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Active matter represents a broad class of systems that evolve far from equilibrium due to the local
injection of energy. Like their passive analogs, transformations between distinct metastable states in active
matter proceed through rare fluctuations; however, their detailed balance violating dynamics renders these
events difficult to study. Here, we present a simulation method for evaluating the rate and mechanism of
rare events in generic nonequilibrium systems and apply it to study the conformational changes of a passive
solute in an active fluid. The method employs a variational optimization of a control force that renders the
rare event a typical one, supplying an exact estimate of its rate as a ratio of path partition functions. Using
this method we find that increasing activity in the active bath can enhance the rate of conformational
switching of the passive solute in a manner consistent with recent bounds from stochastic thermodynamics.
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The constituent agents of active matter—biomolecules,
colloids, or cells—autonomously consume energy to fuel
their motion [1,2]. Their resultant nonequilibrium states
have non-Boltzmann phase-space densities and exhibit
exotic structural and dynamical collective fluctuations,
including motility-induced phase separation and swarming
[3–7]. Within these nonequilbrium steady states, fleeting
fluctuations can free particles from external potentials
[8–10], nucleate stable phases from metastable ones
[11,12], and assemble passive objects [13,14]. The study
of such rare dynamical events within active matter and the
calculation of their associated rates is difficult. Traditional
equilibrium rate theories like transition state theory and
Kramers’ theory require knowledge of the form of the
steady-state distribution that is not in general available
[15]. Further, only a few numerical methods exist that can
be used to tame the exponential computational cost associated
with sampling the unlikely fluctuations that lead to transitions
between metastable states. Existing methods improve sam-
pling by stratifying or branching stochastic trajectories
[16–18] but do not typically employ driving forces to
specifically enhance the sampling of these rare events.
Here we present a perspective and an associated numeri-

cal algorithm, termed variational path sampling (VPS), for
estimating transition rates in active systems using opti-
mized time-dependent driving forces. Our approach relies
on an equality between the rate of a rare event in a reference
system and a ratio of path partition functions in the
reference system and with a driving force that makes the
rare event occur with high probability. The VPS algorithm
solves a variational problem to approximate the functional

form of an optimal time-dependent driving force for this
estimate and is applicable to any stochastic dynamics. With
VPS we investigate how driven fluids can direct motion
into useful function. We apply this technique to study the
rate of conformational changes of a passive dimer in a
dense bath of active Brownian particles [19–21]. This
model exemplifies how collective active fluctuations
around passive solutes can drive self-assembly and speed
up transitions between distinct metastable states [22,23].
We find the rate to switch between the dimer’s two
metastable states increases dramatically with increasing
activity in the bath, which we rationalize with a recent
dissipation bound from stochastic thermodynamics [24].
We study the computational efficiency of rate estimation
with VPS and demonstrate its advantage over existing
trajectory stratification-based methods like forward flux
sampling [16].
We consider a system described by overdamped

Brownian dynamics of the form

γi _riðtÞ ¼ Fi½rNðtÞ% þ ηiðtÞ; ð1Þ

where _ri is the rate of change of the ith particle’s position,
γi is the corresponding friction coefficient, and Fi½rNðtÞ% is
the sum of all conservative, nonconservative, and active
forces exerted on the ith particle that depends on the full
configuration of the N-particle system rN . The final term,
ηiðtÞ, is a Gaussian white noise with hηiαðtÞi ¼ 0 and

hηiαðtÞηjβðt0Þi ¼ 2γikBTδijδαβδðt − t0Þ ð2Þ
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for component ðα; βÞ and kBT is Boltzmann’s constant
times the temperature. In order to study the transition rate
between two long-lived metastable states, denoted A and B,
we define each from a given configuration using the
indicator functions,

hX½rNðtÞ% ¼
!
1 if rNðtÞ ∈ X

0 else;
ð3Þ

for either X ¼ A, B. In practice this designation requires an
order parameter capable of distinguishing configurations
and grouping them into distinct metastable states like that
illustrated in Fig. 1(a) in one dimension. Assuming there
exists a separation between the time τ‡ required to traverse
the transition region between the two metastable states and
the typical waiting time for the transition, the rate k can be
evaluated from the probability to observe a transition, per
unit time [25],

k ¼
hhBðtfÞhAð0Þi

tfhhAi
¼ t−1f hhBjAðtfÞi; ð4Þ

where the angular brackets denote an average over trajec-
tories of duration τ‡ < tf ≪ 1=k started from a steady-state
distribution in A and hhBjAðtfÞi denotes the conditional
probability for transitioning between A and B in time tf.
When tf is chosen to satisfy the timescale separation
described above, k is independent of time.
If the transition is rare, most short trajectories are

nonreactive leading to difficulties in estimating the rate
directly. Instead of trying to evaluate the small transition
probability through stratification as other existing methods
do [16,17], we instead optimize a time-dependent driving
force λðrN; tÞ that constrains the transition to occur, and
evaluate the probability cost associated with adding that
force to the original dynamics. For a general time-
dependent force λ, using the Onsager-Machlup form for
the probabilities of stochastic trajectories [26], the rate
expression in Eq. (4) can be rewritten as [24]

k ¼ t−1f he−ΔUλiBjA;λ; ð5Þ

where hiBjA;λ denotes a conditioned average computed in
the presence of the additional force. This relation holds for
forces λ that affect the transition to occur with probability 1,
such that the rate in the driven ensemble is 1=tf. The
average is of the exponential of the change in the path
action, ΔUλ,

