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Entropy convergence is the experimental observation that the hydration entropies of families of non-
polar solutes cross one another and converge at a distinct temperature above the boiling point of water.
Entropy convergence has subsequently received significant theoretical and molecular simulation inter-
est to interpret its molecular origin. Classic scaled particle theory has enjoyed success in describing en-
tropy convergence for cavity-like, hard sphere solutes in water despite the fact it only considers water’'s
equation-of-state and effective hard sphere diameter while neglecting liquid state inter-molecular correla-
tions. This stands in difference to traditional interpretations of the hydrophobic effect that invoke water’s
three-dimensional structure when describing aqueous solutions of non-polar moieties. Here we investi-
gate the origins of entropy convergence in classic scaled particle theory. We demonstrate convergence
results from the theory's unphysical prediction that the surface tension of the solvent against a hard, flat
interface exhibits a maximum as a function of temperature, indicative of a surface entropy that changes
sign from negative to positive values with increasing temperature. In addition, we find that classic scaled
particle theory can predict convergence like behavior in an organic liquid for which the phenomenon is

unexpected.

© 2020 Elsevier B.V. All rights reserved.

The poor solubility of non-polar solutes in water at room tem-
perature is characterized by a favorable negative hydration en-
thalpy that is opposed by an even more unfavorable negative hy-
dration entropy. The enthalpy and entropy both depend markedly
on temperature as indicated by a large positive heat capacity in-
crement. These thermodynamic quantities give rise to a nearly
parabolic dependence of the hydration free energy on tempera-
ture with a maximum at the point the entropy crosses zero. Taken
together these properties are considered thermodynamic finger
prints of the hydrophobic effect [1-4]|. These stand in contrast
to solvation in most other liquids, where solvation is usually op-
posed by the enthalpy, and the solvation properties are not as
significantly temperature dependent. Beyond these characteristics,
hydrophobic hydration is accompanied by additional thermody-
namic puzzles that pose challenges to the development of a unified
molecular understanding of hydrophobic effects [5].

The observation of entropy convergence for non-polar solute
hydration has attracted scientific scrutiny since the 1980s. Entropy
convergence is the phenomenon that when the entropies of hy-
drophobic solutes are plotted as a function of temperature, they
appear to converge to one another at distinct temperatures. The
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observed convergence temperatures can depend on the class of so-
lutes considered, e.g., noble gases versus alkanes or aromatics, but
generally speaking range from approximately 100°C to 130°C [6-
12]. It is notable that the inference of convergence relies on extrap-
olation of solubility data beyond the normal boiling point of water,
let alone beyond the temperature range reliable results are avail-
able. The convergence temperature typically falls below the maxi-
mum in the hydration free energy, indicating the convergence en-
tropy is negative. Nevertheless, the convergence temperature fre-
quently only narrowly proceeds the free energy extremum. The ap-
parent correspondence between the entropy convergence temper-
ature of the hydrocarbons and the thermodynamics of unfolding
of proteins prompted Baldwin [11,13] to hypothesize that protein
folding could be interpreted in the context of Kauzmann's hydro-
carbon core model [14]. Expansion of the available protein folding
thermodynamic datasets, however, called this idea into doubt [15].
Nevertheless, entropy convergence for smaller solutes persists as
an enduring observation.

