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Abstract 

Laser-Based Additive Manufacturing (LBAM) is a promising process in manufacturing that allows for capabilities in producing 
complex parts with multiple functionalities for a large array of engineering applications. Melt pool is a well-known characteristic 
of the LBAM process. Porosity defects, which have hampered the expansive adoption of LBAM, is correlated with the melt pool 
characteristic that occurs throughout the LBAM process. High-speed monitors that can capture the LBAM process have created 
the possibility for in-situ monitoring for defects and abnormalities. This paper focuses on augmenting knowledge of the relation 
between the LBAM process and porosity and providing models that could efficiently, accurately, and consistently predict defects 
and anomalies in-situ for the LBAM process. Two models are presented in this paper, Random Forest Classifier and Early Stopping 
Neural Network, which are used to classify pyrometer images and categorize if those images will result in defects. Both methods 
can achieve over 99% accuracy in an efficient manner, which would create an in-situ method for quality prediction in the LBAM 
process. 
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1. Introduction 

The ability to produce complex and elaborate parts with 
additive manufacturing (AM) is desired in many fields. 
Laser-based additive manufacturing (LBAM) refers to a 
branch of AM processes that use a laser beam to provide the 
thermal energy for melting and consolidating the added 
material powders. One of the most representative LBAM 
processes is direct energy deposition (DED) [1]. DED has 
the potential to achieve such flexible, customized production. 
However, the quality of DED-produced parts is unstable. 
Porosity has been noted as a major defect, causing 
microstructure and stability issues [2]. The occurrence of 
porosity is closely related to abnormal thermal dynamics in 
melt pool during the DED process [3], but there are 
insufficient studies for accurately predicting the porosity in 
real time. These issues have prevented the wide-spread 
adoption of LBAM-produced parts.   

 

This has prompted studies on porosity detection based on 
in-situ thermal images of melt pool. During a typical DED 
process, the material powder is injected by a nozzle onto the 
substrate, creating a melt pool.  Recent improvements to 
sensing technology make it possible to capture real-time (in-
situ), high-speed images for the melt pool throughout the 

 
Fig. 1. An in-situ thermal image of melt pool from the DED process of a 

Ti-6Al-4V thin-walled part. (a) Shows a DED thermal image with no 
porosity defect. (b) Shows a DED thermal image with a porosity defect. 
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manufacturing process. Fig. 1 shows two examples of the in-
situ thermal images of melt pool from the DED process of a 
Ti-6Al-4V thin-walled part. Each pixel in Fig 1. represents a 
value in a degree Celsius. The heat-affected zone on the 
middle-right of the image is melt pool. It is hotter than the 
surrounding area. The highest temperature (i.e., brightest 
color) is observed in the centre of melt pool.  

In-situ thermal images of melt pool are evidence for 
identifying porosity. Literature [4] has shown that porosity is 
closely related to the abnormal thermal dynamics in melt 
pool. Khanzadeh et al. proposed two types of tensor 
decomposition models, 𝑇𝑇!  chart and 𝑄𝑄  chart, to predict 
porosity, as well as a KNN to predict porosity levels during 
the DED process [2, 3]. Tootooni et al. [5] applied a group of 
classifiers to the Laplacian eigenvalues extracted from 3D 
cloud data to detect dimension variation. Neural Networks 
(NNs) were adopted in Lu et al. [6], Caiazzo and Caggiano 
[7], Xiong et al. [8] to predict part geometry in AM. The 
prediction in turn became the evidence for optimizing the 
process parameters in DED. Random Forest (RF) was trained 
with CT scanning/thermal images for porosity prediction in 
Ren and Mazumder [9], and for surface defect prediction in 
Li et al. [10] and Chen et al. [11]. A semi-supervised 
methods, which consisted of feature extraction from large 
imaging data and randomized singular value decomposition, 
was used in Okaro et al. [12] for fault detection in LBAM 
processes. These studies have had success and trailblazed the 
way for successful methodology in predicting part defects 
such as porosity or geometric variation. However, despite 
their remarkable methodological contribution, improvement 
can still be made in using ML methods to predict porosity. 

