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Bacteria are efficient colonizers of a wide range of secluded
microhabitats, such as soil pores, skin follicles, or intestinal crypts.
How the structural diversity of these habitats modulates microbial
self-organization remains poorly understood, in part because of
the difficulty to precisely manipulate the physical structure of mi-
crobial environments. Using a microfluidic device to grow bacteria
in crypt-like incubation chambers of systematically varied lengths,
we show that small variations in the physical structure of the
microhabitat can drastically alter bacterial colonization success
and resistance against invaders. Small crypts are uncolonizable;
intermediately sized crypts can stably support dilute populations,
while beyond a second critical length scale, populations phase
separate into a dilute region and a jammed region. The jammed
state is characterized by extreme colonization resistance, even
if the resident strain is suppressed by an antibiotic. Combined
with a flexible biophysical model, we demonstrate that coloniza-
tion resistance and associated priority effects can be explained
by a crowding-induced phase transition, which results from a
competition between proliferation and density-dependent cell
leakage. The emerging sensitivity to scale underscores the need
to control for scale in microbial ecology experiments. Systematic
flow-adjustable length-scale variations may serve as a promising
strategy to elucidate further scale-sensitive tipping points and
to rationally modulate the stability and resilience of microbial
colonizers.

colonization resistance | microbiome stability | phase separation | active
matter | microfluidics

Natural microbial communities are often found to be re-
markably stable, capable of either quickly recovering from

disturbances or remaining essentially unaffected by them (1–4).
Stability is particularly puzzling in small populations, which are
prone to number fluctuations and lack the size and extent to
buffer against local environmental changes. Nevertheless, small
but stable populations have been found in association with spa-
tially defined microhabitats (4–10).

Strains that colonize cavities are sometimes found to be so sta-
ble that they hold their ground against even much fitter invaders
(11). For example, Bacteroides fragilis is a particularly resilient
colonizer of crypts in mouse guts (7). Conspecifics are unable
to invade, unless the resident strain is strongly suppressed by
an antibiotic. A similar colonization resistance has been demon-
strated for groups of ceca microbiota in mice guts (9) and for
Lactobacillus plantarum in fly guts (10, 12).

The ubiquity of microhabitat-associated stability and coloniza-
tion resistance raises the question of whether these features
generically emerge in confined spaces, for example, soil pores
(13–15), skin follicles (4, 16), or crypts and folds in gut-like envi-
ronments (5, 17, 18). Previous studies have identified biological
features, such as suppressed biofilm growth or the expression
of specific adhesion molecules, that promote stability in specific
systems (1, 7, 19–21). However, we currently lack systematic
scale-dependent measurements to identify a generic mechanism
of stability and resilience in microhabitats, as well as a theory that

could predict colonization success and tipping points. To fill this
gap, we developed an approach to measure the scale dependence
of microbial colonization patterns combined with a predictive
theory of how microbes invade, occupy, and protect confined
microhabitats.

Experimental Setup
Our experiments employ a microfluidic incubation device that
allows us to continuously monitor bacterial population dynamics
in crypt-shaped chambers across many length scales (Fig. 1A).
A supply channel is used to continuously perfuse the device
with media, enabling the experiments to run under constant
conditions for several days. As bacteria are inoculated and pass
through the supply channel, they get exposed to rectangular cav-
ities of systematically varied depths (10 to 350 µm). Even though
the fluid inside these cavities is largely stagnant, it is nutrient rich
and hence, supports growth due to the rapid diffusion of small
nutrient molecules from the supply channel (22, 23).

In this device, length scale–dependent ecological processes can
be identified by comparing the colonization dynamics across the
sequence of chambers. To capture the differential population
dynamics in single microscopy frames, we ordered the cavities
according to size (SI Appendix, Fig. S1 shows a randomized con-
trol). The device thus resembles a pan flute in appearance, so we
refer to our device as a “microfluidic pan flute.” We employed it
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Fig. 1. Microfluidic experiments reveal length scale–dependent colonization patterns. (A) A scheme of our microfluidic pan flute incubation device.
Rectangular cavities of systematically varied depths (n = 1, 2, . . . , 35) are connected to a common supply channel through which media and bacteria flow.
(B) The steady state after 5 d of incubation of a fly gut bacterium (A. indonesiensis). Depending on their length, cavities could not be invaded (1), hosted a
gaseous population (2 to 6), or hosted a phase-separated population with a jammed and gaseous state (7 and 8). (C) Confocal images of a partially jammed
and gaseous population. The zoomed-in images are magnifications of the zoomed-out snapshots. (D) Steady-state cell density profiles obtained from time-
lapse movies. The shaded regions show the SEMs. The profiles of gaseous phases (orange) collapsed to our linearized establishment model (black) upon
rescaling both axes (Inset). (E) A kymograph of the jamming front movement.

to explore the colonization dynamics of several bacterial genera,
focusing mainly on Acetobacter, which is prevalent in the fly gut
(10, 24) and grows aerobically.

Results
We found that the emerging population dynamics sensitively
depend on the length of the incubation chamber (Fig. 1B and
Movie S1). The scale sensitivity is particularly strong near two
recognizable phase transitions:

Establishment Transition. While all cavities are sporadically vis-
ited by cells, colonization attempts remain unsuccessful in small
chambers. In chambers exceeding a certain threshold length (170
µm in Fig. 1B), cell densities stabilize after 2 to 3 d of incubation
and are maintained for at least 5 d. Cell densities, as measured
from the time-averaged signal intensity, increase with chamber
length, are highest at the floor of the cavities, and gradually
decay toward a line of zero density (Fig. 1D). We call this regime
“gaseous” because the cell packing fraction is small and cells
diffuse almost freely (SI Appendix, Fig. S2).

Jamming Transition. When the chamber length exceeds a second
threshold (220 µm in Fig. 1B), a densely populated region ap-
pears at the bottom of the cavities that is sharply separated from
a gaseous region toward the opening of the cavities (chambers 6
and 7 in Fig. 1B). Confocal imaging shows that neighboring cells
are in direct contact in the dense phase, which is why we call the
condensed phase “jammed” (Fig. 1C). Dynamically, the jammed
phase grows like a wave from the floor toward the open boundary
of a chamber, as can be seen in the kymograph in Fig. 1E. The
growth of this wave slows down near the jamming transition
(Movie S1). Interestingly, the transition from gaseous to jammed
is abrupt in the size of the chambers. Between two neighboring
cavities, differing by just 5% in length, the colonization state

transitions from gaseous to nearly 75% jammed (quantified in
Fig. 1D).

We observed qualitatively similar colonization patterns for
species of other genera, including Vibrio cholerae and Lactococ-
cus lactis (SI Appendix, Fig. S3). We, therefore, sought to explain
the pronounced length-scale sensitivity by a general species-
independent mechanism.

Linear Establishment Model. The colonization of a cavity can be
viewed as a tug-of-war between cell proliferation and cell removal
by outflow or death.* This competition can be considered in
the absence of regulation or specific cell–cell interactions in
order to discernwhether the rich scale-dependent phase behavior
seen in our experiments is a consequence of general biophysical
processes. To describe how the cell density c(y , t) at a verti-
cal position y and time t changes over time, we use the linear
reaction–diffusion equation ∂tc(y , t) =D0∂

2
yc(y , t) + r c(y , t),

where the first term represents cell diffusion with diffusivity D0

and the second term represents cell proliferationwith growth rate
r. Since cells cannot penetrate the floor of the chamber, we use
a reflecting boundary condition at y = 0, ∂yc(0, t) = 0. We also
introduce an absorbing boundary at y = L, where the cells are
swept away by the media flow, c(L, t) = 0.

Our mathematical analysis (SI Appendix, section A.3) shows
that the dynamics of the density profile can be decomposed
into a sum of independently evolving normal modes. The
empty state is stable if the amplitude of all normal modes
shrinks, which requires that the scale L of the population
does not exceed the critical scale Lest = π

√
D0/r/2. In turn,

this implies that bacteria can establish in a chamber only if

*In our experiments, removal is dominated by outflow. Cell death can also be included
through an effective growth rate, representing the difference between growth and
death rate.
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Fig. 2. A model of proliferating active matter shows that collective motion can stabilize a growing population and drive phase separation. (A) Simulations
reveal that the collective diffusivity of an idealized model of proliferating hard spheres in suspension, as illustrated in the Inset, is nonmonotonic as a
function of the packing fraction Φ = cπσ3/6, with σ the diameter of the particle. The negative gradients at high densities can drive a discontinuous
transition toward jamming. (B) The packing fraction profile (Right) was computed from the density-dependent diffusivity in A (SI Appendix, section A.5).
The maximum packing fraction (Left) shows a fold bifurcation as a function of L/Lest, resulting in a sudden transition to a (partially) jammed state. (C)
Minimal simulations of proliferating soft disks and example tagged particle trajectories for gaseous L < Ljam (Upper) vs. jammed states L > Ljam (Lower)
pores. (D) Self-diffusion, Ds, in the gaseous state is larger by orders of magnitude than in the jammed state, suggesting a mechanism for an invasion barrier.

L> Lest. Thus, establishment is promoted by increasing the
growth rate or decreasing the diffusivity, which drives the cell
leakage. Using the measured growth rate, r ≈ 0.33± 0.01 h−1

(SI Appendix, Fig. S4 A and D), and diffusivity, D0 ≈ (0.37±
0.01)× 103 µm2/h (SI Appendix, Fig. S2), we estimate establish-
ment in our experiments to occur at the scale Lest ≈ 53± 1 µm.
This is consistent with the empirical value 53± 7 µm that we
extrapolate from our measurements (SI Appendix, Fig. S5B). We
also confirmed that the establishment length changes predictably
with variations in growth rate (SI Appendix, Fig. S6). More
importantly, the measured density profiles agree well with the
cosine shape of the first normal mode, as observed in Fig. 1D,
which is expected to dominate close to the onset of colonization
(SI Appendix, section A.4). Our analysis is best suited to describe
the bulk of the population where cell motion is dominated by
diffusion. Deviations are expected and indeed, visible around
the opening of cavities (near vanishing cell density) where the
flow of the media is not negligible.

