and PlanetScope data fusion, and S-1 C2 matrix and S-1 

H/α polarimetric decomposition. We evaluated the ability to combine these data to map crop types 

and land cover in two smallholder farming locations. The random forest algorithm, trained with 

crop and land cover type data collected in the field, complemented with samples digitized from 

Google Earth Pro and DigitalGlobe, was used for the classification experiments. The results show 

that the S-2 and PlanetScope fused image + S-1 covariance (C2) matrix + H/α polarimetric decompo-

sition (an entropy-based decomposition method) fusion outperformed all other image combina-

tions, producing higher overall accuracies (OAs) (>85%) and Kappa coefficients (>0.80). These OAs 

represent a 13.53% and 11.7% improvement on the Sentinel-2-only (OAs < 80%) experiment for 

Thimalala and Edundu, respectively. The experiment also provided accurate insights into the dis-

tribution of crop and land cover types in the area. The findings suggest that in cloud-dense and 

resource-poor locations, fusing high temporal resolution radar data with available optical data pre-

sents an opportunity for operational mapping of crop types and land cover to support food security 

and environmental management decision-making.  

Keywords: crop classification; data fusion; food security; random forest classification; PlanetScope; 
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1. Introduction  

 Mapping agricultural landscapes to identify crop types, analyze the spatial distribu-

tion of crops and cropping systems, and document land cover types in countries in the 
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Global South is critical for guiding agricultural and environmental planning decision-

making, especially in areas experiencing rapid climate change and chronic food insecu-

rity. The type of crops and land cover on the landscape contribute to preventing soil deg-

radation and maintaining soil health [1–3]. The diversity of crops on the landscape also 

contributes to weed control on farmlands and yield improvements by reducing the ability 

of some pests and diseases to propagate and spread [4–6]. Further, a diverse landscape 

that comprises different crop cultivars and varying plant species supports ecosystem ser-

vices, including pollination and water quality [7]. Smallholder agriculture is responsible 

for 84% of the 570 million farms worldwide [8], sustains the food needs of about two-

thirds of the more than 3 billion rural inhabitants globally [9], and produces one-third of 

all food consumed worldwide [10,11]. Moreover, the types of crops and their diversity in 

the landscape reflects nutrition diversity and food security more broadly [12]. Despite the 

global significance of smallholder agriculture, there are information gaps on the types of 

crops cultivated and where the crops are grown, with a paucity of crop inventory data. 

Yet, information on the types and distribution of crops is essential for monitoring crop 

yield progress, understanding management practices, prioritizing agrarian policies, and 

guiding environmental management decisions [13,14]. Due to limited government-led ef-

forts, however, the responsibility has been on researchers and scholars to lead the process 

of mapping crop and land cover types in such complex landscapes. Many governments in 

sub-Saharan Africa (SSA) are unable to keep up-to-date crop inventory maps because of 

the limited infrastructure and resources needed to conduct regular field surveys [15]. Ad-

ditionally, in countries where the government successfully sponsors such data collection 

efforts, the data are often not collected in real time to guide within-season decision-mak-

ing. In SSA countries where crop inventories are available, the lack of resources for con-

ducting routine detailed surveys leads to the data being aggregated at the regional or na-

tional scale or covering only parts of a given country [16,17].  

 Remote sensing has emerged as a low-cost near-real-time technique for large scale 

operational mapping of agricultural landscapes [18,19]. Advancements in data storage 

and satellite technology have improved crop type and land cover mapping tremendously 

over the last few decades. In many countries, crop inventory maps are based on such sat-

ellite data. For instance, in the United States, the Department of Agriculture, National Ag-

ricultural Statistics Service, generates annual Cropland Data Layer using Landsat and 

other satellite data, while Agriculture and Agri-Food Canada applies synthetic aperture 

radar (SAR) data for operational crop inventory mapping. The development of image clas-

sification algorithms including machine learning, convolutional neural networks, and 

deep learning has further improved the accuracy of crop type maps at the field scale in 

many parts of the world [20–22]. In resource-poor settings in SSA where climate change 

is predicted to have more severe impacts, the advancements in satellite remote sensing 

and algorithms present an opportunity to develop crop type maps as decision support 

and resilience-building to food insecurity. Wang et al. [23] contend that remote sensing 

can aid with crop type mapping if field-level ground data are collected using field surveys 

to train and validate models to help identify crop types. Even with detailed ground truth 

data, mapping crop types in the context of smallholder agriculture remains complex be-

cause farmlands are smaller, farm-level species are more diverse, agricultural practices 

are more variable, and intercropping and crop rotations are predominant [8,24,25]. These 

complexities, coupled with the inadequate reference data (such as crop inventories), imply 

that identifying and mapping crop types using the regular remote sensing classification 

methods and moderate resolution data may fail to help identify crop types. The improve-

ment in accuracy of spatial data collection devices including Global Positioning System 

(GPS) devices and some smartphones can be harnessed for large-scale ground truth data 

collection for mapping accurate crop types and land cover in smallholder farming sys-

tems. 
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 Increasingly, the integration of data from remote sensors with different characteris-

tics (e.g., optical and radar) has gained prominence due to their superior ability to separate 

different crop and land cover classes in heterogeneous landscapes. Previous studies have 

applied such an integrative approach to improving classification accuracies. For instance, 

Wang et al. [23] used crowdsourced ground truth data with Sentinel-1 and Sentinel-2 data 

and applied a deep learning classification technique to identify rice and cotton crops in 

India. Wang, Azzari, and Lobell [26] used Landsat data to map crop types in the US Mid-

west. In terms of land cover type mapping, Kaplan and Avdan [27] fused Sentinel-1 and 

Sentinel-2 data to map wetlands in Turkey while Slagter et al. [28] fused Sentinel-1 and 

Sentinel-2 data to map wetlands in South Africa. Kannaujiya et al. [29] integrated electrical 

resistivity tomography and ground-penetrating radar to map landslides in Kunjethi, 

while Yan et al. [30] integrated Landsat-8 optical data and Sentinel-1A to detect under-

ground coal fires in China. Venter et al. [31] assessed the efficacy of mapping hyperlocal 

Tair over Oslo in Norway by integrating Sentinel, Landsat, and light detection and rang-

ing (LiDAR) data with crowdsourced Tair measurements.  