Molecular simulations of model solutes and statistical thermo-
dynamic theories have been used to try to gain fundamental in-
sight into the origin of entropy convergence phenomena in water.
To simplify the description of solute/water interactions, the solute
in these studies is frequently assumed to act as a hard sphere cav-
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ity that excludes water oxygens. The rationale for this approxima-
tion is that solvation free energies in general can be divided be-
tween contributions from forming a cavity the size and shape of
the solute and the work associated with turning on attractive inter-
actions between the solute and solvent. The free energy of forming
a solute sized cavity is known to dominate the thermodynamics
of hydrophobic hydration, while solute/solvent attractions can be
treated perturbatively. As a result, cavity-like solutes are thought to
be ideal for isolating the essential elements of hydrophobic hydra-
tion. Garde et al. [16] demonstrated entropy convergence for sim-
ple gases in simulations of water. Their analysis based on informa-
tion theory linked convergence to Gaussian fluctuations in water's
local density that are effectively temperature independent as a re-
sult of water’s isothermal compressibility being relatively insensi-
tive to temperature. Netz and co-workers [17], on the other hand,
found from simulations that the convergence temperature sensi-
tively depends on the softness of small solute cavities, with harder
cavities exhibiting higher convergence temperatures. They inferred
that convergence only occurs between solutes within a homolo-
gous series that differ only in the number of sites comprising the
solute. A follow up study of spherical and cylindrical solutes found
that the entropy convergence temperature sensitively depends on
the solute curvature and disappears with increasing solute size, al-
though some details may be attributable to the model used to sim-
ulate water [18]. Huang and Chandler [19] examined the hydration
of cavity-like solutes over a wide range of solute radii using Lum,
Chandler, and Weeks theory [20]. They found for solutes with hard
sphere radii 14 A and larger, the potential for entropy convergence
is non-existent due to the macroscopic surface tension dominating
the free energy which makes a positive contribution to the entropy.

Scaled particle theory (SPT) provides an alternate approach to
deriving the solubilities of cavity-like solutes. SPT takes the view
that the excess chemical potential associated with solvating a hard,
spherical cavity can be evaluated from the work of inflating that
cavity from nothing to a cavity with a solvent excluding radius R.
SPT was originally developed to model hard sphere fluids [21] al-
though it was recognized that this analytical framework could be
extended to realistic solvents by utilizing their experimental den-
sities and pressures [22,23]. We refer to this as classic SPT (CSPT).
CSPT has been used since the 1960s to interpret the meager sol-
ubilities of non-polar species in water going back to the influen-
tial work of Pierotti [24-26]. A number of CSPT studies have in-
vestigated the origin of entropy convergence phenomena, obtain-
ing results that agree reasonably well with experimental conver-
gence temperatures [12,27,28]. While CSPT utilizes experimental
equation-of-state information about the solvent, it does not con-
tain molecular-scale information beyond the effective hard sphere
diameter of the solvent. Recognizing solvent structure plays a crit-
ical role in understanding the hydrophobic effect, Stillinger ex-
panded SPT to incorporate pair-wise water correlations determined
from scattering experiments within its framework [29]. We sub-
sequently extended Stillinger's work to utilize multi-body solvent
correlations obtained from molecular simulation to improve the
description of cavity solvation from microscopic to macroscopic so-
lutes [10,30,31]. We refer to this approach as revised SPT (RSPT).
Much like Netz and Chandler’s work, RSPT calls into question the
occurrence of a distinct convergence temperature. Nevertheless,
questions remain as to why CSPT captures entropy convergence in
aqueous solutions. Here, we probe CSPT's description of entropy
convergence in an effort to understand the theoretical rationale for
its success.

