PHYSICAL REVIEW LETTERS 128, 028005 (2022)

Direct Evaluation of Rare Events in Active Matter from Variational Path Sampling

Avishek Das®,"” Benjamin Kuznets-Speck .~ and David T. Limmer

13.45.%

'Department of Chemistry, University of California, Berkeley, California 94720, USA
2Biophysics Graduate Group, University of California, Berkeley, California 94720, USA
3Chemical Sciences Division, Lawerence Berkeley National Laboratory, Berkeley, California 94720, USA
*Material Sciences Division, Lawerence Berkeley National Laboratory, Berkeley, California 94720, USA
Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, USA

® (Received 18 August 2021; accepted 9 December 2021; published 14 January 2022)

Active matter represents a broad class of systems that evolve far from equilibrium due to the local
injection of energy. Like their passive analogs, transformations between distinct metastable states in active
matter proceed through rare fluctuations; however, their detailed balance violating dynamics renders these
events difficult to study. Here, we present a simulation method for evaluating the rate and mechanism of
rare events in generic nonequilibrium systems and apply it to study the conformational changes of a passive
solute in an active fluid. The method employs a variational optimization of a control force that renders the
rare event a typical one, supplying an exact estimate of its rate as a ratio of path partition functions. Using
this method we find that increasing activity in the active bath can enhance the rate of conformational
switching of the passive solute in a manner consistent with recent bounds from stochastic thermodynamics.
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The constituent agents of active matter—biomolecules,
colloids, or cells—autonomously consume energy to fuel
their motion [1,2]. Their resultant nonequilibrium states
have non-Boltzmann phase-space densities and exhibit
exotic structural and dynamical collective fluctuations,
including motility-induced phase separation and swarming
[3—7]. Within these nonequilbrium steady states, fleeting
fluctuations can free particles from external potentials
[8-10], nucleate stable phases from metastable ones
[11,12], and assemble passive objects [13,14]. The study
of such rare dynamical events within active matter and the
calculation of their associated rates is difficult. Traditional
equilibrium rate theories like transition state theory and
Kramers’ theory require knowledge of the form of the
steady-state distribution that is not in general available
[15]. Further, only a few numerical methods exist that can
be used to tame the exponential computational cost associated
with sampling the unlikely fluctuations that lead to transitions
between metastable states. Existing methods improve sam-
pling by stratifying or branching stochastic trajectories
[16-18] but do not typically employ driving forces to
specifically enhance the sampling of these rare events.

Here we present a perspective and an associated numeri-
cal algorithm, termed variational path sampling (VPS), for
estimating transition rates in active systems using opti-
mized time-dependent driving forces. Our approach relies
on an equality between the rate of a rare event in a reference
system and a ratio of path partition functions in the
reference system and with a driving force that makes the
rare event occur with high probability. The VPS algorithm
solves a variational problem to approximate the functional
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form of an optimal time-dependent driving force for this
estimate and is applicable to any stochastic dynamics. With
VPS we investigate how driven fluids can direct motion
into useful function. We apply this technique to study the
rate of conformational changes of a passive dimer in a
dense bath of active Brownian particles [19-21]. This
model exemplifies how collective active fluctuations
around passive solutes can drive self-assembly and speed
up transitions between distinct metastable states [22,23].
We find the rate to switch between the dimer’s two
metastable states increases dramatically with increasing
activity in the bath, which we rationalize with a recent
dissipation bound from stochastic thermodynamics [24].
We study the computational efficiency of rate estimation
with VPS and demonstrate its advantage over existing
trajectory stratification-based methods like forward flux
sampling [16].

We consider a system described by overdamped
Brownian dynamics of the form

it (1) = Fi [N ()] 4 1;(2). (1)

where 1; is the rate of change of the ith particle’s position,
v, is the corresponding friction coefficient, and F;[r"(¢)] is
the sum of all conservative, nonconservative, and active
forces exerted on the ith particle that depends on the full
configuration of the N-particle system r". The final term,
n;(1), is a Gaussian white noise with (7,,(¢)) = 0 and

Mia(On;p(11)) = 27k pTS;;00p0(t — 1) (2)
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for component (@, f) and kT is Boltzmann’s constant
times the temperature. In order to study the transition rate
between two long-lived metastable states, denoted A and B,
we define each from a given configuration using the
indicator functions,

1 ifrV(r)eXx

0 else,

[ (0)] = { 3)

for either X = A, B. In practice this designation requires an
order parameter capable of distinguishing configurations
and grouping them into distinct metastable states like that
illustrated in Fig. 1(a) in one dimension. Assuming there
exists a separation between the time 7+ required to traverse
the transition region between the two metastable states and
the typical waiting time for the transition, the rate k can be
evaluated from the probability to observe a transition, per
unit time [25],

(hp(t)ha(0)) |
k= &sz = 17 (hpa(ty)), 4)

where the angular brackets denote an average over trajec-
tories of duration 7% < t; < 1/k started from a steady-state
distribution in A and (hp|s(t;)) denotes the conditional
probability for transitioning between A and B in time ;.
When 1, is chosen to satisfy the timescale separation
described above, k is independent of time.