 In this study, the overall goal is to examine how the integration of multitemporal 

dual-polarized Sentinel-1 SAR data and multispectral Sentinel-2 and PlanetScope optical 

data can be used for crop type and land cover mapping in complex heterogeneous agri-

cultural landscapes using a machine learning classification algorithm. The objective is to 

explore the potential of several possible integrations of Sentinel-1 SAR, Sentinel-2 optical, 

and high-resolution PlanetScope optical data with diverse data processing techniques for 

accurate mapping of crop types and land cover in a smallholder agricultural system. Spe-

cifically, we compare the results of classifying (i) Sentinel-1-only images, (ii) Sentinel-2-

only images, (iii) the fusion of Sentinel-2 and PlanetScope images, (iv) Sentinel-2 and Plan-

etScope fused image + Sentinel-1 C2 matrix, and (v) Sentinel-2 and PlanetScope fused im-

age + Sentinel-1 C2 matrix + H/α polarimetric decomposition image. The experiments did 

not consider PlanetScope-only analysis because our goal was to use the PlanetScope image 

to sharpen the Sentinel-2 images which have more bands, including the red edge band 

that is more useful for identifying the biophysical variables in vegetation [32]. The exper-

iments are focused on two smallholder agricultural landscapes in rural northern Malawi. 

The hilly topography in the study locations means that cropping types and land cover 

characteristics tend to vary over short distances. Our final map, therefore, shows crop 

types and land cover categories and their distribution. Understanding the distribution of 

crop and land cover types in these two locations will provide a good overview of the ag-

ricultural landscape in the entire region since cropping patterns are generally similar.  

2. Materials and Methods 

2.1. Study Area Description 

 The study was conducted in the Edundu village area (land area = ~29 km2) with cen-

ter location of latitude 11o22.545’ S, longitude 33o46.982’ E, and Thimalala village area 

(land area = ~22 km2) with center location of latitude 11o16.736’ S, longitude 33o50.995’ E, 

in northern Malawi (Figure 1). A village area comprises several smaller communities pre-

dominantly engaged in smallholder agriculture. The study locations are in the Mzimba 

district in northern Malawi. Soils in the district are moderately fertile, generally medium- 

to light-textured, mostly sandy-loam and loamy, with moderate to good drainage [33]. 

The climatic type in the area is semi-humid, with average monthly maximum tempera-

tures ranging from 27 to 33 oC in the summer (November to April), and from 0 to 10 oC 

during the winter months (May to August). Annual rainfall amounts range from 800 to 

1000 mm [34] which, in a good rainy season, makes the area suitable for the cultivation of 

a wide variety of crops, including cereals, legumes, and tobacco. The main economic ac-

tivities in the area are subsistence agriculture and commercial tobacco cultivation [33]. As 

these smallholders predominantly rely upon rainfed agriculture, the growing season co-

incides with a rainy season that begins in November or December and ends in April. 
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Maize is the most important subsistence crop cultivated in much of Malawi and is often 

intercropped with soybeans, groundnuts, beans, and pumpkins in the two study loca-

tions. In the last few decades, the district has often been impacted by extreme climate 

events such as floods and droughts, with predictions that these extremes will worsen as 

global climate change intensifies [33]. Understanding the dominant crop types and land 

cover and their distribution in the area will facilitate decision-making to build resilience 

to these current and projected changes in the climate. Dry season farming (dimba garden-

ing) in valleys contributes significantly to household food security and income in the area 

for households that have access to the wetlands [35]. This research was part of a broader 

participatory interdisciplinary research project aimed at understanding the relationship 

between farm management practices, wild biodiversity, and ecosystem services, to de-

velop scenarios for community action plans. 

 

Figure 1. A general overview of the study area in the northern part of Malawi. 

2.2. Data Acquisition  

2.2.1. Satellite Data 

 A combination of radar (Sentinel-1) and optical (Sentinel-2 and PlanetScope) satellite 

images were used in this study. The sensor specifications of the data used are presented 

in Table 1. The Sentinel-1 constellation has two satellites—Sentinel-1A and Sentinel-1B, 

which were launched in April 2014 and April 2016, respectively. Sentinel-1 Single Look 

Complex (SLC) products, provided by the European Space Agency (ESA), consist of SAR 

data in the C-band and capture 5–20 m spatial resolution imagery. The two satellites have 

a combined revisit period of 6 days [36]. SAR images contain coherent (interferometric 

phases) and incoherent (amplitude features) information. The interferometric wide (IW) 

swatch mode, which acquires images with dual-polarization (vertical transmit, vertical 

receive (VV) and vertical transmit, horizontal receive (VH)), was used [36]. Abdikan et al. 

[37] investigated the efficiency of Sentinel-1 SAR images in land cover mapping over Tur-
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key and found that the dual polarimetric Sentinel-1 SAR data can be used to produce ac-

curate land cover maps. SAR products are mostly used in combination with optical images 

to improve crop classification accuracy [38] and class discrimination [39] since they are 

not affected by clouds, haze, and smoke.  