In CSPT, the solute cavity size R denotes the solvent excluding
radius as determined by the sum of the van der Waals radii of the
solvent (s) and cavity (c), i.e., R = (05 + 0cc) /2 where oss and o
are the solvent and cavity diameters. The excess chemical potential
of the cavity solute is evaluated in CSPT as a cubic polynomial of
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where kgT is the product of Boltzmann's constant and the abso-
lute temperature, P is the bulk pressure, p is the bulk solvent
number density, and n = wo3p/6 is the solvent packing fraction.
The chemical potential in this expression denotes the solvation
free energy of the solute in excess of the ideal gas contribution
as determined in Ben-Naim's standard state [32]. This expression
applies for solutes with R > o5s/2, which implies o¢ > 0. Smaller
radii correspond to cavities with negative van der Waals diameters,
which are important in the development of SPT but are not phys-
ically meaningful when describing realistic solutes. While R may
be the most natural size metric for expanding the chemical po-
tential since the solvent force against which the solute is inflated
is exerted only at the solvent excluded surface for a hard cavity,
this expression may be simplified using alternate size measures.
Recasting Eq. (1) by substituting 2R/oss = 0./0ss + 1 for the size
dependence, this expression can be equivalently expressed as a cu-
bic polynomial of the cavity’s van der Waals diameter
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Here we evaluate the solute excess chemical potential and entropy
using this formula since og can depend on the temperature and
pressure itself for realistic solvents, thereby complicating evalua-
tion of thermodynamic derivatives of R. The excess solvation en-
tropy of the cavity solute can be evaluated by taking the temper-
ature derivative of Eq. (2) at constant pressure and cavity van der
Waals diameter
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While o is temperature independent in this expression, we have
allowed oy to depend on temperature, necessitating inclusion
of the derivative dlnog/dT|p. The term & is the packing frac-
tion expansivity (@ = —aIlnn/0T|p = —dInp/0T|p — 30Inoss/dT|p),
which reduces to the thermal expansion coefficient of the solvent
when o5 is constant (9Inoss/dT|p = 0). Eqgs. (2) and (3) form the
basis for our analysis of entropy convergence as predicted by CSPT.

While o is frequently assumed to be fixed, some implemen-
tations of CSPT invoke a thermodynamic state dependence to ac-
count for changes in the effective hard sphere size of realistic sol-
vents whose interactions are actually softer. A reasonable choice to
describe the state dependence of oy is to equate the isothermal
compressibility of the hard sphere fluid determined from CSPT to
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Table 1

Least square fit parameters of Eq. (5) to the solvent van
der Waals diameters, o, obtained from matching the
experimental isothermal compressibilities of water and
decane at 20 atm over the entire liquid stable range.
Experimental data was taken from the NIST Chemistry
Webbook [35]. The diameter and temperature are mea-
sure in units of A and°C respectively.

Parameter  Water Decane

ap (A) 2.7031 6.8580

a; (Af°C) 1.0262 x 103 —1.4248 x 103
a; (AfFC?)  —2.3870 x 105 —3.0390 x 107
a; (A[PC?)  1.4674 x 107 —1.7148 x 108
as (Af°C*)  —5.2768 x 10-1°  7.5895 x 10!

as (A/°C5) 59282 x 10 13 —4.5621 = 10 13

the actual compressibility (k) of the solvent [33]

1 (a-n
=&l (15 2n)? @
n)

The solvent diameter is subsequently adjusted at each state
point until the equality holds. This criteria is analogous to the com-
pressibility matching utilized in Weeks, Chandler, Anderson (WCA)
perturbation theory that minimizes the free energy difference be-
tween a repulsive WCA fluid and hard sphere reference fluid [34].
Fortuitously, Eq. (4) yields physically reasonable solvent diameters
even when applied to molecular solvents. Here we fit oy values
determined from Eq. (4) to a fifth order polynomial of the temper-
ature at fixed pressure

5
os(T) =) _aT'. (5)
i=0

A least squares fit of the g; coefficients to the compressibili-
ties of water and decane are reported in Table 1. The equation-of-
state properties of these solvents were taken from the NIST Chem-
istry Webbook [35]. We use oy values of 2.70 A and 6.77 A for
water and decane, respectively, when we assume the solvent di-
ameter is constant. These diameters where obtained by averaging
Eq. (5) over the temperature range 0°C to 100°C. We note that
many philosophies have been advocated for determining the ef-
fective hard sphere radii of solvents and their temperature depen-
dence, including: fitting to the solubility of noble gases in water in
the limit of zero solute polarizability [24]; fitting to the solvent's
heat of vaporization [22]; fitting to X-ray scattering experiments
[36]; and fitting to the equation-of-state properties of the solvent
[37]. Here, we have utilized one of the most frequently used ap-
proaches to model solvation properties using CSPT. The equations
derived below, however, are applicable to alternate solvent size fit-
ting strategies within the context of CSPT. Moreover, we expect the
conclusions drawn here apply in those cases as well, although the
specific convergence temperatures may vary in detail.

