
Improving Prediction-Based Lossy Compression
Dramatically via Ratio-Quality Modeling

Sian Jin�, Sheng Di†, Jiannan Tian�, Suren Byna‡, Dingwen Tao�, Franck Cappello†
�School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA

†Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract—Error-bounded lossy compression is one of the most
effective techniques for reducing scientific data sizes. However,
the traditional trial-and-error approach used to configure lossy
compressors for finding the optimal trade-off between recon-
structed data quality and compression ratio is prohibitively
expensive. To resolve this issue, we develop a general-purpose
analytical ratio-quality model based on the prediction-based
lossy compression framework, which can effectively foresee the
reduced data quality and compression ratio, as well as the
impact of lossy compressed data on post-hoc analysis quality.
Our analytical model significantly improves the prediction-based
lossy compression in three use-cases: (1) optimization of predictor
by selecting the best-fit predictor; (2) memory compression
with a target ratio; and (3) in-situ compression optimization
by fine-grained tuning error-bounds for various data partitions.
We evaluate our analytical model on 10 scientific datasets,
demonstrating its high accuracy (93.47% accuracy on average)
and low computational cost (up to 18.7× lower than the trial-
and-error approach) for estimating the compression ratio and
the impact of lossy compression on post-hoc analysis quality. We
also verify the high efficiency of our ratio-quality model using
different applications across the three use-cases. In addition,
our experiment demonstrates that our modeling-based approach
reduces the time to store the 3D RTM data with HDF5 by up to
3.4× with 128 CPU cores over the traditional solution.

I. INTRODUCTION

Large-scale scientific simulations on parallel computers play

an important role in today’s science and engineering domains.

Such simulations can generate extremely large amounts of

data. For example, one Nyx [1] cosmological simulation with

a resolution of 4096 × 4096 × 4096 cells can generate up

to 2.8 TB of data for a single snapshot; a total of 2.8 PB

of disk storage is needed, assuming the simulation runs 5

times with 200 snapshots dumped per simulation. Despite the

ever-increasing computation power can be utilized to run the

simulations nowadays, managing such large amounts of data

remains challenging. It is impractical to save all the generated

raw data to disk due to: (1) limited storage capacity even

for large-scale parallel computers, and (2) the I/O bandwidth

required to save this data to disk can create bottlenecks in the

transmission [2]–[4].

Compression of scientific data has been identified as a

major data reduction technique to address this issue. More

specifically, the new generation of error-bounded lossy com-

pression techniques, such as SZ [5]–[7] and ZFP [8], have

Corresponding author: Dingwen Tao (dingwen.tao@wsu.edu), School of
EECS, Washington State University, Pullman, WA 99164, USA.

been widely used in the scientific community [4]–[13].

Compared to lossless compression that typically achieves only

2× compression ratio [14] on scientific data, error-bounded

lossy compressors provide much higher compression ratios

with controllable loss of accuracy.
Scientific applications on large-scale computer systems such

as supercomputers typically use parallel I/O libraries, such

as HDF5 [15], for managing the data. In specific, Hierar-

chical Data Format 5 (HDF5) is considered to provide high

parallel I/O performance, portability of data, and rich API

for managing data on these systems. HDF5 has been used

heavily at supercomputing facilities for storing, reading, and

querying scientific datasets [16], [17]. This is because HDF5

has specific designs and performance optimizations for popular

parallel file systems such as Lustre [18], [19]. Moreover, HDF5

also provides users dynamically loaded filters [20] such as

lossless and lossy compression [21], which can automatically

store and query data in compressed formats. HDF5 with lossy

compression filters can not only significantly reduce the data

size, but also improve performance of managing scientific data.

However, for HDF5 to take advantage of lossy compressors,

it is essential for users to identify the optimal trade-off between

the compression ratio and compressed data quality, which is

fairly complex. Since there is no analytical model available

to foresee/estimate the compression quality accurately, the

configuration setting (such as error bound types and values)

of error-bounded lossy compressors for scientific applications

relies on empirical validations/studies based on domain sci-

entists’ trial-and-error experiments [11]–[13]. The trial-and-

error method 1 suffers from two significant drawbacks, which

leads to significant issues in practice. First, this method has

an extremely high computational cost, in that users need to

run applications with diverse combinations of input data, and

each run may cost tremendous computational resources. For

example, to find an optimized error bound for a given Nyx

simulation with a qualified power spectrum analysis, about

10 trials of compression-decompression-analysis are needed

before compressing the data with the optimized configura-

tion [12], [13]. Second, the identified configuration setting

is still dependent on specific conditions and input data, so

1The trial-and-error experiment is to compress and decompress the data with
different feasible error bounds (or combinations of error bounds) and measure
the compression ratio and data quality to choose the best error bound(s).

2495

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00232



it cannot be applied across datasets generically because of the

lack of a theoretical compression quality model.

In this paper, we theoretically develop a novel, analytical

model in terms of the prediction-based lossy compression

framework, that can efficiently and accurately estimate the

compression quality such as ratio and data distortion for any

given dataset, consolidating the confidence of lossy compres-

sion quality for users. Specifically, we perform an in-depth

analysis for the critical components across multiple stages of

the prediction-based error-bounded lossy compression frame-

work, including distribution of prediction errors, Huffman

encoding efficiency, effectiveness of quantization, post-hoc

analysis quality, and so on. Our model features three critical

characteristics: (1) it is a general model suiting most scientific

datasets and applications, (2) it has a fairly high accuracy in

estimating both ratio and post-hoc analysis quality, and (3) it

has very low computational overhead.

To the best of our knowledge, this work is the first at-

tempt to develop an analytical model theoretically for lossy

compression quality. which fundamentally differs from all

existing compression modeling approaches. Lu et al. [9], for

example, focus only on the quantization stage and compression

ratio estimation by extrapolation, while our model considers

all compression stages for both ratio and quality, which can

significantly improve the modeling accuracy. Wang et al. [22]

developed a simple model to estimate compression ratios based

on an empirical study of the correlation between compression

ratio and multiple statistical metrics of the data (such as

prediction hit ratio). It can only provide a rough estimation

of compression ratio (∼10%∼60% error rate), which cannot

satisfy the real-world application demand [13]. Jin et al. [23]

leveraged a simplified error distribution of SZ compressor to

estimate the post-hoc analysis quality for cosmology applica-

tion. The compression quality estimation, however, relies on an

empirical study which is specific to Nyx cosmology datasets.

Compared to all existing solutions in estimating the lossy

compression quality, our proposed model can offer in-situ

optimization of lossy compression quality with significantly

higher compression ratios and low computational overhead.

The contributions of this work are summarized as follows:

• We decouple prediction-based lossy compressors to build

a modularized model for ratio and quality estimation.

• We theoretically analyze how to estimate the encoder

efficiency and provide essential parameters for compression

ratio estimation. We build a fine-tuning mechanism to

improve the lossy compression quality estimation accuracy

for different predictors.

• We propose a theoretical analysis to estimate the quali-

fication of lossy decompressed data on post-hoc analysis

based on the estimated error distribution considering both

uniform and nonuniform distributions.

• We evaluate our model using 10 real-world scientific

datasets involving 17 fields. Experiments verify that our

approach can minimize the overhead of compression opti-

mization and provide accurate ratio and quality estimation.

Fig. 1: Scientific data management with compression.

• We evaluate our model on three use-cases and show that it

can significantly improve the performance of prediction-

based lossy compressors in terms of optimization time

overhead and overall compression time for predictor op-

timization, memory compression optimization, and fine-

grained ratio-quality optimization.

II. RESEARCH BACKGROUND

In this section, we present the background information on

lossy compression and discuss the research challenges.

A. Data Management in Scientific Applications

In recent years, data management for scientific applications

has become a fairly non-trivial challenge. Researchers must

develop efficient data management approaches and software

to handle extreme data sizes and unusual data movement

characteristics. For example, the Advanced Photon Source

(APS) [24] requires large datasets movement between the

synchrotron and compute/storage facilities, and specialized

data management libraries are proposed to handle such data

movement [25]. In general, HDF5 [15], netCDF [26], and

Adaptable IO System (ADIOS) [27] are the most widely used

data management software libraries for scientific applications

running on high-performance computers. However, these sci-

entific data management techniques still suffer from extremely

large datasets and subsequent I/O bottlenecks, therefore, com-

pression techniques are often adopted by them. Figure 1 shows

the abstraction of different layers in these data management

systems with compression. Note that compression functions

as an individual layer in the data management system. Specif-

ically, compression is performed between generating and

storing the data, while decompression is performed between

querying and deploying the data. As a result, compression with

high ratio can significantly improve the overall performance

of large-scale scientific data management.