 The Sentinel-2 data used in this study were also acquired from the ESA. The Sentinel-

2A (launched in June 2015) and 2B (launched in March 2017) satellites have a combined 

revisit period of 5 days, making them suitable for monitoring crop growth compared to 

other satellites, such as the Landsat, that have a lower temporal resolution. Both Sentinel-

2A and Sentinel-2B satellites carry a single multispectral instrument with 13 spectral 

bands. We used a top of the atmosphere (TOA) reflectance product (Level-1C) provided 

freely by the ESA for this study. A higher-level surface reflectance product (Level-2A) can 

be obtained from the Level-1C using the Sentinel Application Platform (SNAP) toolbox 

version 7.0 [40]. Spectral bands of the Level-1C products used in this study are bands 2, 3, 

4, and 8, at 10-m spatial resolution, and bands 5, 6, 7, and 8A, at 20-m spatial resolution. 

All the 20-m spatial resolution bands were resampled to 10-m resolution to make them 

comparable with the 10 m bands. The relatively higher 10-m resolution produces im-

proved crop and land cover classification accuracy. Several previous studies have shown 

that Sentinel-2 data can be used to identify crop types [21,23,41]. 

 The PlanetScope constellation of satellites presently has about 130+ CubeSats (4-kg 

satellites) operated by Planet Labs [42]. The majority of these CubeSats are in a sun-syn-

chronous orbit with an equator crossing time between 9:30 and 11:30 (local solar time) 

[42]. PlanetScope images have four spectral bands—blue (455–515 nm), green (500–590 

nm), red (590–670 nm), and near-infrared (NIR) (780–860 nm). We used the Level-3B sur-

face reflectance products that were atmospherically corrected by Planet Labs using the 6S 

radiative transfer model with ancillary data from Moderate Resolution Imaging Spectro-

radiometer (MODIS) [42,43]. Due to its high spatial resolution, the application of Plan-

etScope images includes change detection [44], crop monitoring [45], and vegetation de-

tection [46]. Unlike the other data used in this study, PlanetScope data are not free, but 

through the Education and Research program of Planet Labs, special permission was 

given for free download. All the optical images used in this study were selected based on 

availability as there is dense cloud cover over the study locations during the rainy season.  

Table 1. Comparison of sensor specifications for Sentinel-1, Sentinel-2, and PlanetScope. 

 Sentinel-1 Sentinel-2 PlanetScope 

Resolution 5 × 20 m 10, 20, and 60 m 3-m 

Band type C-band Coastal aerosol, Blue, Green, Red, NIR, and SWIR Red, Green, Blue, and NIR 

Revisit time 6 days 5 days Daily 

Orbit Height 693 km 786 km 475 km 

Orbit inclination 98.18° 98.62° ~98° 

Spectral range 3.75–7.5 cm 0.44–2.19 μm 0.45–0.67 μm 

 

 Table 2 describes the dates of acquisition of time series satellite data used in this 

study. As intimated earlier, only very few cloud-free optical images were found for the 

study area during the growing season, a situation that affected the complexity of classifi-

cation in our study and the number of experiments to be conducted. Altogether, we ac-

quired three Sentinel-2 images captured on January 7th and February 23rd, 2020, two Plan-

etScope images from February 23rd (Thimalala) and April 1st, 2020 (Edundu), and six Sen-

tinel-1 radar time-series images between January 18th and February 13th, 2020.  

Table 2. List of satellite data used in this study. 

Source 
Imaging dates 

Thimalala Edundu  
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Sentinel-1 

18/01/2020 

20/01/2020 

30/01/2020 

01/02/2020 

11/02/2020 

13/02/2020 

Sentinel-2 07/01/2020 
07/01/2020 

23/02/2020 

PlanetScope 23/02/2020 01/04/2020 

2.2.2. Field Data Collection 

 Field data on crop types and land cover were collected, starting in late November 

2019 up to the end of April 2020. A team of trained farmer researchers went to farmlands 

in the two village areas with GPS devices. On each field, the coordinates of the center and 

the boundaries of each farm were recorded in the GPS device and on a predesigned 

datasheet. The type of crop(s) and the cropping system (monocrop or mixed/intercrop) of 

each field were also recorded. The coordinates of landcover data were also recorded in 

the predesigned datasheets. The location of ancillary data, including vegetation, anthills, 

and buildings within each farm was also recorded. Figure 2 shows photographs of crops 

in the study locations captured during the field data collection. In all, 1668 ground truth 

samples of different crop and land cover types were collected. These included cereals, 

legumes, tubers, and vegetables, as well as roads, settlements, forests, and bare lands. The 

coordinates of the samples were exported from the GPS devices and the .gpx file con-

verted to feature datasets in a geodatabase in ArcGIS Pro 2.6.3. More land cover samples 

were digitized from Google Earth Pro and DigitalGlobe images to complement the field 

data. Seventy percent (70%) of ground truth data were used as training samples, and the 

remaining thirty (30%) were used for validation.  

 

Figure 2. Examples of crops photographed in the study locations during the 2019/2020 growing 

season. 