If the transition is rare, most short trajectories are
nonreactive leading to difficulties in estimating the rate
directly. Instead of trying to evaluate the small transition
probability through stratification as other existing methods
do [16,17], we instead optimize a time-dependent driving
force A(r",t) that constrains the transition to occur, and
evaluate the probability cost associated with adding that
force to the original dynamics. For a general time-
dependent force A, using the Onsager-Machlup form for
the probabilities of stochastic trajectories [26], the rate
expression in Eq. (4) can be rewritten as [24]
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FIG. 1. Reactive trajectories with VPS. (a) Schematic repre-

sentation of the total optimal time-dependent potential in an
isolated passive dimer as ¢ goes from 0 to 7;. Shaded regions are
the compact (A, pink) and extended (B, light blue) states.
(b) Unbiased reactive trajectories generated with A(R, 7).

k= tf1<€_AU‘>B\A.A7 (5)

where () g4, denotes a conditioned average computed in
the presence of the additional force. This relation holds for
forces A that affect the transition to occur with probability 1,
such that the rate in the driven ensemble is 1/¢,. The
average is of the exponential of the change in the path
action, AU,

AU,I[X] — _Atf dtz ['112 - 23’1 i (yifi - Fl)] , (6)

4}/ikBT

between trajectories generated with the added force and
in its absence. The path action and all other stochastic
integrals are evaluated in the Itd convention.

Equation (5) is a direct estimator for a rate employing an
auxiliary control system, but it only becomes useful when
the protocol A(r",t) generates trajectories in a manner
equivalent to the unbiased reactive trajectory distribution.
This is because the expectation can be viewed as an overlap
between the two reactive path distributions, and without
significant overlap the exponential average is difficult to
estimate. We express the optimality of A using Jensen’s
inequality after taking the logarithm of Eq. (5) to obtain a
variational principle:

lnkz_lntf_<AU,1>B‘A,}‘- (7)

If the average change in conditioned path action (AU;) g4 5
is minimized over all possible functional forms of A, the
rate can be obtained directly as a simple ensemble average
of AU, at the minimizer A = A*.

The optimal control force A* that saturates Eq. (7)
is unique and given by the solution of the backward
Kolmogorov equation [27-29], as detailed in the
Supplemental Material (SM) [30]. Specifically, the optimal
force is 2kpT times the gradient of the logarithm of the
commitor probability [41] of ending in state B at ;.
A schematic illustration of the optimal effective time-
dependent potential V,(R) added to a double-well potential
is illustrated in Fig. 1(a). The resultant force gradually
destabilizes the reactant well to ensure the transition almost
surely within the short duration 7. Viewed in the backward
direction of time, the potential follows the negative loga-
rithm of the relaxation of an initially localized distribution
in B to its steady state. The force is thus optimal in the sense
that reactive trajectories, like those in Fig. 1(b), generated
with it are drawn from the reference path ensemble with the
correct statistical weights. Generically, A*(r", ) is a func-
tion of all particle coordinates, so it is not typically tractable
to compute. We demonstrate here that one- and two-body
representations of A can be sufficiently close to optimal as
to estimate the rate accurately even in cases where the rare
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event is collective, similar to related observations in large-
deviation sampling [34,42—44].

We study the accuracy and utility of this formalism in a
system composed of an active bath and a passive dimer that
can undergo conformational changes between two meta-
stable states. All particles interact pairwise via a Weeks-
Chandler-Andersen (WCA) repulsive potential [45],

Ve ={4e| (9) "= (2) ] eforman-n. @

with energy scale ¢, and particle diameter o, truncated at
rwea = 296 with the Heaviside function ©. Active
particles experience an additional self-propulsion force
of magnitude vy, F?(t) = voe[0;(r)] where the director is
e(0;) = (cos6;,sin6;) and 6; obeys 0,(1) = &(t), with

(§i(1)&;(t1)) = 2Dys;;6(t — 1), (9)

for angular diffusion constant Dy. Passive solutes separated
by distance R are bound by a double-well potential,

Vaw(R) = AV[l = (R = ryca —w)*/w??,  (10)

with an energy barrier of height AV between the compact
and extended states at R = ryca and R = ryca + 2w,
respectively [46]. We study the transition rates between
these states, employing indicator functions /hy(t) =
O(R4 — R) and hp(t) = O(R — Rp) for Ry = 1.256 and
Rp = 1.850. Conformation transitions like these in dense
fluids are collective in origin [46] and serve as a sensitive
probe of the bath.

The VPS algorithm estimates an optimal force using a
low-rank ansatz by iteratively solving the variational
problem in Eq. (7), and uses this force to directly obtain
a rate estimate. For computing the rate of isomerization of
the passive dimer, we approximate A* with a time-dependent
interaction along the dimer bond vector R, expressed as a
sum of Gaussians,

MpM,

A,(R’ [) fry ﬁ Z cg;e_(R_ﬂR.p)z/zyfe_(t_,"‘l.q)z/zl’zz’ (1 1)
p-q=1

where cﬁ,ﬂ} = —c§3,} are variational parameters to be tuned,

and the locations and widths pp, ,, pt; 4, Vg, and v, are held
fixed. To impose the conditioning while minimizing
(AU,;)pja s> We use a Lagrange multiplier s to construct a
loss function Q; = (AU,); + s({hpgjx), — 1). For a general
force that does not ensure the transition with unit probability,
there is a multiplicative contribution to the estimate of the rate
in Eq. (5) from (/|4 );, which for most optimized forces is
negligible.

