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Abstract

Laser-Based Additive Manufacturing (LBAM) is a promising process in manufacturing that allows for capabilities in producing
complex parts with multiple functionalities for a large array of engineering applications. Melt pool is a well-known characteristic
of the LBAM process. Porosity defects, which have hampered the expansive adoption of LBAM, is correlated with the melt pool
characteristic that occurs throughout the LBAM process. High-speed monitors that can capture the LBAM process have created
the possibility for in-situ monitoring for defects and abnormalities. This paper focuses on augmenting knowledge of the relation
between the LBAM process and porosity and providing models that could efficiently, accurately, and consistently predict defects
and anomalies in-situ for the LBAM process. Two models are presented in this paper, Random Forest Classifier and Early Stopping
Neural Network, which are used to classify pyrometer images and categorize if those images will result in defects. Both methods
can achieve over 99% accuracy in an efficient manner, which would create an in-situ method for quality prediction in the LBAM
process.
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1. Introduction This has prompted studies on porosity detection based on
in-situ thermal images of melt pool. During a typical DED

The ability to produce complex and elaborate parts with process, the material powder is injected by a nozzle onto the
additive manufacturing (AM) is desired in many fields. substrate, creating a melt pool. Recent improvements to
Laser-based additive manufacturing (LBAM) refers to a sensing technology make it possible to capture real-time (in-

branch of AM processes that use a laser beam to provide the situ), high-speed images for the melt pool throughout the
thermal energy for melting and consolidating the added —_—
material powders. One of the most representative LBAM

processes is direct energy deposition (DED) [1]. DED has o

the potential to achieve such flexible, customized production. @

However, the quality of DED-produced parts is unstable. 0

Porosity has been noted as a major defect, causing e |

microstructure and stability issues [2]. The occurrence of ° w0 Mo o sm 0 wo o
porosity is closely related to abnormal thermal dynamics in
melt pool during the DED process [3], but there are °

insufficient studies for accurately predicting the porosity in 00

real time. These issues have prevented the wide-spread 0

adoption of LBAM-produced parts. ®
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Fig. 1. An in-situ thermal image of melt pool from the DED process of a
Ti-6Al-4V thin-walled part. (a) Shows a DED thermal image with no
2351-9789 © 2021 The Authors. Published by Elsevier B.V. porosity defect. (b) Shows a DED thermal image with a porosity defect.
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manufacturing process. Fig. 1 shows two examples of the in-
situ thermal images of melt pool from the DED process of a
Ti-6Al-4V thin-walled part. Each pixel in Fig 1. represents a
value in a degree Celsius. The heat-affected zone on the
middle-right of the image is melt pool. It is hotter than the
surrounding area. The highest temperature (i.e., brightest
color) is observed in the centre of melt pool.

In-situ thermal images of melt pool are evidence for
identifying porosity. Literature [4] has shown that porosity is
closely related to the abnormal thermal dynamics in melt
pool. Khanzadeh et al. proposed two types of tensor
decomposition models, T? chart and Q chart, to predict
porosity, as well as a KNN to predict porosity levels during
the DED process [2, 3]. Tootooni et al. [5] applied a group of
classifiers to the Laplacian eigenvalues extracted from 3D
cloud data to detect dimension variation. Neural Networks
(NNs) were adopted in Lu et al. [6], Caiazzo and Caggiano
[7], Xiong et al. [8] to predict part geometry in AM. The
prediction in turn became the evidence for optimizing the
process parameters in DED. Random Forest (RF) was trained
with CT scanning/thermal images for porosity prediction in
Ren and Mazumder [9], and for surface defect prediction in
Li et al. [10] and Chen et al. [11]. A semi-supervised
methods, which consisted of feature extraction from large
imaging data and randomized singular value decomposition,
was used in Okaro et al. [12] for fault detection in LBAM
processes. These studies have had success and trailblazed the
way for successful methodology in predicting part defects
such as porosity or geometric variation. However, despite
their remarkable methodological contribution, improvement
can still be made in using ML methods to predict porosity.
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The contribution of this work is to propose an integrated
method for accurate in-situ prediction of porosity in DED.
Fig. 2 demonstrates the structure of our method. Two robust,
accurate, and time-efficient models, namely RF and Early
Stopping Neural Network (ESSN), are used along with three
innovative ways of image pre-processing (i.e., manual
visualization-based crop, automated heat-based crop,
Principal Component Analysis (PCA) crop) to improve the
prediction accuracy. The case study shows that the proposed
method consistently achieved prediction accuracies over
99%, which has defeated benchmark studies based on the
same dataset. A thorough evaluation of the prediction power
against porosity is provided by the misclassification rate in
individual deposition layers.