The contribution of this work is to propose an integrated 
method for accurate in-situ prediction of porosity in DED. 
Fig. 2 demonstrates the structure of our method. Two robust, 
accurate, and time-efficient models, namely RF and Early 
Stopping Neural Network (ESSN), are used along with three 
innovative ways of image pre-processing (i.e., manual 
visualization-based crop, automated heat-based crop, 
Principal Component Analysis (PCA) crop) to improve the 
prediction accuracy. The case study shows that the proposed 
method consistently achieved prediction accuracies over 
99%, which has defeated benchmark studies based on the 
same dataset. A thorough evaluation of the prediction power 
against porosity is provided by the misclassification rate in 
individual deposition layers.  

In RF, multiple tree predictors are built independently, 
with each tree underlaid by a bootstrapped sample 
(independently sampled) from the training data. These tree 
predictors are aggregated to reduce the bias of individual tree 
and increase the robustness of prediction. The error from RF 
depends on the strength of the individual trees in the forest 
and the correlation between them [13]. One advantage that 
ESSN has over the RF model, is that RF requires another step 
of preprocessing before data can be trained or predicted on. 
Pyrometer images must first be flattened into a vector from a 
matrix before use, while ESSN does not have to do this. 
ESSN may also perform faster in certain scenarios. Many 
deep learning libraries, like Google’s Tensorflow, now have 
the ability to train on Graphics Processing Units (GPUs) or 
Tensor Processing Units (TPU) which greatly speed up 
training and prediction. This could create neural networks 
that perform faster than RF.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Structure of the proposed method. 
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The rest of this paper is organized as follows. Section 2 
will explain the data collection and label (i.e., porosity 
occurrence) assignment. Section 3 will describe data pre-
processing. Multiple ways are introduced for reducing 
redundant information and balancing the instances 
related/not related to porosity occurrence. Section 4 will 
provide the methodology details for the proposed models, 
i.e., RF and ESNN. Section 5 will provide case study results 
and discuss the performance of both models. The paper is 
concluded by Section 6. 

 
Nomenclature 

𝑥𝑥, 𝑦𝑦      Row and column index of pixel in a thermal image  
𝑥𝑥∗, 𝑦𝑦∗   Central pixel location of melt pool 
𝑁𝑁         Number of thermal images associated with porosity 
𝑇𝑇         Number of decision trees in Random Forest 
𝐽𝐽          Index of resampled image in bootstrap 
𝑈𝑈         A computer-generated random number following 

Uniform(0, 1) distribution 

2. Data Description 

This section will introduce the dataset motivating this 
study. Data collection of in-situ thermal images (Section 2.1) 
and porosity records (Section 2.2) are both elaborated. These 
data will be underlying the case study in Section 5. 

2.1. Data Collection 

This study is based on in-situ thermal images from a DED 
process of Ti-6Al-4V thin-walled part (referred as “DED 
dataset” in the following context). The data were first 
introduced in Marshall et al. [14] and then became a 
benchmark dataset for DED studies. Laser Engineered Net 
Shaping (LENS™) 750 system was the equipment for 
manufacturing the thin-walled part. An inline pyrometer 
collected thermal images of melt pool in real time at a 
nominal collection rate of 6.4Hz and a temperature range of 
[1000℃, 2500℃]. The pyrometer produces thermal images 
in the form of Comma Separated Values (CSV) files. Each 
CSV file corresponds to one thermal image and contains a 
pixel matrix of size 752 × 480.  

2.2. Porosity Records 

Each thermal image (CSV file) is associated with a 
porosity record that indicates the size of pores (in millimeter 
or mm) in part at the time of image collection. These porosity 
labels are measured offline and manually by 3D 
computerized tomography (CT) scanning for the finished 
thin-walled part. The image collection time corresponds to 
the location to be scanned in part. A thermal image 
associated with pores over 0.05mm is related to porosity 
occurrence and thus considered “bad”. Otherwise it is 
“good”. The entire dataset consisted of 1486 ‘good’ samples 
and 70 ‘bad’ samples. 

3. Data Preprocessing 

This section proposes effective data preprocessing for the 
thermal imaging data to facilitate porosity prediction. 
Resampling is first discussed in Section 3.1 as means to 
overcome the imbalance between “good” and “bad” samples. 
Three ways of cropping thermal images are introduced in 
Section 3.2 to reduce irrelevant information in data, which 
are manual visualization-based crop (subsection 3.2.1), 
automated melt pool crop (subsection 3.2.2), and PCA-based 
crop (subsection 3.2.3), respectively.  