2.3. Data Processing 

2.3.1. Radar Data Processing  
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 The Sentinel-1 IW images were preprocessed in twelve steps (Figure 3) using the 

SNAP toolbox. The data were first split into sub-swaths to focus on the two study locations 

and reduce the size of the image to improve processing efficiency. Due to the reduced 

sensitivity to displacement gradient when the Sentinel-1 satellite is scanning, split-band-

width interferometry also allows for more multilooking than is possible with standard 

interferometric phase in highly deformed areas such as the hilly landscape in northern 

Malawi. Splitting the images further improves accuracy in low coherence areas [36]. The 

orbit state vectors provided in the metadata of an SAR product are generally not accurate 

and can be refined with the precise orbit files. These files are available days-to-weeks after 

the generation of the product [47]. The orbit file operator in the SNAP toolbox automati-

cally downloads the latest released orbit file and applies it to the image so that the image 

can be geocoded more precisely.  

 

Figure 3. Major preprocessing steps for the Sentinel-1 synthetic aperture radar images. 

 The next preprocessing step was to calibrate the images. SAR calibration produces 

imagery with pixel values that correlate with the radar backscatter of the captured scene 

[48]. Applying the radiometric correction operator also produces images that can be com-

pared with other SAR images acquired with different sensors or acquired from the same 

sensor but at different times, in different orbits, or processed by different processors. Cal-

ibrating the images used in this study is thus relevant, since a multitemporal analysis is 

to be performed [47]. Creating the multitemporal multiband image requires stacking sev-

eral Sentinel-1 data collected over the growing season and fusing them with optical data. 

The calibration process was followed by debursting. Sentinel-1 IW SLC products consist 

of one image per swath per polarization. The IW products that were used have three 

swaths. Each sub-swath image consists of a series of bursts. Each burst was processed as 

a unique SLC image. To merge all these bursts into a single SLC image, the TOPSAR De-

burst and Merge operator in the SNAP toolbox was applied. The polarimetric matrix gen-

eration process was used to generate a covariance matrix from the Sentinel-1 C-band SAR 

data [49]. Dual polarimetric SAR sensors collect half of the total polarimetric information 

involved in fully polarimetric imagery or quad polarization [50]. This implies that the res-

olution cell at each time point is defined by a 2 × 2 covariance (C2) matrix that is obtained 
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from C3 (representing the average polarimetric information extracted from a set of neigh-

boring pixels). The resulting C2 matrix is represented by Equation (1). 

 

                                   𝐶2  =  [
𝐶11

𝐶21
  

𝐶12

𝐶22
]                                                                     (1) 

 

Dual polarization imagery has only diagonal elements. As such, the matrix with off-

diagonal components were set to zero and do not follow a complex Wishart distribution; 

but, the two diagonal blocks (1 by 1) follow a complex Wishart distribution [51,52]. 

 

 Multilooking and polarimetric speckle filtering were applied to reduce speckle noise. 
The presence of speckle intensity fluctuations in SLC SAR imagery is the result of the na-

ture of coherent image formation during SAR data collection [47]. Each radar resolution 

cell contains multiple scatters, each of which contributes to the overall signal returned 

from the resolution cell. The phase obtained from each scatter is effectively random be-

cause the radar wavelength is normally much smaller than the size of the resolution cell. 

The signals from each scatter may be summed according to the principle of superposition, 

resulting in constructive and destructive interference [53]. Low reflectivity occurs in cells 

where destructive interference dominates, while constructive interference dominates in 

cells where high reflectivity prevails. Consequently, the phenomenon of speckle occurs 

on the image. Multilooking, which is achieved by dividing the signal spectrum and then 

incoherently averaging the recovered sub-images of an SAR image, is widely used to re-

duce these speckles in conventional SAR signal processing [54]. The Boxcar polarimetric 

speckle filtering method with a 5 × 5 window size was used to further reduce speckle noise 

in the image while preserving the complex information of all the bands, enhancing inter-

pretation, and improving their ability for quantitative analysis. The Boxcar filter is the 

simplest filter that locates similar pixels by a moving window with the predefined size. 

The filter reduces the speckle phenomenon while producing a blurring visual effect [55]. 

 Polarimetric decomposition was used to separate different scattering contributions 

and provide information about the scattering process [56]. Polarimetric decompositions 

are techniques used to generate polarimetric discriminators that can be used for analysis, 

interpretation, and classification of SAR data [57]. The H/α dual-polarized decomposition 

of VV–VH dual-polarization with the window size of 5 × 5 was performed. H/α polari-

metric decomposition is an entropy-based method based on the theory that the polariza-

tion scattering characteristics can be represented by the space of the entropy and the av-

eraged scattering angle α employing the eigenvalue analysis of Hermitian matrices [52]. 

The H/α polarimetric decomposition method proposed by Cloude and Pottier [52] is 

widely used for land cover classification and object recognition. The method has good 

properties such as rotation invariance, irrelevance to specific probability density distribu-

tions, and covers the whole scattering mechanism space [58]. Only the 2 × 2 covariance 

matrix was derived, because the Sentinel-1 product is dual-polarized. The entropy and 

alpha images were derived from the H/α dual-polarized decomposition and used for the 

present analysis. 

 During range-Doppler terrain correction [59], a Shuttle Radar Topography Mission 

(SRTM) digital elevation model (DEM) was downloaded automatically from the SNAP 

toolbox to fulfill orthorectification [60]. Terrain-correcting the images is important because 

the discrepancies in topographical variations of a scene and the tilt of the satellite sensor 

distort distances in SAR images. Applying terrain correction compensates for these dis-

tortions and make features appear as close as possible to real-world features [59]. The final 

image was resampled into 3-m to conform with the optical PlanetScope data. A subset of 

all the images is clipped and a stack was then made of all the layers. 

2.3.2. Optical Data Processing  
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 For the Sentinel-2 and PlanetScope data, we applied atmospheric correction, topo-

graphic correction, resampling, band stacking, seamless mosaicking, and image sub-set-

ting as preprocessing steps. The Sentinel-2 Level-2A bottom-of-atmosphere (BOA) prod-

ucts we acquired are already atmospherically corrected. Examples of preprocessed natu-

ral color and grayscale images of the radar and optical data of the study locations are 

shown in Figure 4.  