In this paper, considering HDF5 and its plugins [28], [29]

are well received by the scientific community as a system sup-

porting data management, we mainly focus our performance

evaluation on HDF5 without loss of generality. Specifically,

previous works propose several tools built on HDF5 that sup-

port querying. For example, Apache Drill [28] and Pandas [29]

allow querying HDF5 metadata and data. Furthermore, its data

reorganization has also been studied using FastBit indexes and

2496



transparently redirecting data accesses to the reorganized data

or indexes [30]. In addition, H5Z-SZ [21] provides a filter for

integrating SZ into HDF5. Therefore, a deep understanding

on lossy compressors can potentially significantly improve the

overall performance of data management with HDF5.

B. Error-Bounded Lossy Compression

Lossy compression can compress data with extremely high

compression ratio by losing non-critical information in the

reconstructed data. Two types of most important metrics

to evaluate the performance of lossy compression are: (1)

compression ratio, i.e., the ratio between original data size

and compressed data size, or bit-rate, i.e., the number of

bits on average for each data point on average (e.g., 32/64

for single/double-precision floating-point data before compres-

sion); and (2) data distortion metrics such as peak signal-to-

noise ratio (PSNR) to measure the reconstructed data qual-

ity compared to the original data. In recent years, a new

generation of high accuracy lossy compressors for scientific

data have been proposed and developed for scientific floating-

point data, such as SZ [5]–[7] and ZFP [8]. These lossy

compressors provide parameters that allow users to finely

control the loss of information due to lossy compression.

Generally, lossy compressors provide multiple compression

modes, such as error-bounding mode. Error-bounding mode

requires users to set an error type, such as the point-wise

absolute error bound and point-wise relative error bound, and

an error bound level (i.e., 10−3). The compressor ensures that

the differences between the original data and the reconstructed

data do not exceed the user-set error bound level.

In this paper, we mainly focus on ratio-quality modeling

for prediction-based lossy compression. The workflow of

prediction-based lossy compression [31]–[34] consists of three

main stages: prediction, quantization, and encoding. First, each

data point’s value is predicted using a generic or specific

prediction method. For example, the Lorenzo predictor can

generally provide an accurate prediction for many simula-

tion datasets [35]–[37], while the spline interpolation based

predictor can make a better prediction on seismic data (as

proved in a recent study [36]). Then, each prediction error

(the error between the predicted value and the original value)

is quantized to an integer (called “quantization code”) based

on a user-set error mode and error bound. For instance, if

the user needs to control the global upper bound of pointwise

compression errors (the error between the original value and

the reconstructed value), linear-scaling quantization scheme

will be used with the quantization interval size [32] equal to

2 times of the user-set error bound. Lastly, one or multiple

encoding techniques such as Huffman coding [38] (variable-

length encoder) and LZ77 [39] (dictionary encoder) will be

applied to the quantization codes to reduce the data size.

Most previous works regarding lossy compression mainly

aimed to improve the lossy compression ratio based on a

specific algorithm. Specifically, some focus on how to improve

the prediction efficiency and/or encoding efficiency [31]–[33],

[35], [36]; some focus on application-specific optimizations

based on empirical studies or trial-and-error methods [12],

[13]. In contrast, this paper is the first efficient attempt to

provide an accurate estimation of compression ratio/quality

and theoretically guide the use of lossy compression in

database/scientific applications.

Without an analytical model, existing lossy compression

users have to use trial-and-error approach to obtain expected

compression ratio and quality empirically. In other words, one

needs to experimentally run compression and decompression

on the given dataset with a series of different compression

configurations (e.g., error bound) to measure the compres-

sion ratio/quality and generate the rate-distortion. Due to

the high time cost, it is impossible to use this approach

for in-situ optimization in database/scientific applications.

For example, a comprehensive framework, Foresight [13],

has been developed to automate this process, but it is still

limited to offline scenarios due to its high overhead [12].

Moreover, the offline optimization performs poorly in terms of

compression-ratio/quality control over different data partitions

or timesteps [23]. In this paper, we build a systematic model

for prediction-based lossy compression, supporting accurate

and efficient ratio-quality estimation.

C. Research Goals and Challenges

Our work is the first work that provides a generic mod-

eling approach for lossy compressors to accurately estimate

its compression quality and hence avoid the trial-and-error

overhead, which is an essential research issue for today’s lossy

compression work. To achieve this, four main challenges need

to be addressed: (1) How to decompose prediction-based lossy

compression into multiple stages and model the compression

ratio for each stage? We target to accomplish theoretical anal-

ysis for every compression stage (i.e., prediction, quantization

and encoding) independently and propose the overall ratio-

quality model based on them. (2) How to reduce the time cost

of extracting data information needed by the model? We target

to design an efficient sampling strategy that can guarantee our

prediction accuracy. (3) How to model the quality degradation

in terms of diverse post-analysis metrics? We target to provide

a guideline to incorporate new application-specific analysis

metrics into our model by performing theoretical or empirical

analysis. (4) How does our model benefit real-world applica-

tions? We target to design various optimization strategies for

multiple use-cases to balance the compression ratio and the

post-hoc analysis quality on reconstructed data.

III. RATIO-QUALITY MODELING

In this section, we describe the overall design of our

proposed ratio-quality model for prediction-based lossy com-

pressors and present the detailed analysis of each component.

A. Overall Design

Figure 2 illustrates the workflow of our ratio-quality model,

which is fully modularized with a high extensibility. Our ratio-

quality model is built based on two main estimates: com-

pression ratio and post-hoc analysis quality. We build a ratio-

2497



Fig. 2: An overview of ratio-quality modeling workflow for
prediction-based lossy compression and scientific data analysis.

quality model based on error bound and provide optimization

for different predictors and error bounds.

To model compression ratio, we first examine the existing

error-bound modes offered by lossy compressors. For example,

a logarithm transformation is needed before compression for

pointwise relative error bound mode [35]. Then, the main

compression-ratio estimation consists of three modules for

predictor, quantization, and encoder, respectively, as shown in

Figure 2. We first model the predictor to provide an estimated

histogram of prediction errors. For example, a specifically

designed sampling strategy is used for interpolation prediction.

After that, we model the quantization stage to estimate both

error distribution and quantization-code histogram. Finally,

we estimate the compression ratio based on our theoretical

analysis of the efficiencies of Huffman encoding and optional

lossless compression.

To model the post-hoc analysis quality, we first determine

the error distribution from the compressor quantization step.

Then, we analyze the impact on post-hoc analysis quality

by a theoretical derivation for error propagation based on

hypothetical error injection to the datasets. For example, we

predict the value of PSNR based on the variance of the

estimated error distribution.

In addition, our ratio-quality model can be leveraged for

multiple use-cases, which will be described in detail in

Section IV. Note that we provide a thorough modeling of

multiple lossy compressor modules, while it is not necessary

to apply the entire model for certain use-cases. The users, for

example, can conduct memory compression based on a target

ratio without post-hoc analysis quality estimation. This can

minimize the computational overhead on demand. We will

detail our modularized model in the following sections. We

follow three consecutive steps: (1) model compression ratio

of popular encoders (i.e., Huffman encoder and run-length

encoder); (2) refine compression ratio modeling for various

predictors and quantizers; and (3) model quality degradation

for both generic and specific post-hoc analysis.