3.1. Resampling 

To train a machine learning model that accurately 
classifies “good” and “bad” thermal images, there should be 
a good balance between the two types of instances in the 
training data. However, data from real applications can be 
heavily imbalanced. For example, the “good” instances in 
DED dataset outnumbered the “bad” ones by 1486 to 70. 
Such imbalance can compromise the validity and accuracy 
of the model. There is a motivation to make the data balanced 
by equalizing the number of “good” and “bad” instances with 
bootstrap resampling [15]. 

In bootstrap, the 𝑁𝑁 original “bad” instances are indexed 
from 0 to 𝑁𝑁. An index (𝐽𝐽) is selected randomly as 

 
𝐽𝐽 = ⌊𝑈𝑈𝑈𝑈⌋ + 1 (1) 

 
where 𝑈𝑈~Uniform(0, 1)  is a computer-generated random 
number and ⌊⋅⌋ is the floor of the value. Then the 𝐽𝐽th “bad” 
thermal image is selected and appended to the original set of 
𝑁𝑁 “bad” instances. This bootstrap process continues until the 
number of “bad” instances, including the resampled ones, 
accumulate to an equal value with the “good” instances. For 
the DED dataset, bootstrap resulted in 1486 “bad” instances. 
With the 1486 “good” ones, there are 2972 instances in total. 

3.2. Thermal Image Cropping 

One critical issue with raw thermal images (see Fig. 1) is 
the inclusion of a large background. The background is 
irrelevant to melt pool and may contain noisy IR radiation. It 
elevates the computational burden in data processing and 
may compromise the accuracy of porosity prediction. The 
solution to this problem is image cropping, which preserves 
the image segments relevant to the melt pool and eliminates 
redundant information. Three types of cropping methods are 
introduced in this section (see Fig. 3) and then applied to the 
DED dataset in case study (Section 5). 

3.2.1. Manual visualization-based cropping 

This is a direct crop of the thermal image based on visual 
estimation of the melt pool location. For the DED dataset, 
preliminary image visualization shows that the melt pool 
location is relatively stable. Let 𝑥𝑥 be the row index (increases 
from top to bottom) and 𝑦𝑦 be the column index (increases 
from left to right) of a pixel, then a visual estimate of the melt 
pool location is 𝑥𝑥 ∈ [350, 600], 𝑦𝑦 ∈ [90, 340]. Fig. 4 shows 
the boundaries from visualization-based crop on a raw 
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thermal image from the DED dataset. The large background 
was effectively reduced.  

3.2.2. Automated heat-based cropping 

This cropping method finds the hottest pixel in a thermal 
image and makes that pixel the image centre, (𝑥𝑥∗, 𝑦𝑦∗). The 
melt pool location is estimated as the surrounding square 
matrix of certain size, e.g., 250 × 250 in the DED dataset. 
Specifically, the 125 rows above and below 𝑥𝑥∗ plus the 125 
columns to the left and right of 𝑦𝑦∗ should be taken as the melt 
pool crop. Fig. 3(c) shows an example of the melt pool image 
after automated heat-based cropping. 

To find (𝑥𝑥∗, 𝑦𝑦∗), a greedy search for the highest pixel 
value is done for each image. If more than one pixel is tied 
for the highest temperature in an image, then the (𝑥𝑥, 𝑦𝑦) 
coordinates of the hottest pixels are averaged out to create 
one coordinate. The non-integer values of (𝑥𝑥, 𝑦𝑦) are rounded 
to the nearest integer. This cropping scheme is “automated” 
in the sense that the estimated melt pool location is adapted 
from the image and obtained automatically rather than 
manually assigned. Provides an example of a melt pool crop 
produced by this scheme. It is close to the result of manual 
visualization-based crop. The melt pool was well preserved 
while the irrelevant background was removed.  

3.2.3. PCA-based cropping 

PCA is a feature extraction method that extracts critical 
features in the form of principal components (PCs) from the 
data [16]. Unimportant information (features) is eliminated, 

which leads to its key merits – data denoise and 
dimensionality reduction [17, 18].  