 

Figure 4. False color images of the Thimalala and Edundu, represented by (a)(c) Sentinel-1 C11 and 

C22 backscatter response (RGB = C11, C22, C11/C22) on 18/01/2020; (b)(d) preprocessed Sentinel-2 im-

age (RGB = NIR, red, green) on 07/01/2020. 

2.4. Image Fusion 

Images from different spectral bands have the same geometric information [61]. 

Based on this principle of satellite images, Gašparović et al. [62] developed an image fu-

sion method known as the P + XS fusion, in which an image is perceived as a function 

whose sampling corresponds to the discrete matrix form of the image [63]. The P + XS 

method introduces the geometry information of a higher resolution image by aligning all 

edges of the higher resolution image with each lower resolution multispectral band. To 



Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 22 

 

 
 

obtain the spectral information for the fused image, the method assumes that images cap-

tured in different spectral bands share common geometric information and that the higher 

resolution image can be approximated as a linear combination of the high-resolution mul-

tispectral bands [64,65]. Guided by this principle, each Sentinel-2 band was fused with the 

corresponding high spatial resolution PlanetScope band that shares similar spectral char-

acteristics. He et al. [65] observed that using the P + XS method can better preserve sharp 

discontinuities such as edges and object contours on an image. The objective of the fusion 

was to produce higher resolution Sentinel-2 multispectral fused images from the original 

low-resolution Sentinel-2 and high-resolution PlanetScope images.  

 The smoothing filter-based intensity modulation (SFIM) [66] was used to fuse the 

Sentinel-2 and PlanetScope images. The SFIM aims to produce fused images that have the 

highest spatial resolution in the same multispectral bands of the original low-resolution 

images. The lower spatial resolution Sentinel-2 bands were fused with the higher spatial 

resolution PlanetScope bands based on the principles of the P + XS method. The corre-

sponding bands of the PlanetScope were alternatively used as the high spatial resolution 

band in place of panchromatic bands (Table 3). The SFIM technique improves spatial de-

tails while keeping the spectral properties of the images. The digital number (DN) value 

of the fused band is defined as: 

𝐹𝑈𝑆𝑖 =
Xi ∙ Y

Y̅
, (𝑖 =  1, 2, 3, . . . . . ) (2) 

where 𝐹𝑈𝑆𝑖  is the DN value of the fused band i, 𝑋𝑖 is the corresponding lower spatial-

resolution band I, resampled to the same high resolution as Y, Y represents the high spatial 

resolution panchromatic band, and Y̅ represents the Y band being averaged by the low-

pass filtering.  

Table 3. Fusion pairs of Sentinel-2 and PlanetScope bands. 

Resolution Sentinel-2 band PlanetScope band 

10 m 

Band 2 Band 1 

Band 3 Band 2 

Band 4 Band 3 

Band 8 Band 4 

 Band 8A Band 4 

20 m Band 5,6,7 𝑆 =
𝐵3 + 𝐵4

2
 

 

 For Thimalala, the Sentinel-2 images acquired on 07/01/2020 were fused with the 

PlanetScope images on 23/02/2020. For Edundu, the Sentinel-2 images acquired on 

07/01/2020 and 23/02/2020 were fused with the PlanetScope images taken on 01/04/2020 

separately. Figure 5 shows examples of subset image cropped from the originally prepro-

cessed Sentinel-2 images and the fused (Sentinel-2 + PlanetScope) image. It can be ob-

served from the images that the fused data are clearer than the original (Figure 5). 
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Figure 5. True color composites of the subset images from (a) Sentinel-2 image for Thimalala on 

07/01/2020; (b) fused images for Thimalala; (c) Sentinel-2 images for Edundu on 07/01/2020; (d) 

fused images for Edundu. 

2.5. Image Classification 

 Fourteen (14) crop types in total and eight (8) land cover classes identified in the two 

study locations were used as the schema of the classification. The crop type classes were 

identified through field data collection. The land cover types were identified based on 

field observations during ground truth data collection, as well as from very high resolu-

tion Google Earth Pro and DigitalGlobe images. The supervised random forest (RF) ma-

chine learning algorithm [67] in ENVI 5.3 was used for the classification. As a non-para-

metric method, RF benefits from including categorical and continuous datasets based on 

well-developed rules and does not require training data to come from a unimodal distri-

bution [68]. An RF is generated through the creation of a series of decorrelated decision 

trees using bootstrapping, thus solving the problem of overfitting and producing accurate 

results [67]. Tuning parameters, such as the number of trees and the number of split can-

didate predictors, are generally chosen based on the out-of-bag (OOB) prediction error. 

RF uses the OOB samples for cross-validation, and once the OOB errors stabilize at a rea-

sonably large number of trees, training can be concluded. In this study, the model we used 

in each experiment consisted of 500 trees and the number of features to split the nodes 

was set to half of the features within the corresponding input dataset. Accuracy of RF 

classification is often very high, even when based on many input features such as mul-

titemporal images [69].  
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2.6. Post-classification Processing 

 A 3 × 3 filter with the majority vote was applied to remove the salt-and-pepper effect 

in the classified images. Accuracy assessment was performed to evaluate the performance 

of each classification experiment using the ground truth data acquired from fieldwork, 

Google Earth Pro, and DigitalGlobe images based on Congalton [70]. The overall accuracy 

(OA), producer’s accuracy (PA), user’s accuracy (UA), and the Kappa coefficients were 

computed for each of the five experiments to determine the best-performing model for 

identifying crop types and land cover categories. The OA describes the proportion of pix-

els correctly classified, with 85% or more generally accepted as the threshold for a good 

classification. The PA is the map accuracy from the point of view of the map producer. It 

explains how often features on the ground are correctly shown on the classified map, or 

the probability that a certain land cover type on the ground is classified as such [71]. The 

UA, on the other hand, is the accuracy from the point of view of a map user. It describes 

how often the features identified on the map will be present on the ground [71]. The Kappa 

coefficient is the ratio of the agreement between the classifier output and reference data, 

and the probability that there is no chance agreement between the classified and the ref-

erence data [70].  