The optimization problem maps onto the computation
of a cumulant generating function for the statistics of the

indicator hg(t,) studied previously [29,33], with the short
trajectories starting from a steady-state distribution in the
initial state. As such we can employ generalizations of
recent reinforcement learning procedures to efficiently
estimate the gradients of the loss function with respect
to the variational parameters [47]. Specifically, we modify
the Monte Carlo value baseline (MCVB) algorithm [33],
which performs a stochastic gradient descent to optimize
c%. We add two preconditioning steps over the MCVB
algorithm. First, we generate an initial reactive trajectory
using a routine reminiscent of well-tempered metadynam-
ics [36]. Then we symmetrize the learned force to ensure
time translational invariance of the transition paths. We
denote this preconditioning algorithm MCVB-T. Further
information is available in the SM [30].

We first illustrate the systematic convergence of VPS by
estimating the isomerization rate of an isolated passive
dimer. Such a simplified system allows us to compare to
numerically exact results, and study convergence of the force
ansatz in the complete basis limit, where Mz, M, — oo and
the Gaussians cover the thermally sampled region in R and .
For this simple system, we take kzT =y =0 =€ =1,
w = 0.25¢, with diffusive timescale 7 = o%y/kpT. We
simulate the one-dimensional version of Eq. (1) along R,
with V4, (R) only. For simplicity we define state A by the
initial condition R(0) = rwca and state B via Rz = 1.450.
To provide a steady-state value in Eq. (4) [33,48], we use
an Euler method and take in this example ;=
ywo/+/8kgTAV. We choose ug , and y, , evenly distributed
in R/c € [0.9,1.77] and t € [0, t/], respectively, and v, v,
to be half the distance between Gaussian centers. We
consider basis sizes Mp = M, = 2-40, each optimized
independently and used to sample ~10° transition paths.

Figure 2(a) illustrates a typical learning curve for the
control force, showing convergence of the variational rate
bound toward the numerically exact rate. The variational
estimate requires a basis of Mz, M, > 40 to approach the
rate to within the statistical uncertainty of the estimate;
however, alternative estimates with small basis sets can be
refined using a cumulant expansion approximation to
Eq. (5). Specifically, truncating the exact exponential
relation at the Zth cumulant as

4 1 d"n <e_AUA>B\A,,1

Inkr—lnt;+3 — NG (12)
n=1"

provides an approximation to the rate that converges in the
limit that £ is large. Figure 2(b) illustrates this convergence,
where we find that even coarse representations of the
control force can yield close estimates of the rate with only
the first few cumulants, illustrating a trade-off between
basis set completeness and statistical efficiency. Sweeping
across a wide range of barrier heights in Fig. 2(c), we find
excellent agreement between the log rate from brute-force
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FIG. 2. Convergence of isomerization rates foranisolatedpassive
dimer. (a) Learning curve for AV =10kgzT and My, M, = 20.
(b) Convergence of the variational rate estimate (cm:les) and
cumulant corrections for # = 2 (triangles) and £ = 4 (squares)
with basis size as compared to the numerically exact answer (dashed
line). (c) Variational (circles) and # = 2 (triangles) estimate of the
rate compared to the exact value (dashed line) with increasing
barrier height.

simulations and a truncation of the cumulant expansion to
¢ =2 using Mz = 80 and M, = 30.

We next compute the isomerization rate with VPS when
the dimer is immersed in an explicit solvent of active
Brownian particles with N = 80 and a total density of
0.6/67. The dimer particles have a friction y;, = 2y and the
solvent particles have y, =4y. We take y =0 =¢ =1,
kgT =05, AV = TkgT, v = c’y/2kgT =1, Dy = 1/1,
and time step 10™>7. We also change w = 0.45¢ such that
the collisional cross section of the dimer is large. Collisions
with active particles transduce energy along the dimer bond
and we study the change in the isomerization rate as the
bath activity vgo/kgT is varied from O to 18. We use a basis
size of Mp = M,=50 distributed between R/c €
[0.9,2.3] and € [0, /], where ¢, = 0.27. The optimization
starts by learning forces A(R, t) for the isolated dimer with
WCA interactions between monomers, followed by the
MCVB-T algorithm. Then, A(R,?) is optimized in the
presence of the bath for vy, = 0 and higher values of v, are
initialized from converged forces at the previous v.

The rate is a strong function of activity, increasing
20-fold over the range of wv,’s considered. While the
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FIG. 3. Rate enhancement of isomerization in an active fluid.
(a) Change in the rate as estimated from direct unbiased
simulations (crosses), from exponential estimate (squares), and
from histogram reweighting (circles). The excess dissipated heat
(triangles) bounds the rate enhancement achievable demarked by
the red shaded region. The thick tick mark on the left denotes the
rate for the isolated dimer. (b),(c) Typical snapshots of reactive
trajectories of the active bath (blue) and passive dimer (red) at
t=0and 1 = t;.

variational rate estimate from Eq. (7) is closest for the
passive bath, it weakens with increasing v, indicating a
growing importance of solvent degrees of freedom in the
optimal control force. With converged forces at each v, we
run 10° trajectories of length t to compute k from Eq. (5).
This estimate correctly predicts the suppression of k due
to passive solvation and can be converged statistically for
voo/kgT < 9, which is supported by direct rate estimates
from unbiased simulations in Fig. 3(a). Above
voo/kgT =9, the optimized force is not close enough to
A* to estimate k directly through the exponential average or
a low order cumulant expansion.