B. Modeling Encoder Efficiency

When encoding the quantization code, a Huffman encoder

is applied first, followed by other optional lossless encoding

Fig. 3: Compression ratio from Huffman encoder and optional
lossless encoder from Zstandard and Gzip on quantization code.

techniques (e.g., run-length encoding, dictionary based encod-

ing). Prior studies [31]–[34] have pointed out that using the

Huffman encoder for the quantization code plays a major role

on the best overall encoding efficiency. On the one hand,

based on our experiments, we find the encoding efficiency

provided by Huffman encoding is highly separated from the

encoding efficiency provided by the optional lossless encoders,

shown in Figure 3. This means that the encoding efficiency

provided by the optional lossless encoders only complements

Huffman encoding after it reaches a certain limit (∼1 bit

per symbol). On the other hand, we find that applying run-

length encoding on the output of Huffman encoding can get

the compression ratio very close to the one that uses an

entire lossless compressor (e.g., Zstandard) after Huffman

encoding. This is because the predictor always tries best

to predict data points as accurately as possible, such that

a large majority of the predicted values would fall within

the error bound around the corresponding real values. The

corresponding quantization code is marked as ‘zero’ in this

situation. Accordingly, zero would always dominate the Huff-

man codes, especially when the compression is performed

with a relatively high error bound. We will demonstrate the

effectiveness of this approximation approach in Section V (i.e.,

the “Lossless Error” column in Table II, where the lossless-

encoding efficiency is predicted based on RLE only). Thus,

we estimate the encoder efficiency based on (i) Huffman

encoding that encodes the frequency information and (ii) run-

length encoding that encodes the spatial information (for high

error bounds). Modeling each of these two coding methods

includes two key compression modes: fix-error-bound (a.k.a.,

fix-accuracy) mode and fix-rate mode [40], which will be

detailed in the following discussion, respectively.

1) Modeling Huffman Coding: In what follows, we de-

scribe how to estimate the bit-rate (i.e., compression ratio)

based on a given error bound first, and then derive the required

error bound based on a target bit-rate.

Estimate bit-rate: We model the bit-rate B which resulted

from Huffman coding (i.e., the average bit length of each data

point), in terms of the quantization codes that were generated

from the previous steps (prediction + quantizer) as follows:

B =
∑n

i=0 P (si)L(si) ≈ −∑n
i=0 P (si) log2 P (si), (1)

where n is the number of different Huffman codes, P is the

probability (or frequency) of given code si, L is the length of

given code si. We further represent the Huffman code length

2498



based on its probability with the binary base-2 numeral system.

In Equation (1), when processing the code with the highest

frequency, we need to adjust its bit-rate −log2P (si) to be the

minimum code length (i.e., 1 bit).

Optimize error bound based on bit-rate: The optimized

error bound e∗ for the target bit-rate B∗ based on the existing

bit-rate B is shown in the following equation:

e∗ = 2B−B∗
e, (2)

where e is the profiled error bound with a bit-rate of B, by

Equation (1). We derive the above equation as follows.

Proof. Consider that a given error bound e can provide a

bit-rate of B, when doubling the error bound to 2e, the

quantization-code histogram also shrinks accordingly where

the total number of symbols is reduced by 2× and the

probability (i.e., frequency) of each symbol would increase

by 2×. In this case the bit-rate should be:

B′=−∑n/2
i=0P

′(si)log2P
′(si)≈−∑n/2

i=02P (s2i)log2 2P (s2i)

=−∑n/2
i=0 2P (s2i) log2P (s2i)−

∑n/2
i=0 2P (s2i) log2 2 ≈B−1.

(3)

Applying the above equation iteratively, we obtain the situation

with any specific target bit-rate B∗ in Equation (2).

When the number of quantization bins is fairly small,

the above estimation method is not applicable, because the

approximation in Equation (3) no longer holds. We found

Equation (3) starts to fall when the percentage of code zero

(i.e., p0) exceeds 50% based on our extensive experiments and

datasets. In this case, we profile the histogram of quantization

codes at p0 = [0.5, 0.8, 0.95] and compute their corresponded

B from Equation (1). Then, based on these pairs of (p0, B), we

can interpolate a continuous function to provide a relationship

between error bound and Huffman encoding efficiency. Note

that we profile the histogram at p0 by keeping enlarging the

width of the central bin of the histogram until its portion

reaches p0 where its width is 2e∗.

2) Modeling Run-Length Encoding (RLE): As aforemen-

tioned, lossless encoders contribute to the compression ratio

only when Huffman encoder reaches the limit, where zeros

dominate the quantization codes. Moreover, the quantization

codes are independently random after an effective prediction

due to its high decorrelation efficiency, causing an extremely

low probability of consecutive non-zero codes. Thus, we

hereby model the RLE on zeros only.

Estimate compression ratio: We model the compression ratio

of RLE Rrle by the following equation:

Rrle = 1/(C1(1− p0)P0 + (1− P0)). (4)

Here P0 is the percentage of footprint the code zero takes

with respect to the full Huffman encoded data size, where p0
is percentage of the number of zeros.

Proof. We first model the efficiency E0 (defined as the

reciprocal of the reduction ratio) for encoding zeros by the

average length of consecutive zeros n0 and the length l0 of

representation for consecutive zeros:

E0 = C1/n0l0, (5)

where C1 is the fixed size of data to represent consecutive

code. l0 is 1 as the length for zero in Huffman codebook. The

overall compression ratio by RLE is:

Rrle = 1/(E0P0 + (1− P0)), (6)

considering that the data distribution is independent random

as aforementioned, we have n0 equal to:∑∞
n=1 np

n−1
0 (1− p0) = (1− p0)

d
dp0

∑∞
n=1 p

n
0 = 1

1−p0
, (7)

From Equations (5), (6) and (7), we can get Equation (4).

Optimize error bound based on bit-rate: The optimized

error bound e∗ is profiled from quantization code by the target

percentage of zeros p0 that is deduced from Equation (4):

p0 =
√
1−R−1

rle − ((C1 − 1)/2)2 + (C1 − 1)/2 (8)

Note we let P0 ≈ p0 to derive Equation (8) in the case of using

RLE because code zero dominates the Huffman encoded data.

C. Modeling Quantized Prediction Error Histogram
Quantuized prediction error histogram needs to be modeled,

since the prediction-based lossy compression relies on an

efficient predictor and quantizer to concentrate the input data

information for high encoding efficiency. To this end, we

calculate the distribution of prediction errors, based on which

the quantization code histogram would be constructed for the

encoder module. Note that the prediction-error distribution is

different from the quantization-code distribution for the en-

coder module, where a highly accurate estimated distribution

of prediction errors is demanded to estimate the distribution

of quantization codes. In order to obtain accurate prediction

error distribution with low overhead, we must apply suitable

sampling strategy based on different predictors’ design prin-

ciples, to be detailed later. For sparse scientific data, this step

also determines the sparsity and removes the corresponding

zeros in the prediction error distribution for getting high model

accuracy. We analyze and design the sampling strategy for all

the three predictors used in SZ: Lorenzo, linear interpolation,

and linear regression predictors. We set the sample rate always

to 1% to balance the accuracy and overhead based on our

evaluation in Section V. Since our design is generic and

modularized, new predictors and sampling methods can be

added in the future work.
1) Lorenzo Predictor: The Lorenzo predictor [41] in SZ

uses the previous few layers of data to build 1-2 levels of

Lorenzo prediction for current value. In this case we randomly

sample the given data and for each sampled point, then

apply the Lorenzo predictor and collect the difference between

predicted value and actual value.
2) Linear Interpolation Predictor: This predictor [36] uses

the surrounding data points to predict the current value. The

prediction starts with the vertices of the input data to predict

the middle point; then for each partition divided by this

middle point, it performs the same procedure until reaching the

smallest granularity [36]. We propose to sample the data points

randomly to extract the information from the entire dataset by

considering different sampling rates in different interpolation

levels. Specifically, the sampling data in the current level is

2−n than the previous level, where n is the data dimension.

2499



3) Linear Regression Predictor: The linear regression pre-

dictor [33] is performed by separating the data into small

blocks (e.g., 6×6× for 3D dataset) and uses a linear regression

function to fit the data in each block. As it differs from the

previous two predictors, we must sample the dataset by blocks

to perform linear regression. Thanks to the small block size

used in SZ, performing sampling in the unit of block is able

to represent the entire data for most scientific datasets even

with a relatively low sampling rate.

4) Quantization with Error Bound: In most of cases, we use

the original value to perform the prediction in the sampling

step instead of the reconstructed value used in the actual

compression, since we observe that the error distribution

differs little in between. Then, we quantize the sampled

data based on certain error bounds to calculate an estimated

quantization code histogram for the latter analysis such as

modeling encoder efficiency.

For the situation with fairly high error bounds (which

is determined by a threshold of p0), the quantization code

histogram estimated using original data values could suffer

from large distortion. For example, assume two points in a

1D array with the original values of [..., 0.0, 1.3] and the

reconstructed values of [..., 0.5, 0.5] under the error bound

of 1.0 with the Lorenzo predictor, the prediction errors for

the two points are [..., 0.0, 1.3] based on the original values,

which fall into two different quantization bins with the bin

size of 2.0 (i.e., two times of the error bound); however, the

prediction errors for the two points are [..., -0.5, 0.8] based

on the reconstructed values, which belong to the same bin.