3. Results 

 Table 4 presents the results of the accuracy assessment for all five experiments. For 

the Sentinel-1-only experiment, the overall accuracies of both locations were lower than 

50%. For the Sentinel-2-only experiment, the accuracies increased significantly to 72% and 

74%, respectively, but were still lower than expected for an ideal classification. The water 

class was better extracted in the Sentinel-2-only experiment, compared with the Sentinel-

1-only experiment. When using the fused image of Sentinel-2 and PlanetScope, the intro-

duction of the relatively higher spatial resolution image of 3 m added more detail to the 

classes, though it failed to accurately identify groundnut crops. The overall accuracy in-

creased to 76.03% for Thimalala and 84.12% for the Edundu location.  

Table 4. Comparison of the accuracy assessment results of the random forest classification. 

No. Data combination 

Thimalala Edundu 

Overall ac-

curacy (%) 

Kappa coef-

ficient 

Overall ac-

curacy (%) 

Kappa co-

efficient 

1 Sentinel-1 only (C2 matrix) 48.77 0.40 47.12 0.37 

 

2 

 

Sentinel-2 only 

 

72.08 

 

0.68 

 

74.08 

 

0.70 

3 

 

Fused 

(Sentinel-2 and PlanetScope) 

 

76.03 

 

0.72 

 

84.12 

 

0.81 

4 

 

Full stack Ⅰ 

(Sentinel-2 and PlanetScope + Sent-

nel-1 C2 matrix) 

 

81.51 

 

0.79 

 

84.54 

 

0.82 

5 

Full stack Ⅱ 

(Sentinel-2 and PlanetScope + Senti-

nel-1 C2 matrix + H/α polarimetric 

decomposition) 

85.61 0.83 85.78 0.83 

 

 In the fourth experiment, we made a stack of the fused Sentinel-2 and PlanetScope 

images and the Sentinel-1 C2 matrix (Sentinel-2 and PlanetScope fused image + Sentinel-1 

C2 matrix). The addition of the Sentinel-1 C2 matrix generated minor improvements on the 
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Sentinel-2 + PlanetScope experiment in experiment (iii), as observed in the improved ac-

curacy statistics (Table 4). The combination of optical and SAR data resulted in a slightly 

better increment (5%) in the overall accuracy for the Thimalala site, compared to the 

Edundu site (0.42%), but the accuracies were still lower than the accepted value for a good 

classification. 

 In the final experiment, a multiband image was created comprising the fused image 

from the fourth experiment and the H/α polarimetric decomposition (i.e., the fusion of 

Sentinel-2 + PlanetScope + Sentinel-1 C2 matrix + H/α polarimetric decomposition). This 

final experiment produced results that outperformed all the other integration of images. 

The overall accuracies from this final experiment exceeded 85% in both locations, which 

is the threshold for a good classification. Overall, the accuracies improved by 13.53% and 

11.7% for Thimalala and Edundu, respectively, compared with the Sentinel-2-only classi-

fication. 

Table 5 shows the PA and UA accuracies for the experiment (v). Crops such as bam-

bara nuts (100%), groundnuts (90%), maize (100%), tobacco (87.5%), and tomato (100%) 

had high PAs with equally high UAs, meaning the method accurately identified the crops. 

The corresponding UAs also showed that the maps are useful for identifying these com-

mon crops on the landscape from the user’s perspective. Crops including banana, onion, 

and sweet potato were very few in the landscape and only a few samples were obtained. 

As such, our model could not adequately assess these classes. This explains the nature of 

the PAs and UAs for these crop classes (Table 5). Land cover classes such as forest, shrub-

land, untarred road, and water also had high PAs, compared to settlement, bare rock, and 

tarred roads, which had low PAs. Corresponding UAs were within a similar range to the 

PAs.  

Table 5. Summary of classification accuracies of Thimalala using the fused image of Sentinel-2 and 

PlanetScope, Sentinel-1 C2 matrix, and H/α polarimetric decomposition. 

Land cover and crop class Producer’s accuracy (%) User’s accuracy (%) 

Bambara nut 100.0 100.0 

Banana 0.0 0.0 

Bare rock 42.9 33.3 

Beans 50.0 100.0 

Cassava 50.0 66.7 

Finger millet 66.7 100.0 

Forest 70.8 89.5 

Groundnut 90.0 81.8 

Maize 100.0 25.0 

Mixed crop 93.8 62.5 

Onion 0.0 0.0 

Pepper 50.0 100.0 

Settlement 16.0 88.9 

Shrubland 87.9 75.5 

Soya 66.7 57.1 

Sweet potato 0.0 0.0 

Tobacco 87.5 100.0 

Tomato 100.0 100.0 

Untarred road 74.3 88.1 

Water 95.2 80.0 

Tarred road 50.0 50.0 

 