In RF, multiple tree predictors are built independently,
with each tree underlaid by a bootstrapped sample
(independently sampled) from the training data. These tree
predictors are aggregated to reduce the bias of individual tree
and increase the robustness of prediction. The error from RF
depends on the strength of the individual trees in the forest
and the correlation between them [13]. One advantage that
ESSN has over the RF model, is that RF requires another step
of preprocessing before data can be trained or predicted on.
Pyrometer images must first be flattened into a vector from a
matrix before use, while ESSN does not have to do this.
ESSN may also perform faster in certain scenarios. Many
deep learning libraries, like Google’s Tensorflow, now have
the ability to train on Graphics Processing Units (GPUs) or
Tensor Processing Units (TPU) which greatly speed up
training and prediction. This could create neural networks
that perform faster than RF.
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Fig. 2. Structure of the proposed method.
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The rest of this paper is organized as follows. Section 2
will explain the data collection and label (i.e., porosity
occurrence) assignment. Section 3 will describe data pre-
processing. Multiple ways are introduced for reducing
redundant information and balancing the instances
related/not related to porosity occurrence. Section 4 will
provide the methodology details for the proposed models,
i.e., RF and ESNN. Section 5 will provide case study results
and discuss the performance of both models. The paper is
concluded by Section 6.

Nomenclature

x,y  Row and column index of pixel in a thermal image
x*,¥* Central pixel location of melt pool

N Number of thermal images associated with porosity
T Number of decision trees in Random Forest

J Index of resampled image in bootstrap

U A computer-generated random number following

Uniform(0, 1) distribution

2. Data Description

This section will introduce the dataset motivating this
study. Data collection of in-situ thermal images (Section 2.1)
and porosity records (Section 2.2) are both elaborated. These
data will be underlying the case study in Section 5.

2.1. Data Collection

This study is based on in-situ thermal images from a DED
process of Ti-6Al-4V thin-walled part (referred as “DED
dataset” in the following context). The data were first
introduced in Marshall et al. [14] and then became a
benchmark dataset for DED studies. Laser Engineered Net
Shaping (LENS™) 750 system was the equipment for
manufacturing the thin-walled part. An inline pyrometer
collected thermal images of melt pool in real time at a
nominal collection rate of 6.4Hz and a temperature range of
[1000°C, 2500°C]. The pyrometer produces thermal images
in the form of Comma Separated Values (CSV) files. Each
CSV file corresponds to one thermal image and contains a
pixel matrix of size 752 X 480.

2.2. Porosity Records

Each thermal image (CSV file) is associated with a
porosity record that indicates the size of pores (in millimeter
or mm) in part at the time of image collection. These porosity
labels are measured offline and manually by 3D
computerized tomography (CT) scanning for the finished
thin-walled part. The image collection time corresponds to
the location to be scanned in part. A thermal image
associated with pores over 0.05mm is related to porosity
occurrence and thus considered “bad”. Otherwise it is
“good”. The entire dataset consisted of 1486 ‘good’ samples
and 70 ‘bad’ samples.

3. Data Preprocessing

This section proposes effective data preprocessing for the
thermal imaging data to facilitate porosity prediction.
Resampling is first discussed in Section 3.1 as means to
overcome the imbalance between “good” and “bad” samples.
Three ways of cropping thermal images are introduced in
Section 3.2 to reduce irrelevant information in data, which
are manual visualization-based crop (subsection 3.2.1),
automated melt pool crop (subsection 3.2.2), and PCA-based
crop (subsection 3.2.3), respectively.

3.1. Resampling

To train a machine learning model that accurately
classifies “good” and “bad” thermal images, there should be
a good balance between the two types of instances in the
training data. However, data from real applications can be
heavily imbalanced. For example, the “good” instances in
DED dataset outnumbered the “bad” ones by 1486 to 70.
Such imbalance can compromise the validity and accuracy
of the model. There is a motivation to make the data balanced
by equalizing the number of “good” and “bad” instances with
bootstrap resampling [15].