ΔUλ½X% ¼ −
Z

tf

0
dt
X

i

½λ2i − 2λi · ðγi _ri − FiÞ%
4γikBT

; ð6Þ

between trajectories generated with the added force and
in its absence. The path action and all other stochastic
integrals are evaluated in the Itô convention.
Equation (5) is a direct estimator for a rate employing an

auxiliary control system, but it only becomes useful when
the protocol λðrN; tÞ generates trajectories in a manner
equivalent to the unbiased reactive trajectory distribution.
This is because the expectation can be viewed as an overlap
between the two reactive path distributions, and without
significant overlap the exponential average is difficult to
estimate. We express the optimality of λ using Jensen’s
inequality after taking the logarithm of Eq. (5) to obtain a
variational principle:

ln k ≥ − ln tf − hΔUλiBjA;λ: ð7Þ

If the average change in conditioned path action hΔUλiBjA;λ
is minimized over all possible functional forms of λ, the
rate can be obtained directly as a simple ensemble average
of ΔUλ' at the minimizer λ ¼ λ'.
The optimal control force λ' that saturates Eq. (7)

is unique and given by the solution of the backward
Kolmogorov equation [27–29], as detailed in the
Supplemental Material (SM) [30]. Specifically, the optimal
force is 2kBT times the gradient of the logarithm of the
commitor probability [41] of ending in state B at tf.
A schematic illustration of the optimal effective time-
dependent potential VtðRÞ added to a double-well potential
is illustrated in Fig. 1(a). The resultant force gradually
destabilizes the reactant well to ensure the transition almost
surely within the short duration tf. Viewed in the backward
direction of time, the potential follows the negative loga-
rithm of the relaxation of an initially localized distribution
in B to its steady state. The force is thus optimal in the sense
that reactive trajectories, like those in Fig. 1(b), generated
with it are drawn from the reference path ensemble with the
correct statistical weights. Generically, λ'ðrN; tÞ is a func-
tion of all particle coordinates, so it is not typically tractable
to compute. We demonstrate here that one- and two-body
representations of λ can be sufficiently close to optimal as
to estimate the rate accurately even in cases where the rare

FIG. 1. Reactive trajectories with VPS. (a) Schematic repre-
sentation of the total optimal time-dependent potential in an
isolated passive dimer as t goes from 0 to tf. Shaded regions are
the compact (A, pink) and extended (B, light blue) states.
(b) Unbiased reactive trajectories generated with λðR; tÞ.
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event is collective, similar to related observations in large-
deviation sampling [34,42–44].
We study the accuracy and utility of this formalism in a

system composed of an active bath and a passive dimer that
can undergo conformational changes between two meta-
stable states. All particles interact pairwise via a Weeks-
Chandler-Andersen (WCA) repulsive potential [45],

VWCAðrÞ¼
!
4ϵ
"#

σ
r

$
12

−
#
σ
r

$
6
%
þϵ

&
ΘðrWCA−rÞ; ð8Þ

with energy scale ϵ, and particle diameter σ, truncated at
rWCA ≡ 21=6σ with the Heaviside function Θ. Active
particles experience an additional self-propulsion force
of magnitude v0, Fa

i ðtÞ ¼ v0e½θiðtÞ% where the director is
eðθiÞ ¼ ðcos θi; sin θiÞ and θi obeys _θiðtÞ ¼ ξiðtÞ, with

hξiðtÞi ¼ 0; hξiðtÞξjðt0Þi ¼ 2Dθδijδðt − t0Þ; ð9Þ

for angular diffusion constantDθ. Passive solutes separated
by distance R are bound by a double-well potential,

VdwðRÞ ¼ ΔV½1 − ðR − rWCA − wÞ2=w2%2; ð10Þ

with an energy barrier of height ΔV between the compact
and extended states at R ¼ rWCA and R ¼ rWCA þ 2w,
respectively [46]. We study the transition rates between
these states, employing indicator functions hAðtÞ ¼
ΘðRA − RÞ and hBðtÞ ¼ ΘðR − RBÞ for RA ¼ 1.25σ and
RB ¼ 1.85σ. Conformation transitions like these in dense
fluids are collective in origin [46] and serve as a sensitive
probe of the bath.
The VPS algorithm estimates an optimal force using a

low-rank ansatz by iteratively solving the variational
problem in Eq. (7), and uses this force to directly obtain
a rate estimate. For computing the rate of isomerization of
the passive dimer, we approximate λ' with a time-dependent
interaction along the dimer bond vector R, expressed as a
sum of Gaussians,

λðR; tÞ ¼ R̂
XMR;Mt

p;q¼1

cðiÞpqe−ðR−μR;pÞ
2=2ν2R−ðt−μt;qÞ

2=2ν2t ; ð11Þ

where cð1Þpq ¼ −cð2Þpq are variational parameters to be tuned,
and the locations and widths μR;p, μt;q, νR, and νt are held
fixed. To impose the conditioning while minimizing
hΔUλiBjA;λ, we use a Lagrange multiplier s to construct a
loss function Ωλ ¼ hΔUλiλ þ sðhhBjAiλ − 1Þ. For a general
force that does not ensure the transition with unit probability,
there is amultiplicative contribution to the estimate of the rate
in Eq. (5) from hhBjAiλ, which for most optimized forces is
negligible.
The optimization problem maps onto the computation