In Fig. 1 we plot the excess chemical potentials of cavity solutes
in water with occ = 4 A, 8 A, 12 A, 16 A and 20 A from 0°C to
200°C as predicted by CSPT assuming constant (Fig. 1a) and tem-
perature dependent (Fig. 1b) values for oy. These calculations were
performed at 20 atm to expand the temperature window over
which the liquid is stable. Even though the pressure is elevated,
these predictions are in near quantitative agreement with those
at 1 atm given the pressure differential is not large on a thermo-
dynamic scale. Qualitatively, the curves in both figures agree with
one another. The chemical potentials are positive, indicating cav-
ity hydration is generally unfavorable. The chemical potential also
grows with solute size, indicating, unsurprisingly, that larger cav-
ities have lower solubilities. The dependence of the cavity chemi-
cal potential in both figures is non-monotonic, with a free energy
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Fig. 1. Excess chemical potentials of hard sphere cavity solutes in water at 20 atm
as a function of temperature as predicted by CSPT (Eq. (2)). The solute cavity van
der Waals diameters, o, considered were 4 A, 8 A, 12 A, 16 A, and 20 A. The curves
for each solute are identified in the figure. The two figures indicate predictions as-
suming a constant value of o, = 2.70 A (a) and a temperature dependent o as
described by Eq. (5) (b).

maximum at temperatures above room temperature. This maxi-
mum is indicative of the cavity entropy being negative and oppos-
ing hydration at room temperature, while changing sign to positive
favorable hydration values at elevated temperature. In addition,
the significant temperature dependence of the entropy indicates a
large positive heat capacity increment of cavity hydration. Taken
together, these observations are consistent with CSPT exhibiting
the finger prints of hydrophobic hydration discussed above. The
main difference between Figs. 1a and b is that the chemical po-
tential maxima, where the hydration entropies are zero, occur at
lower temperatures when we assume o5 is temperature depen-
dent than when it is assumed constant (~80° versus ~170°C). The
temperatures bracket the range of experimental convergence tem-
peratures noted above.

The excess hydration entropies of these cavity solutes are plot-
ted in Fig. 2. As anticipated, the hydration entropies of these so-
lutes are strongly temperature dependent, changing sign from neg-
ative to positive values with increasing temperature. More impor-
tantly, the hydration entropies for these solutes appear to cross
one another and converge above room temperature. The conver-
gence occurs near 170°C when we assume a constant o (Fig. 2a),
and near 80°C when oy varies with temperature (Fig. 2b). These
convergence temperatures appear to occur near a hydration en-
tropy of zero, potentially linking the chemical potential maxima
and entropy convergence phenomena. Closer examination of the
convergence region (e.g., Fig. 2b inset) finds that convergence oc-
curs at negative entropies, as observed experimentally. More inter-
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Fig. 2. Excess entropies for hard sphere cavity solutes in water at 20 atm as a func-
tion of temperature as predicted by CSPT (Eq. (3)). The solute cavity van der Waals
diameters, o.., considered were 4 A, 8 A, 12 A, 16 A, and 20 A. The curves for
each solute are identified in the figure. The two figures indicate predictions assum-
ing a constant oy of 2.70 A (a) and a temperature dependent oy as described by

5) (b). The inset to figure b highlights detail of the entropy convergence region
near 80°C.

estingly, the convergence temperature does not appear to be a sin-
gle temperature, but a narrow range of temperatures over which
the entropies of different sized cavities cross one another.