Nonlinear Population Control. Our linear model can tell us
whether bacteria grow in empty chambers, but it remains blind to
how a population of successful colonizers reaches a steady state
with a finite population size and how stable this state is. To predict
the long-term dynamics, we needed to include a (nonlinear)
population control term that modulates the competition between
cell proliferation and removal. For example, bacterial batch
cultures are often limited by nutrient deprivation or waste
product accumulation, implying that the growth rate is not
constant but decays with density (logistic population control).
However, growth rates in the jammed and dilute phases were

statistically indistinguishable (SI Appendix, Fig. S4), suggesting
that nutrient deprivation did not limit population growth.
Therefore, we hypothesized that, while the growth rate remains
approximately constant, the population outflow adjusts itself via
a density-dependent diffusivity D(c). Steady state is reached
when the cell leakage matches the influx of newborn cells in the
bulk of the chamber.

Crowding-Induced Phase Transition. Our mathematical analysis
shows that a monotonically increasing D(c) (more cells →
more outflow) is capable of stabilizing a gaseous state inside
the chambers (SI Appendix, section A.4). However, to reproduce
a sudden jamming transition, D(c) has to have an extended
region of sufficiently negative slope at high densities (more
cells → less outflow). Intuitively, this generates a positive
feedback cycle. As the density fluctuates up, diffusion-induced
outflow goes down, which leads to even higher cell densities,
suppressing outflow even more and so on. The cycle only breaks
when the bacteria jam and come into contact, upon which the
bulk modulus and hence, D(c) shoot up by several orders of
magnitude (25).

The required negative slope of D(c) could be induced at high
density by constitutive or crowding-induced stickiness between
cells or active motility, which has been shown to drive phase
separation (26). Our simulations (Fig. 2) and analytical argu-
ments (SI Appendix, section A.7) show that even purely repulsive
nonmotile spheres exhibit a qualitatively similar phase behavior
as seen in our experiments. Thus, a transition between gaseous
and partially jammed states emerges without any special biotic
factors other than proliferation.
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Fig. 3. Bistability near the tipping point. (A) Phase diagram. The maximal
packing fraction at steady state, Φmax, as predicted from the density-
dependent diffusivity in Fig. 2A. When the control parameter L/Lest is
gradually increased, the state of the system suddenly jumps from a gaseous
(I) to a partially jammed state (II; arrow pointing up). If one decreases the
control parameter again, the system jumps back to a gaseous state (arrow
pointing down) but at a different value of the control parameter, implying
a hysteresis and a region of bistability. (B) Experiments to test bistability. A
flowdecrease triggered in the depicted chamber the transition fromgaseous
(I) to jammed (II) via an effective increase of the habitat size L. The orange
curve depicts the density increase over time. After saturation, we increased
the flow again, but the chamber remained in the jammed state (III) at high
density. On the other hand, no bistability was observed in a deeper chamber
(green curve). To define the packing fraction on the y axis, the relative cell
density (shown in SI Appendix, Fig. S7) was normalized by the random close
packing of monodisperse spheres, Φrcp ∼ 0.64. (Scale bar: 50 µm.)

In SI Appendix, we show that, by exploiting a mathemati-
cal analogy to a solvable Newtonian problem, the phase dia-
gram and the density profiles (c.f. Fig. 2B for hard spheres) can
be obtained exactly by numerical integration (via SI Appendix,
Eqs. 34 and 35) from the underlying growth and dispersal pa-
rameters. This analysis shows that the position of the tipping
points depends on the entire functions D(c) and r(c) up until
the tipping point and thus, can be modulated by any means that
change these functions, such as attractive interactions or quorum
sensing.

Our theory also predicts that the jamming transition arises
through a fold bifurcation and therefore, should have the char-
acteristics of a tipping point (27–29). In particular, after a cham-
ber becomes jammed, it is not easily unjammed and requires a
substantial perturbation of the control parameters (growth rate
or diffusivity). This also implies that there must be a region of
bistability, where in the same chamber, two states are stable—one
gaseous state and one phase-separated state (Fig. 3A). We con-
firmed that, in our experiments, chambers near the jamming tran-
sition indeed show bistability (Fig. 3B and SI Appendix, Fig. S7)
by flipping from one state to another using flow modulation
(SI Appendix, Fig. S8).
Tipping points also reveal themselves dynamically through a

dramatic slowing down near the transition point—a phenomenon
called critical slowing down (27). Indeed, time-lapse Movie S1
shows that the relaxation dynamics near the transition point
becomes very slow. The smallest jammed chamber takes about
30 h or 14 doubling times to reach steady state, compared with 6
h or less in the largest chambers.

Crowding-Induced Drop in Diffusion. Simulations of a proliferating
soft sphere model (SI Appendix has details) further show that
the cellular self-diffusion is dramatically reduced upon jamming,
consistent with an onset of rigidity, except for movement of order
one-cell diameter per doubling induced by the division process
(Fig. 2C). While in our experiments, we could not track single
cells in the jammed phase, we could track lineages using fluores-
cent tracers (SI Appendix, Fig. S9), which also suggests that self-
diffusion drops by two orders of magnitude from the gaseous to
the jammed state.

A drop in self-diffusion has important consequences for
species invasions. It lowers the chance for outside cells to

diffusively penetrate the jammed fraction against the prolifer-
ation current coming from the floor of the chamber. Accounting
for this crowding-induced diffusion barrier in a theory of strain
invasion (SI Appendix, section C.1), we predict that the rate at
which an external strain invades a jammed resident population
is exponentially small in the ratio of the thickness of the
jammed phase and the cell diameter. Thus, invasion of jammed
populations should be an extremely rare event.

Colonization Resistance. To test this prediction, we performed
specific invasion experiments. We inoculated our device with the
wild-type strain of Acetobacter indonesiensis and waited until a
steady state was reached. We then flowed in a sister strain of the
same species, which was fluorescently labeled green and resistant
to the drug tetracycline. Titration of tetracycline then allowed us
to tune the growth rate advantage of the invading strain.

In the absence of antibiotics, we did not observe any successful
invasion over the experimental timescale of 5 d. When we added
10 µg/mL of the antibiotic (60% of MIC), scale-dependent in-
vasion dynamics ensued. In the initial 24 h, the drug-sensitive
populations decreased the population density (Movie S3), thus
shifting the phase boundary between gaseous and jammed to
larger cavities. Over the next 48 h, drug-resistant cells entered
and seized a substantial number of the gaseous chambers (Fig.
4C and Movie S4). Upon successful invasion, the population
density generally increased again. Importantly, while most of the
gaseous chambers were ultimately invaded, none of the jammed
chambers were (of seven colonized pan flutes monitored over 2
to 5 d in three independent experiments). The primary effect of
the antibiotic is to push the state of some of the chambers from
jammed to gaseous, upon which invasion becomes possible (Fig.
4A). Thus, while crowding strongly protects jammed populations
from invasion, residents can be dislodged nevertheless if they
are driven past a tipping point into a more fragile (gaseous)
ecological state.

Jammed Gaseous Invaded

t = 0 h 20 h 120 h

25 µm

C

A B Jammed Gaseous

Jammed Gaseous
t = 0 h

t = 120 h Successful invasions

Fig. 4. Crowding-induced colonization resistance. (A) After the chambers
were precolonized by the wild-type strain (dark), we introduced a fluores-
cently labeled “invader” strain (yellow). To make invasions more likely, we
also increased the fitness of the invader by the simultaneous injection of an
antibiotic (tetracycline) towhich the invaderwasmade resistant. (B) A steady
state of sensitive populations before the invaders were inoculated. The
unfilled triangle shows the transition point between jammed and gaseous
phases in the experiment. The transition was manually defined based on the
bright-field darkness of the populations. C shows 120 h after tetracycline
was added to the culture medium. Drug-sensitive populations (dark) that
remained jammed were not invaded. The unfilled and filled triangles show
the transition points between jammed and gaseous phases at t = 0 h and
t = 120 h, respectively. The injection of the growth inhibitor (tetracycline)
shifted the transition point.
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Discussion
Wehave shown that microbial colonization patterns can vary dra-
matically with the physical structure of their microenvironment.
In particular, a crowded state with pronounced colonization
resistance can arise spontaneously when the incubation scale
exceeds a certain tipping point. Once pushed beyond the tipping
point, it requires a substantial perturbation to break the ensuing
colonization resistance, for instance, by using antibiotics to trig-
ger the reverse transition toward a gaseous phase with increased
mixing (Fig. 4A).

The physical structure of the microenvironment thus acts as
an ecological filter, permitting stable and resilient colonization
by species with matching traits. By modulating the physical char-
acteristics of this filter, hosts can actively or passively shape the
pool of potential bacterial residents.Modulating endogenousmi-
crostructures or introducing rationally designed structures may
also be considered as a strategy for precision microbiome thera-
pies to modulate microbial diversity.

The structure-induced stability supports the view that commu-
nity assembly from potential colonizers is shaped by priority ef-
fects; whoever invades first enjoys colonization resistance against
late invaders. The randomness induced by the order of strain
arrival might contribute to the substantial host-to-host variability
seen in some host-associated microbial communities (9, 16).

Colonization patterns, tipping points, and colonization resis-
tance could be captured by a minimal model of proliferating
active matter, which accounts for growth, diffusion, and leakage.
This model revealed a generic fold bifurcation generating a
discontinuous transition between a gaseous phase, in which cells
diffuse freely, and a glassy, jammed phase. This transition differs
fromwhat is known as motility-induced phase separation (MIPS)
(26) in the field of active matter (30, 31). MIPS is associated
with a spinodal instability that arises when an effective diffusivity
becomes negative—an unintuitive consequence of the nonequi-
librium nature of active motility (32). In our case, the transition
is triggered by the weaker condition of a (sufficiently) negative
density-dependent diffusivity, which generically arises even for
passively diffusing particles (33), for example, hard spheres. It
would be interesting to extend our model of proliferating active
matter by active motility to see how bacteria that grow and swim
self-organize in confined spaces.