of a cumulant generating function for the statistics of the

indicator hBðtfÞ studied previously [29,33], with the short
trajectories starting from a steady-state distribution in the
initial state. As such we can employ generalizations of
recent reinforcement learning procedures to efficiently
estimate the gradients of the loss function with respect
to the variational parameters [47]. Specifically, we modify
the Monte Carlo value baseline (MCVB) algorithm [33],
which performs a stochastic gradient descent to optimize
cðiÞpq. We add two preconditioning steps over the MCVB
algorithm. First, we generate an initial reactive trajectory
using a routine reminiscent of well-tempered metadynam-
ics [36]. Then we symmetrize the learned force to ensure
time translational invariance of the transition paths. We
denote this preconditioning algorithm MCVB-T. Further
information is available in the SM [30].
We first illustrate the systematic convergence of VPS by

estimating the isomerization rate of an isolated passive
dimer. Such a simplified system allows us to compare to
numerically exact results, and study convergence of the force
ansatz in the complete basis limit, where MR;Mt → ∞ and
the Gaussians cover the thermally sampled region in R and t.
For this simple system, we take kBT ¼ γ ¼ σ ¼ ϵ ¼ 1,
w ¼ 0.25σ, with diffusive timescale τ ¼ σ2γ=kBT. We
simulate the one-dimensional version of Eq. (1) along R,
with VdwðRÞ only. For simplicity we define state A by the
initial condition Rð0Þ ¼ rWCA and state B via RB ¼ 1.45σ.
To provide a steady-state value in Eq. (4) [33,48], we use
an Euler method and take in this example tf ¼
γwσ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBTΔV

p
. We choose μR;p and μt;q evenly distributed

in R=σ ∈ ½0.9; 1.77% and t ∈ ½0; tf%, respectively, and νR, νt
to be half the distance between Gaussian centers. We
consider basis sizes MR ¼ Mt ¼ 2–40, each optimized
independently and used to sample ∼105 transition paths.
Figure 2(a) illustrates a typical learning curve for the

control force, showing convergence of the variational rate
bound toward the numerically exact rate. The variational
estimate requires a basis of MR;Mt > 40 to approach the
rate to within the statistical uncertainty of the estimate;
however, alternative estimates with small basis sets can be
refined using a cumulant expansion approximation to
Eq. (5). Specifically, truncating the exact exponential
relation at the lth cumulant as

ln k ≈ − ln tf þ
Xl

n¼1

1

n!

dn ln he−ΔUλiBjA;λ
dΔUn

λ
ð12Þ

provides an approximation to the rate that converges in the
limit that l is large. Figure 2(b) illustrates this convergence,
where we find that even coarse representations of the
control force can yield close estimates of the rate with only
the first few cumulants, illustrating a trade-off between
basis set completeness and statistical efficiency. Sweeping
across a wide range of barrier heights in Fig. 2(c), we find
excellent agreement between the log rate from brute-force
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simulations and a truncation of the cumulant expansion to
l ¼ 2 using MR ¼ 80 and Mt ¼ 30.
We next compute the isomerization rate with VPS when

the dimer is immersed in an explicit solvent of active
Brownian particles with N ¼ 80 and a total density of
0.6=σ2. The dimer particles have a friction γd ¼ 2γ and the
solvent particles have γs ¼ 4γ. We take γ ¼ σ ¼ ϵ ¼ 1,
kBT ¼ 0.5, ΔV ¼ 7kBT, τ ¼ σ2γ=2kBT ¼ 1, Dθ ¼ 1=τ,
and time step 10−5τ. We also change w ¼ 0.45σ such that
the collisional cross section of the dimer is large. Collisions
with active particles transduce energy along the dimer bond
and we study the change in the isomerization rate as the
bath activity v0σ=kBT is varied from 0 to 18. We use a basis
size of MR ¼ Mt ¼ 50 distributed between R=σ ∈
½0.9; 2.3% and t ∈ ½0; tf%, where tf ¼ 0.2τ. The optimization
starts by learning forces λðR; tÞ for the isolated dimer with
WCA interactions between monomers, followed by the
MCVB-T algorithm. Then, λðR; tÞ is optimized in the
presence of the bath for v0 ¼ 0 and higher values of v0 are
initialized from converged forces at the previous v0.
The rate is a strong function of activity, increasing

20-fold over the range of v0 ’s considered. While the

variational rate estimate from Eq. (7) is closest for the
passive bath, it weakens with increasing v0, indicating a
growing importance of solvent degrees of freedom in the
optimal control force. With converged forces at each v0, we
run 106 trajectories of length tf to compute k from Eq. (5).
This estimate correctly predicts the suppression of k due
to passive solvation and can be converged statistically for
v0σ=kBT < 9, which is supported by direct rate estimates
from unbiased simulations in Fig. 3(a). Above
v0σ=kBT ¼ 9, the optimized force is not close enough to
λ' to estimate k directly through the exponential average or
a low order cumulant expansion.
Provided we have access to the transition path ensemble

from direct unbiased simulations or methods like transition
path sampling [49–51], we can supplement the estimate of
k using histogram reweighting [52]. k satisfies a reweight-
ing relation of the form

k ¼
e−ΔUλPBjA;λðΔUλÞ
tfPBjA;0ðΔUλÞ

; ð13Þ

where we have defined PBjA;λðΔUλÞ ¼ hδðΔUλ½X% −
ΔUλÞiBjA;λ and similarly for its undriven counterpart
λ ¼ 0. We evaluate k with this estimator by sampling
104 driven and only 6–100 unbiased reactive paths, using

FIG. 2. Convergence of isomerization rates for an isolated passive
dimer. (a) Learning curve for ΔV¼10kBT and MR;Mt ¼ 20.
(b) Convergence of the variational rate estimate (circles) and
cumulant corrections for l ¼ 2 (triangles) and l ¼ 4 (squares)
with basis size as compared to the numerically exact answer (dashed
line). (c) Variational (circles) and l ¼ 2 (triangles) estimate of the
rate compared to the exact value (dashed line) with increasing
barrier height.