So, what is the origin of the convergence phenomena observed
in Fig. 2?7 To address this question, we consider when does the en-
tropy of a solute of diameter o, equal that of one differentially
larger by doc, ie., when does s&(o¢c) = s&(0¢c + doee). This con-
dition is satisfied when the derivative of the entropy with respect
to the solute diameter is equal to zero

ex
0s®
00

=0. (6)
PT

Taking the solute size derivative of Eq. (3) we can solve for the
solute diameter at which the entropy converges (o) at a given
thermodynamic state point as

3n 3 dlnoy
of = Os [(1-n)2T +a- n)(T T | )] 7)
Cc__T 3n(14+2n) 7~ , 3n(2+n) dlnog '
[ a-ny Ta + 2(1-n)? (2T |P_1):|

While this expression can yield negative diameters, corresponding
to sub-point like particles in SPT, these are not physically meaning-
ful and outside the range of solute sizes for which Eq. (2) applies.
Nevertheless, Eq. (7) also predicts positive diameters at which the
entropy converges. Fig. 3 displays the predicted convergence di-
ameters in water assuming oy is either constant or temperature
dependent. In both cases, the convergence diameter is finite at
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Fig. 3. Solute convergence diameters as a function of temperature at 20 atm as
predicted by Eq. (7) in water. The red curve on the right-hand side of the plot in-
dicates predictions assuming a constant o,; of 2.70 A, while the blue curve on the
left-hand side of the plot indicates predictions assuming a temperature dependent
o, described by Eq. (5). The vertical dashed lines indicate the temperature at which
o diverges to infinity. The gray shaded regions indicate the range of temperatures
entropy convergence is expected to occur for solute cavities 3 A in diameter and
larger.

elevated temperatures and sharply diverges with decreasing tem-
perature. The divergence occurs at 165.7°C for constant oy and
78.4°C when it depends on temperature. If we consider the range
over which convergence occurs for solute diameters o2 > 3 A
(gray shaded areas in Fig. 3), we find convergence occurs from
165.7°C to 174.3°C (a range of 8.6°C) when o5 is constant, and
78.4°C to 82.8°C (a range of 4.4°C) when it is temperature depen-
dent. Thus, entropy convergence within CSPT occurs over a narrow
range of temperatures for cavities the size of a noble gas atom and
larger, giving the appearance of convergence at a single tempera-
ture when extrapolated from lower temperatures.

The divergence temperature is determined by the point at
which the denominator of Eq. (7) is equal to zero. We then ask,
what is the meaning of the divergence temperature? The denomi-
nator in Eq. (7) comes from the second order term in o of Eq. (3),
ie., the final term proportional to o2, which arises from the tem-
perature derivative of the second order term in Eq. (2). This term
represents the work associated with expanding the solute’s van der
Waals area as the solute is grown into solution. As such we expect
this term to be related to the surface tension acting on the solute
surface. From CSPT, the surface tension for creating a hard, flat in-
terface in solution is

kT [Bn(2+n) Poss ®)
- 2 2| 2
o[ 2(1-1)

This expression can be derived by dividing the second order term
in R of Eq. (1) by 47R2, the surface area upon which the compres-
sive solvent force acts on the hard solute. The temperature deriva-
tive of the surface tension at constant pressure is

Voo ks |3n(1+ Zn) 3n2+n) dlnoss
== = = + 2T -1
T fws%[ a—n? T2 g T |,
Pass alna'ss
= ot |, ©)

Examining Eq. (7), we find that the denominator is proportional
to Eq. (9) absent the final term outside the square brackets that
is proportional to P. Thus, the divergence in o} predicted by
Eq. (7) is determined by the temperature at which the derivative
of the surface tension predicted by CSPT less the pressure contri-
bution (Pos/2) is zero. At atmospheric pressure, the pressure con-
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Fig. 4. Surface tension of water predicted from scaled particle theory and molecu-
lar simulation as a function of temperature. CSPT predictions for the surface tension
of water against a hard surface (Eq. (8)) are reported assuming a constant o, of
2.70 A and a temperature dependent o, described by Eq. (5). RSPT fits to simula-
tions of cavities in water and the surface tension of the water liquid/vapor interface
determined from simulation are also reported. The figure symbols are defined in
the legend. The simulation results were previously reported in ref. [30]. The water
model used in those simulations was TIP4P(2005 [38].

tribution to Eg. (8) is ~0.01 mJ/m?2 (0.02%) of the overall surface
tension and can subsequently be neglected. It may be concluded
that the entropy convergence in Fig. 2 is dictated by the tempera-
ture dependence of the surface tension predicted by CSPT at am-
bient conditions. The observed convergence then is simply a result
of the surface area contribution to the entropy in Eq. (3) that dom-
inates as the solute size increases.