In bootstrap, the N original “bad” instances are indexed
from 0 to N. An index (J) is selected randomly as

J=1UNI+1 1

where U~Uniform(0, 1) is a computer-generated random
number and |-] is the floor of the value. Then the Jth “bad”
thermal image is selected and appended to the original set of
N “bad” instances. This bootstrap process continues until the
number of “bad” instances, including the resampled ones,
accumulate to an equal value with the “good” instances. For
the DED dataset, bootstrap resulted in 1486 “bad” instances.
With the 1486 “good” ones, there are 2972 instances in total.

3.2. Thermal Image Cropping

One critical issue with raw thermal images (see Fig. 1) is
the inclusion of a large background. The background is
irrelevant to melt pool and may contain noisy IR radiation. It
elevates the computational burden in data processing and
may compromise the accuracy of porosity prediction. The
solution to this problem is image cropping, which preserves
the image segments relevant to the melt pool and eliminates
redundant information. Three types of cropping methods are
introduced in this section (see Fig. 3) and then applied to the
DED dataset in case study (Section 5).

3.2.1. Manual visualization-based cropping

This is a direct crop of the thermal image based on visual
estimation of the melt pool location. For the DED dataset,
preliminary image visualization shows that the melt pool
location is relatively stable. Let x be the row index (increases
from top to bottom) and y be the column index (increases
from left to right) of a pixel, then a visual estimate of the melt
pool location is x € [350,600],y € [90,340]. Fig. 4 shows
the boundaries from visualization-based crop on a raw
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Fig. 3. Data pre-processing: (a) Sample of an original image captured via pyrometer, (b) image after manual visualization-based crop, (c) image after heat-
based crop, and (d) image after PCA-based crop.

thermal image from the DED dataset. The large background
was effectively reduced.

3.2.2. Automated heat-based cropping

This cropping method finds the hottest pixel in a thermal
image and makes that pixel the image centre, (x*,y*). The
melt pool location is estimated as the surrounding square
matrix of certain size, e.g., 250 X 250 in the DED dataset.
Specifically, the 125 rows above and below x* plus the 125
columns to the left and right of y* should be taken as the melt
pool crop. Fig. 3(c) shows an example of the melt pool image
after automated heat-based cropping.

To find (x*,y*), a greedy search for the highest pixel
value is done for each image. If more than one pixel is tied
for the highest temperature in an image, then the (x,y)
coordinates of the hottest pixels are averaged out to create
one coordinate. The non-integer values of (x, y) are rounded
to the nearest integer. This cropping scheme is “automated”
in the sense that the estimated melt pool location is adapted
from the image and obtained automatically rather than
manually assigned. Provides an example of a melt pool crop
produced by this scheme. It is close to the result of manual
visualization-based crop. The melt pool was well preserved
while the irrelevant background was removed.

3.2.3. PCA-based cropping

PCA is a feature extraction method that extracts critical
features in the form of principal components (PCs) from the
data [16]. Unimportant information (features) is eliminated,

which leads to its key merits — data denoise and
dimensionality reduction [17, 18].

For a thermal image, PCA is used to extract a number of
PCs that are associated with the major portion of pixel-wise
variance. It has been observed in Fig. 1 that the pixel-wise
variance, or temperature variation, in a raw thermal image
mainly occur in the region of melt pool. So, the pixels
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Fig. 4. A raw thermal image with the boundaries from manual visualization-
based crop (top) and the corresponding melt pool crop (bottom).
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forming these PCs are very likely to be those in the melt pool
regions. Image cropping should be done based on these
pixels’ coordinates.

To use PCA on DED dataset, first the pixel matrix is
vectorized, then fed to the PCA library from “scikit-learn”
package. After the model fitting, the M PCs that explain 95%
data variance (or variability ratio) are picked. A new PCA
model with these PCs is fit, which creates a list of every
feature marked by its importance (i.e., magnitude of
eigenvalue). The top 10 biggest eigenvalues are selected
from each component. For each eigenvalue list for every
component, if there is a singular mode in either x or y
coordinate, the value is saved; otherwise, the average of
those 10 coordinates were used. Then for all M components,
the mode of x and y coordinates are taken to form the center
(x*,y*). If there is no singular mode, the average of either x
or y coordinate is selected to form (x*,y*). A 100 x 100
pixel matrix is created around (x*,y*). Fig. 3(d) shows a
melt pool cropped with the PCA method. Compared to
manual visualization-based crop and automated melt pool
crop, this scheme has led to certain loss of melt pool, but this
can be improved by taking larger than 10 eigenvalues from
the 2 PCA model to identify the melt pool center.

4. Method

In this section, we introduce the models for porosity
prediction, namely RF (Section 4.1) and ESNN (Section 4.2).