While the tipping points in our experiments could be explained
by our minimal model, we expect that, in general, additional
biotic and abiotic factors influence colonization patterns quan-
titatively. For example, crowding will be promoted if cells stick to
one another directly or indirectly through biofilm formation or
if nutrients are supplied from the floor of the chamber. On the
other hand, both establishment and jamming tend to be hindered
by strong nutrient limitations or bacterial motility. While further
research is needed to explore the relative importance of these
factors, their impact may be anticipated theoretically using a
reaction–diffusion model, which entails a flexible approach to
analyze steady states (SI Appendix, section A.5).

More broadly, our results underscore that the length scale of
experimentation can have a strong influence on microecological
processes, which could confound experiments that do not con-
trol for scale variation (34)—a well-appreciated problem in the
macroecological context (35–37). Flow-tunable scale variations
as implemented in our microfluidic pan flute offer a systematic
experimental approach to detect or exclude scale sensitivity in
culturable microbial communities. Since the timescales of mi-
crobial evolution and ecology are intertwined, we expect such
scale-sensitive experiments to be an exciting avenue for future
ecoevolutionary research (38).

Materials and Methods
Bacterial Strains and Culture Condition. The A. indonesiensis strains were
derived from the strain named SB003 (gift fromWilliam Ludington, Carnegie

Institution for Science), which was originally isolated from laboratory flies
(Drosophila melanogaster) (10, 24). SB003 was transformed with a modified
green fluorescent protein (mGFP5) via the backbone plasmid pCM62 (39)
by Benjamin Obadia (12). For culturing, all strains were grown in de Man,
Rogosa, and Sharpe (MRS) medium (BD) at 30 ◦C. Strains are selected with
15 µg/mL tetracycline (Corning Cellgro) if needed.

Microfluidics Fabrication. The microfluidic devices were fabricated by soft
lithography (40). In order to make a master mold, a 20-µm-thick layer of
negative photoresist (SU8-2010; MicroChem) was spin coated on a silicon
wafer (WaferNet) and patterned by photolithography with a mask aligner
(Hybralign 200; OAI) through a photomask (CAD/Art Services). On themaster
mold, polydimethylsiloxane (PDMS; Sylgard 184; Dow Corning) was poured
with cross-linker at a 10:1 ratio and cured at 60 ◦C in an oven overnight.
The patterned PDMS was punched to make holes for inlets and outlets.
The PDMS was bonded to a glass coverslip with O2 plasma treatment by
a reactive ion etcher (Plasma Equipment Technical Services).

Microfluidic Cell Culture. Prior to microfluidic culture, cells were streaked on
a plate from frozen stock and grown in a test tube with 3 mL MRS for 1
to 2 d. The suspension of cells was injected into a microfluidic device and
cultured for 3 to 5 d with a continuous supply of the fresh medium until
the system reached a steady state. The temperature was regulated at 30 ◦C
by a microscope incubator (H201-T and UNO; Okolab), and the flow rate of
the culture medium was controlled at 0.3 µL/h by syringe pumps (neMESYS;
CETONI). Images were taken by inverted microscopes (IX81; Olympus [also,
Eclipse Ti; Nikon was occasionally used for SI Appendix, Figs. S6B and S7B])
and a confocal microscope (LSM 700; ZEISS).

Density Profile Measurement. To quantitatively measure the density profile
of cellular populations in microfluidic crypts, GFP-tagged cells were cultured
in a microfluidic pan flute for about 3 d. After the system reached a steady
state, fluorescent intensities were measured every 20 min for 14 to 48 h.
The intensities were first averaged over the horizontal direction and then
averaged over the time points at each y position. They were scaled by
the intensity of jammed populations to get relative cell densities. An SEM
was calculated by dividing the SD across time points by the square root
of the approximate number of uncorrelated time points. The latter was
estimated by dividing the total duration of the time-lapse movie by the
typical relaxation time (6 h) of the density profile measured in the gaseous
phase (SI Appendix, Fig. S7D).

Neutral Competition and Invasion with Fitness Effect. To observe competi-
tions of two strains with and without fitness effects, wild-type and GFP-
tagged strains were cocultured. As the GFP-tagged strain was resistant
to tetracycline, with 10 µg/mL of tetracycline, the GFP-tagged cells grew
normally, while the wild-type strain grew slowly. We confirmed that there
was no significant growth rate difference between the strains in the absence
of antibiotics (SI Appendix, Fig. S4B).

For neutral competition experiments, a 50:50 mixture of dark and GFP-
tagged cells was inoculated into a microfluidic pan flute device and cultured
for 2 d. As each type of cell colonized chambers stochastically, we paral-
lelized six rows of the pan flutes and selected chambers with a desired initial
population ratio. The population dynamics were observedwith afluorescent
microscope every 20 min for a day.

To test the colonization resistance of jammed populations, we first cul-
tured wild-type cells in a microfluidic device. After the populations reached
a steady state, the culture medium was changed from MRS to MRS + 10
µg/mL tetracycline, and GFP-tagged cells were continuously flowed into the
device. The resulting population decay and invasion dynamics were observed
with a microscope every 20 min for 2 d. In addition, the snapshots of the
populations were taken every day for 5 d.

Flow and Temperature Change Experiments. To investigate the effect of the
system’s parameters on the population density in microfluidic crypts, we
dynamically changed the flow rate to tune the effective chamber depth. We
initially cultured cells at a 0.8-µL/h flow rate for 3 d until the system reached
a steady state and then, changed the flow rate to 0.3 µL/h. The decrease
of the flow rate affected how deep the streamlines invaded chambers and
changed the effective chamber depth by 5 to 10 µm (SI Appendix, Fig. S8).
After the system reached a second steady state, we recovered the flow rate
to 0.8 µL/h to investigate hysteresis.

We also dynamically changed the temperature of the incubation chamber
to control the growth rate of cells. We first cultured cells at 22 ◦C, where the
growth rate is 0.28 h−1, until a steady state and ramped up the temperature
to 30 ◦C, where the growth rate is 0.33 h−1 (the growth rate measurement
is shown in SI Appendix, Fig. S4D). Then, we decreased the temperature
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back to 22 ◦C. The transition dynamics were recorded every 20 min with
a microscope (SI Appendix, Fig. S6B). Similarly, the temperature control
between 26 and 30 ◦C was investigated (SI Appendix, Fig. S6A).

Colonization Experiments with Other Species. Colonization dynamics in a
microfluidic pan flute were tested with various microbial species (Escherichia
coli, Bacillus subtilis, V. cholerae, Acetobacter pasteurianus, Acetobacter
tropicalis, and L. lactis; SI Appendix, Table S1 shows the strain details and
culture media). Cells were streaked on a plate from frozen stock, and a small
number of cells from a single colony were grown in a test tube with 3 mL
of a culture medium for 1 to 2 d at 37 ◦C for E. coli and 30 ◦C for the other
species. The cell suspension was injected into a microfluidic pan flute and
cultured for 5 to 6 dwith a continuous supply of freshmedia until the system
reached a steady state. During themicrofluidic culture, the temperature was
regulated at 30 ◦C for all species.

Growth Rate Measurement. The growth rate of cells was measured in two
ways: growth assay with a plate reader and particle image velocimetry (PIV)
of a jammed population on microfluidics. Prior to the measurements, cells
were cultured in test tubes from single colonies for 1 to 2 d in MRS at
30 ◦C up to saturation. For the plate reader experiments, cell suspensions
were diluted to 0.02 optical density (OD), and 200 µL of the suspensions
were transferred to transparent flat-bottom 96-well plates (Thermo Fisher
Scientific). The plateswere incubated in a plate reader (Spectramax) at 30 ◦C,
and the OD was measured at the 600-nm wavelength every 5 min with 30-s
mixing before eachmeasurement. Themaximumgrowth ratewas calculated
by fitting an exponential curve to the initial 2-h growth. The growth rate of
A. indonesiensis was measured as 0.325 ± .003 h−1 (SI Appendix, Fig. S4A).

For the PIV measurement on microfluidics, cells were injected into a
microfluidic device and incubated in a tabletop incubator until cells colo-
nized chambers and formed stable populations. Bright-field images were
taken every 3 min for 3 h and analyzed with PIVlab in MATLAB (41). PIV
calculated the displacements of cells per time frame. The displacement of
a cell at position y = y0 was caused by the growth of cells at y ∈ [0, y0],
and therefore, the displacement at position y = y0 could be formulated as
d(y0) = y0(er∆t − 1). Since our time frame (∆t = 3 min) was much smaller
than the doubling time of the cell (2.1 h), it held that d(y0)/∆t ≈ ry0.
Thus, the slope of the velocity field in the y direction gave the growth
rate. The growth rate of A. indonesiensiswas measured as 0.332 ± .007 h−1

(SI Appendix, Fig. S4D).