Thus we add a correction layer in our estimation. Specifically,

when Lorenzo or linear interpolation predictor is used, we let

each bin of the histogram transfer some quantization codes to

a different bin to correct the estimation, making it close to

using the lossy reconstructed value to predict the next point.

For linear interpolation, the theoretical maximum possible

bin transfer of each quantization code is ±1. For Lorenzo,

the number is ±7. However, we simplify the possible bin

transfer to ±1 for both predictors because of the extremely low

possibility of higher cross bins transfer compared to ±1, based

on our observations. Thus, we propose to adjust the estimated

histogram by transferring a certain number of codes between

neighboring quantization bins, to simulate this uncertainty. We

use the percentage of highest code in current quantization code

histogram p0 to model this transfer number, since it is highly

related to the centralization of quantization codes and also

fast to compute. The estimated number of codes in each bin

will be evenly transferred to its neighboring bins, when the

percentage of the most frequent code p0 exceeds a threshold

of 80%. We conclude to add the following random bin transfer

when providing the histogram to the encoder module for this:

Ntran = Ptran ·N = C2 · (1− p0) ·N, when p0 ≥ θ2, (9)

where Ntrans is the number of codes transferred from one bin

to its neighboring bins, C2 is an empirical parameter for the

predictor based on our experiment, N is the number of values

in given bin. Specifically, C2 = 0.2 for Lorenzo predictor and

C2 = 0.1 for linear interpolation predictor.

D. Modeling Post-hoc Analysis Quality
Post-hoc analysis quality is highly related to the analysis

metrics used for specific scientific applications. In this work,

we introduce two widely used analysis metrics: PSNR and

SSIM. We first provide an estimated error distribution of

reconstructed data. Then, we provide a theoretical analysis on

each of the analysis metrics by propagating the compression

error distribution function in the metric computation. For more

domain-specific analysis metrics, the same principle can be

adopted to build the post-hoc analysis quality model. We also

provide a guideline in the following sections.
1) Error Distribution: We first provide the average and

variance of the error distribution that are used for the error

propagation analysis. Error distribution of the reconstructed

data is determined by the user defined error bound mode

and the error bound value. In most of the cases, the error

distribution of prediction-based lossy compressors forms a

uniform distribution. In which case μ(E) = 0, and we have:

σ(E)2 =
∑N

i=0(E[i]2 − μ2) ≈ ∫ e

−e
1
2ex

2dx = 1
3e

2 (10)

Here e is the error bound. However, under high error bounds,

we observe that the error distribution combines uniform dis-

tribution and centralized distribution. This is because when

the quantization bin size is fairly large, the error distribution

will contain both a near-uniform distribution from non-central

bins and a centralized distribution from the central bin. More

specifically, the weight is the percentage of the central bin in

the quantization code histogram p0, which is also the highest

bin. Thus, we can separate the values within the central bin

and others to have (with μ(E) = 0):

σ(E)2 =
∑(1−p0)N

i=0 (E[i]2 − μ2) +
∑p0N

i=0 (E[i]2 − μ2)

= (1− p0)
1
3e

2 + p0σ(B[0]), (11)

where σ(B[0]) is the variance of values inside the central bin

B[0], which can be computed by our sampled data from the

predictor module.
2) Modeling PSNR: We model the PSNR of reconstructed-

original data as follows:

PSNR(D′, D) = 20 log10(minmax)− 10 log10(σ(E)2)
(12)

where D′ and D is the reconstructed data and original data,

respectively, and minmax is the value range.

Proof. We start with modeling the mean squared error (MSE)

based on static error distribution (i.e., uniform distribution).

The MSE between reconstructed data and original data equals

to the variance of the compression error distribution:

MSE(D′, D) =
∑N

i=0(D
′[i]2 −D[i]2)

=
∑N

i=0(E[i]2 − μ2) = σ(E) (13)

where E is the error distribution, μ is the average of E that is

usually zero from our evaluated predictors. Then, we compute

the estimated PSNR by:

PSNR(D′, D) = 10 log10

(
minmax2

MSE

)
(14)

The above equation can deduce to Equation (12).

2500



3) Modeling SSIM: We model the Structural SIMilarity

index (SSIM) of reconstructed-original data as follows:

SSIM(D′, D) =
2σ2

D + C3

2σ2
D + C3 + σ(E)2

(15)

Where C3 is a constant parameter when computing SSIM.

Proof. We also propagate the error distribution function in

the computation of the SSIM.

SSIM(D′, D) =
(2μD′μD + C4)(2σD′D + C3)

(μ2
D′ + μ2

D + C4)(σ4
D′ + σ2

D + C3)
(16)

Here C3, C4 are both constant values. Considering the error

distribution of reconstructed data from the original data, we

assume μ(E) = 0 on a large number of values in our error

propagation analysis:

SSIM(D′, D) =
2σD′D + C3

σ2
D′ + σ2

D + C3
(17)

For the variance of reconstructed data σD′ , we have:

σ2
D′ =

∑N
i=0((D[i] + E[i])− μD)2 ≈ σ2

D + σ(E)2 (18)

Similarly, for the covariance σ2
D′ between the reconstructed

data and the original data, we have:

σD′D =
∑N

i=0((D[i]− μD)((D[i] + E[i])− μD))

= σ2
D +

∑N
i=0(D[i]− μD)E[i] ≈ σ2

D (19)

Based on Equations (16), (17) and (18), we can get Equation

(15). Note that we simplify one of the terms in Equations (18)

and (19) to its expected value 0 because this term would also

show on both sides of the fraction in Equation (15) and its

variance has little impact on the overall estimation.

4) Data Specific Post-hoc Analysis: Specifically designed

analysis metrics are also used for some scientific dataset, such

as the Power Spectrum analysis and Halo Finder analysis used

for Nyx dataset to identify the halo distribution. Previous

research has performed error propagation analysis for FFT

based Power Spectrum and Halo Finder with given error

distribution [23]. However, it uses uniform error distribution

when modeling the analysis quality that can result differently

under high error bound range. By using our newly proposed

error distribution model, we can further improve the estimation

accuracy of FFT-based analysis that is evaluated in Section V.

A general guideline to quantify the degradation of domain-

specific post-hoc analysis on reconstructed data is similar

to our analysis process for PSNR and SSIM; we can adapt

the post-hoc analysis computation to include the estimated

compression error distribution function.

IV. USE-CASES OF THE RATIO-QUALITY MODEL

In this section, we introduce three use-cases leveraging our

ratio-quality model to significantly improve the performance

of prediction-based lossy compressors.

A. Compression Predictor Selection

The first use-case of our proposed ratio-quality model is

to adaptively select the best predictor for any dataset and

error bound. In general, using larger error bounds usually

results in higher compression ratios and lower data quality.

However, the efficiency of each predictor differs in a certain

range of ratio-quality curves. With our proposed model, we

can provide ratio-quality estimations for each predictor and

select the best-fit predictor for a given error bound or target

ratio. Compared to the existing methods [42], [43] that use the

trial-and-error approach and sample prediction error for every

error bound to select the optimal configuration, our method can

help significantly reduce the optimization overhead with one-

time sampling and efficient estimation. Moreover, the existing

methods make decisions only based on the compression ratio,

whereas ours considers both ratio and post-analysis quality.

B. Memory Compression with Target Ratio
For applications that stores compressed data in memory and

require a specific maximum footprint, our model estimates the

compression ratio of any given dataset, which can provide an

optimization strategy to efficiently utilize available memory.

For these memory compression optimizations, we provide two

optimization strategies. First, if the application is not strictly

limiting the bit-rate, such as saving compressed data on GPUs

where the spilled data can be migrated to CPU, we create

a target bit-rate for given one or multiple datasets that is

20% lower than the limitation to allow uncertainty between

estimation and real compression. We then compress the data

with optimization towards the bit-rate target and allow data

movements when exceeding the bit-rate limitation. This expen-

sive but rare situation introduces little overhead to the system

thanks to the high accuracy of our compression ratio modeling

and the slightly lower target bit-rate for optimization. Second,

if the application strictly limits the bit-rate, we can also

apply a similar strategy to provide a first-round optimization.