A consequence of the temperature derivative of the surface ten-
sion being zero is that the surface tension must exhibit an ex-
tremum at that point. In Fig. 4 we plot the temperature depen-
dence of the surface tension as predicted by Eq. (8). As anticipated,
we find maxima in y. coincident with the divergences reported
in Fig. 3 using a constant and temperature dependent os. At low
pressures it is thought that the surface tension predicted by SPT
is closely related to the surface tension associated with creating a
liquid/vapor interface. The reason for this presumption at low pres-
sure is that the solvent density in contact with a flat, hard interface
is akin to that of a vapor, which transitions to the liquid density
at more distant separations through a liquid/vapor interface [29].
The proximity of the hard surface, however, could certainly per-
turb the surface tension, although the effect is thought to be small.
Given that liquid/vapor surface tensions are generally decreasing
functions of temperature it is somewhat surprising that CSPT pre-
dicts a maximum in the interfacial tension of water! A decrease in
the interfacial tension reflects a positive entropy of interface for-
mation. Given that water must forfeit hydrogen bonds to approach
a flat interface and the vapor film adjacent to the surface imparts
more freedom to the waters in that layer, it is difficult to ratio-
nalize a negative surface entropy that raises the surface tension
with increasing temperature. We ask then, is the non-monotonic
dependence of the surface tension predicted by SPT reasonable?
Previously, we reported molecular simulations of repulsive spheri-
cal solutes of varying size in TIP4P/2005 water [38] over a range of
temperatures and pressures [30]. By considering the solvent forces
acting on the solute surface, we determined the surface tension of
water against a hard interface using RSPT. In Fig. 4 we compare
the surface tensions obtained from RSPT and the liquid/vapor sur-
face tensions of TIP4P/2005 water against the predictions of CSPT.
In difference to CSPT, RSPT obtains a surface tension that is a de-
creasing function of temperature that is parallel to the surface ten-
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sion of the liquid/vapor interface. The RSPT surface tension is only
~5% greater than that of the liquid/vapor interface over the simu-
lated temperature range. Similar differences between RSPT and lig-
uid/vapor surface tension have also been observed for solvation in
the Lennard-Jones [31,39] and Jagla [40] liquids. This surface ten-
sion difference has been attributed to the suppression of capillary
fluctuations against the hard surface relative to the liquid/vapor in-
terface. It may be concluded that the non-monotonic dependence
of water's surface tension predicted by CSPT results from the ne-
glect of inter-molecular correlations to arrive at an analytical ex-
pression for the free energy. It follows that the entropy conver-
gence predicted by CSPT is an artifact of the incorrect temperature
dependence of the surface tension predicted by the theory.

CSPT has enjoyed success, however, in capturing the curious
non-monotonic temperature dependence of the free energy of hy-
drophobic hydration that underlies many of its thermodynamic
puzzles. We ask then, are CSPT predictions unique for water as a
solvent? It is reasonable to associate the maxima in the chemi-
cal potentials reported in Fig. 1 with the divergences reported in
Fig. 3 given that entropy convergence occurs near the tempera-
ture the entropy is zero. This is equivalent to assuming the en-
tropy is dominated by the surface area dependent contribution in
Eq. (3) for sufficiently large solutes. Setting the denominator of
Eq. (7) equal to zero we arrive at the estimate