4.1. Random Forest

RF is an ensemble learning method that is extensively
used in image classification for their remarkable
classification accuracy [19, 20]. An RF model aggregates a
number (T) of decision trees. For the DED dataset, T = 10
is adopted and data is vectorized before model training. In a
single decision tree, an instance is classified by going
through a sequence of node. A node is equivalent to a binary
(0 or 1) decision that determines the direction the instance
should go for the next step (subsequent node). A “tree”

]

structure is essentially formed by a sequence of binary
decisions, thus the name “decision tree”. By aggregating
(averaging) the classification results of T decision trees, an
RF model can increase the decision’s robustness and reduce
the bias.

4.2. Proposed Early Stopping Neural Network (ESNN)

Convolutional Neural Network (CNN) is a trending
model for efficient and accurate classification of imaging
data. This has been exemplified through larger datasets, e.g.,
ImageNet, whose classification performance is featured by
low error rates and high accuracy [21, 22]. We develop
ESNN based on CNN that stop model training early to
prevent overfitting. The architecture of ESNN is
demonstrated in Fig. 5. The input are individual thermal
images with shape 250 x 250,200 x 200, or 100 x 100
(i.e., heightxwidth, and depth = 1). The cropping method is
any one of the three proposed schemes: manual
visualization-based crop, automated heat-based crop, or
PCA-based crop. The cropped image goes through several
convolutional blocks that are designed to extract features
from the image. Here, the “features” are the outcome of
applying image convolution.

The first four blocks of ESNN each consists of a 2D
convolutional layer (Conv2D), a Max Pooling layer, and a
Batch Normalization layer. Similar to the use of Conv2D in
the Very Deep Convolutional Neural Network for Large-
Scale Image Recognition [23], the Conv2D layer uses a
3 X 3 kernel captures the essence of up, down, left, in the
smallest way possible for the images. The filter size, which
is the parameter that is used to extract features from the
images, is determined per the convention of CNN
classification for 224 X 224 images, so are the rest ESNN
parameters. All the Conv2D layers in ESNN are followed by
Max Pooling layers. The function of Max Pooling layers is
to perform spatial pooling, which groups features to those
that are adjacent or in an approximate area to it.

The last four blocks of ESNN each consists of a Batch
Normalization layer. This layer accelerates the training of

Convolutional + ReLU
. Max Pooling
. Batch Normalization
. Dropout (0.2)
Flatten
. Dense + RelLU

Dense + Sigmoid

Fig. 5. Architecture for the proposed early stopping neural network (ESNN).
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ESNN while allowing for higher training rates and accuracy
[24]. After 4 blocks of the ESNN, the data encounters its first
dropout layer. This layer is used in prevention of overfitting,
as large neural networks by randomly dropping neurons from
the network and their connections [25]. This methodology
prevents overfitting by making sure that many neurons in the
network do not have highly correlated behavior. Following
the dropout layer, the Flatten layer converts the data into a
vector which is required for the next fully connected dense
layer. Finally, this is led into a dense layer with a sigmoid
activation function which is used to transform the final input
of the neural network into a value between 0 and 1. This is
the final classification for the data, with “0” corresponds to a
“good” instance and “1” corresponds to a “bad” one.

The model is compiled using the “Keras” package. Model
training is fulfilled by adopting Stochastic Gradient Descent
(SGD) as the optimizer, binary cross entropy as the loss
function, and accuracy as the performance metric.
Throughout model training, it was seen that the validation
accuracy of the last epoch was highly correlated with the test
accuracy. Hence, if the last epoch had a low validation
accuracy, then the test accuracy would also suffer, but high
validation accuracy scores resulted in desirable test accuracy
scores. An early stopping call back method was employed to
consistently result in a well-trained model. First, the number
of epochs was set at a 50 and a patience value was set to 10.
Patience value refers to the number of epochs a model will
continue to train while a specified metric is not improving,
in this case, the desired metric is validation accuracy. If the
model exceeds the patience value before training is complete,
it will revert to the epoch with the best validation accuracy.
The last epoch will be variable depending on the data ESSN
receives. This underlies the importance of setting a high
number of epochs, because the model could plummet from a
high validation accuracy in the penultimate epoch to a low
validation accuracy in the final epoch, which results in a low-
test accuracy. If the model has a high number of epochs, it
becomes increasingly more unlikely that the model will
finish through all the epochs.