Then, for rare situations where the actual size of compressed

data still exceeds the limitation, we adjust the second-round

optimization and re-compress the data to prevent overflows.

C. In-Situ Compression Optimization
When applying error-bounded lossy compression to a scien-

tific dataset, one of the most common requested optimization

is to balance between the compression ratio and reconstructed

data quality. For dataset that is considered as a combination of

multiple partitions, we are able to characterize each partition

specifically based on a number of metrics (e.g., post-hoc

analysis used and certain local data information extraction)

which would then be used to decide which compression

configuration to apply. Thus, we can optimize the compres-

sion performance individually for each partition with overall

compression ratio and overall analysis quality as ojectives.

Note the data partitions referred to as the partition of the

entire data used for post-hoc analysis, such as data on multiple

ranks or have multiple timesteps for post-hoc analysis. Such

optimization is infeasible by previous solutions because of the

exponentially increasing combinations for trial-and-error with

increasing number of partitions.

V. EXPERIMENTAL EVALUATION

In this section, we present the evaluation results of our

proposed ratio-quality model for prediction-based lossy com-

pressors. We compare our approach with previous strategies

2501



TABLE I: Details of Tested Datasets

Name Dim Size Description Format

CESM [44] 2D 1.47GB Climate simulation NetCDF [45]

EXAFEL [46] 4D 51MB Instrument imaging HDF5 [15]

Hurricane [47] 3D 1.25GB Weather simulation Binary

HACC [48] 1D 19GB Cosmology simulation GIO [49]

Nyx [17] 3D 2.7GB Cosmology simulation HDF5

SCALE [50] 3D 4.9GB Climate simulation NetCDF

QMCPACK [51] 3D 1GB Atoms’ structure HDF5

Miranda [52] 3D 1.87GB Turbulence simulation Binary

Brown [53] 1D 256MB Synthetic Brown data Binary

RTM [54] 3D 682GB Reverse time migration HDF5

Fig. 4: Error rate between sampled prediction error and original
prediction error under different sampling rates with three predictors.
The error bar indicates the max and min values.

in terms of both accuracy and performance. Next, we evaluate

our model on different use-cases that can significantly improve

the compression performance.

A. Evaluation Setup

We perform our evaluation with the SZ3 [55], which is a

modularized prediction-based lossy compression framework.

We conduct our experiments on the Bebop cluster [56] at

Argonne, each node is equipped with two 18-core Intel Xeon

E5-2695v4 CPUs and 128GB DDR4 memory. Considering

that our workflow can naturally scale up due to no inter-

node communication, we evaluate our model accuracy and use-

cases study on a single node and the parallel data management

performance on 8 nodes with 128 CPU cores. Moreover, we

use 10 real-world scientific datasets from the Scientific Data

Reduction Benchmarks [53] in the evaluation. Table I shows

the detail of our tested datasets.

B. Accuracy of Compression Ratio Model

We first evaluate the accuracy of our modeled compression

ratio. Based on our analysis in Section III-A, we first evaluate

the accuracy of our sampled prediction error from the predictor

module. Then, we conduct our evaluation with two encoder

setup situations: (1) we encode the quantization code with

Huffman encoder only, and (2) we encode the quantization

code with both Huffman encoder and an optional Lossless

encoder, in which case we use Zstandard to measure the actual

compression ratio in this paper. Note that as aforementioned

Section III-B, we model the efficiency of optional lossless

encoder based on RLE regardless of which lossless encoder

is used, since the quantization codes for lossless encoding are

highly decorrelated and zero-dominated.

Fig. 5: Compression ratio (bit-rate) estimation accuracy compared to
measurement by the encoders.

1) Sampled Prediction Error: To evaluate the effectiveness

of our sampled prediction error, we compare the standard devi-

ation of the sampled data and the overall data. Figure 4 shows

the decreasing error rate with increasing sampling rate with

multiple predictors. We can observe that different predictors

behave similarly in terms of error rate with the same sampling

rate. The sampled prediction error is used for compression

ratio modeling and requires high fidelity to the original to

provide accurate estimation. Based on our experiment, we

choose the sampling rate of 1% in this paper to balance

between the sampled data accuracy and sampling overhead.

The detailed sampling error on all datasets with 1% sampling

rate can be found in Table II. Overall, our sampling strategy

can achieve the sample error (i.e., the standard deviation

relative to the value range) of only 0.12% on average.

2) Huffman Encoding Efficiency: Next, we evaluate our

modeling of Huffman coding efficiency. The dark black dot

and line in Figure 5 shows the measured bit rate after Huffman

encoding and the estimated bit rate. The modeling matches

the measurements very well above bit-rate of about 2 bits

based on Equation (3). After this point, the model switches

to the fitted function based on the three anchor points. The

lowest estimated bit rate threshold is 1 bit, as expected

for Huffman coding in extreme situations. To quantify the

accuracy of our modeled Huffman efficiency, we introduce

the error computation based on the standard deviation of the

ratio between estimated values and measured values:

E = 1− (1 + STD( R
R′ − 1))−1, (20)

where E is the accuracy, and R and R′ are the measured values

and estimated values, respectively. This equation is also used

to quantify the prediction error of the following evaluations

in this paper. Based on Equation (20), the detailed Huffman

encoding efficiency estimation accuracy on all datasets can

be found in Table II. Overall, our Huffman encoding model

exhibits a high accuracy of up to 98.4% and 94.8% on

average. Here we illustrate the error rate, while it can be easily

converted to the accuracy (e.g., error rate of 5.16% means the

prediction accuracy of 94.84% for Huffman coding).

3) RLE Efficiency: We compare our model to the extra

compression ratio provided by Zstandard lossless compressor.

2502



TABLE II: Details of Evaluation Results on Tested Data and Fields

Name Field Dim Sample Err. Huff Err. Lossless Err. Huff+LL. Err. PSNR Err. SSIM Err.

RTM

1000 235x449x449 0.03% 5.67% 9.82% 8.72% 0.77% 9.34%

2000 235x449x449 0.02% 3.32% 9.01% 7.76% 1.56% 6.56%

3000 235x449x449 0.06% 1.88% 9.15% 7.57% 2.84% 4.12%

CESM
TS 1800x3600 0.06% 6.88% 11.26% 8.85% 3.97% 2.54%

TROP_Z 1800x3600 0.20% 7.56% 10.52% 9.66% 2.97% 4.44%

Hurricane
U 100x500x500 0.10% 4.62% 3.46% 5.75% 1.56% 5.43%

TC 100x500x500 0.12% 5.44% 2.96% 5.95% 2.42% 3.80%

Nyx

Dark Matter 512x512x512 0.14% 7.53% 4.36% 7.67% 1.78% 6.55%

Temperature 512x512x512 0.13% 3.92% 5.13% 3.99% 1.89% 4.34%

Velosity Z 512x512x512 0.07% 6.85% 8.65% 8.08% 2.64% 3.90%

HACC
xx 280953867 0.26% 2.29% 1.34% 3.22% 1.98% -

vx 280953867 0.27% 3.71% 1.49% 3.83% 3.67% -

Brown Pressure 8388609 0.11% 5.99% 5.68% 6.46% 4.42% -

Miranda vx 256x384x384 0.13% 7.90% 6.95% 8.71% 2.55% 8.92%

QMCPACK einspine 69x69x115 0.13% 6.84% 8.83% 6.20% 5.67% 7.43%

SCALE PRES 98x1200x1200 0.16% 1.65% 2.79% 2.36% 1.72% 5.35%

EXAFEL raw 10x32x185x388 0.12% 5.64% 4.25% 6.23% 3.80% -

Average - - 0.12% 5.16% 6.21% 6.53% 2.72% 5.59%

* Bold items highlight the larger prediction error between the two encoders and between the two post analyses

From Table II, our model and assumption can accurately pro-

vide the compression ratio from the extra lossless compression.

The accuracy is up to 98.5% and is 93.8% on average, which

is worse than the prediction with only Huffman coding, due

to the approximation from lossless compression to RLE.

4) Overall Compression Ratio: The overall compression

ratio is the combination of Huffman encoding efficiency and

RLE efficiency. The red dot and line in Figure 5 shows the

measured bit rate and the estimated bit rate of overall encoder

efficiency, respectively. We can observe that our modeling

achieves a high accuracy compared to the measurements.