Provided we have access to the transition path ensemble
from direct unbiased simulations or methods like transition
path sampling [49-51], we can supplement the estimate of
k using histogram reweighting [52]. k satisfies a reweight-
ing relation of the form

e AUiPy s 2 (AU;)
tiPpiao(AU;)

, (13)

where we have defined P, (AU;) = (6(AU,[X] -
AU;))pja,s and similarly for its undriven counterpart
A =0. We evaluate k with this estimator by sampling
10* driven and only 6-100 unbiased reactive paths, using
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the Bennett acceptance ratio [37] to evaluate the ratio of
probabilities. Compared with the brute-force estimate in
Fig. 3(a), we find this reweighting predicts k accurately
across all values of v, with significantly higher statistical
efficiency than a brute-force calculation, which validates
the accuracy and utility of the control forces. We have
compared the VPS rate estimates in the SM [30], using
either Eq. (5) or Eq. (13), to the Rosenbluth variant of
forward flux sampling [16], and find that VPS is sta-
tistically more efficient and converges more quickly with
the number of reactive trajectories.

Access to an ensemble of transition paths in this active
system provides us with mechanistic insight into the
process. The rate enhancement observed for the compact
to extended state transition of the passive dimer with bath
activity can be understood using recent results from
stochastic thermodynamics. Specifically, the rate enhance-
ment achievable by coupling a reactive mode to a non-
equilibrium driving force is bounded from above by the
heat dissipated over the course of the transition [24]. In this
case the nonequilibrium driving is afforded by the inter-
actions between the dimer and the active bath, so the bound
takes the form

1
lnkSlnko-f—m(Q_QO)mA’ (14)

where & is the rate at vo =0 and (Q — Qo)ps is the
dissipative heat less its average at v, = 0 given by

0= /Otf dtzz (r; =1;) - Fywea(ry;),  (15)

ied jes

which is a sum of the total force from the WCA potential
of the solvent particles (s) on the dimer (d) times the
difference in their velocities in an ensemble at fixed v,
(Supplemental Material [30]). This bound is verified in
Fig. 3(a) for all v, and is saturated at small »,. The specific
mechanism of energy transfer from bath to dimer that
promotes transitions is clarified by examining reactive
trajectories driven by the biasing force and are typical,
after removal of the bias from the incomplete basis set.
Figures 3(b) and 3(c) show typical snapshots of the
solvated dimer at the start and end of the reaction.
Energy transfer results from active particles accumulating
around the dimer, and preferentially in its cross section,
pushing it apart into an extended state. This mechanism of
action is reminiscent of how nonequilibrium agents collect
in the corners of mesoscopic gears to power their directed
rotation [22,23]. At low vy, we find the driven isomer-
ization process is efficient, while deviation from the bound
at large v, demonstrates that energy is additionally fun-
neled into nonreactive modes. Further studies showing the
unbiased nature of the VPS-sampled transition path ensem-
ble in terms of duration and distribution of transition paths,

and quantification of the changing solvation environment
with v, are provided in the SM [30].

In conclusion, we developed a novel formalism and
corresponding algorithm termed variational path sampling
to compute rate constants in nonequilibrium systems by
optimally driving the systems to transition between meta-
stable states. VPS can be used to compute rates in arbitrary
stochastic systems and extends the use of optimal control
forces in large deviation sampling to transient rare events
[29,34,42,43,53]. VPS complements trajectory-level impor-
tance sampling methods by generating the rare reactive event
through a time series of driving forces instead of a sequence
of rare noise histories. We expect this approach to find broad
use in rate computations for rare events in dissipative
systems throughout the physical sciences and across scales.

The source code and data that reproduce the findings of
this study are openly available online [54].
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DEMONSTRATION OF OPTIMAL CONTROL FORCE

For ease of notation, we consider states A and B being specific phase space points, rly and r%, respectively. Let
A*(rN,t) = 2kgTV®, where ®(rl¥, t;|rV ) is the log of the probability to end at a single target configuration, ri,
conditioned on being at r at time ¢. This conditioned probability satisfies the logarithmic transform of the backward
Kolmogorov equation,>+#2

where D; = kgT/~; is the diffusion constant and the gradients act on r;. The optimal force achieves the reactive
transition by construction, rendering (hpgja)a- = 1. The change in path action with the optimal force is

tf
AUx-[X] = f/ ity Di(Vi®)’ + V& - Fi/y, — V;® - i, (S2)
0 i
Using Ito’s Lemma for the total time derivative of ® to eliminate the final term,

AU [X] = — /0 i {Z [Di(V:@)? + Vi Fy /v + DiVED] — b + atcp} (s3)

i

and substituting the backward Kolmogorov equation
tp
AU [X] = / dt® = (ry, tslry,tr) — ®(ry, tlr,0) (54)
0

the change of action can be evaluated exactly. The boundary terms from the exact integration are 0 and the log of the
transition probability between A and B in the reference system. The latter can be identified with In(hp|4), resulting
in the equality in Eq. 7 using the definition of the rate k in Eq. 4. This reasoning extends linearly to cases where A
and B are collections of configurations.