- 2+n)(d-n) _ dlnoss
Ta = 72(1 +21) (1 2T 3T P) (10)

for the temperature the excess chemical potential is at an ex-
tremum and entropy convergence occurs for large solutes. When
Té is less than the right-hand side of this expression the surface
tension is an increasing function of the temperature, while when
it is greater than the right-hand side the surface tension is a de-
creasing function of the temperature. Assuming o is constant, &
reduces to the thermal expansion coefficient. It is well known that
the thermal expansivity of water is a significantly increasing func-
tion of temperature that initially starts off below zero at 0°C and
changes sign at the temperature of maximum density (4°C). Since
the right-hand side Eq. (10) is positive when o5 is fixed, we ex-
pect the chemical potential to be an initially increasing function
of temperature with an associated negative entropy. As the ther-
mal expansivity increases at a high enough temperature Eq. (10) is
eventually satisfied and the chemical potential shortly thereafter
decreases with increasing temperature. Thus, it may be concluded
that the maxima in the chemical potential of hydrophobic hydra-
tion results from the distinctive equation-of-state properties of liq-
uid water as manifest in the temperature dependence of its ther-
mal expansivity. If we relax the assumption that o is constant,
we find that the chemical potential maximum shifts to lower tem-
peratures as a result of o largely being a decreasing function of
temperature.

Despite the assertion that the maxima in the chemical potential
of non-polar cavity hydration results from the unique temperature
dependence of water’'s thermal expansivity, we test this conclusion
by examining the predictions of CSPT for a model organic solvent.
In Fig. 5 we report the chemical potentials of cavity solvation in
decane as a function of temperature at 20 atm for cavity diame-
tersof 4 A, 8 A, 12 A, 16 A, and 20 A as predicted by Eq. (2). These
free energies are generally lower than those in water by half, keep-
ing with the observation that cavities are more insoluble in smaller
diameter solvents as a result of the lower available free volume
to accommodate the solute. Notably, we find that CSPT predicts a
weak maximum in the chemical potential near 40°C when we as-
sume oss is constant (Fig. 5a), indicative of the entropy changing
sign from negative to positive with increasing temperature. On the
other hand, the cavity solvation free energy is found to be a de-
creasing function of temperature when o is temperature depen-
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Fig. 5. Excess chemical potentials of hard sphere cavity solutes in decane at 20 atm
as a function of temperature as predicted by CSPT (Eq. (2)). The solute cavity van
der Waals diameters, o, considered were 4 A, 8 A, 12 A, 16 A, and 20 A. The curves
for each solute are identified in the figure. The two figures indicate predictions as-
suming a constant value of o, = 6.77 A (a) and a temperature dependent o, as
described by Eq. (5) (b).

dent (Fig. 5b). When we consider the solvation entropies in de-
cane we observe apparent convergence near 40°C for constant oss
(Fig. 6a), while no entropy crossing is found when o depends on
temperature (Fig. 6b). These observations conflict with the conclu-
sion that entropy convergence results from the unique equation-of-
state properties of water, although we note that convergence can
disappear when oss depends on temperature.

In Fig. 7 we report the convergence diameters for cavity solva-
tion in decane obtained from Eq. (7). Assuming a constant o, 02
diverges at 22.4°C, somewhat lower than the temperature at which
the solvation entropies appear to cross one another in Fig. 6a. If
we consider the convergence temperatures for cavities with o >
3 A (shaded in gray in Fig. 7), we find they span from 22.4°C to
85.8°C (a range of 63.4°C). So, while the solvation entropies cross
one another in decane when oy is constant, the range of crossing
points is an order of magnitude broader than in water. While en-
tropy convergence is not observed when o is temperature depen-
dent for cavity diameters 4 A and larger (Fig. 6), Eq. (7) predicts
sub-atomic crossing diameters 1 A and smaller at the lowest tem-
peratures considered (Fig. 7). It may be surmised then the crossing
diameter will diverge with decreasing temperature, although this
occurs well below decane’s freezing point.