Figures 6 and 7 show the maps generated for the various experiments for the two 

locations. Figure 6a and Figure 7a show results for the Sentinel-1-only experiment for 
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Thimalala and Edundu, respectively, while Figure 6b and Figure 7b show the results for 

the Sentinel-2-only experiment for the two village areas. The results reflect the poor accu-

racies generated from the experiments (see Tables 4 and 5). Results presented in Figure 6c 

and Figure 7c show that the various classes are more identifiable than in the foregoing 

experiments in both locations, while Figures 6d and 7d reflect the minor improvement of 

accuracies when moving from the experiment (iii) to (iv) (see Table 4). It can be seen in 

Figures 6e and 7e that the classification improved with the introduction of the H/α de-

composition layer. In terms of the distribution and dominance of crop types, both Figures 

6 and 7 show that maize is the dominant crop type in both study locations. Tobacco crops 

are also common in both areas and are observed to have, on average, larger sizes than 

most food croplands. Intercropped farmlands, which are mainly maize intercropped with 

other legumes and pumpkins, are also prominent on the landscape in both locations. 

Though the classification was able to identify intercropped fields, most likely maize with 

other crops that are equally tall, such as pigeon pea or cassava, it was, however, not able 

to identify which specific crop combinations (e.g., maize/bean and maize/soybean) consti-

tute each intercropped farm. Croplands that were not classified into any of the individual 

categories were grouped into the mixed/intercropped class. As expected, croplands are 

mostly in low-lying valley areas. Shrublands and forests are the most dominant land cover 

types on hills and hillslopes in both locations. The forests are mostly surrounded by shrub-

lands interspersed with some farmlands, especially in the Thimalala area. 
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Figure 6. Classification results of Thimalala area (a) using Sentinel-1 only; (b) using Sentinel-2 

only; (c) using the fused image of Sentinel-2 and PlanetScope; (d) using the fused image and Senti-

nel-1 C2 matrix; (e) using the fused image, Sentinel-1 C2 matrix, and H/α polarimetric decomposi-

tion. 
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Figure 7. Classification results of Edundu area (a) using Sentinel-1 only; (b) using Sentinel-2 only; 

(c) using the fused image of Sentinel-2 and PlanetScope; (d) using the fused image and Sentinel-1 

C2 matrix; (e) using the fused image, Sentinel-1 C2 matrix, and H/α polarimetric decomposition. 
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 Overall, the results show that the fused images outperformed the single images in 

identifying crop types and land cover categories in both study locations. The OAs im-

proved as the number of image combinations increased. The image fused with the Senti-

nel-1 H/α polarimetric decomposition outperformed all the other fused image experi-

ments. The optical data (Sentinel-2 only) outperformed the radar data (Sentinel-1-only) in 

identifying crop types and land cover in both study locations by a wide margin. 

4. Discussion 

 The study reveals useful observations about crop type and land cover identification 

in heterogenous smallholder agricultural landscapes. The experiments provide evidence 

that to effectively identify crop types, cropping systems, and land cover using pixel-based 

classification, a combination of multitemporal satellite data from different sensors can be 

used. We show that the fusion of Sentinel-2 and PlanetScope optical images integrated 

with Sentinel-1 C2 matrix and Sentinel-1 H/α polarimetric decomposition was the most 

effective in generating high-accuracy crop type and land cover maps (Table 4). The degree 

of accuracy increased from the experiment (i) as the number of images integrated for the 

classification increased. Using only the Sentinel-1 images produced OAs lower than 50% 

for both locations, similar to observations made by Mercier et al. [72]. When the Sentinel-

1 C2 matrix was fused with Sentinel-2, the accuracies improved for both study locations. 

Fusing the two optical images further improved the classification results of the Sentinel-

2-only by 3.95% and 10.04% for Thimalala and Edundu, respectively. Orynbaikyzy et al. 

[73] noted similarly that fusing Sentinel-1 and Sentinel-2 data improved the results of crop 

classification in Northern Germany, as did Mercier et al. [72] in Paragominas (Brazil). 

Gašparović et al. [62] observed a similar improvement when they integrated Sentinel-2 

with PlanetScope for vegetation mapping and monitoring. There were only a few banana, 

onion, and sweet potato samples in the validation data because these crops are generally 

scarce in the agricultural landscape of both study locations. They are also often planted 

on relatively smaller plot sizes. A such, the PAs and UAs for these crop classes show that 

the assessment might have been less inaccurate (Table 5). The foregoing explanation is 

one of the main limitations of classifying crop types in complex heterogeneous small-

holder agriculture landscapes, as highlighted in other studies [8]. At the same time, the 

observation presents an opportunity for future studies to explore other approaches to cap-

turing such rare crops using image classification.  

 The observation that fusing Sentinel-1 and the optical data improved crop type map-

ping is also consistent with findings of other studies that have combined radar and optical 

data for crop and land cover type mapping [22,65]. The finding provides further evidence 

of the contribution of dual-polarized Sentinel-1 data for accurate crop and land cover clas-

sification. We conclude that the 13.53% (Thimalala) and 11.7% (Edundu) improvements 

in overall accuracy on the Sentinel-2-only classification is because of the integration of the 

multitemporal datasets from all the various sensors with the Sentinel-1 H/α polarimetric 

decomposition. This finding suggests that adding more multitemporal images could fur-

ther improve the OAs, PAs, and UAs, and using only a unitemporal image produces un-

derwhelming results. Previous studies have also found that integrating the H/α polari-

metric decomposition information with other data achieves better accuracy in complex 

agricultural landscapes than other classical methods [74–76]. Dual-polarized data such as 

Sentinel-1 are a valuable data resource for decomposing radar data to map crop types [73]. 