PROTOCOL FOR LEARNING OPTIMAL FORCE

We optimize the time-dependent control force A(R, ) by minimizing (AUx)p|a,a over variational parameters c,(f)
using Lagrange multiplier s to impose the B|A conditioning. If s is chosen to be more negative than an approximately
estimated threshold value s* = In[(hp|a)/(1 — (hp|a))], the optimized forces drive the reaction with unit probability
and s need not be individually optimized. For a rare transition, any choice of s with a magnitude an order or more
larger than the energy barrier height will robustly provide forces that always satisfy the B|A conditioning/>¢

For optimization we use an extension of a reinforcement learning algorithm called Monte Carlo Value Baseline
(MCVB) 56 This algorithm computes the correlation of the gradient of the log of the trajectory probability, called
Malliavin weights,>>8 with the instantaneous change in AUy and hp over the course of the trajectory. These
yield the exact gradients of the loss-function 2 with respect to the tunable parameters, with which a stochastic



Algorithm 1 Monte-Carlo Value Baseline with Time-translation invariance (MCVB-T)

1: inputs Gaussian coefficients for a general force A, (r",t) and value function V, (r" )
2: parameters learning rates oX, a¥; total optimization steps I; trajectory length ty consisting of J timesteps of duration
At each; number of trajectories N
3: initialize choose initial weights x and v, define iteration variables ¢ and j, force and value function gradients dp, dv, define
functional form for stepwise increments (rewards) £ to the loss-function AUx + shp|a
4: 1+ 0
5: repeat
6: Generate trajectories [X(¢)] with first-order Euler propagation starting from uncorrelated steady-state configurations in
state A. Every trajectory starts experiencing the force A from a random time tmiq which is sampled uniformly from [0, ¢].
Configurations, times, noises (with variance 2vkgT At), Malliavin weights, integral of value function gradients, and rewards
are denoted by rY,t;,m;,yx(t;), 24 (t;) and &(t;) = &; respectively.
7. 0
8: op « 0
9: oy <0
10: yx(to) <0
11: 2y (to) ~—0

12: repeat

13: Ux () < M5 - Vo (2, t5) /2ks T At

14: Yx(tj+1) + yx(ts) + Aty (L))

15: 2y(t;) < VVu(r},t))

16: zy(tj1) < 2y (ty) + Aty (t))

17: 5p = 6p + &ux(tisn) = Vo (ry , t5)ix (t5))
18: Sv = 0v + &zp (tit1) — Vo (r) 1) 2u(t;)

19: j—J7+1

20: until j = J

21: average 6p,dy over N trajectories to get dp, dv

22: X x—aXdp
23: Y Y +a¥sy
24: 1 1+1

25: until i =1

gradient descent is performed. The MCVB algorithm simultaneously learns the driving force and a corresponding
value function, V(R,t) = (AUx ¢ + shp|a)x|r(t)=r, Where AUy ; contains the integrated action difference only within
[t,t¢] and the expectation is conditioned on starting from R at time ¢. The value function greatly reduces the the
variance of the gradients at zero cost, allowing better convergence. Our modification to this algorithm, refered to as
MCVB-T, is a preconditioning step that enforces time translational symmetry for the log of the bridge probability,
@(r}v,tﬂr]\’,t) = @(rﬁf\',tf —t|r™V,0), as the reference forces are not explicit functions of time. This is achieved by
randomly choosing a tmiq € [0,ty] for every trajectory used for averaging the force gradient, and applying the force
A(R,t € [tmia,ts]) on it only for a duration [tmid,t¢]. This ensures that trajectories undergoing the transition at late
times are accounted for while training the force.

Details of the MCVB-T algorithm are available in the pseudocode in Algorithm [I} The set of Gaussian coefficients
parametrizing the force and the value function are denoted in short by x and v respectively. The MCVB algorithm
is a special case of MCVB-T with fixed t.,;q = 0.

Figure|S1|illustrates all learning curves that led to the results in Fig. 3, plotting Inhp|4 —AUx as a function of

|51
training steps. The averages of this estimator and the gradients are computed over 40 trajectories |simulated at each
training step. The trajectories are initialized with coordinates randomly chosen from a collection of 10000 steady-state
dimer and bath configurations in state A, collected once in every 0.17 time units from a long trajectory without any
driving forces. We first learn optimal forces in the absence of the explicit bath in Fig. au)7 and then optimize
these forces in the presence of the bath in Fig. b). We start our optimization by first finding an arbitrary force

that ensures the transition with a nonzero probability. We learn initial parameters cgq) with a routine similar to well-

tempered metadynamics>? Starting with c,(fq) = 0, at fixed frequency we add c,(,i} — cgq) + Tl /[T + wN (R, 1)],
where N'(R,t) is a running histogram of order parameter R up to the current time ¢, and hyperparameters T}, w and
T determine how quickly the force landscape is filled. The blue learning curve in Fig. a) refers to 100 steps of
metadynamics run with 7,,, = 10¢/M;, w = 4000 and T,,, = 9000. We find that the force solely from metadynamics is

highly suboptimal compared to the rate bound, indicated by the black dashed line. Starting with a A averaged over



all metadynamics steps and with V = 0, we next optimize both sets of parameters with MCVB-T and then MCVB
each over 1000 steps with learning rates aX = 40,a¥ = 200 and s = —100. We find that the variational estimate
converges tightly to the exact rate bound.