Diffusivity Measurements.
Self-diffusivity. To estimate the self-diffusivity of cells in gaseous and
jammed phases, the displacement of cells was tracked over time, and the
mean square displacements were calculated. A 50:50 mixture of dark and
GFP-tagged cells was injected in a microfluidic pan flute and cultured until
the system reached a steady state. The motions of GFP-tagged cells were
recorded with a fluorescent microscope every 30 s for 10 min for gaseous

phases and every 20 min for 20 h for jammed phases. The displacement of
cells in gaseous phases was automatically tracked with TrackMate in Fiji (42),
and that in jammed phases was manually tracked with the Manual Tracking
plugin of ImageJ.
Collective diffusivity. To determine the collective diffusivity, we adapted
the Boltzmann–Matano analysis (43) to the present case of a reaction–
diffusion system. Under the assumption that our general reaction–diffusion
model, ∂tc(y, t) = ∂y [D(c(y, t))∂yc(y, t)] + rc(y, t), is valid, we can express
the density-dependent diffusivity D(c) in terms of the steady-state density
profile as follows:

D(c(y)) =
r
∫ y
0 c(y′)dy′

−∂yc(y)
. [1]

This equation allows us to estimate D(c) from the exponential growth rate
and the steady-state density profiles. The steady-state density profiles were
determined from the temporal average of the fluorescent intensity of time-
lapse movies. For the data in SI Appendix, Fig. S2C, we averaged the density
profile over 20 frames (7 h) and locally approximated it with a quadratic
function by the Savitzky–Golay method (44) to extract ∂yc(y). We excluded
the y region 20% from the opening where the flow impacted the tail of
the density profile and excluded the y region 20% from the bottom where
(∂yc(y))−1 was diverging.

Fluid Dynamics Simulations. The fluid dynamics of the culture medium flow
through the cavity structures of our microfluidic devices were simulated
using COMSOL. As a simple geometry, we defined a 500 × 50 × 20-µm
supply channel with a 50 × 150 × 20-µm cavity in the middle. The fluid
dynamics was modeled as incompressible Stokes flow subject to no-slip
boundary conditions at the walls and a constant flow rate. To see how the
flow field depends on external control parameters, we varied the depth of
the cavity (30 to 150 µm) and the flow rate (100- and 250-µm/s mean flow
rate).

Data Availability. Data and codes are available in GitHub at
https://github.com/Hallatscheklab/PanfluteTippingPoints.
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Supporting Information Text15

A. Theory of colonization.Here, we describe our modeling approach that helps us to interpret and predict the relaxation16

and steady-state properties of the bacterial populations in our variable length cavities. We begin by describing a general17

mathematical framework applicable to a wide range of situations. We then restrict the model to our specific experimental18

setup, which allows us to make a number of simplifying assumptions.19

A.1. General reaction-diffusion model. In order to describe the combination of growth and cell movement, we employ a reaction-
di�usion model for the packing fraction �(r, t) at position r and time t, which is the concentration multiplied by the cell
volume. In general, the rate of change of the packing fraction is given by

ˆt�(r, t) = ≠Ò · j(r, t) + b[�(r, t)]

in terms of the divergence Ò · j of a flux j, a three dimensional vector, and the cell production rate b[�], which depends on the20

packing fraction itself, for exampled b[�] = r„ in the case of exponential growth with rate r.21

The flux j describes the magnitude and direction of the flow of cells and can be expressed as

j = ≠D[�(r, t)]Ò� +V�

in terms of the cell di�usivity D, the gradient Ò� of the packing fraction and an advection velocity V, a three dimensional22

vector.23

A.2. Context-specific simplifications.A number of simplifications can be made due to the specific setup of our experiments. Here,24

we describe these simplifications, and note under which conditions they might break.25

• Di�usion is purely passive. The bacteria in our experiments have no motility mechanism and, therefore, di�use just like26

passive particles under the influence of thermal collisions with the solvent particles. However, many bacteria have flagella27

allowing them to swim and perform chemotaxis to chase the source of certain chemical cues. Although the behavior of28

swimming bacteria can be quite complex, they are often well described by an advection term to describe chemotaxis and29

an e�ective di�usivity, which has a non-trivial motility-induced density-dependence (1).30

• Advection is absent. In other systems, advection may have to be incorporated to describe chemotaxis (pervious point) or31

the influence of gravity or fluid flow. Fluid flow is a particularly important aspect in the lumen of the gut (2) but also32

can also arise in microscopic pores, for instance, in skin pores when sebum is exuded (3).33

• The setup is e�ectively one-dimensional. The concentration profile in the narrow crypts of our panflute device is34

approximately uniform along the directions perpendicular to the symmetry axis of the crypts. This allows us to restrict35

our discussion to the dynamics along the symmetry axis – the y–direction. For wide or high crypts, a three-dimensional36

description is necessary, especially when hydrodynamic instabilities drive motion in the direction perpendicular to y.37

We expect such higher-dimensional dynamics to be a fruitful topic for future work, in particular because it cannot be38

mapped to an e�ective Newtonian dynamics (described below).39

Under these simplifying assumptions, which match our experimental conditions, we obtain an e�ectively one-dimensional40

reaction-di�usion model that reads41

ˆt�(y, t) = ˆy [D(�) ˆy�(y, t)] + b(�). [1]42

The boundary conditions are fixed by demanding that cells shall not exit through the floor of the chamber, ˆy� = 0, and that43

the density vanishes at position L, �(L, t) = 0.44

A.3. Linear Stability Analysis. In order to determine the onset of population growth in our microfluidic crypts, we have to determine45

the conditions for which an empty crypt is stable against an inoculation with cells. To this end, we perform a linear stability46

analysis of our model in the low density limit.47

The linearized reaction-di�usion equation Eq. 1 reads48

ˆt�(y, t) = D0ˆ
2
y�(y, t) + r�. [2]49

in terms of the low-density di�usivity D0 and the constant growth rate r.50

We first expand the cell density as51

�(y, t) =
Œÿ

n=0

an(t)Ïn(y) [3]52

in terms of cosine modes

Ïn(y) = cos (kny) kn =
1
n+ 1

2

2
fi

L
[4]

which are orthonormal53

ÈÏn|ÏmÍ = ”nm [5]54
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with respect to the scalar product55

Èf |gÍ © 2
L

⁄ L

0
dyf(y)g(y) . [6]56

Inserting the expansion Eq. 3 into the linearized reaction-di�usion equation Eq. 2 and then projecting onto the normal modes57

yields simple amplitude equations,58

ˆtan = Ênan , [7]59

where the frequency Ên of the n
th mode is given by60

Ên = ≠D0k
2
n + r . [8]61

The mode amplitudes an therefore obey an = an(0) exp(Ênt) with the prefactors fixed by the initial conditions.62

For the empty state to be linearly stable, we require all Ên to be negative, meaning that all mode amplitudes exponentially63

decay to zero. As the slowest growing mode is n = 0, this implies D0k
2
0 > r, or64

L < Lest =
fi

2

Ú
D0
r

, [9]65

revealing the establishment transition discussed in the main text.66

Note that the density decay of non-growing particles (r = 0), which merely di�use out of the chamber, is on long times67

controlled by the slowest decaying mode, � Ã exp(≠D0k
2
0t). Since, at the establishment transition, we have D0k

2
0 = r, we see68

that the di�usive “half-life” of the bacteria just equals their doubling time. This confirms the intuition that the establishment69

transition occurs when the di�usive outflow is balanced by growth.70

A.4. Steady state at low packing fraction. To explore the nature of the gaseous phase, it is useful to study the limit of low packing71

fractions, where the di�usivity takes the form (4)72

D(�) = D0(1 + –�) +O(�2) . [10]73

The numerical coe�cient – measures the leading order change in di�usivity with increasing packing fraction and depends on74

the shape of the particles as well as their interactions. For repulsive particles, such as our main model system Acetobacter75

indonesiensis, – is positive. Detailed analytical results are available for hard spheres, yielding – = 1.45 (5). Strong attraction76

can lead to negative – (4).77

When we include the non-linear packing fraction dependence to leading order, we obtain the following equation of motion78

ˆt�(y, t) = D0ˆ
2
y

1
� + –

2 �2
2
+ r� . [11]79

If we expand �(y, t) in terms of the normal modes as in Eq. 4, we find80

ˆtan(t) = Ênan ≠ –

2D0k
2
nÈÏn|�2Í , [12]81

where ÈÏn|�2Í is the projection of �2(y, t) on to the n
th mode.82

We expect the small density approximation, Eq. 12, to be appropriate when L just slightly exceeds Lest. Thus, we can83

introduce the small parameter84

‘ © L

Lest
≠ 1 π 1 . [13]85

Our discussion of the establishment transition has shown that the frequency of the lowest mode vanishes right at the transition,86

Ê0 = 0, and that the frequencies of all other modes is finite, i.e. Ên = O(1).87

For ‘ small but finite, we still have that the higher modes have linear relaxation frequencies of order one, Ên = O(1) for88

n > 1, but the frequency of the lowest mode now assumes small positive frequency of order ‘,89

Ê0
r

= ≠D0k
2
0

r
+ 1 = ≠

1
Lest
L

22
+ 1 [14]90

= ≠ 1
1 + 2‘ + ‘2

+ 1 ¥ 2‘ π 1 [15]91

Combining Ê0 =O(‘), Ên>1 =O(1) with Eq. 12 shows that, at steady state, an>1 with n > 1 is of higher order in ‘ than a0.92

Thus, to leading order in ‘, we have �(y, t) = a0Ï0(y, t) +O(‘2), which simplifies the amplitude equation Eq. 12 to93

ˆtan(t) = Ênan ≠ –

2D0k
2
na

2
0ÈÏn|Ï2

0Í . [16]94

The scalar product on the right hand side evaluates in general to

ÈÏn|Ï2
0Í = 2

L

⁄ L

0
dy cos

Ë1
n+ 1

2

2
fiy

È
cos2

1
fiy

2

2
[17]

= 8(≠1)n

fi (3 + 2n ≠ 12n2 ≠ 8n3) . [18]
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As before, we confine our attention to the slowest growing mode, n = 0, for which ÈÏ0|Ï2
0Í = 8/3fi leading to the closed95

amplitude equation,96

ˆta0 = Ê0a0 ≠ 4–

3fi
D0k

2
0a

2
0 . [19]97

the steady state density will be small allowing us to expand98

Ê0
r

¥ 2‘ π 1 [20]99

in terms of100

‘ © L

Lest
≠ 1 . [21]101

Rescaling time · = rt and using the leading order approximations D0k
2
0 ¥ r +O(‘) and Ê/r ¥ 2‘ (Eq. 15), we obtain102