For a thermal image, PCA is used to extract a number of 
PCs that are associated with the major portion of pixel-wise 
variance. It has been observed in Fig. 1 that the pixel-wise 
variance, or temperature variation, in a raw thermal image 
mainly occur in the region of melt pool. So, the pixels 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 4. A raw thermal image with the boundaries from manual visualization-

based crop (top) and the corresponding melt pool crop (bottom). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Data pre-processing: (a) Sample of an original image captured via pyrometer, (b) image after manual visualization-based crop, (c) image after heat-

based crop, and (d) image after PCA-based crop. 
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forming these PCs are very likely to be those in the melt pool 
regions. Image cropping should be done based on these 
pixels’ coordinates.   

To use PCA on DED dataset, first the pixel matrix is 
vectorized, then fed to the PCA library from “scikit-learn” 
package. After the model fitting, the 𝑀𝑀 PCs that explain 95% 
data variance (or variability ratio) are picked. A new PCA 
model with these PCs is fit, which creates a list of every 
feature marked by its importance (i.e., magnitude of 
eigenvalue). The top 10 biggest eigenvalues are selected 
from each component. For each eigenvalue list for every 
component, if there is a singular mode in either 𝑥𝑥  or 𝑦𝑦 
coordinate, the value is saved; otherwise, the average of 
those 10 coordinates were used. Then for all 𝑀𝑀 components, 
the mode of 𝑥𝑥 and 𝑦𝑦 coordinates are taken to form the center 
(𝑥𝑥∗, 𝑦𝑦∗). If there is no singular mode, the average of either 𝑥𝑥 
or 𝑦𝑦 coordinate is selected to form (𝑥𝑥∗, 𝑦𝑦∗). A 100 × 100 
pixel matrix is created around (𝑥𝑥∗, 𝑦𝑦∗). Fig. 3(d) shows a 
melt pool cropped with the PCA method. Compared to 
manual visualization-based crop and automated melt pool 
crop, this scheme has led to certain loss of melt pool, but this 
can be improved by taking larger than 10 eigenvalues from 
the 2nd PCA model to identify the melt pool center. 

4. Method 

In this section, we introduce the models for porosity 
prediction, namely RF (Section 4.1) and ESNN (Section 4.2). 

4.1. Random Forest 

RF is an ensemble learning method that is extensively 
used in image classification for their remarkable 
classification accuracy [19, 20]. An RF model aggregates a 
number (𝑇𝑇) of decision trees. For the DED dataset,  𝑇𝑇 = 10 
is adopted and data is vectorized before model training. In a 
single decision tree, an instance is classified by going 
through a sequence of node. A node is equivalent to a binary 
(0 or 1) decision that determines the direction the instance 
should go for the next step (subsequent node). A “tree” 

structure is essentially formed by a sequence of binary 
decisions, thus the name “decision tree”. By aggregating 
(averaging) the classification results of 𝑇𝑇 decision trees, an 
RF model can increase the decision’s robustness and reduce 
the bias. 

4.2. Proposed Early Stopping Neural Network (ESNN) 

Convolutional Neural Network (CNN) is a trending 
model for efficient and accurate classification of imaging 
data. This has been exemplified through larger datasets, e.g., 
ImageNet, whose classification performance is featured by 
low error rates and high accuracy [21, 22]. We develop 
ESNN based on CNN that stop model training early to 
prevent overfitting. The architecture of ESNN is 
demonstrated in Fig. 5. The input are individual thermal 
images with shape 250 × 250, 200 × 200 , or 100 × 100 
(i.e., height×width, and depth = 1). The cropping method is 
any one of the three proposed schemes: manual 
visualization-based crop, automated heat-based crop, or 
PCA-based crop. The cropped image goes through several 
convolutional blocks that are designed to extract features 
from the image. Here, the “features” are the outcome of 
applying image convolution.  

The first four blocks of ESNN each consists of a 2D 
convolutional layer (Conv2D), a Max Pooling layer, and a 
Batch Normalization layer. Similar to the use of Conv2D in 
the Very Deep Convolutional Neural Network for Large-
Scale Image Recognition [23], the Conv2D layer uses a 
3 × 3 kernel captures the essence of up, down, left, in the 
smallest way possible for the images. The filter size, which 
is the parameter that is used to extract features from the 
images, is determined per the convention of CNN 
classification for 224 × 224 images, so are the rest ESNN 
parameters. All the Conv2D layers in ESNN are followed by 
Max Pooling layers. The function of Max Pooling layers is 
to perform spatial pooling, which groups features to those 
that are adjacent or in an approximate area to it.  