As discussed above, the divergence in o implies the surface
tension predicted by CSPT exhibits a maximum near that tem-
perature. Assuming oss is constant, CSPT does indeed predict a
non-monotonic temperature dependence of the surface tension
(Fig. 8). The surface tension becomes a monotonically decreasing
function of temperature, however, when o is temperature de-
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which o, diverges to infinity. The gray shaded region indicates the range of temper-
atures entropy convergence is expected to occur for solute cavities 3 A in diameter
and larger.
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fined in the legend. The simulation results were previously reported in ref. [30]. The
decane model used in those simulations was TraPPE-UA [41].

pendent (Fig. 8). The surface tensions of decane determined from
molecular simulation using RSPT and from the liquid/vapor inter-
face closely track one another (Fig. 8) [30]. The surface tension of
decane against the hard surface determined from simulations of
TraPPE/UA decane [41] using RSPT [30] is found to be ~3% larger
than that obtained from the liquid/vapor interface, similar to the
differences observed in water (Fig. 4). These simulation surface
tensions are decreasing functions of temperature, as expected for
the formation of a liquid/vapor interface. This comparison further
highlights the unphysical CSPT prediction that the surface tension
against a hard surface can vary non-monotonically with tempera-
ture, which resultantly impacts the veracity of the CSPT prediction
that solvation entropies converge at a distinct temperature.

While we have not considered the impact of the cavity
shape on entropy convergence here, morphometric thermodynam-
ics [42] predicts that the leading order terms in the excess chemi-
cal potential of hard, convex solutes are

et =PV + YA + lower order terms, (11)

where V and A are the cavity's solvent accessible volume and area,
respectively. So, while CSPT predicts an entropy convergence tem-
perature for prolate and oblate spherocylinders in water that agree
with that of spheres [28], this prediction should not be surpris-
ing given the dominance of the predicted non-monotonic depen-
dence of y,, on temperature. When a more realistic temperature
dependence of y, is incorporated into the theory, the entropy con-
vergence is expected to be smeared out over a wide temperature
range depending on the solute size [10].

In summary, we have examined the origin of solvation en-
tropy convergence phenomena as predicted by classic scaled par-
ticle theory. We demonstrated that if the surface tension against a
hard surface is predicted to vary non-monotonically with temper-
ature, the cavity solvation entropy exhibits entropy convergence.
The temperature dependence predicted by CSPT, however, is un-
physical. Using a revised version of SPT that incorporates molecu-
lar details and multi-body correlations beyond the effective solvent
diameter and density, the non-monotonic temperature dependence
of the surface tension disappears and washes away the observa-
tion of a distinct convergence temperature [10]. While the pre-
diction of entropy convergence by CSPT has been ascribed to the
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unique equation-of-state properties of liquid water, and by associ-
ation its hydrogen bonding properties, we demonstrated CSPT can
also predict entropy convergence in decane. The occurrence of en-
tropy convergence in decane can be mitigated by utilizing a tem-
perature dependent solvent diameter, although this temperature
dependence is empirical and obscures the molecular interpretation
of solvation phenomena. While higher order curvature corrections
can contribute to the range of temperatures over which conver-
gence is observed (e.g., Figs. 3 and 7), the convergence tempera-
ture with increasing solute size it drawn to the convergence crite-
ria established by Eq. (10) as a result of the dominance of surface
contributions with increasing solute size.

We may naturally ask, why do experimental hydration en-
tropies of a number of classes of solutes appear to converge?
While beyond the scope of this work, convergence has been ob-
served from simulations over a limited range of solute sizes [16].
Moreover, we have demonstrated for n-alkanes that the packing
and correlations of water with the solute are determined largely
by the local molecular details rather than an effective spherical di-
ameter for the solute [43]. Given that the hydration entropy can
be expanded in terms of local correlations of alkanes with water,
entropy convergence for a given family of solutes is perhaps not
unexpected. Indeed, hydration entropies scaled by the surface ar-
eas of a large number of alkanes and aromatic hydrocarbons have
been shown from simulation to collapse onto two distinct curves
depending on the degree of bond saturation [44]. This is bolstered
by the fact that group additivity approximations have proven use-
ful in correlating hydration thermodynamic results [9,45,46].
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