ˆ·a0 = 2‘a0 ≠ 4–

3fi
a
2
0 . [22]103

For the inoculation of an initially empty chamber, this logistic di�erential equation yields the simple prediction104

a0(·) =
6fi‘

4–

1
1 + exp(≠2‘·) [23]105

up to a shift in time.106

To illustrate these results, we consider the example of hard spheres for which – = 1.45 is known exactly (from Eq.107

(6.12) in Ref. (5)). Our lowest order expansion Eq. 23 then predicts a packing fraction at the floor of the chamber of108

c(y = 0) = a0 cos(0) = a0 = ‘6fi/(4–) ¥ 3.25‘ at steady state (t æ Œ). Extrapolating from this lowest order expansion, we109

may estimate that a chamber length of no more than ‘j = 24% above the establishment length is needed for jamming to occur,110

because then the maximal density at the floor, 3.25‘j = 0.64, approaches random close packing (�rcp ¥ 64% for monodisperse111

spheres). This simple estimate of course ignores non-linear feedbacks, which typically leads to an earlier onset of jamming, as112

seen in Figs. 2b and 3a.113

Of particular significance is also the predicted relaxation time to the steady state, the inverse of which is often taken as a114

measure for the resilience of an ecological system (6). From the exponent in Eq. 23, we see that this relaxation time is given115

by 1/(2‘r), which is independent of – and, notably, diverges near the establishment transition. Thus, relaxation can take116

long — much longer than the di�usive exploration of the chamber, which takes about one cell doubling near the establishment117

transition (the di�usive half-life of particles in a crypt at establishment length just equals the doubling time, see Sec. A.3).118

Therefore, we generically expect a time scale separation between relaxation of the density profile towards the cosine shape119

(fast) and relaxation of the amplitude of the cosine (slow).120

Although the cells in our experiments are neither spherical nor monodisperse, we expect the above results to apply up121

to pre-factors. For example, since ‘ remains small up to the jamming transition also in our experiments, one would expect122

long relaxation times throughout the gaseous phase. Indeed, relaxation in our flow shift experiments took up to 10 h or five123

doublings (see green curve in Fig. S7).124

A.5. Mechanical analogy predicts steady-state colonization patterns. Let us consider the one-dimensional reaction-di�usion equation
for the cell packing fraction �(y, t) at position y and time t

ˆt�(y, t) = ≠ˆyJ + b (�) [24]
J(y, t) © ≠D(�)ˆy� [25]

where we allow for an arbitrary density-dependence in both the collective di�usivity D(�) as well as the growth rate b(�). As125

pointed out in the main text, the linear growth rate in our experimental system is to a good approximation constant, which126

corresponds to b(�) = r�. The mathematical treatment in this section is independent from this simplifying condition.127

We define the quantity128

� (�) ©
⁄ �

0
d�Õ

D(�Õ) [26]129

such that the di�usive current is given by130

J = ≠ˆ��(�)ˆy� = ≠ˆy�(y) [27]131

where we identified �(y) © �[�(y)] to simplify the notation. Eq. 27 formally implies that a gradient of �(y) drives a current132

just like a conventional pressure gradient would. We therefore call � e�ective pressure. Since for passive di�usion�, we must133

have ˆ��(�) = D(�) > 0, we can invert the equation of state to obtain a the packing fraction �(�) as function of e�ective134

pressure �.135

Next, combining Eqs. 24, 26 and 27 yields at steady state136

ˆ
2
y� = ≠b (�) = ≠ˆ�U(�) [28]137

�The mechanism of Motility-Induced Phase Separation is based on an active movement (motility), which can generate a negative effective diffusivity (1).

4 of 25 Yuya Karita, David T. Limmer and Oskar Hallatschek



where we defined an e�ective potential

U(�) ©
⁄ �

0
d�Õ

b[�(�Õ)] [29]

U [�(�)] =
⁄ �(�)

0
d�Õ

D(�Õ)b
!
�Õ"

. [30]

The boundary conditions imply �(L) = 0, manifestly ensured through Eq. 26, and ˆy�(y = 0) = 0, which we will account for138

below.139

Notice that Eq. 28 is formally identical to Newton’s equation for a particle at position �(y) at time y freely falling in a140

potential U(�). Hence, we can use the principle of mechanical energy conservation to immediately predict the velocity ˆy� of141

the moving particle in our mechanical analogy, which in our reaction-di�usion problem corresponds to the negative particle142

current143

J(y) = ≠ˆy� =


2 (U0 ≠ U(�)) , [31]144

manifestly satisfying the no-flux boundary condition ˆy�(y = 0) = 0. Note that we use the notation U0 © U(�0) and145

�0 © �(y = 0).146

Integrating Eq. 31 over the y yields147

⁄ �0

�

d�Õ


2 (U0 ≠ U(�Õ))
=

⁄ y(�)

0
dy = y(�) [32]148

or

y(�) =
⁄ �0

�

d�Õ
ˆ��

2 (U0 ≠ U(�Õ))
[33]

=
⁄ �0

�

d�Õ
D(�Õ)

2 (U0 ≠ U(�Õ))
[34]

where U(�) = U [�(�)], as defined in Eq. 30. Calculating y(0) = L gives us the e�ective chamber length given a maximal149

packing fraction �0 at the floor (y = 0) of the chamber, which is how we determined Figs. 2b and 3a. Since the function y(�)150

is monotonous, it can also be inverted to determine the position-dependent packing fraction �(y), shown in Fig. 2b for hard151

sphere,again given the maximal packing fraction �0 at the floor of the chamber.152

The integrals in Eqs. 34 and 30 can be solved numerically without problems for any D(�) > 0 and b(�), provided U(�) < U0153

along the trajectory.154

A.6. General approach to compute the phase diagram.Generically, the shape of the potential U(�) will start at U(� = 0) = 0 and155

increase monotonically because U
Õ = ≠D(�)b(�) Æ 0, unless we allow for a region of negative net growth b < 0. The behavior156

near � = 0 is quadratic since U
Õ(� = 0) = 0 from the no-flux boundary condition and we assume analyticity of D and b. For157

small �, we expect DÕ
> 0 suggesting that the potential at first rises faster than a parabola. At larger � we expect, instead, a158

negative slope of D(�) resulting in a flattening of the potential until jamming leads to rapid rise of the potential.159

To determine the density at the floor of the chamber, we have to solve the following problem: Let a point mass move down160

this energy landscape from � = �0 back down to � = 0. The time it takes the moving mass to reach � = 0 has to equal the161

length L of the chamber. If the sojourn time is too small (large) we have to increase (decrease) �0. Mathematically, we can162

formulate this condition using Eq. 34,163

L = F (�0) ©
⁄ �0

0

d�̃D(�̃)Ò
2

!
U(�0) ≠ U(�̃)

" . [35]164

We have thus obtained an equation that can be used to determine a phase diagram as in Fig. 3a from any D(�) and b(�).165

Multiple steady states exist if there are multiple �0 values with identical sojourn times. The trivial case for which this happens166

is a simple parabola, which corresponds to the case without density-dependence, D = const. and b(�) = r�. Then, we have a167

critical length where any density �0 will lead to a marginally stable steady state.168

More realistically, multiple steady states occur if the potential fluctuates around a parabola. The density interval supporting
multiple steady states is bounded by �0-values for which

ˆ�0F (�0) = 0. [36]
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This condition can be computed explicitly as follows,

0 = ˆ�0F (�0) = ˆ�0

⁄ �0

0

d›D(�0 ≠ ›)
2 (U(�0) ≠ U(�0 ≠ ›))

[37]

= D0
2U(�0)

+
⁄ �0

0

d›D
Õ(�0 ≠ ›)

2 (U(�0) ≠ U(�0 ≠ ›))

+ (D(�0)b(�0) ≠ D(�0)b(�0))
⁄ �0

0

d›D(�0 ≠ ›)
[2 (U(�0) ≠ U(�0 ≠ ›))]3/2

, [38]

where we substituted › © �0 ≠ �̃ in the first line and using Eq. 30 to express the derivative of U in the last line. If Eq. 38 has169

any solution there must exist multiple steady states.170

A.7. Collective diffusion for hard spheres. In general, D(�) is a collective di�usion coe�cient as opposed to a tracer di�usivity or171

self-di�usion coe�cient. With purely passive di�usion, D(�) can be decomposed into the product D(�) = µ(�)kBTˆ�P (�) of172

two terms with an intuitive interpretation:173

• µ(�) is the collective mobility, a transport coe�cient that describes the sedimentation velocity and is typically a decreasing174

function of packing fraction �. As a transport coe�cient it depends on the equations of motion, and the treatment of175

hydrodynamics.176

• P (�) is the osmotic pressure of the cell suspension, and its derivative is proportional to the (osmotic) bulk modulus,177

which has to be positive. Because P (�) is a pure equilibrium quantity, it can be readily obtained from Monte Carlo178

simulations without modeling the surrounding fluid at all.179

For a system of hard spheres, a multipole expansion of the e�ective hydrodynamic interaction (7) can be used to extract the180

collective mobility for particles immersed in an incompressible fluid. With collective mobility computed using this method,181

we confirmed the empirical Richardson-Zaki scaling form (8), µ(�) = µ0(1 ≠ �)÷ where µ0 is the particle mobility in the182

dilute limit. We extracted ÷ = 5.8 from a linear regression of µ(�). The fit and accompanying data are shown in Fig. S11,183

which over the range of packing fractions considered are in good agreement. Similarly, the equation of state of hard spheres184

is known to be well described by a Carnahan-Starling equation (9). In terms of the packing fraction, the pressure P (�) is185

given by, P (�)/kBT = (6�/fi)(1 + � + �2 ≠ �3)/(1 ≠ �)3. Taken together, we obtain the collective di�usion coe�cient via186