Detailed accuracy of overall compression ratio estimation on

all datasets can be found in Table II. The accuracy is up

to 97.6% and is 93.5% on average. The result shows that

our compression-ratio estimation with only Huffman coding

is almost always more accurate than that with both Huffman-

coding and lossless-encoding stages. Moreover, we observe

that our model performs slightly differently across datasets.

For example, the estimation errors of Huffman coding and

lossless encoding on the HACC dataset are lower than on the

other datasets. This is because HACC is 1D data and its quan-

tization codes are more randomly distributed, which lowers

the possibility of false quantization code prediction caused by

using the original values, thus the compression ratio of HACC

is easier to predict. Compared to the previous estimation

approach [22] with the accuracy of about 40%∼90%, our

theoretical approach provides much higher estimation accuracy

consistently across different datasets.

C. Accuracy of Post-Hoc Analysis Quality Model

In this subsection, we evaluate the accuracy of our modeling

of post-hoc analysis, including on PSNR, SSIM and data

specific post-hoc analysis such as FFT.

1) PSNR: Figure 6 shows the measured PSNR compared

to the estimated PSNR based on the error distribution. The

dashed red line is the PSNR estimation based on the error

Fig. 6: PSNR estimation accuracy compared to measurement. Evalu-
ated on Nyx dark matter density field with both Linear Interpolation
predictor (left) and Lorenzo predictor (right).

Fig. 7: SSIM estimation accuracy compared to measurement. Evalu-
ated on CESM dataset (left) and Aramco RTM dataset (right).

distribution defined by Equation (10), which only considers the

uniform distribution. The solid red line is the PSNR estimation

that utilizes both Equations (10) and (11). We can observe that

under high error bound situations, the refined distribution of

Equation (11) can benefit the refinement of post-hoc analysis

quality estimation. Similar observation can also be found

for SSIM and FFT analysis. Similarly, the detailed PSNR

estimation accuracy for all datasets can be found in Table II.

Overall, our model achieves up to 99.2% and on average

97.3% of accuracy for modeling the PSNR.

2) SSIM: Figure 7 shows the measured SSIM compared

to the estimated SSIM based on the error distribution. Note

we use the (1 − SSIM ) in log scale on y-axis to show

the difference between estimation and measurement under

lower error bound. The estimation is slightly off under lower

2503



Fig. 8: FFT quality degradation estimation compared to measurement.
Evaluated on Nyx temperature field at ABS 500.

Fig. 9: Performance comparison between proposed modeling solution
and previous trial-and-error approach.

error bounds. This is because the approximation we used for

Equation (17) is less accurate since the terms we simplified

in Equation (18) & (19) are no longer negligible in the case

where Equation (17) is close-to-one. On the other hand, under

very high error bounds, the estimation is also degraded since

the approximation in Equations (18) and (19) are less accurate

when E[i] is larger. Detailed SSIM estimation accuracy for

all datasets can be found in Table II. Our evaluation shows

that our model on SSIM can provide an accuracy of 94.4%

on average. Compared to the SSIM estimation, our model

performs better on the PSNR estimation.
3) Data Specific Post-hoc Analysis: Previous study shows

cosmology specific post-hoc analysis quality modeling with

the SZ lossy compressor [23]. However, it only considered

uniform error distribution. With our proposed modeling and

guideline for post-hoc analysis quality modeling, we can also

accurately estimate the FFT quality degradation under high

error bound situations. Figure 8 shows that the proposed

estimation that considers error distribution from both Equa-

tions (10) and (11) outperforms previous solution that only

considered uniform error distributions.

D. Evaluation on Performance Overhead of Our Modeling

We compared the performance of our modeling strategy

with the trial-and-error approach. In SZ3, to optimize the

predictor for a given error bound, the lossy compressor

sampled a proportion of data blocks in given dataset and

pre-compresses the structured sampling data with multiple

predictor candidates. This module can also be used to just

estimate the compression ratio with specified error bounds.

When conducting the common use-cases of evaluating the

error bound to ratio of a given dataset, our modeling only

requires one time data sampling and computes the estimation.

However, the previous trial-and-error must re-compress for

each combination of error bound and predictor. Figure 9

shows the performance comparison between our workflow

Fig. 10: Rate-distortion curve of multiple predictors with different
error bound. Evaluated with RTM dataset.

and the previous approach on average across 3 Reverse Time

Migration (RTM) datasets. Our solution outperforms the trial-

and-error solution by 18.7× on average when considering

7 candidate error bounds to estimate with the Lorenzo and

interpolation predictors as candidates. Note that the overhead

is relative to the overall compression time. We can observe

that by running the compression process, the trial-and-error

solution spends a large amount of time on Huffman encoding

and lossless compression. Moreover, our solution spends less

time even compared to only the predictor part of previous

solution, thanks to our newly designed sampling strategy that

allows lower sample rates with even higher accuracy. Note

that for each predictor our sampling only happens once (at

the error bound of 1E-7) for all error bounds, since we can

compute the distribution of quantization codes based on our

model instead of repeating the prediction with different error

bounds. It is worth noting that the trial-and-error approach

cannot utilize our new sampling strategy due to the difference

of using the original values and the reconstructed values

in prediction. In addition, the overhead of our solution is

relatively stable across all tested datasets, which demonstrates

our consistent high performance in parallel applications (with

multiple processes/datasets) using lossy compression.

E. Use-Cases Study

In this section, we investigate the effectiveness of utilizing

our ratio-quality model for the three use-cases on the 3D RTM

dataset [54]. RTM is an important seismic imaging method for

oil and gas exploration [57], [58]. It has forward modeling

and backward propagation stages that write and then read

the state of the computed solution at specific timesteps, so

lossy compression is used to significantly reduce the I/O and

memory overheads for 3D RTM.

1) Predictor Selection: For the first use-case, we perform

our ratio-quality model on RTM 3D dataset with all three

predictors and use PSNR as the analysis metric. Figure 10

shows the estimation and measured rate-distortion correlation.

First, we can observe that the estimated rate-distortion curve

based on our model is highly accurate compared to measured

data points. Secondly, we can clearly see that the linear

interpolation predictor provides higher PSNR with the same

bit-rates under lower bit-rate ranges. Our model estimation

suggests to switch to the linear interpolation from the Lorenzo

predictor as the preferred predictor when the estimated bit-rate

is lower than 1.89. This estimation is accurate compared to

2504



Fig. 11: Ratio of measured space consumption to assigned space.
Evaluated with RTM dataset, randomly choose time steps and error
bound for 15 groups.

Fig. 12: Error bound optimization for RTM dataset with multiple time
steps in consideration for post-hoc analysis.

the measured bit-rates for the predictor switch between [1.47,

1.93]. Our solution also provides 21.8× performance im-

provement by reducing the overhead from 109.97% to 5.04%

compared to the previous sampling solution that requires a

trial-and-error for each error bound.

2) Memory Limitation Control: Figure 11 shows the result

of compressed file size relative to the assigned memory based

on our compression ratio model. We can observe that although

many evaluated groups result in larger file sizes than estimated

(i.e., 80%), they still stay within the assigned space thanks

to the high accuracy of our compression ratio model. The

compressed file that exceeds the space limitation may require

re-optimization based on a lower target bit-rate. Considering

the low possibility of such a situation (e.g.., around 5% for

RTM dataset) and the low overhead to recompute the error

bound with a given target bit-rate, our solution is still highly

practical for fix-rate compression.

3) In-Situ Compression Optimization: The RTM data used

for PSNR analysis is a stacked image built form images of

multiple timesteps. We consider the images from different

timesteps as partitions that form the final dataset. With our

ratio-quality model, we optimize the error bound for each

image by balancing the ratio of bit-rate and impact on the

overall quality degradation. Figure 12 shows the optimized

error bounds from our model for every timestep. The quality of

each timestep here influences the overall quality of the stacked

image. We can observe the trade-offs between timesteps for

ratio and quality. Overall, we can provide an extra 13% of

compression ratio with same post-hoc analysis quality, or

an extra 31% of post-hoc analysis quality with the same

compression ratio, compared to using the same error bound for

all timesteps. By leveraging our ratio-quality model, we can

Fig. 13: Comparison between our modeling based method with offline
optimization method in terms of both bit-rate and corresponding
PSNR across different snapshots when target PSNR is 56 dB.

perform in-situ optimization for parallel applications, which is

infeasible with previous solutions.