The last four blocks of ESNN each consists of a Batch 
Normalization layer. This layer accelerates the training of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Architecture for the proposed early stopping neural network (ESNN). 
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ESNN while allowing for higher training rates and accuracy 
[24]. After 4 blocks of the ESNN, the data encounters its first 
dropout layer. This layer is used in prevention of overfitting, 
as large neural networks by randomly dropping neurons from 
the network and their connections [25]. This methodology 
prevents overfitting by making sure that many neurons in the 
network do not have highly correlated behavior. Following 
the dropout layer, the Flatten layer converts the data into a 
vector which is required for the next fully connected dense 
layer. Finally, this is led into a dense layer with a sigmoid 
activation function which is used to transform the final input 
of the neural network into a value between 0 and 1. This is 
the final classification for the data, with “0” corresponds to a 
“good” instance and “1” corresponds to a “bad” one.  

The model is compiled using the “Keras” package. Model 
training is fulfilled by adopting Stochastic Gradient Descent 
(SGD) as the optimizer, binary cross entropy as the loss 
function, and accuracy as the performance metric. 
Throughout model training, it was seen that the validation 
accuracy of the last epoch was highly correlated with the test 
accuracy. Hence, if the last epoch had a low validation 
accuracy, then the test accuracy would also suffer, but high 
validation accuracy scores resulted in desirable test accuracy 
scores. An early stopping call back method was employed to 
consistently result in a well-trained model. First, the number 
of epochs was set at a 50 and a patience value was set to 10. 
Patience value refers to the number of epochs a model will 
continue to train while a specified metric is not improving, 
in this case, the desired metric is validation accuracy. If the 
model exceeds the patience value before training is complete, 
it will revert to the epoch with the best validation accuracy. 
The last epoch will be variable depending on the data ESSN 
receives. This underlies the importance of setting a high 
number of epochs, because the model could plummet from a 
high validation accuracy in the penultimate epoch to a low 
validation accuracy in the final epoch, which results in a low-
test accuracy. If the model has a high number of epochs, it 
becomes increasingly more unlikely that the model will 
finish through all the epochs. 

5. Results and Discussion 

In this section, we elaborate porosity prediction with the 
trained ESNN, and define the accuracy measurements 
(Section 5.1). The prediction performance of RF and ESNN, 
based on varying cropping schemes, are compared (Section 
5.2). The effect of different cropping methods is compared 
and discussed in Section 5.3. Finally, analysis of incorrect 
prediction is done for deposition layers in Section 5.4. 

5.1. Testing Configuration and Accuracy Measurement 

Both models were trained through various training and 
testing ratios to examine how the models would perform 
under different amounts of training data. For each split, the 
data is shuffled to see how both models perform with 
different sets of data and to avoid testing on the same 
consistent split. When either model predicts it can either 
produce a ‘0’ or a ‘1’. In this case ‘0’ will be viewed as 
‘positive’ and ‘1’ will be viewed as ‘negative’. If either a ‘0’ 

or ‘1’ is accurately predicted it is considered ‘true’; 
otherwise, it would be considered as ‘false’. Thus, the four 
classifications a prediction can have is: True Positive (TP), 
True Negative (TN), False Positive (FP), False Negative 
(FN). Test accuracy is defined in Eq. (2):  

 

Test	Accuracy	(%) = 	
TP + TN

TP + FP + TN + FN
(2) 

 
For every training and testing split ratio there are 25 trials 
and the average of those accuracy scores is recorded as the 
average accuracy for both models. Time is also recorded, 
where time refers to the average amount of time it took for 
the model to train and predict a random split. 

5.2. Performance Evaluation 

From Table 1, we can see that both RF and ESNN 
achieved very high rates of accuracy for the manual 
visualization-based crop alone. Both models were able to 
achieve an average accuracy percentage above 99% in 
multiple training and testing ratios. The most notable 
discrepancy between RF and ESNN results was the 10% 
training and 90% testing ratio. The ESNN performed poorly 
on this set, with an average accuracy of 59.83%, which was 
slightly better than guessing. The RF model, however, 
performed well at this training and testing ratio, with 98% 

Table 1. Performance in porosity prediction for the DED dataset using 
manual visualization-based crop. 