FIG. 3. Rate enhancement of isomerization in an active fluid.
(a) Change in the rate as estimated from direct unbiased
simulations (crosses), from exponential estimate (squares), and
from histogram reweighting (circles). The excess dissipated heat
(triangles) bounds the rate enhancement achievable demarked by
the red shaded region. The thick tick mark on the left denotes the
rate for the isolated dimer. (b),(c) Typical snapshots of reactive
trajectories of the active bath (blue) and passive dimer (red) at
t ¼ 0 and t ¼ tf.
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the Bennett acceptance ratio [37] to evaluate the ratio of
probabilities. Compared with the brute-force estimate in
Fig. 3(a), we find this reweighting predicts k accurately
across all values of v0 with significantly higher statistical
efficiency than a brute-force calculation, which validates
the accuracy and utility of the control forces. We have
compared the VPS rate estimates in the SM [30], using
either Eq. (5) or Eq. (13), to the Rosenbluth variant of
forward flux sampling [16], and find that VPS is sta-
tistically more efficient and converges more quickly with
the number of reactive trajectories.
Access to an ensemble of transition paths in this active

system provides us with mechanistic insight into the
process. The rate enhancement observed for the compact
to extended state transition of the passive dimer with bath
activity can be understood using recent results from
stochastic thermodynamics. Specifically, the rate enhance-
ment achievable by coupling a reactive mode to a non-
equilibrium driving force is bounded from above by the
heat dissipated over the course of the transition [24]. In this
case the nonequilibrium driving is afforded by the inter-
actions between the dimer and the active bath, so the bound
takes the form

ln k ≤ ln k0 þ
1

2kBT
hQ −Q0iBjA; ð14Þ

where k0 is the rate at v0 ¼ 0 and hQ −Q0iBjA is the
dissipative heat less its average at v0 ¼ 0 given by

Q ¼
Z

tf

0
dt
X

i∈d

X

j∈s
ð_ri − _rjÞ · FWCAðrijÞ; ð15Þ

which is a sum of the total force from the WCA potential
of the solvent particles (s) on the dimer (d) times the
difference in their velocities in an ensemble at fixed v0
(Supplemental Material [30]). This bound is verified in
Fig. 3(a) for all v0, and is saturated at small v0. The specific
mechanism of energy transfer from bath to dimer that
promotes transitions is clarified by examining reactive
trajectories driven by the biasing force and are typical,
after removal of the bias from the incomplete basis set.
Figures 3(b) and 3(c) show typical snapshots of the
solvated dimer at the start and end of the reaction.
Energy transfer results from active particles accumulating
around the dimer, and preferentially in its cross section,
pushing it apart into an extended state. This mechanism of
action is reminiscent of how nonequilibrium agents collect
in the corners of mesoscopic gears to power their directed
rotation [22,23]. At low v0, we find the driven isomer-
ization process is efficient, while deviation from the bound
at large v0 demonstrates that energy is additionally fun-
neled into nonreactive modes. Further studies showing the
unbiased nature of the VPS-sampled transition path ensem-
ble in terms of duration and distribution of transition paths,

and quantification of the changing solvation environment
with v0, are provided in the SM [30].
In conclusion, we developed a novel formalism and

corresponding algorithm termed variational path sampling
to compute rate constants in nonequilibrium systems by
optimally driving the systems to transition between meta-
stable states. VPS can be used to compute rates in arbitrary
stochastic systems and extends the use of optimal control
forces in large deviation sampling to transient rare events
[29,34,42,43,53]. VPS complements trajectory-level impor-
tance sampling methods by generating the rare reactive event
through a time series of driving forces instead of a sequence
of rare noise histories. We expect this approach to find broad
use in rate computations for rare events in dissipative
systems throughout the physical sciences and across scales.

The source code and data that reproduce the findings of
this study are openly available online [54].
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DEMONSTRATION OF OPTIMAL CONTROL FORCE

For ease of notation, we consider states A and B being specific phase space points, rNA and rNB , respectively. Let
�⇤(rN , t) = 2kBTr�, where �(rNB , tf |rN , t) is the log of the probability to end at a single target configuration, rNB ,
conditioned on being at rN at time t. This conditioned probability satisfies the logarithmic transform of the backward
Kolmogorov equation,S1–S5

@t�+
X

i


Di(ri�)

2 +ri� · Fi/�i +Dir2
i�

�
= 0 (S1)

where Di = kBT/�i is the di↵usion constant and the gradients act on ri. The optimal force achieves the reactive
transition by construction, rendering hhB|Ai�⇤ = 1. The change in path action with the optimal force is

�U�⇤ [X] = �
Z tf

0
dt

X

i

Di(ri�)
2 +ri� · Fi/�i �ri� · ṙi (S2)

Using Ito’s Lemma for the total time derivative of � to eliminate the final term,

�U�⇤ [X] = �
Z tf

0
dt
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Di(ri�)

2 +ri� · Fi/�i +Dir2
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� �̇+ @t�
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and substituting the backward Kolmogorov equation

�U�⇤ [X] =

Z tf

0
dt �̇ = �(rNB , tf |rNB , tf )� �(rNB , tf |rNA , 0) (S4)

the change of action can be evaluated exactly. The boundary terms from the exact integration are 0 and the log of the
transition probability between A and B in the reference system. The latter can be identified with lnhhB|Ai, resulting
in the equality in Eq. 7 using the definition of the rate k in Eq. 4. This reasoning extends linearly to cases where A
and B are collections of configurations.