F. Evaluation on Overall Performance of Data Management

In this section, we use the RTM data to demonstrate the

effectiveness of our ratio-quality model when deploying it to

the scientific data management systems. More specifically, we

use parallel HDF5 [59] built upon MPI-IO [60] as our data

management system. Similar to other scientific applications,

such as Nyx [17] and HACC [48], the RTM simulation needs

to store one snapshot every few iterations for future use and

analysis. The overall simulation time spent in I/O can easily

reach beyond 50%, thus, lossy compression of data before

storing it can significantly improve the I/O performance.

Previously, researchers must conduct offline trial-and-error

experiments or use a benchmark toolkit (e.g., Foresight [61])

to determine the bestfit compression configurations for a given

set of data. Such static analysis takes a long time, but to make

matters worse, it can only choose the worst case configurations

to guarantee all the reconstructed data quality, similar to the

Liebig’s barrel. In the following experiments, we call this static

offline analysis method the traditional approach. More specif-

ically, we let the compressor to experiment the error bound

from 5 candidates (i.e., ABS 1E-4, 1E-5, 1E-6, 1E-7, 1E-8) for

all snapshots and choose one error bound that fits all. During

the performance evaluation, we apply this error bound (i.e.,

ABS 1E-7 based on our experiment) to all snapshots. Different

from the traditional approach, our ratio-quality model allows

us to in-situ determine the optimized error bound for different

snapshots based on the desired reconstructed data quality (i.e.,

PSNR). Figure 13 shows the ratio-quality comparison on the

RTM data across multiple snapshots between the traditional

static, offline approach and our adaptive, in-situ approach. In

this example, our target is to ensure the PSNR is higher than

56 dB for all snapshots, which guarantees the reconstructed

data quality of every snapshot for postprocessing stages. We

can observe that the traditional solution chooses only one

error bound for all snapshots, causing the PSNR of most

snapshots to be much higher than the target. By comparison,

our in-situ solution with the ratio-quality model can provide

consistent and low bit-rate across all snapshots while satisfying

the requirement on reconstruction data quality.

2505



Fig. 14: Overall data dumping performance with parallel HDF5. Comparison between traditional method, trial-and-error and our modeling
based method. Dashed lines highlight the maximum dumping time occurred in the simulation. “Tr” refers to the traditional approach, “TAE”
refers to the in-situ trial-and-error approach. ‘Comp’, ‘I/O’, and ‘Op’ refer to times of compression, I/O, and optimization, respectively.

Other than the traditional approach, we also implement

the trial-and-error method as an in-situ process in our data

management system for a fair comparison, referred to as

the in-situ trial-and-error (TAE) approach in the following

experiment. More specifically, we let the compressor to exper-

iment the error bound from 5 candidates for a given snapshot

before actually compressing it. Different from the traditional

offline approach, we preform this optimization online and

choose the optimal error bound for a given snapshot, which

introduces an additional optimization overhead. Figure 14

shows the overall data dumping time of all three methods

across different snapshots: the traditional approach, the in-situ

TAE approach, and our in-situ optimized approach with the

ratio-quality model. This experiment is conducted with 128

processes on 8 nodes, each process holding a portion of each

snapshot. It includes three types of time: (1) optimization time,

the time spent on compression configuration optimization,

including the experimenting time in the in-situ TAE approach;

(2) compression time, the time spent for compressing the data

with specified configuration; and (3) I/O time, the time spent

to actually store the compressed data with parallel HDF5. Note

that the baseline data-dumping time without any compression

is 29.4s for each snapshot, which is higher than any of the

three approaches. Compared with the traditional and the in-

situ TAE approaches, our approach can significantly reduce

the overall data-dumping time thanks to the accurate error

bound control that provides high compression ratio. When

specifically compared with the in-situ TAE approach, our

approach can significantly reduce the optimization time while

providing the higher compression ratio to reduce the I/O time.

This is because the in-situ TAE approach must experiment

several configurations, that is not only time consuming, but

also provides limited error bound granularity. Moreover, note

that the dumping time of our solution is highly stable, and the

longest dumping time is noticeably lower than that of the other

two methods, which is critical for the overall stable throughput

of the data management system. Overall, our optimization

solution with the proposed ratio-quality model can reduce

the data management time by up to 3.4× compared to the

traditional static, offline solution and by up to 2.2× compared

to the in-situ trial-and-error implementation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we develop a general-purpose analytical

ratio-quality model for prediction-based lossy compressors

that can effectively estimate the compression ratio, as well

as the impact of the lossy compressed data on post-hoc

analysis quality. Our analytical model significantly improves

the prediction-based lossy compression in three use-cases: (1)

optimization of predictor and compression mode by selecting

the best-fit predictor and mode automatically; (2) memory

compression optimization by selecting error bounds for fixed

or estimated bit-rates; and (3) overall ratio-quality optimization

by fine-grained error-bound tuning of various data partitions.

We evaluate our analytical model on 10 scientific datasets,

demonstrating its high accuracy (93.47% accuracy on average)

and low computational cost (up to 18.7× lower than the

previous approach) for estimating the compression ratio and

the impact of lossy compression on post-hoc analysis quality.

We also verify high effectiveness of our ratio-quality model

using different applications across the three use-cases. Finally,

we demonstrate that our modeling based approach reduces

the data management time for the RTM simulation by up

to 3.4× with parallel HDF5 on 128 CPU cores, compared

to the traditional static, offline solution. In the future, we

plan to extend our model to other lossy compressors such

as the transform-based lossy compressor ZFP [8] and more

post-hoc analysis metrics. In addition, we also plan to target

more aggressive memory control with higher memory usage

compared to 80% used in the current approach.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project
(ECP), Project Number: 17-SC-20-SC, a collaborative effort of two
DOE organizations—the Office of Science and the National Nuclear
Security Administration, responsible for the planning and preparation
of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed platforms,
to support the nation’s exascale computing imperative. The material
was supported by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research (ASCR), under contracts
DE-AC02-06CH11357 and DE-AC02-05CH11231. This work was
also supported by the National Science Foundation under Grants
OAC-2003709, OAC-2042084, OAC-2104023, and OAC-2104024.
We gratefully acknowledge the computing resources provided by the
Argonne Laboratory Computing Resource Center.

2506



REFERENCES

[1] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Lukić, and E. Van Andel,
“Nyx: A massively parallel amr code for computational cosmology,” The
Astrophysical Journal, vol. 765, no. 1, p. 39, 2013.

[2] L. Wan, M. Wolf, F. Wang, J. Y. Choi, G. Ostrouchov, and S. Klasky,
“Comprehensive measurement and analysis of the user-perceived i/o
performance in a production leadership-class storage system,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 1022–1031.

[3] ——, “Analysis and modeling of the end-to-end i/o performance on
olcf’s titan supercomputer,” in 2017 IEEE 19th International Conference
on High Performance Computing and Communications; IEEE 15th
International Conference on Smart City; IEEE 3rd International Con-
ference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE,
2017, pp. 1–9.

[4] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-
C. Wu, Y. Alexeev, and F. T. Chong, “Use cases of lossy compression
for floating-point data in scientific data sets,” The International Journal
of High Performance Computing Applications, 2019.

[5] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 2017, pp. 1129–1139.

[6] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in 2016 IEEE International Parallel and Distributed Process-
ing Symposium. IEEE, 2016, pp. 730–739.

[7] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” 2018.

[8] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[9] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki,
S. Klasky, M. Wolf, T. Liu, and Z. Qiao, “Understanding and modeling
lossy compression schemes on HPC scientific data,” in 2018 IEEE
International Parallel and Distributed Processing Symposium. IEEE,
2018, pp. 348–357.

[10] H. Luo, D. Huang, Q. Liu, Z. Qiao, H. Jiang, J. Bi, H. Yuan, M. Zhou,
J. Wang, and Z. Qin, “Identifying latent reduced models to precondition
lossy compression,” in 2019 IEEE International Parallel and Distributed
Processing Symposium. IEEE, 2019.

[11] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing lossy
compression rate-distortion from automatic online selection between sz
and zfp,” IEEE Transactions on Parallel and Distributed Systems, 2019.

[12] S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao, and J. Ahrens,
“Understanding gpu-based lossy compression for extreme-scale cosmo-
logical simulations,” arXiv preprint arXiv:2004.00224, 2020.