D(�) = kBTµ(�)ˆ�P (�), which was used together with b(�) = r� to determine the hard sphere phase diagram Fig. 3a in the187

main text using Eq. 35.188

It is worth noting that that the resulting collective di�usion coe�cient for hard spheres is merely an approximation designed189

to capture the non-linear behavior for modest to high packing fractions. Exact results are often available for the linear expansion190

coe�cient – of the di�usivity D/D0 ¥ 1+–�+h.o.t. (see e.g. Ref. (4)), valid at low density, which can be useful for estimating191

the behavior of the gaseous phase at low densities. For instance, in Sec. A.4, we used the exact result – = 1.45 (5) for hard192

spheres to estimate the steady state density, rather than –approx = 8 ≠ ÷ from the above approximation Richardson-Zaki/193

Carnahan-Starling approximation.194

B. Proliferating soft disk simulations. To see which phase transitions emerge in a minimal model that only includes proliferation,195

cell di�usion and cell repulsion, we explicitly simulate a mechanical system of soft disks that undergo Brownian motion and196

that divide with a constant rate.197

B.1. Model details. Each particle, i, obeys a stochastic equation of motion for its position in two dimensions, ri = {xi, yi},

dri
dt

= ≠µ0ÒiU
!
rN

"
+ ÷i

where µ0 is the time single particle mobility resulting from the surrounding fluid, ÷i is a Gaussian random variable with mean198

È÷iÍ = 0 and variance È÷i(t) ¢ ÷j(tÕ)Í = 2kBTµ01”ij”(t ≠ t
Õ) where kBT is Boltzmann’s constant times the temperature of the199

fluid and is diagonal for each particle and cartesian component. We solve this equation using a standard first order Euler200

discretization. In addition to Brownian motion, the particles move in response to a potential U(rN ) that depends on the full201

configuration of the system, denoted rN . At any time, there are N total particles, with Nm maturated mother particles and202

Nd growing daughter particles. The interaction potential is decomposable into U
!
rN

"
= Ub

!
rN

"
+ Ur

!
rN

"
+ Uw

!
rN

"
where203

Ub is the bonding potential between mother and daughter particles, Ur is a purely repulsive interparticle interaction and Uw is204

a confining potential.205

The bonding potential is taken to taken to be a simple Hookian spring,

Ub
!
rN

"
=

Nÿ

iœNm
jœNd

Ÿ

2 (rij ≠ bij)2 ‰ij
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with sti�ness Ÿ, rest length bij , and ‰ij = 1 if particles i and j are a mother daughter pair and ‰ij = 0 otherwise. The specific
form of the repulsive interparticle potential is taken to be pairwise decomposable

Ur
!
rN

"
= 1

2

Nÿ

i”=j=1

u2(rij)(1 ≠ ‰ij)

where the pair potential u2(rij), is a WCA potential (10)

u2(rij) =

Y
]

[
4‘

51
‡ij

rij

212
≠

1
‡ij

rij

26
6
+ ‘ if r < 21/6‡ij

0 else

where ‘ is a characteristic energy scale and

‡ij = 1
2 (‡i + ‡j)

where ‡i is the characteristic size of particle i. All pairs of particles, excluding bonded mother and daughter pairs, interact
with these are excluded volume interactions. Finally, the confining potential restricts the the particles motion to approximately
an area A = LxLy by imposing a steep potential at x = 0, x = Lx, and y = 0. Specifically, the external wall potential has the
form,

Uw
!
rN

"
=

Nÿ

i=1

a
#
e

≠yi/› + e
≠xi/› + e

≠(Lx≠xi)/›
$

with a the amplitude of the confining potential and › its characteristic length scale.206

The mechanical system outlined above is conservative and describes the motion of a collection of overdamped particles
with a simplified, local description of hydrodynamics (11). At long times, absent added external forces, its evolution would
be consistent with thermal distribution and would conserve particle number. In order to model the growth of the bacterial
population and division of an individual mother daughter pair, we endow the daughter particles with a time dependent e�ective
size through the deterministic equation of motion

d‡i(t)
dt

=
;
k for t < 1/k
0 else

with boundary condition ‡i(0) = 0 and growth rate k. Similarly, to model the budding of the daughter from the mother, the
rest distance bij changes in time with the deterministic equation of motion

dbij(t)
dt

=
;
k for rij < ‡i

0 else

with boundary condition bij(0) = 0 and the same growth rate k. When then impose that when the distance between the207

mother-daughter pair rij(t) has grown past the e�ective size of the mother particle, ‡i, we sever the bond potential by ‰ij æ 0208

between mother-daughter pair ij, provided t > 1/k. An illustration of this criteria is shown in Fig. S12. This growth rule209

results in an increasing excluded area of the mother-daughter pair that grows approximately linearly in time. All of the results210

in the main text and below employ this rule with a fixed k. Growth rules that a�ect in an exponential increase in the excluded211

area with time yield qualitatively similar results. Further the results presented are for a fixed growth rate k, but generalizations212

for populations evolving with a distribution of growth rates are also qualitatively similar, provided the distribution is narrow.213

Synchronized with the bond breaking event, we add new daughter sites to each of the newly divided particles and reinitialize214

the size and rest length to 0 for each of them. This last step breaks particle number conservation. An illustration of the215

subsequent increase in Nm is also shown in Fig. S12, which absent mitigating factors will grow exponentially in time.216

Finally, consistent with the experiments, we apply an absorbing boundary condition at y = Ly. The absorbing boundary217

condition and particle number growth balance at steady-state, resulting in a mean particle number that depends on the218

geometry and model parameters. We adopt a unit system where µ = ‘ = kBT = 1, and mature particles sizes ‡ = 1. This219

implies that lengths are defined in multiples of the mature particles size, x æ x/‡ and times in units of the di�usion time for220

an isolated particle to move its diameter, with D0 = kBTµ0 and accompanying units of time, t æ t/(D0‡
2). The sti�ness Ÿ in221

principle allows for mechanocoupling between the division and local packing environment, with deterministic division occurring222

when Ÿ is much larger then the local stress on the mother-daughter pair. In this work, we consider this limit and take Ÿ = 100.223

The confining potential parameters are taken as a = 10 and › = 1.224
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B.2. Nonequilibrium phase diagram.We have studied the particle based model described above and have found qualitative agreement225

with both the experimental results and simplified theory presented in the main text. Specifically, we have studied a system226

with confinement defined by fixed spatial scale Lx = 15 and Ly = 40, seeded with an Nm = 10 initial mother particles. We227

have found that 10 division cycles is su�cient to relax to a steady state density in the chamber, and evaluated expectation228

values by averaging over a minimum of 30 additional division cycles. Further, 3-5 independent simulations are used for each229

expectation value reported. Studies of the e�ective reaction di�usion model suggests that the function dependence of the230

system on the length of the chamber enters relative to the establishment length Lest = fi


D0/4k, so rather then studying231

di�erent Ly’s, we fixed Ly = L and study the dependence on the division rate k, and thus Lest.232

First, we studied the stead-state density distribution in the chamber. For L/Lest < 1, as expected the density in the
chamber is 0 at steady-state on average. For L/Lest > 1, the particles are able to colonize the chamber, and evolve a stationary
density distribution. The distribution can be characterized analogously through local packing fraction �(y) = fl(y)fi/4 where
fl̂(y) = È”(y ≠ yi)Í. Generally, the discrete size of the particles relative to a flat wall will result in an oscillatory density profile
when the overall density is larger, fl > 0.1, which is a result of density correlations induced by their excluded area. Such an
oscillatory density profile is not predicted by the simple reaction di�usion model employed in the main text. In order to make
contact with that perspective, we report in Fig. S13 density profiles coarse-grained over a the length-scale of the particle(12).
We achieve this using by convoluting the number density with a Gaussian,

fl(y) =
⁄

dy
Õ
fl̂(yÕ)e

≠(y≠yÕ)2/2‡2

Ô
2fi‡2

which smooths the profile out. Further, we consider the contribution of the density only from the mother particles, and evaluate233

expectation values for times that are integer multiples of 1/k.234

Fig. S13 specifically reports conditions for L/Lest = {1.2, 2, 4}. We also compare those calculations to the predictions of the235

reaction di�usion model. For Ly/Lest = 1.2, the density is small enough that we find good agreement with the predicted cosine236

profile, �(y) = �(0) cos(fiy/2Ly). At elevated L/Lest, deviations of the cosine profile are found and specifically at Ly/Lest = 4,237

the distribution is flat in the interior of the chamber with an exponential boundary layer that brings the packing fraction to 0238

at y = L. Using a parameterization of the collective di�usion constant D(�), evaluated by computing the packing fraction239

dependent mobility µ(„) that is well described by µ(„) ¥ µ0 exp(≠1.70� ≠ 0.18�/(1 ≠ 1.33�)), and the equation of state well240

described by P (�)/kBT ¥ 1.27� + 2.55�2 ≠ 9.35�3 + 42.72�4 of the WCA disks, consistent with previous estimations,(13, 14)241

we can numerically solve the reaction di�usion equation and determine the packing fraction profile for L/Lest = 4. This242

predicted profile is in good agreement with the coarse-grained profile from the simulations.243

To estimate the boundaries between the extinct, established, and jammed phases, we have computed the coarse-grained244

value of the packing fraction at the wall as a function of L/Lest. This is shown in Fig. S14. As anticipated by the reaction245

di�usion analysis, the establishment transition occurs for L/Lest ¥ 1, which is consistent with our findings that L < Lest the246

chamber is empty at steady-state. For L > Lest the maximum packing fraction gradually increases until L = Ljam ¥ 3.3 where247

for this two-dimensional system we find an abrupt change in the maximum packing fraction. The amplitude of this change248

is small, reflecting the small change in the density upon freezing of the WCA disks, which is around 2% (15). Indeed, the249

pressure measured at the wall at y = 0, computed from the average force per unit length of wall, pw = ≠
qN

i
ÈdUw/dyiÍ/Lx,250

surpasses the coexistence pressure for the freezing of WCA spheres at this value of L. As illustrated in Fig. 2 in the main text,251

for L > Ljam the system exhibits noticeable crystallinity.252

B.3. Self diffusion calculations. In order to estimate the self-di�usion coe�cient in the chamber as a function of L/Lest, we consider
only the di�usivity in the x direction, the direction orthogonal to the open end. This is because there exists a net mass current
in the y direction, so motion is convective in that direction rather than di�usive. For di�usion in the x, we use the standard
definition