PROTOCOL FOR LEARNING OPTIMAL FORCE

We optimize the time-dependent control force �(R, t) by minimizing h�U�iB|A,� over variational parameters c(i)pq

using Lagrange multiplier s to impose the B|A conditioning. If s is chosen to be more negative than an approximately
estimated threshold value s⇤ = ln[hhB|Ai/(1� hhB|Ai)], the optimized forces drive the reaction with unit probability
and s need not be individually optimized. For a rare transition, any choice of s with a magnitude an order or more
larger than the energy barrier height will robustly provide forces that always satisfy the B|A conditioning.S6

For optimization we use an extension of a reinforcement learning algorithm called Monte Carlo Value Baseline
(MCVB).S6 This algorithm computes the correlation of the gradient of the log of the trajectory probability, called
Malliavin weights,S7,S8 with the instantaneous change in �U� and hB over the course of the trajectory. These
yield the exact gradients of the loss-function ⌦� with respect to the tunable parameters, with which a stochastic
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Algorithm 1 Monte-Carlo Value Baseline with Time-translation invariance (MCVB-T)

1: inputs Gaussian coe�cients for a general force ��(r
N , t) and value function V (r

N , t)
2: parameters learning rates ↵�, ↵ ; total optimization steps I; trajectory length tf consisting of J timesteps of duration

�t each; number of trajectories N
3: initialize choose initial weights � and  , define iteration variables i and j, force and value function gradients �P , �V , define

functional form for stepwise increments (rewards) ⇠ to the loss-function �U� + shB|A
4: i  0
5: repeat
6: Generate trajectories [X(t)] with first-order Euler propagation starting from uncorrelated steady-state configurations in

state A. Every trajectory starts experiencing the force � from a random time tmid which is sampled uniformly from [0, tf ].
Configurations, times, noises (with variance 2�kBT�t), Malliavin weights, integral of value function gradients, and rewards
are denoted by rNj , tj ,⌘j , y�(tj), z (tj) and ⇠(tj) = ⇠j respectively.

7: j  0
8: �P  0
9: �V  0

10: y�(t0)  0
11: z (t0)  0
12: repeat
13: ẏ�(tj)  ⌘j ·r���(r

N
j , tj)/2kBT�t

14: y�(tj+1)  y�(tj) +�tẏ�(tj)
15: ż (tj)  r V (r

N
j , tj)

16: z (tj+1)  z (tj) +�tż (tj)
17: �P  �P + ⇠jy�(tj+1)� V (r

N
j , tj)ẏ�(tj))

18: �V  �V + ⇠jz (tj+1)� V (r
N
j , tj)ż (tj)

19: j  j + 1
20: until j = J
21: average �P ,�V over N trajectories to get �P , �V
22: �  �� ↵��P
23:    + ↵ �V
24: i  i+ 1
25: until i = I

gradient descent is performed. The MCVB algorithm simultaneously learns the driving force and a corresponding
value function, V(R, t) = h�U�,t + shB|Ai�|R(t)=R, where �U�,t contains the integrated action di↵erence only within
[t, tf ] and the expectation is conditioned on starting from R at time t. The value function greatly reduces the the
variance of the gradients at zero cost, allowing better convergence. Our modification to this algorithm, refered to as
MCVB-T, is a preconditioning step that enforces time translational symmetry for the log of the bridge probability,
�(rNf , tf |rN , t) = �(rNf , tf � t|rN , 0), as the reference forces are not explicit functions of time. This is achieved by
randomly choosing a tmid 2 [0, tf ] for every trajectory used for averaging the force gradient, and applying the force
�(R, t 2 [tmid, tf ]) on it only for a duration [tmid, tf ]. This ensures that trajectories undergoing the transition at late
times are accounted for while training the force.
Details of the MCVB-T algorithm are available in the pseudocode in Algorithm 1. The set of Gaussian coe�cients

parametrizing the force and the value function are denoted in short by � and  respectively. The MCVB algorithm
is a special case of MCVB-T with fixed tmid = 0.
Figure S1 illustrates all learning curves that led to the results in Fig. 3, plotting lnhB|A��U�

��
B|A as a function of

training steps. The averages of this estimator and the gradients are computed over 40 trajectories simulated at each
training step. The trajectories are initialized with coordinates randomly chosen from a collection of 10000 steady-state
dimer and bath configurations in state A, collected once in every 0.1⌧ time units from a long trajectory without any
driving forces. We first learn optimal forces in the absence of the explicit bath in Fig. S1(a), and then optimize
these forces in the presence of the bath in Fig. S1(b). We start our optimization by first finding an arbitrary force

that ensures the transition with a nonzero probability. We learn initial parameters c(i)pq with a routine similar to well-

tempered metadynamics.S9 Starting with c(i)pq = 0, at fixed frequency we add c(i)pq 7! c(i)pq + ⌧m!Tm/[Tm + !N (R, t)],
where N (R, t) is a running histogram of order parameter R up to the current time t, and hyperparameters Tm, ! and
⌧m determine how quickly the force landscape is filled. The blue learning curve in Fig. S1(a) refers to 100 steps of
metadynamics run with ⌧m = 10t/Mt, ! = 4000 and Tm = 9000. We find that the force solely from metadynamics is
highly suboptimal compared to the rate bound, indicated by the black dashed line. Starting with a � averaged over
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all metadynamics steps and with V = 0, we next optimize both sets of parameters with MCVB-T and then MCVB
each over 1000 steps with learning rates ↵� = 40,↵ = 200 and s = �100. We find that the variational estimate
converges tightly to the exact rate bound.

FIG. S1. Learning curves for variational bound. (a) Optimization for the isolated dimer with 100 steps of well-tempered
metadynamics(blue), 1000 steps MCVB-T(orange) and 1000 steps MCVB(green). Black dashed line is ln ktf for the isolated
dimer. (b) Learning curves for 1000 steps each, in presence of the explicit bath with v0�/kBT = 0, 2, 4, ..., 18. Black dotted
lines denote the corresponding converged values.

Next we use the converged � and V to start the optimization in presence of the bath, as illustrated in Figure S1(b).
We successively optimize for each v0�/kBT 2 {0, 2, 4, ..., 18} starting from the previous converged result, each over
1000 steps. Each time we choose (↵�,↵ ) = (0, 200) for the first 200 steps and (40, 200) for the remaining 800 steps.
Learning the value function before starting to change the force in this way avoids a brief period of divergence at the
beginning of each optimization run.S6 The results are robust towards changing the learning rates as long as ↵ is kept
about 5-10 times of ↵�, such that the value function is always approximately accurate whenever the force is being
changed.
Results in Fig. 2 were also obtained similar to this protocol, but with no value function. For Fig. 2(c), the

initialization parameters ⌧m, ! and Tm are chosen at each barrier height so that at least half of the transitions are
reactive.

UNBIASED REACTIVE EVENTS FROM VPS

We use Eq. 5 and 13 in the main text to obtain rate estimates from direct simulations using the low-rank optimized
force �. For the passive dimer in an active bath with v0�/kBT = 8, we have illustrated in Figure S2(a) overlap of
the driven distribution PB|A,�(�U�) with the unbiased distribution PB|A(�U�) after tilting to correct the systematic
error. The scaling constant krwt, which is our estimate for the rate k, has been evaluated from Bennett Acceptance
Ratio methodS10 by using the tilting exponent as the reduced potential. This overlap is observable only when the
driving force � is near-optimal. If the tilted distribution does not contain enough statistics to represent the unbiased
distribution, the estimate kexp from Eq. 5 given by the area under the tilted distribution will underestimate the rate.
If the basis set is complete and the exact optimal force �⇤ can be obtained, �U�⇤ will follow a Dirac delta distribution
PB|A,�⇤(�U�⇤) = �(�U�⇤ + ln ktf ), and the first cumulant will be su�cient to describe the log of the average of the
exponential. This is also evident in Eq. S4 where � = �⇤ makes �U�[X] trajectory independent. In that case, all
three estimates of k from Eqs. 5, 7 and 13 will be equal and the unbiased reactive events will be entirely force-assisted
rather than being driven by thermal fluctuations.
Figure S2(b) shows the systematic and statistical errors in ln ktf calculated as VPS estimates kexp and krwt from

Equations 5 and 13 respectively in the main text. We have computed the errors by comparing to direct unbiased
simulation, as the number Nw of uncorrelated trajectories of duration tf is varied, expressed through the total
number of simulation timesteps NF = Nwtf/�t where �t is a single timestep. Given the optimized driving force, kexp
is computed by averaging over Nw trajectories and krwt is obtained by reweighting PB|A,�(�U�) and PB|A(�U�) each
computed with Nw/2 total trajectories, of which only a fraction are reactive without the driving force. At small NF ,
kexp systematically underestimates the rate due to the full area under e��U�PB|A(�U�) not being accessible because
of incomplete overlap, making kexp formally unbiased but statistically biased. This error disappears with large NF .
However, the full rate can still be successfully obtained by comparing segments of incomplete distributions. Thus
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FIG. S2. Unbiased rates, statistical convergence and transition path ensemble with VPS for v0�/kBT = 8

. (a) Overlap of the incomplete tilted biased and the unbiased distributions, with the scaling coe�cient computed from
Bennett Acceptance Ratio. (b) Errors in the rate estimates from Equations 5 (kexp) and 13 (krwt) and from Forward Flux
Sampling (kFFS)as the amount of total simulation timesteps NF is varied. (c) Probability Density Functions (PDF) of

transition path times and reactive escape times in the transition path ensemble, computed from the driven trajectories and
unbiased reactive trajectories.

even when the undriven trajectory ensemble has  10 reactive trajectories at smaller values of NF , krwt incurs much
less error and provides a rate estimate that is both formally and statistically unbiased.
Figure S2(c) demonstrates convergence of the transition path ensemble obtained from direct simulations with the

optimized forces even before the tilting correction. PB|A,�(⌧
‡) and PB|A(⌧

‡) are distributions of the transition path
time ⌧ ‡ measured as the time after leaving state A and before reaching state B without returning to A. PB|A(⌧