5. Results and Discussion

In this section, we elaborate porosity prediction with the
trained ESNN, and define the accuracy measurements
(Section 5.1). The prediction performance of RF and ESNN,
based on varying cropping schemes, are compared (Section
5.2). The effect of different cropping methods is compared
and discussed in Section 5.3. Finally, analysis of incorrect
prediction is done for deposition layers in Section 5.4.

5.1. Testing Configuration and Accuracy Measurement

Both models were trained through various training and
testing ratios to examine how the models would perform
under different amounts of training data. For each split, the
data is shuffled to see how both models perform with
different sets of data and to avoid testing on the same
consistent split. When either model predicts it can either
produce a ‘0’ or a ‘1°. In this case ‘0’ will be viewed as
‘positive’ and ‘1’ will be viewed as ‘negative’. If either a ‘0’

or ‘1’ is accurately predicted it is considered ‘true’;
otherwise, it would be considered as ‘false’. Thus, the four
classifications a prediction can have is: True Positive (TP),
True Negative (TN), False Positive (FP), False Negative
(FN). Test accuracy is defined in Eq. (2):

TP+ TN
Test Accuracy (%) = TP T FP £ TN 7 FN 2)

For every training and testing split ratio there are 25 trials
and the average of those accuracy scores is recorded as the
average accuracy for both models. Time is also recorded,
where time refers to the average amount of time it took for
the model to train and predict a random split.

5.2. Performance Evaluation

From Table 1, we can see that both RF and ESNN
achieved very high rates of accuracy for the manual
visualization-based crop alone. Both models were able to
achieve an average accuracy percentage above 99% in
multiple training and testing ratios. The most notable
discrepancy between RF and ESNN results was the 10%
training and 90% testing ratio. The ESNN performed poorly
on this set, with an average accuracy of 59.83%, which was
slightly better than guessing. The RF model, however,
performed well at this training and testing ratio, with 98%

Table 1. Performance in porosity prediction for the DED dataset using
manual visualization-based crop.

Test Accuracy (%) Time (sec)

Training /Testing Random  Early Stopping Random  Early Stopping

Split Ratio Forest  Neural Network Forest Neural Network
10/90 9845 5083 249 12.02
20/80 99.26 9466 430 31.58
30/70 99.67 28.19 6.18 37.02
40/60 99.68 9918 7.82 4339
30/50 99.57 99.00 9.36 50.98
G0/40 90.82 99,69 11.37 60.78
7030 99.79 9950 13.07 72.20
2020 99.75 99.90 14.66 75.84

Table 2. Performance in porosity prediction for the DED dataset using
automated heat-based crop.

Test Accuracy (%) Time (sec)

Training /Testing Random  Early Stopping Fandom  Early Stopping

Split Ratio Forest Neural Network Forest Neural Network
10/90 96.48 66.23 220 10.12
20/80 99.14 98.56 395 21.89
30:70 9958 98.08 371 20.14
40/60 99.84 99.01 12.17 31.69
30050 90.46 96.29 10.09 1321
60/40 99.64 9049 12.00 2218
T0/30 99.78 99.72 13.80 24.05
80/20 99.90 99.53 15.53 23.63

Table 3. Performance in porosity prediction for the DED dataset using
PCA-based crop.

Test Accuracy (%) Time (sec)

Training /Testing Random  Early Stopping Random  Early Stopping

Split Ratio Forest  Neural Network Forest  Neural Network
10/90 9546 49.63 0.80 4.13
20/80 97.88 62.00 1.57 6.86
30:70 93.80 93.64 2325 11.98
40760 99.04 99.43 295 2399
30/50 99.46 9823 333 34.46
60/40 99.64 99.70 419 4371
70/30 9978 9681 4.73 4502
80/20 9991 99.13 546 47.79
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accuracy. These results show that the ESNN performs worse
when compared to the RF model when given lower ratios of
training data, but when given around an even 50/50 split,
they perform at equal levels.

In Table 2, the results of the automated melt pool crop can
be seen for both models. In this table with this style of
cropping method, that test accuracy scores for both the RF
and ESNN score very well. For RF, all training ratios above
10% scored an average accuracy above 99% and for the
ESNN it consistently scored an average accuracy score
above 99% above the 50% training ratio.

In Table 3, the metrics for automated PCA Crop can be
seen. For RF, the accuracy was consistently over 99%
average accuracy score above the 30% training ratio. The
ESNN consistently achieved an average accuracy above 99%
above 50% training ratio, similar to the melt pool automated
crop. The time for both the RF and ESNN were significantly
decreased compared to both the manual visualization crop
and the melt pool automated crop, mainly due to the crop size
being 100x100 in comparison to 200x200 and 250x250.