 
 

Table 2. Performance in porosity prediction for the DED dataset using 
automated heat-based crop. 

 
 

Table 3. Performance in porosity prediction for the DED dataset using 
PCA-based crop. 
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accuracy. These results show that the ESNN performs worse 
when compared to the RF model when given lower ratios of 
training data, but when given around an even 50/50 split, 
they perform at equal levels.  

In Table 2, the results of the automated melt pool crop can 
be seen for both models. In this table with this style of 
cropping method, that test accuracy scores for both the RF 
and ESNN score very well. For RF, all training ratios above 
10% scored an average accuracy above 99% and for the 
ESNN it consistently scored an average accuracy score 
above 99% above the 50% training ratio. 

In Table 3, the metrics for automated PCA Crop can be 
seen. For RF, the accuracy was consistently over 99% 
average accuracy score above the 30% training ratio. The 
ESNN consistently achieved an average accuracy above 99% 
above 50% training ratio, similar to the melt pool automated 
crop. The time for both the RF and ESNN were significantly 
decreased compared to both the manual visualization crop 
and the melt pool automated crop, mainly due to the crop size 
being 100´100 in comparison to 200´200 and 250´250. 

5.3. Comparison of Cropping Methods 

In a direct comparison of all three different types of 
cropping styles in Table 4 and Table 5, all three of the 
methodologies have high test accuracies scores. All three 
cropping methods received a test accuracy score above 99% 
in training ratios 60% and above. In terms of time, the PCA-
based crop trained and predicted in the shortest amount of 
time as it only had to train on images 100´100 
(width´height). The automated heat-based crop also was 
faster than the manual visualization-based crop as it was 
200´200 compared to 250´250 (width´height). 

For which method should be used for in- situ monitoring, 
despite all three achieving similar metrics, the automated 
heat-based crop provides the most robust algorithm of the 
three for in-situ monitoring. The manual visualization-based 
crop and PCA based crop, provided a relatively static method 
where the same crop was applied to the entire dataset, which 
worked solely in terms of this dataset. During the DED 
process, the melt pool may be located in various areas, which 
eliminates the possibility of a static crop. With the automated 
heat-based crop, the image would automatically focus in on 
the melt pool which would be a necessary feature for in-situ 
quality prediction, especially over many different DED 
processes. 

5.4. Performance by Deposition Layer 

To test which layers during the DED process are 
misidentified most often by our models, a 50/50 train/test 
split with the ESNN model was deployed with false positive 
and false negatives categorized by layer are displayed in Fig 
6. In Fig. 6, layers 1, 2, and 3 accounts for 38.66% of the total 
incorrectly classified data during the prediction process, 
despite only accounting for 5% of the total layers. Layers 4-
60, at most had accumulative incorrect predictions of 2 or 
below. It is believed that this could be due the nature of the 
DED process. When metallic powder is first laid into the  
machine, the plate is much cooler since no melting has 
occurred yet. This may cause the incorrect predictions since 

these layers specifically have another underlying process if 
heating up, compared to later layers. 

6. Conclusion 

In this paper, RF and ESNN were proposed for in-situ 
quality prediction precision in DED. These models use 
pyrometer images to detect porosity levels and make a 
quality prediction of the part. The results demonstrate that 
both methods have a high level of accuracy, efficiency, and 
consistency, which proves that this method can be used for 
in-situ porosity detection in the DED process. This study also 
gives indication as to which layers may be predicted 
incorrectly more than others because of the nature of the 
DED process. These promising results in achieving accurate 
predictions for quality prediction during the DED process 
could also create future work in isolating which areas of 
pyrometer images cause the porosity defects. Future work 
may also include further research of ESSN into creating an 
optimal stopping algorithm for model training and how 
ESSN performs on other DED or additive manufacturing 
datasets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Pie chart depicting the number of incorrectly classified images by 

ESNN based on deposition layer. 

Table 5. Comparison of cropping methods with ESNN. 

 

Table 4. Comparison of cropping methods with RF. 
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