The poor accuracy from the Sentinel-1-only experiment (i) is, therefore, likely the result of 

the design of our experiment (i). The two bands of the Sentinel-1 IW mode compared to 

the several bands available from Sentinel-2 and PlanetScope and the use of the random 

forest algorithm may explain the poor accuracy from the Sentinel-1-only classification 

[77]. Quad-polarized data are known to perform better in identifying crop types when 

integrated with other data [78]. Future crop type mapping in the study locations should, 
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therefore, integrate time series quad-polarized H/α polarimetric decomposition, if availa-

ble, with available time series optical data to achieve better accuracies.  

The combination of multitemporal, multispectral, and multisensor data to map crops 

in such heterogeneous landscapes suggests that in areas of high cloud cover where optical 

data collection is not feasible, combining data with different spectral characteristics, in-

cluding radar and optical data, holds the potential for reliable mapping of crop types and 

land cover for building crop type inventories. The classification outcomes indicate that the 

multitemporal routine of fusing the quality high-resolution optical images (PlanetScope) 

with radar data and the random forest classification approach outperformed the Sentinel-

1-only data. Malawi, similar to many other locations in the tropics, has dense cloud cover 

during critical stages of crop growth but has limited coverage of high temporal resolution 

remote sensing satellites. This makes it difficult to acquire time series optical data for mon-

itoring crop growth and mapping crop diversity. Clouds are often cited as the main ad-

vantage of using radar for mapping land cover. Being able to routinely map the land-

scapes in such resource-poor contexts using a combination of images from different sen-

sors is critical to creating crop inventory maps by local officials to facilitate food security 

and environmental management decision-making [79]. The timing and quality of satellite 

observations play a crucial role in the accuracy of classification to identify crops [77]. Even 

though the seasonal satellite data we used contributed to the overall accuracy, only a few 

of the cloud-free optical images were obtained for the start of the growing season due to 

heavy cloud cover. As such, it was difficult for our optimal model to effectively separate 

the different crop combinations on intercropped farms, even though some intercropped 

fields were identified. The experiment (v) was able to identify the distribution of crops, 

with maize being the most common crop, a finding consistent with the maizification of 

Malawi narrative found in other studies, a phenomenon attributed to government agri-

cultural policies [80]. Future studies can overcome the challenge of inaccurate identifica-

tion of intercropped fields by using images acquired at the start of the growing season 

when the specific crop combinations on intercropped fields are visible to satellite sensors 

and can be captured and separated by image classification algorithms.  

 A combination of field ground truth data and samples from Google Earth Pro and 

DigitalGlobe images, as well as ancillary information, was used to train and validate the 

random forest algorithm to attain more than 85% accuracy in the experiment (v) (Table 4). 

The accuracy attained suggests that using reference data from diverse sources can im-

prove classification results, as observed in other studies [23,74]. This observation implies 

that the level of accuracy obtained in our experiments can be further improved with more 

training and validation samples. In future, crowdsourcing should be used to collect more 

field samples by training farmers to use smartphones and other spatial data collection 

applications and tools to geolocate and record farm and ancillary information for training 

and validating classifiers. Using crowdsourcing to collect crop type samples has been ex-

perimented with in other contexts and found to have contributed to getting large volumes 

of training data for mapping crop types more accurately [23]. Adding more training sam-

ples will also allow classification algorithms to identify the specific crops in intercropped 

fields.  

5. Conclusions  

 The outcomes of the experiments conducted in this study highlight the importance 

of exploiting the capabilities of various satellite sensors to create high temporal resolution 

images for mapping crop types and land cover in smallholder agriculture areas where the 

landscapes tend to be more heterogeneous. Both individual Sentinel-1 and Sentinel-2 im-

ages failed to produce high-accuracy crop type and land cover maps. The overall accuracy 

and Kappa coefficients of the classification improved as the number of images increased 

and the spatial resolution improved. The fusion of Sentinel-1 C2 matrix, Sentinel-2, and 
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PlanetScope optical data with the Sentinel-1 H/α polarimetric decomposition outper-

formed all other combinations of images. Fusing the images created high temporal reso-

lution data, with Sentinel-1 contributing the greatest number of images due to the ability 

of SAR to penetrate cloud cover. Though processing time may increase due to the high 

volume of data being integrated, the fact that acceptable accuracies were achieved is cru-

cial. In the tropical areas of SSA where cloud cover is often dense during the growing 

season, this study demonstrates that computing the H/α polarimetric decomposition from 

cloud-penetrating radar data and fusing it with other high- and moderate-resolution op-

tical data can be very cost-effective for developing large-scale crop inventory data. Several 

studies have shown how these current and emerging sensors can be harmonized to map 

crop types and land cover for use as decision support tools to facilitate food security de-

cision-making. Our study makes a valuable contribution to the literature on image fusion 

for crop type mapping. Intercropping is predominant in most smallholder contexts in 

SSA, but our experiments could not adequately identify the individual crops on such in-

tercropped fields due to data constraints. Since the H/α polarimetric decomposition image 

contributed to the improved accuracy of the experiments, future studies should apply H/α 

polarimetric decomposition from quad-polarized data, if available, with early-season op-

tical data and more ground truth samples to better identify the mix of crops on inter-

cropped farms. Given the current fast pace of sensor and image processing algorithm de-

velopment, it is possible to apply the method explored in this study on an operational 

basis to develop crop inventory data at larger scales to guide decision-making for im-

proved food security and environmental management in cloud-dense, resource-poor lo-

cations. The approach used in this study can be used by local agriculture decision-makers 

to map and monitor cropping patterns and land cover change dynamics over time to build 

land cover inventory datasets.  
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