—
&
~

=T
_ = 0
N -
s
| —— Metadynamics
‘% —50 MCVB — T
e —— MCVB
0 500 1000 1500 2000 0 2000 4000 6000 8000 10000
training steps training steps

FIG. S1. Learning curves for variational bound. (a) Optimization for the isolated dimer with 100 steps of well-tempered
metadynamics(blue), 1000 steps MCVB-T(orange) and 1000 steps MCVB(green). Black dashed line is In kty for the isolated
dimer. (b) Learning curves for 1000 steps each, in presence of the explicit bath with voo/ksT = 0,2,4,...,18. Black dotted
lines denote the corresponding converged values.

Next we use the converged A and V to start the optimization in presence of the bath, as illustrated in Figure b).
We successively optimize for each vgo/kgT € {0,2,4,...,18} starting from the previous converged result, each over
1000 steps. Each time we choose (X, a¥) = (0,200) for the first 200 steps and (40,200) for the remaining 800 steps.
Learning the value function before starting to change the force in this way avoids a brief period of divergence at the
beginning of each optimization run 56 The results are robust towards changing the learning rates as long as o is kept
about 5-10 times of X, such that the value function is always approximately accurate whenever the force is being
changed.

Results in Fig. 2 were also obtained similar to this protocol, but with no value function. For Fig. 2(c), the
initialization parameters 7,,, w and T, are chosen at each barrier height so that at least half of the transitions are
reactive.

UNBIASED REACTIVE EVENTS FROM VPS

We use Eq. 5 and 13 in the main text to obtain rate estimates from direct simulations using the low-rank optimized
force A. For the passive dimer in an active bath with voo/kpT = 8, we have illustrated in Figure [S2(a) overlap of
the driven distribution Pgj4,x(AUx) with the unbiased distribution Pp|4(AUx) after tilting to correct the systematic
error. The scaling constant k.w¢, which is our estimate for the rate k, has been evaluated from Bennett Acceptance
Ratio methodS1® by using the tilting exponent as the reduced potential. This overlap is observable only when the
driving force A is near-optimal. If the tilted distribution does not contain enough statistics to represent the unbiased
distribution, the estimate kexp from Eq. 5 given by the area under the tilted distribution will underestimate the rate.
If the basis set is complete and the exact optimal force A* can be obtained, AU~ will follow a Dirac delta distribution
Pgiga-(AUx-) = §(AUx- + Inkty), and the first cumulant will be sufficient to describe the log of the average of the
exponential. This is also evident in Eq. where A = A* makes AU, [X] trajectory independent. In that case, all
three estimates of k£ from Eqs. 5, 7 and 13 will be equal and the unbiased reactive events will be entirely force-assisted
rather than being driven by thermal fluctuations.

Figure b) shows the systematic and statistical errors in In kt; calculated as VPS estimates kexp and kpwe from
Equations 5 and 13 respectively in the main text. We have computed the errors by comparing to direct unbiased
simulation, as the number NV, of uncorrelated trajectories of duration ¢y is varied, expressed through the total
number of simulation timesteps Ny = N, t;/6t where 4t is a single timestep. Given the optimized driving force, kexp
is computed by averaging over N,, trajectories and k.t is obtained by reweighting Pg|4 x(AUx) and Ppja(AUx) each
computed with N,, /2 total trajectories, of which only a fraction are reactive without the driving force. At small Ng,
kexp systematically underestimates the rate due to the full area under e~ AU Pp|4(AUx) not being accessible because
of incomplete overlap, making keyp formally unbiased but statistically biased. This error disappears with large Np.
However, the full rate can still be successfully obtained by comparing segments of incomplete distributions. Thus
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FIG. S2. Unbiased rates, statistical convergence and transition path ensemble with VPS for voo/kgT = 8

. (a) Overlap of the incomplete tilted biased and the unbiased distributions, with the scaling coefficient computed from
Bennett Acceptance Ratio. (b) Errors in the rate estimates from Equations 5 (kexp) and 13 (krwt) and from Forward Flux
Sampling (krrs)as the amount of total simulation timesteps N is varied. (c) Probability Density Functions (PDF) of
transition path times and reactive escape times in the transition path ensemble, computed from the driven trajectories and
unbiased reactive trajectories.

even when the undriven trajectory ensemble has < 10 reactive trajectories at smaller values of Np, kit incurs much
less error and provides a rate estimate that is both formally and statistically unbiased.

Figure [S2(c) demonstrates convergence of the transition path ensemble obtained from direct simulations with the
optimized forces even before the tilting correction. Ppj x(7%) and Pp4(7+) are distributions of the transition path
time 7F measured as the time after leaving state A and before reaching state B without returning to A. Pp A(Th)
is from 2000 reactive trajectories obtained from 10° total unbiased simulated trajectories, while Ppa, A(7%) is from a
total of 2000 driven trajectories all of which were reactive. We find convergence in the distribution of transition path
times signifying direct access to the nearly unbiased transition path ensemble by using the optimal force. Similarly
we compare the distribution of the start time of the reaction t., € [0,t] measured as the time the trajectory last
leaves A before arriving in B. We again find convergence in the driven ensemble compared to the unbiased reactive
ensemble indicating the forces A(R,t) are near-optimal at all values of t.