‡)
is from 2000 reactive trajectories obtained from 106 total unbiased simulated trajectories, while PB|A,�(⌧

‡) is from a
total of 2000 driven trajectories all of which were reactive. We find convergence in the distribution of transition path
times signifying direct access to the nearly unbiased transition path ensemble by using the optimal force. Similarly
we compare the distribution of the start time of the reaction trxn 2 [0, tf ] measured as the time the trajectory last
leaves A before arriving in B. We again find convergence in the driven ensemble compared to the unbiased reactive
ensemble indicating the forces �(R, t) are near-optimal at all values of t.
The directly evaluated rates without additional forces used to compare VPS estimates have in most cases been

computed from 5 trajectories, each of duration 104⌧ with ⌧ being the di↵usive timescale. We compute k using Eq.
4 by evaluating the expectation with a rolling window over the trajectories after relaxing to a steady-state. We
deviate from this protocol only for Figure 2(c), where the barrier heights are too large to estimate the rate from direct
simulations. Here we use a numerically exact escape rate obtained from Kramer’s theory.S11

COMPARISON WITH FORWARD FLUX SAMPLING

In Figure S2(b) we have compared the numerical cost of VPS at an active self-propulsion v0�/kBT = 8 with
that of a Rosenbluth-like variant of Forward Flux Sampling (RB-FFS).S12 Starting from an ensemble of steady-state
configurations in A, RB-FFS uses multiple interfaces between A and B to sequentially generate the transition path
ensemble and compute the nonequilibrium reaction rate without an additional driving force.S13,S14 The transition
paths generated from RB-FFS are unbranched and each has an associated weight as part of the transition path
ensemble, analogous to VPS, from which the rate is estimated.
In order to apply RB-FFS, we define the interfaces along R as R/� 2

{1.25, 1.29, 1.33, 1.38, 1.43, 1.50, 1.57, 1.65, 1.72, 1.77, 1.81, 1.85} with the first and the last interfaces correspond-
ing to RA and RB respectively. We start RB-FFS trajectories from the same ensemble of steady-state configurations
in A that we have used for VPS, and record the configurations whenever the trajectories cross RA from the A side.
Every time a trajectory reaches B, we replace it in A at a random steady-state configuration. From each of M0

recorded configurations located at RA, we generate reactive paths by shooting M = 100 trajectories from each
interface sequentially and randomly choosing one out of those that reach the next interface instead of coming back
to A. The rate estimate is given by product of the forward flux of crossing RA and the conditional probabilities
of reaching subsequent interfaces, computed from an average over weighted reactive trajectories from the RB-FFS
simulation.S12 We have varied M0 between 20 and 7000 to study the convergence of the RB-FFS rate estimate kFFS
as a function of the total number of simulation timesteps NF , as shown in Figure S2(b). Statistical errors have been
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estimated over 3 independent parallel runs of the entire RB-FFS procedure.

We find that the VPS rate estimates kexp and krwt incur much smaller errors than kFFS at small NF , though at
large NF all estimates converge to the same rate. Specifically, krwt converges to the true rate fastest among the three
estimates, and kexp incurs much smaller systematic errors than kFFS even before convergence. This demonstrates that
the use of the optimized force in a simple low-dimensional basis in VPS reduces the computational cost of estimating
the exact rate by an order of magnitude or more compared to a trajectory stratification based method like RB-FFS.
Further, we find that in RB-FFS, obtaining su�cient statistics given by a large M0 required the use of a long serial
simulation to converge the flux of crossing the first interface at RA. Parallelization of the M trajectory segments
starting from each interface scaled poorly due to a broad distribution of durations over the trajectory segments, each
of which must continue till they reach either the next interface, or A. Since shooting from the next interface can
only start after the slowest of the previous trajectory segment has concluded, parallel implementations of RB-FFS
scaled poorly and required overall a very long serial simulation. Our attempts to parallelize RB-FFS in an alternate
fashion by reducing the serial configurations M0 worsened the systematic error in kFFS even when averaged over
fully independent RB-FFS implementations over many parallel threads. In contrast, every step of VPS is trivially
parallelizable because of all trajectories being of the same duration tf , which corresponds to NF = 2 ⇥ 104. As a
result, a parallel implementation of VPS reduced its cost linearly and the overall computation required much shorter
serial simulations.

DISSIPATIVE RATE BOUNDS

Stochastic thermodynamics provides a fundamental speed-limit on the enhancement achievable of the rate k of
a rare nonequilibrium transition over a reference equilibrium rate k0 in terms of the excess heat dissipation in the
reactive path ensemble,S15

ln k  ln k0 +
1

2kBT
hQiB|A (S5)

where hQiB|A is defined as the time-reversal asymmetric contribution from the change in path action between the
equilibrium reference and the nonequilibrium system in which it is measured. This bound holds under mild assump-
tions of instantonic or di↵usive transitions and follows from a similar change of measure as leads to Eq. 7, with
the additional observation of the time-reversal symmetric contribution of the change in path action being negligible
near equilibrium. Here we show how to arrive at Eq. 14 employing this bound. As in the main text, we assume a
separation of timescales between local relaxation and typical transitions so that the rate problem is well-posed.