5.3. Comparison of Cropping Methods

In a direct comparison of all three different types of
cropping styles in Table 4 and Table 5, all three of the
methodologies have high test accuracies scores. All three
cropping methods received a test accuracy score above 99%
in training ratios 60% and above. In terms of time, the PCA-
based crop trained and predicted in the shortest amount of
time as it only had to train on images 100x100
(widthxheight). The automated heat-based crop also was
faster than the manual visualization-based crop as it was
200%x200 compared to 250%x250 (widthXxheight).

For which method should be used for in- situ monitoring,
despite all three achieving similar metrics, the automated
heat-based crop provides the most robust algorithm of the
three for in-situ monitoring. The manual visualization-based
crop and PCA based crop, provided a relatively static method
where the same crop was applied to the entire dataset, which
worked solely in terms of this dataset. During the DED
process, the melt pool may be located in various areas, which
eliminates the possibility of a static crop. With the automated
heat-based crop, the image would automatically focus in on
the melt pool which would be a necessary feature for in-situ
quality prediction, especially over many different DED
processes.

5.4. Performance by Deposition Layer

To test which layers during the DED process are
misidentified most often by our models, a 50/50 train/test
split with the ESNN model was deployed with false positive
and false negatives categorized by layer are displayed in Fig
6. In Fig. 6, layers 1, 2, and 3 accounts for 38.66% of the total
incorrectly classified data during the prediction process,
despite only accounting for 5% of the total layers. Layers 4-
60, at most had accumulative incorrect predictions of 2 or
below. It is believed that this could be due the nature of the
DED process. When metallic powder is first laid into the
machine, the plate is much cooler since no melting has
occurred yet. This may cause the incorrect predictions since

Table 4. Comparison of cropping methods with RF.

Test Accuracy (%) Time (sec)
Training Manual Automated PCA- Manual Automated PCA-
/Testing  Visualization- Heat- based Visualization- Heat- based
Split Based Crop Based Crop Based Crop Based Crop
Ratio Crop Crop
10/90 98.45 96.48 95.46 2.49 2.20 0.80
20/80 99.26 99.14 97.88 430 3.95 157
30/70 99.67 99.58 98.80 6.18 5.71 2.25
40/60 99.68 99.84 99.04 7.82 12.17 2.95
50/50 99.57 99.46 99.46 9.56 10.09 353
60/40 99.82 99.64 99.64 11.37 12.00 4.19
70/30 99.79 99.78 99.78 13.07 13.80 4.75
80/20 99.75 99.90 99.91 14.66 15.55 5.46

Table 5. Comparison of cropping methods with ESNN.

Test Accuracy (%) Time (sec)
Training Manual Automated PCA- Manual Automated PCA-
/Testing  Visualization- Heat- based Visualization- Heat- based
Split Based Crop Based Crop Based Crop Based Crop
Ratio Crop Crop
10/90 59.83 66.23 49.63 12.02 10.12 4.13
20/80 94.66 98.56 62.00 31.58 21.89 6.86
30/70 98.16 98.08 93.64 37.02 29.14 11.98
40/60 99.18 99.01 99.43 43.39 31.69 23.99
50/50 99.00 96.29 98.25 50.98 15.21 34.36
60/40 99.69 99.49 99.70 60.78 22.18 43.71
70/30 99.50 99.72 99.81 72.20 24.05 48.02
80/20 99.90 99.53 99.13 75.84 25.63 41.79
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Fig. 6. Pie chart depicting the number of incorrectly classified images by
ESNN based on deposition layer.

these layers specifically have another underlying process if
heating up, compared to later layers.

6. Conclusion

In this paper, RF and ESNN were proposed for in-situ
quality prediction precision in DED. These models use
pyrometer images to detect porosity levels and make a
quality prediction of the part. The results demonstrate that
both methods have a high level of accuracy, efficiency, and
consistency, which proves that this method can be used for
in-situ porosity detection in the DED process. This study also
gives indication as to which layers may be predicted
incorrectly more than others because of the nature of the
DED process. These promising results in achieving accurate
predictions for quality prediction during the DED process
could also create future work in isolating which areas of
pyrometer images cause the porosity defects. Future work
may also include further research of ESSN into creating an
optimal stopping algorithm for model training and how
ESSN performs on other DED or additive manufacturing
datasets.
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