The directly evaluated rates without additional forces used to compare VPS estimates have in most cases been
computed from 5 trajectories, each of duration 10*r with 7 being the diffusive timescale. We compute k using Eq.
4 by evaluating the expectation with a rolling window over the trajectories after relaxing to a steady-state. We
deviate from this protocol only for Figure 2(c), where the barrier heights are too large to estimate the rate from direct
simulations. Here we use a numerically exact escape rate obtained from Kramer’s theory.>

COMPARISON WITH FORWARD FLUX SAMPLING

In Figure b) we have compared the numerical cost of VPS at an active self-propulsion voo/kpT = 8 with
that of a Rosenbluth-like variant of Forward Flux Sampling (RB-FFS).®12 Starting from an ensemble of steady-state
configurations in A, RB-FFS uses multiple interfaces between A and B to sequentially generate the transition path
ensemble and compute the nonequilibrium reaction rate without an additional driving force 5135514 The transition
paths generated from RB-FFS are unbranched and each has an associated weight as part of the transition path
ensemble, analogous to VPS, from which the rate is estimated.

In order to apply RB-FFS, we  define  the  interfaces along R  as R/o €
{1.25,1.29,1.33,1.38,1.43,1.50,1.57,1.65,1.72,1.77,1.81,1.85} with the first and the last interfaces correspond-
ing to R4 and Rp respectively. We start RB-FFS trajectories from the same ensemble of steady-state configurations
in A that we have used for VPS, and record the configurations whenever the trajectories cross R4 from the A side.
Every time a trajectory reaches B, we replace it in A at a random steady-state configuration. From each of M
recorded configurations located at R4, we generate reactive paths by shooting M = 100 trajectories from each
interface sequentially and randomly choosing one out of those that reach the next interface instead of coming back
to A. The rate estimate is given by product of the forward flux of crossing R4 and the conditional probabilities
of reaching subsequent interfaces, computed from an average over weighted reactive trajectories from the RB-FFS
simulation 12 We have varied M, between 20 and 7000 to study the convergence of the RB-FFS rate estimate krps
as a function of the total number of simulation timesteps N, as shown in Figure (b) Statistical errors have been



estimated over 3 independent parallel runs of the entire RB-FFS procedure.

We find that the VPS rate estimates kexp and kywt incur much smaller errors than kprg at small Ny, though at
large N all estimates converge to the same rate. Specifically, k,wt converges to the true rate fastest among the three
estimates, and kexp incurs much smaller systematic errors than kppg even before convergence. This demonstrates that
the use of the optimized force in a simple low-dimensional basis in VPS reduces the computational cost of estimating
the exact rate by an order of magnitude or more compared to a trajectory stratification based method like RB-FFS.
Further, we find that in RB-FFS, obtaining sufficient statistics given by a large Mg required the use of a long serial
simulation to converge the flux of crossing the first interface at R4. Parallelization of the M trajectory segments
starting from each interface scaled poorly due to a broad distribution of durations over the trajectory segments, each
of which must continue till they reach either the next interface, or A. Since shooting from the next interface can
only start after the slowest of the previous trajectory segment has concluded, parallel implementations of RB-FFS
scaled poorly and required overall a very long serial simulation. Our attempts to parallelize RB-FFS in an alternate
fashion by reducing the serial configurations M, worsened the systematic error in kppg even when averaged over
fully independent RB-FFS implementations over many parallel threads. In contrast, every step of VPS is trivially
parallelizable because of all trajectories being of the same duration ¢y, which corresponds to Np = 2 x 104 As a
result, a parallel implementation of VPS reduced its cost linearly and the overall computation required much shorter
serial simulations.

DISSIPATIVE RATE BOUNDS

Stochastic thermodynamics provides a fundamental speed-limit on the enhancement achievable of the rate k of
a rare nonequilibrium transition over a reference equilibrium rate kg in terms of the excess heat dissipation in the
reactive path ensemble 512

1
Ink < lnk:o + m<Q>B|A (85)

where (Q)p|a is defined as the time-reversal asymmetric contribution from the change in path action between the
equilibrium reference and the nonequilibrium system in which it is measured. This bound holds under mild assump-
tions of instantonic or diffusive transitions and follows from a similar change of measure as leads to Eq. 7, with
the additional observation of the time-reversal symmetric contribution of the change in path action being negligible
near equilibrium. Here we show how to arrive at Eq. 14 employing this bound. As in the main text, we assume a
separation of timescales between local relaxation and typical transitions so that the rate problem is well-posed.