Ds(�) = lim
tæŒ

1
2t È[xi(t) ≠ xi(0)]2Í

as the long time limit of the mean squared displacement. However two di�culties arise in applying this relation to extract253

the self di�usion. First, particles leave the chamber at a finite rate, due to the absorbing boundary condition at y = L.254

This requires that we average particles’ displacements only up to their lifetime in the chamber. In order to gather su�cient255

statistics and increase the lifetime of individual particles, we use a larger chamber Ly = L = 80. Second, the finite size of256

the chamber in the x direction, Lx means that particles will only exhibit di�usive dynamics for mean squared displacements257 
È[xi(t) ≠ xi(0)]2Í < Lx/2, and thus the long time limit strictly goes to 0. We find using Lx = 30 to be large enough that258

there exists a su�cient separation of timescales between the onset of di�usive motion and its reduction due to confinement that259

we easily extract a pseudo-time independent self-di�usion constant. This data is reported in Fig. 2.260

C. Theory of Invasion. For a foreign strain to invade a pre-occupied chamber, an invader has to overcome two hurdles: #1)261

Infiltration: the invader di�uses from the outside against the gradient to reach a favorable position near the floor of the chamber.262

#2) Take over : the invader’s descendants displace the resident population through a combination of chance (genetic drift) and263

competitive advantage.264

Our experimental observations in combination with our simulations indicate that the main reason for the colonization265

resistance is the di�culty for outside cells to di�usively penetrate chambers that are already filled. Infiltration is rare even266

in gaseous chambers, but nearly impossible in jammed populations where a narrow strip of founder cells at the floor of the267
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chamber is insulated from the outside by di�usion barrier of descendant cells. Accordingly, the biggest impact of the antibiotic268

occurs in cavities that, due to the growth rate detriment of the resident, become unjammed and hence invadable (Fig. 4). The269

larger the growth rate detriment, the larger the range of chamber length that are driven across the tipping point.270

In the limit of weak selection, and large chamber population size, infiltration happens on a much faster time scale than271

take over. This allows to analyze the dynamics in two separate steps. The second, takeover, step is familiar from well-mixed272

populations. The rate of successful take over depends on the competition between selective advantage of the faster growing273

invader and genetic drift. The first challenge, however, uniquely depends on the spatial structure of the colonized cavities,274

which is why we mainly focus on the infiltration step.275

The infiltration step is best analyzed backward in time. As we follow the lineage of a randomly chosen cell backward in time,276

it is advected towards the floor of the chamber, reflecting the intuitive location advantage discussed above. A balance between277

self-di�usion and advection leads to a steady state lineage distribution, whose extent scales as the ratio of self-di�usivity and278

advection velocity. While the advection velocity is very similar between gaseous and jammed populations, self-di�usion di�ers279

dramatically, by four orders of magnitude, compressing the ancestor distribution in the jammed population to just few cell280

layers at floor of the chamber.281

Our mathematical analysis in the next section shows that the neutral invasion success of an injected invader is proportional282

to 1/N times the ratio of the invader density in the supply channel and the mean density of the population. This shows that283

gaseous population do enjoy some colonization resistance, compared to well-mixed populations for which the neutral invasion284

success would just be 1/N .285

Yet, the colonization resistance of gaseous populations still is weak compared to partially-jammed populations. Their286

infiltration is nearly impossible, as it is exponential in the ratio of the thickness of the jammed fraction and the thickness of the287

founder population, which is at most several cell diameter. The founder population at the floor of the chamber is essentially288

isolated from the supply channel, through the constant shedding of jammed cells acting as di�usion barrier for any invader.289

Invasion can only be achieved if this di�usion barrier is broken down, say by an antibiotic treatment or chamber deformation290

or increase in chamber flow.291

Finally, we discuss the case where the growth rate of the resident is reduced by the action of an antibiotic, as done in292

our experiments. Invadable, gaseous, populations become invaded at rate that is increased by factor of Nes, where s π 1 is293

the growth rate defect and Ne ∫ 1 is the e�ective population size of the chamber. The situation is similar to well-mixed294

populations. The only di�erence is that, due to the spatial structure of the population, Ne/N < 1 is mildly and strongly295

reduced in the gaseous and jammed states, respectively.296

C.1. Tracking lineages backward in time. To model infiltration and neutral take over, we generalize an analysis of “gene surfing” (16)
to include a distinction between collective di�usion and self-di�usion. Suppose we sample a cell at position › at present time ·

and seek to determine the probability density G(y, t|›, ·) that the ancestor of the cell was at position y at earlier time t. G then
describes backward in time the position of the cell’s lineage, which is subject to self-di�usion and advection (no proliferation).
G therefore satisfies a generalized di�usion or Fokker-Planck equation, which takes the form

ˆtG(y, t|›, ·) = ≠ˆyjl(y, t) [39]
jl(y, t) = ≠DsˆyG ≠ (vg + vs)G [40]

vg © jp/c [41]
vs © ≠Dsˆy ln(c) , [42]

where Ds is the self-di�usivity and the particle current jp is given by297

jp = ≠Dgˆyc+ vpc , [43]298

where vp(y, t) is the particle velocity at (y, t) due to any external force.299

The key part here is the contribution of the lineage current due to self-di�usion. The mathematical form vs = ≠Dsˆy ln(c)300

is fixed by the requirement that, for vg = 0, G Ã c must be a steady sate solution with vanishing current.301

Suppose, the chamber population has reached a steady state and is large enough so that we can ignore density fluctuations.302

Assuming there is no external force, vp = 0, the steady state of the ancestor distribution is then given by303

G(y) = c(y)1+
Dg
Ds /N , [44]304

where N is a normalizing factor,305

N =
⁄ L

y=0
dy c(y)1+

Dg
Ds [45]306

From this, we can conclude that one particle injected at y, will after relaxation in the cavity take up a fraction307

u(y) = c(y)
Dg
Ds /N . [46]308

This expression is particularly useful for the gaseous phase where gradient- and self-di�usivity are nearly identical. In this case,309

we have an approximately cosine density profile and, with Dg = Ds, we obtain310

u(y) ¥ 8
fi2

c(y)
c

1
N

, [47]311
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where c = N/L is the mean population density in the chamber. This expression shows that the neutral invasion success is312

much less than the well-mixed expectation 1/N because the invading cell has to enter from the supply where the cell density is313

very low.314

In the case of a jammed population, the above expressions are not so useful because they require us to know the minute315

spatial density variations in the jammed phase. Instead, we can exploit the fact that the density hardly varies apart from a316

boundary layer near the exit of the chamber. A vanishing particle current at steady state requires317

≠ Dgˆyc(y, t) = r

⁄ y

0
dy

Õ
c(yÕ

, t) ¥ rc0y , [48]318

where we used c(y, t) ¥ c0 in the last step. Hence, the steady state ancestor distribution is a decaying Gaussian,319

G(y) = exp
5

≠ r

2Ds

3
1 + Ds

Dg

4
y
2
6
/N . [49]320

Since Ds/Dg π 1 in the jammed phase, we conclude that fixation becomes small very rapidly when y > ⁄s ©


2Ds/r .321

In our experimental system, we found that ⁄s is about one cell diameter and the thickness of the jammed fraction was322

about 50 cell diameters, even just after the tipping point. It is, therefore, appropriate to think of the jammed populations as323

di�usively isolated from the outside environment.324
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Supplementary Table325

Species Strain Note Medium Scale-dependent colonization Reference

E. coil MG1655 LB + 0.2% BSA Not observed
E. coil UG2441 Less adhesive LB + 0.2% BSA Not observed (17)

Non-motile
B. subtilis HV1235 Matrix mutant LB Not observed (18)

Non-motile
V. cholerae JY287 Matrix mutant LB + 0.2% BSA Observed (19)

Non-motile
A. pasteurianus LFM13 Fly-gut derived MRS Observed (20)

Non-motile
A. tropicalis LFM14 Fly-gut derived MRS Observed (20)

Non-motile
L. lactis NZ9000 Non-motile GM17 Observed (21)

Table S1. Strains cultured in panflute devices. Scale-depedent colonization was observed across multiple species (see Fig. S3), but was not
observed for strains which were highly adhesive to walls or had a strong capability of bioflim formation or filamentation.

Supplementary Figures326

Flow

Fig. S1. Colonization patterns in randomized panflutes. The effect of anterior populations in the same row was tested by randomizing the order of chambers. The transition
to a phase-separated state was observed independent of the order of the chambers. White arrows show the onset of jamming. The scale bar indicates 100 µm.
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Fig. S2. Measuring self-diffusivity and collective diffusivity. (a) Self-diffusivity was measured by tracking single cells in gaseous phases (inset: a snapshot of single-cell
tracks). The self-diffusivity was calculated as 376± 6 µm2/h from the mean square displacements in the horizontal direction. The error was estimated from fitting. (b) Diffusivity
in jammed phases was estimated by manually tracking lineages (inset: a snapshot of a lineage). The diffusivity was calculated as 0.62 ± 0.02 µm2/h from the mean square
displacements in the horizontal direction. (c) Collective diffusivity was calculated from steady-state density profiles (see Method) of gaseous phases in 4 chambers with various
depths (the colors show different chambers in the same panflute). The measured collective diffusivity showed a trend of unimodality. The black cross shows the self diffusivity
measured in (a). The errors were estimated from the smoothing parameters.