We consider the rate enhancement a↵orded by coupling the dimer to an active solvent over the equilibrium passive
bath isomerization rate. However, if we simply compute the excess heat dissipated as resulting from the time reversal
asymmetric change in path action in turning v0 from 0 to some finite value, the heat will be extensive in the number
of solvent degrees of freedom and thus not have a well-defined thermodynamic limit. To mitigate this, we note that
the isomerization rate of the dimer would be independent of v0 if the dimer and solvent did not interact. Denoting
kni and kni0 the rates of isomerization when the dimer is uncoupled to the solvent at finite or zero v0, respectively,
then kni = kni0 and

ln
k

k0
= ln

k

kni
kni0
k0

 1

2kBT

�
hQiB|A � hQiB|A,0

�
(S6)

where hQiB|A is the excess dissipation resulting from turning on interactions between the dimer and solvent at finite
v0, and hQiB|A,0 = Q0 results from turning on interactions between the dimer and solvent at v0 = 0. The inequality
is preserved even though a di↵erence of heats is taken since the second ratio of rates kni0 /k0 are both evaluated at
equilibrium and thus the symmetric part of the action is zero. This second heat subtracts out the dissipation that
is uncorrelated with the isomerization, and the remaining excess dissipation is left finite even when the number of
solvent particles is large, so long as the dimer is correlated with the solvent over a finite distance.
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The full path action for a system at finite v0 in the presence of dimer-solvent interactions is

Uv0 = � 1

4kBT

Z tf

0
dt ��1

d
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2

4�dṙi +riVdw �
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X
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✓̇2i (S7)

and using the convention that v0 is invariant under time-reversal,S16 the dissipated heat associated with turning on
interactions between the solvent and dimer is

Q(tf) =

Z tf

0
dt

2

4
X

i2d

X

j2d

ṙiFWCA(rij) +
X

j2s

X

i2d

ṙjFWCA(rji)

3

5 (S8)

and is the same if v0 = 0 or is nonzero. Since FWCA(rji) = �FWCA(rij) we find the definition of the Q in Eq. 15.
We measure hQiB|A(tf ) by averaging Eq. S8 over reactive trajectories of length tf = .2⌧ sampled from long, 2⇥108

time-step, simulations in the nonequilibrium steady state at fixed v0, with all other parameters as in the main text.
Assuming transitions are uncorrelated, we compile Q samples from 24�96 independent simulations, and use this data
to calculate a mean and standard error, as depicted in Fig. 3 (red triangles).

FIG. S3. Solvation structure of the dimer by the active bath. Di↵erence in pair distributions �gX(r,�1) (Left) and �gX(r,�2)
(Right). Configurations are conditioned such that the bath is sampled with the dimer in the collapsed state �gA(r,�1,2) (Top),
the transition region �gAB(r,�1,2) (Middle) or the extended state �gB(r,�1,2) (Bottom).

NONEQUILIBRIUM SOLVATION STRUCTURE

We have studied how the solvation structure around the dimer evolves with activity. We compute the two-
dimensional pair distribution functions for the position of the solvent around the dimer bond within a conditioned
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steady state ensemble average

gX(r,�1) =
1

⇢s⇢d

h
P

i2s �(r
d
cm)�(r � |ri � rdcm|)�(�1 � arccos(ri ·R))hX(R)i

hhX(R)i , (S9)

with the center of the dimer bond rdcm = (r1 + r2)/2 as a reference. Here, r is the radial distance between rdcm and
surrounding bath particles, which make an angle �1 with the bond vector R = r1� r2. The indicator function hX(R)
restricts configurations where the bond length R falls into state X. Similarly, we probe the orientation of active solute
particles around the dimer bond vector with the pair distribution

gX(r,�2) =
1

⇢s⇢d

h
P

i2s �(r
d
cm)�(r � |ri � rdcm|)�(�1 � arccos(e[✓i] ·R))hX(R)i

hhX(R)i . (S10)

where �2 is the angle between a bath director and the dimer bond, and ⇢s�2 = 0.6 is the density of the solvent, and
⇢d�2 = 0.008 is the density of the dimers. To compute gX(r,�i) we average over configurations sampled from 24
simulations each with a length of 2⇥ 108 time-steps.
In Fig. S3, we consider the change in the pair distributions�gX(r,�i=1,2) = gX(r,�i=1,2, v0 = 9)�gX(r,�i=1,2, v0 =

0) in an active bath with v0 = 9 and its equilibrium counterpart at v0 = 0. The di↵erent rows impose di↵erent
conditions for the dimer bond distance R = |R| to be either primarily in state X = A (top row), with R < 1.55�, in
the transition region X = AB between states 1.55� < R < 1.65� (center row), or mostly in state X = B (bottom
row), with R > 1.65�.
These results demonstrate that the rate enhancement is correlated with active particles dynamically wedging within

the cross section of the dimer, pushing it apart into an extended state. The left column of Fig. S3 demonstrates that
activity greatly enhances the packing of bath particles between the two bonded dimer particles, while the right column
illustrates that bath particles preferentially orient perpendicular to the bond vector once far enough within the cross
section. In state A, the active nature of the bath causes particles to push the dimer apart along R, as evidenced by
the depletion for �2 = ⇡/2 and r/� > 1 in the top-right panel of Fig. S3. The transition region, center-left, shows a
significantly higher peak in the radial distribution function around �2 = ⇡/2, marking a decrease in the height of the
e↵ective free energy barrier along R. This analysis also illustrates the mechanism of increased stability in the active
dimer extended state. Namely, Fig. S3 bottom-left shows that the driven bath particles act to inhibit the extended
state from closing.
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