We consider the rate enhancement afforded by coupling the dimer to an active solvent over the equilibrium passive
bath isomerization rate. However, if we simply compute the excess heat dissipated as resulting from the time reversal
asymmetric change in path action in turning vy from 0 to some finite value, the heat will be extensive in the number
of solvent degrees of freedom and thus not have a well-defined thermodynamic limit. To mitigate this, we note that
the isomerization rate of the dimer would be independent of vy if the dimer and solvent did not interact. Denoting
k™ and k3t the rates of isomerization when the dimer is uncoupled to the solvent at finite or zero vy, respectively,
then k™ = k3! and

1n£:1 iI{;i< 1

ko n ki = 2%pT ((Q)B\A - <Q>B\A,0) (S6)

where (@) p|a is the excess dissipation resulting from turning on interactions between the dimer and solvent at finite
vo, and (Q)pja,0 = Qo results from turning on interactions between the dimer and solven‘g at vg = 0. The inequality
is preserved even though a difference of heats is taken since the second ratio of rates kf'/ko are both evaluated at
equilibrium and thus the symmetric part of the action is zero. This second heat subtracts out the dissipation that
is uncorrelated with the isomerization, and the remaining excess dissipation is left finite even when the number of
solvent particles is large, so long as the dimer is correlated with the solvent over a finite distance.



The full path action for a system at finite vy in the presence of dimer-solvent interactions is

2
1 b B )
U’Uo = _—4]{; T dt Ya 1 Z Yari + ViVaw — Z FWCA(I‘U) — ZFWCA(rij)
B 0 ied jed jes
2
i 1 b .
+ ’)’S_l Z Vst — voeld;] — Z Fwea (rij) — Z Fwoea(rij)| — T / dtz 022 (S7)
i€s jed jEs 6 Jo ics

and using the convention that vy is invariant under time—reversal, the dissipated heat associated with turning on
interactions between the solvent and dimer is

Qtr) = /0 at > > iiFwealry) + Y Y #Fwoealr) (S8)

ied jed jes ied
and is the same if vy = 0 or is nonzero. Since Fwca (r;i) = —Fwca(ri;) we find the definition of the @ in Eq. 15.
We measure (Q)p|a(ty) by averaging Eq. [S8 over reactive trajectories of length ¢ = .27 sampled from long, 2 x 10®
time-step, simulations in the nonequilibrium steady state at fixed vy, with all other parameters as in the main text.
Assuming transitions are uncorrelated, we compile ) samples from 24 — 96 independent simulations, and use this data
to calculate a mean and standard error, as depicted in Fig. 3 (red triangles).

0 /2 T 0 /2 ™

0 /2 g 0 7r'/2 ™
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FIG. S3. Solvation structure of the dimer by the active bath. Difference in pair distributions Agx (r, ¢1) (Left) and Agx (r, ¢2)
(Right). Configurations are conditioned such that the bath is sampled with the dimer in the collapsed state Aga(r, ¢1,2) (Top),
the transition region Agap(r, ¢1,2) (Middle) or the extended state Agg(r, ¢1,2) (Bottom).

NONEQUILIBRIUM SOLVATION STRUCTURE

We have studied how the solvation structure around the dimer evolves with activity. We compute the two-
dimensional pair distribution functions for the position of the solvent around the dimer bond within a conditioned



steady state ensemble average

1 (i, 0(rdn)d(r — [ri — r&u[)d(d1 — arccos(r; - R))hx (R))
PsPd (hx(R)) ’

with the center of the dimer bond rd = (r; +r2)/2 as a reference. Here, 7 is the radial distance between rd  and
surrounding bath particles, which make an angle ¢; with the bond vector R = r; —ry. The indicator function hx (R)
restricts configurations where the bond length R falls into state X. Similarly, we probe the orientation of active solute
particles around the dimer bond vector with the pair distribution

1 (e, 0(rg)0(r — vy — r8,[)3(f1 — arccos(eldi] - R))hx (R))
PsPd (hx(R)) -

where ¢ is the angle between a bath director and the dimer bond, and pso? = 0.6 is the density of the solvent, and
pao? = 0.008 is the density of the dimers. To compute gx (7, ¢;) we average over configurations sampled from 24
simulations each with a length of 2 x 10® time-steps.

In Fig. we consider the change in the pair distributions Agx (7, ¢i=1,2) = gx (7, pi=1,2, V0 = 9)—gx (1, Pi=1,2,v0 =
0) in an active bath with vy = 9 and its equilibrium counterpart at vg = 0. The different rows impose different
conditions for the dimer bond distance R = |R| to be either primarily in state X = A (top row), with R < 1.550, in
the transition region X = AB between states 1.550 < R < 1.650 (center row), or mostly in state X = B (bottom
row), with R > 1.650.

These results demonstrate that the rate enhancement is correlated with active particles dynamically wedging within
the cross section of the dimer, pushing it apart into an extended state. The left column of Fig. demonstrates that
activity greatly enhances the packing of bath particles between the two bonded dimer particles, while the right column
illustrates that bath particles preferentially orient perpendicular to the bond vector once far enough within the cross
section. In state A, the active nature of the bath causes particles to push the dimer apart along R, as evidenced by
the depletion for ¢o = w/2 and r/o > 1 in the top-right panel of Fig. The transition region, center-left, shows a
significantly higher peak in the radial distribution function around ¢o = 7/2, marking a decrease in the height of the
effective free energy barrier along R. This analysis also illustrates the mechanism of increased stability in the active
dimer extended state. Namely, Fig. bottom-left shows that the driven bath particles act to inhibit the extended
state from closing.

(59)

gx (r,¢1) =

9x (r,¢2) = (S10)
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