[13] P. Grosset, C. Biwer, J. Pulido, A. Mohan, A. Biswas, J. Patchett,
T. Turton, D. Rogers, D. Livescu, and J. Ahrens, “Foresight: analysis that
matters for data reduction,” in 2020 SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis (SC).
IEEE Computer Society, 2020, pp. 1171–1185.

[14] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and
A. Choudhary, “Data compression for the exascale computing era-
survey,” Supercomputing Frontiers and Innovations, vol. 1, no. 2, pp.
76–88, 2014.

[15] The HDF Group. (2000-2010) Hierarchical data format version 5.
[Online]. Available: http://www.hdfgroup.org/HDF5

[16] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the hdf5 technology suite and its applications,” in Pro-
ceedings of the EDBT/ICDT 2011 Workshop on Array Databases, 2011,
pp. 36–47.

[17] Nyx, https://github.com/AMReX-Astro/Nyx, 2021.

[18] S. Byna, M. S. Breitenfeld, B. Dong, Q. Koziol, E. Pourmal, D. Robin-
son, J. Soumagne, H. Tang, V. Vishwanath, and R. Warren, “Exahdf5:
delivering efficient parallel i/o on exascale computing systems,” Journal
of Computer Science and Technology, vol. 35, no. 1, pp. 145–160, 2020.

[19] S. Pokhrel, M. Rodriguez, A. Samimi, G. Heber, and J. J. Simpson,
“Parallel i/o for 3-d global fdtd earth–ionosphere waveguide models
at resolutions on the order of˜ 1 km and higher using hdf5,” IEEE
Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3548–
3555, 2018.

[20] The HDF Group. (2000-2010) Hierarchical data format version 5,
Filter. [Online]. Available: https://support.hdfgroup.org/HDF5/doc/H5.
user/Filters.html

[21] H5Z-SZ, https://github.com/disheng222/H5Z-SZ.

[22] J. Wang, T. Liu, Q. Liu, X. He, H. Luo, and W. He, “Compression ratio
modeling and estimation across error bounds for lossy compression,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 7,
pp. 1621–1635, 2019.

[23] S. Jin, J. Pulido, P. Grosset, J. Tian, D. Tao, and J. Ahrens, “Adaptive
configuration of in situ lossy compression for cosmology simulations
via fine-grained rate-quality modeling,” in Proceedings of the 30th
International Symposium on High-Performance Parallel and Distributed
Computing, 2020, pp. 45–56.

[24] LCF, “The advanced photon source (aps),” https://www.aps.anl.gov/,
(Accessed on 11/18/2021).

[25] ——, “Data exchange | advanced photon source,” https://www.
aps.anl.gov/Science/Scientific-Software/DataExchange, (Accessed on
11/18/2021).

[26] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netcdf:
A high-performance scientific i/o interface,” in SC’03: Proceedings of
the 2003 ACM/IEEE Conference on Supercomputing. IEEE, 2003, pp.
39–39.

[27] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu,
P. Davis, J. Choi, K. Germaschewski, K. Huck et al., “Adios 2: The
adaptable input output system. a framework for high-performance data
management,” SoftwareX, vol. 12, p. 100561, 2020.

[28] A. Drill, “Hdf5 format plugin - apache drill,” https://drill.apache.org/
docs/hdf5-format-plugin/, (Accessed on 11/17/2021).

[29] Pandas, “pandas.read_hdf — pandas 1.3.4 documentation,” https:
//pandas.pydata.org/docs/reference/api/pandas.read_hdf.html, (Accessed
on 11/17/2021).

[30] B. Dong, S. Byna, and K. Wu, “Expediting scientific data analysis
with reorganization of data,” in 2013 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2013, pp. 1–8.

[31] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression
with SZ,” in 2016 IEEE International Parallel and Distributed Process-
ing Symposium. Chicago, IL, USA: IEEE, 2016, pp. 730–739.

[32] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 2017, pp. 1129–1139.

[33] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data. IEEE, 2018, pp. 438–447.

[34] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[35] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient
transformation scheme for lossy data compression with point-wise
relative error bound,” in 2018 IEEE International Conference on Cluster
Computing. IEEE, 2018, pp. 179–189.

[36] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE). IEEE, 2021, pp. 1643–1654.

[37] T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, and X. He, “High-ratio lossy
compression: Exploring the autoencoder to compress scientific data,”
IEEE Transactions on Big Data, 2021.

[38] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[39] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on information theory, vol. 23, no. 3,
pp. 337–343, 1977.

[40] P. Lindstrom, M. Salasoo, M. Larsen, and S. Herbein, “zfp documenta-
tion,” https://buildmedia.readthedocs.org/media/pdf/zfp/latest/zfp.pdf.

[41] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core
compression and decompression of large n-dimensional scalar fields,”
in Computer Graphics Forum, vol. 22, no. 3. Wiley Online Library,
2003, pp. 343–348.

[42] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing lossy
compression rate-distortion from automatic online selection between

2507



sz and zfp,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 8, pp. 1857–1871, 2019.

[43] X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello,
“Improving performance of data dumping with lossy compression for
scientific simulation,” in 2019 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2019, pp. 1–11.

[44] Community Earth System Model (CESM) Atmosphere Model, http://
www.cesm.ucar.edu/models/, 2019, online.

[45] R. Rew and G. Davis, “Netcdf: an interface for scientific data access,”
IEEE computer graphics and applications, vol. 10, no. 4, pp. 76–82,
1990.

[46] “LCLS-II Lasers,” https://lcls.slac.stanford.edu/lasers/lcls-ii, 2021, on-
line.

[47] Hurricane ISABEL Simulation Data, http://vis.computer.org/
vis2004contest/data.html, 2019, online.

[48] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al., “HACC:
Extreme scaling and performance across diverse architectures,” Com-
munications of the ACM, vol. 60, no. 1, pp. 97–104, 2016.

[49] H. team, “hacc / genericio · gitlab,” https://git.cels.anl.gov/hacc/
genericio, (Accessed on 11/19/2021).

[50] G.-Y. Lien, T. Miyoshi, S. Nishizawa, R. Yoshida, H. Yashiro, S. A.
Adachi, T. Yamaura, and H. Tomita, “The near-real-time scale-letkf
system: A case of the september 2015 kanto-tohoku heavy rainfall,”
Sola, vol. 13, pp. 1–6, 2017.

[51] QMCPACK: many-body ab initio Quantum Monte Carlo code, http:
//vis.computer.org/vis2004contest/data.html, 2019, online.

[52] Miranda Radiation Hydrodynamics Data, https://wci.llnl.gov/simulation/
computer-codes/miranda, 2019, online.

[53] SDRBench, https://sdrbench.github.io/.
[54] “Seismic toolbox,” https://github.com/brightskiesinc/Reverse_Time_

Migration, 2021, online.
[55] SZ3: A Modular Error-bounded Lossy Compression Framework for

Scientific Datasets, https://github.com/szcompressor/SZ3.
[56] LCF, “Bebop - laboratory computing resource center,” https://www.lcrc.

anl.gov/systems/resources/bebop/, (Accessed on 11/17/2021).
[57] H.-W. Zhou, H. Hu, Z. Zou, Y. Wo, and O. Youn, “Reverse time

migration: A prospect of seismic imaging methodology,” Earth-science
reviews, vol. 179, pp. 207–227, 2018.

[58] T. Alturkestani, H. Ltaief, and D. Keyes, “Maximizing I/O bandwidth
for reverse time migration on heterogeneous large-scale systems,” in
European Conference on Parallel Processing. Springer, 2020, pp. 263–
278.

[59] The HDF Group, “Parallel HDF5,” https://support.hdfgroup.org/HDF5/
PHDF5/, (Accessed on 11/19/2021).

[60] R. Thakur, W. Gropp, and E. Lusk, “On implementing mpi-io portably
and with high performance,” in Proceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems, ser. IOPADS ’99. New York,
NY, USA: Association for Computing Machinery, 1999, p. 23–32.
[Online]. Available: https://doi.org/10.1145/301816.301826

[61] C. Biwer, P. Grosset, S. Jin, J. Pulido, and H. Rakotoarivelo, “VizAly-
Foresight: A Compression Benchmark Suite for Visualization and Anal-
ysis of Simulation Data,” https://github.com/lanl/VizAly-Foresight.

2508