12 of 25 Yuya Karita, David T. Limmer and Oskar Hallatschek



Vibrio choleraeAcetobacter tropicalis

Lactococcus lactisAcetobacter pasteurianusa)

b)

c)

d)

50 μm

Day 6 Day 5

Day 6 Day 6

Jammed Gaseous Empty

Fig. S3. Three colonization phases are observed in different bacterial species. Pictures were taken after 5-6 days of incubation in microfluidic devices. Despite biofilm
formation (b) and nutrient depletion (c), we observed qualitatively similar colonization patterns. Scale bars indicate 50 µm.
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Fig. S4. Growth rate measurements with a plate reader and particle image velocimetry (PIV). (a) The growth rate of Acetobacter indonesiensis was measured with
a plate reader. The maximum growth rate at 30 °C was estimated as 0.325 ± 0.003 h≠1 from the initial growth of 4 independent populations. (b) The growth rate of
tetracycline-sensitive (blue) and resistant (orange) cells was measured with various drug concentrations and normalized by the the growth rate of drug-resistant cells in the
absence of the drug. The minimum inhibitory concentration was estimated about 17 µg/mL by extrapolating the plot. The averaged growth rate for each condition was calculated
from 4 replicas. (c) A schematic of PIV analysis. Arrows show the local velocity of the positions. The length of arrows is proportional to the local velocity. (d) The local velocities
of cells at high temperature (red, 30 °C) and low temperature (blue, 22 °C) were linear functions of the position from the bottom of a microfluidic chamber. The solid lines were
the local velocities averaged over 3 hours, and the shaded regions show the standard error of mean. The growth rate of cells was derived from the slope of the linear function
as 0.332 ± 0.007 and 0.280 ± 0.001 h≠1 at high and low temperature respectively.
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Fig. S5. Density profiles of gaseous phases can be scaled to approximately collapse onto a master curve. (a) The steady-state density profiles in a Microfluidic Panflute
device. The plot is taken from Fig. 1d. The density profiles in the gaseous state can be well approximated by the function cmax cos(fix/2Lc), which can be seen in the
rescaled plot showing c/cmax vs. x/Lc (inset). (b) Plotting Lc vs. cmax yielded a near linear relationship in the gaseous state. Extrapolating the linear fitting of the lowest three
points to vanishing density yielded an estimate of the establishment length Lest ¥ 53 ± 7 µm. The error was estimated from fitting. By comparison, our linear stability analysis
predicted Lest ¥ 53 ± 1 µm (see main text).
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Fig. S6. The establishment length Lest shifts upon a temperature change. We performed two temperature shift experiments, where we inoculate a panflute at one
temperature and, after sufficient relaxation, shift to another temperature, after which we let the system relax again. (Relaxation often took more than 5 hrs.) (a) 30 °C to 26 °C.
Right: The density profiles changed within the different crypts changed substantially the temperature change. Densities are consistently higher at 30 °C (orange) than at 26 °C
(blue). The profiles were measured at steady states with fluorescent microscopy. The insets of the plots show PIV measurements whose slopes indicated the growth rates (see
Fig. S4c and d). The growth rate decreased to 87.2 ± 0.8 %. The shift of Lest was analyzed by determined by extrapolating the relation between cavity length and maximal
population density at the floor of the crypts to vanishing cell density, similarly to Fig. S5. We found that the establishment length L est increased by 112 ± 11 %. This change

was consistent with our theory Lest Ã
1

Ô
r

(1/
Ô
0.87 ≥ 1.07). (b) The establishment length shifted upon the temperature change (from 30 °C to 22 °C). The steady-state

density profiles at 30 °C (orange) and 22 °C (blue) were fitted by a cosine function (black solid and dashed lines, respectively) and normalized. The establishment length was
defined by the x-intercept. The relative change of this critical length (6.6 %) was consistent with our theory predicting it to be given by the square root of the relative growth rate
change (8.6 %, Fig. S4d). Note that, while these temperature shift experiments are consistent with a pure growth rate change, they come with the caveat that, besides growth
rate, additional cell traits might be affected that influence the phase behavior, for instance, the shape of the cells or their intercellular mechanical interactions.
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Fig. S7. Phase shift and bistability upon flow rate change. This figure documents how colonization patterns in the Microfluidic Panflute changed as we changed flow rates
from “High” (purple, 0.8 µL/h) to “Low” (blue, 0.3 µL/h) and back to “High” (red), while allowing the populations to reach steady state after each flow rate change. Note that a flow
rate increase (decrease) corresponds to a decrease (increase) in the effective chamber depths (see Fig. S8). (a) The fraction of occupied chambers (left) and the fraction of
jammed chambers (right) are shown as a function of chamber size (incremented by 10 µm). The lines are colored according to the state diagram (left). n = 3-6 for each
chamber length. Note that, while the critical length for establishment (left) shifted reversibly as the flow rates was changed, we found hysteresis in the jamming transition
(right). (b) The average transitional lengths extracted from (a) are displayed. The error bars show the standard error of the mean. The point without the error bar means that all
samples had their establishment transition at the same (discrete) chamber length. (c,d) Time tracking of populations growing in the same Microfluidic Panflute. (c) Steady state
snapshots of chambers that are near the jamming transition. Note that, while the occupancy pattern of chambers 1 and 3 changed reversibly, chamber 2 showed hysteric
behavior, indicating bistability. (d) Dynamics of the maximal cell density at the floor of the chambers as the flow rate was cycled. Colored lines show the temporal dynamics of
the maximum relative cell density in each chamber. The density profiles in the chambers were calculated by averaging the fluorescence across the horizontal direction at each
time point. The shaded region shows the standard error of the mean. Two representative snapshots for two stable states of chamber 2 are shown in the insets. The black line
shows an exponential fit to the population decay. The decay time was 5.9 ± 0.4 hour (the error was estimated from fitting).
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Fig. S8. Simulations of the hydrodynamic flow fields in the Microfluidic Panflutes. (a) Streamlines of the flow were visualized by overlaying 90 frames taken every
2 seconds. The trajectory of cells showed that the typical scale of the flow invasion length was about 60 µm. The scale bar shows 50 µm. (b) The hydrodynamics in our
microfluidic devices were simulated using COMSOL. Red lines show streamlines. (c) The horizontal flow velocity along the blue dotted line in (b) is shown as function of vertical
position y. Note that the flow rapidly decays from the opening (y = 0) towards the floor of the cavity. The inset shows the flow profiles in a semi-log scale. We define an
arbitrary threshold flow velocity (0.3 µm/s, the black line in the inset) to define the flow invasion length and the effective chamber length, shown as the purple arrow and the
orange (100-µm chamber) and red (150-µm chamber) arrows, respectively. The flow invasion length is constant for chamber sizes beyond 100 µm. (d) The effective chamber
size gets shorter by 10 µm when the flow rate changes from low (blue, 100 µm/s average flow rate) to high (orange, 250 µm/s average flow rate), shown as the black arrow in
the inset. Note that the shift of the effective chamber size is not sensitive to the choice of the threshold flow velocity.
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Fig. S9. Neutral dynamics of mixed cultures reveal suppressed lineage diffusion in jammed population. (a) A schematic of neutral competition experiments. A 50:50
mixture of wild-type and labeled invader strains was inoculated into unoccupied chambers without antibiotics. (b) Labeled cells were sparsely distributed in a gaseous phase. (c)
Steric interactions and proliferation produced band-like patterns in a jammed phase. The population dynamics were dominated by a small number of cells at the bottom of a
cavity. (d) Diversity was rapidly lost in a jammed phase. A cluster of GFP-tagged cells was pushed out of the chamber by the population growth in a few generations.
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Fig. S10. Replicas of invasion experiments with 10 µg/mL tetracycline. Replicas from other rows on the same microfluidic chip. Orange frames show the same positions.
Colonization resistance of the jammed phases was consistently observed, while the rate of invasion varied across replicas (less successful in the replica 1, and more successful
in the replica 2).
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Fig. S11. Collective mobility with complete many-body hydrodynamic interactions (blue circles) and a fit to the Richardson-Zaki scaling form (red line).
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Fig. S12. Illustration of the growth and division. (top) Illustration of the mechanical model of division of a mother (red) daughter (blue) particle pair, where the characteristic size
of the mother is ‡i and its displacement from a daughter is rij (bottom) Illustration of the subsequent exponential proliferation of particles in time over 10 division times. The
red line is a guide to the eye.
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Fig. S13. Coarse-grained packing fraction profiles computed from simulations at L/Lest = {1.2, 2, 4} (blue, orange and green) compared to the analytical predictions of the
reaction diffusion model (solid lines).
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Fig. S14. Phase diagram for the proliferating soft disks determined by the maximum coarse-grained packing fraction in the chamber.
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Descriptions of Supplementary movies.327

Movie S1. Jamming dynamics and gaseous phases. The movie shows the lengthscale-dependent colonization328

in a Microfluidic Panflute over 35 hours. While cell populations get jammed in long chambers, they remain329

gaseous in short chambers. The approach to the steady state takes markedly longer in chambers close to the330

transition, which is characteristic of critical slowing down near tipping points.331

Movie S2. Formation of a jammed shockwave. The movie shows the movement of the jamming front over 20332

hours. The culture medium flow came from the top to the bottom.333

Movie S3. Population decay upon drug injection. The movie shows the decay of a drug-sensitive population334

over 14 hours upon injection of 10 µg/mL tetracycline. The sharp decrease of the growth rate of cells results335

in the phase transition from initially jammed to gaseous.336

Movie S4. Invasion of an advantageous strain. The movie shows how a drug-sensitive resident population337

(dark) is invaded by drug-resistant cells (yellow). The fitness of the established drug-sensitive bacteria are338

suppressed by the addition of 10 µg/mL tetracycline. Successful invasions are observed 21 hours after the339

injection of the drug and the advantageous strain.340
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