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Abstract
This paper presents an implementation of the elasto-visco-plastic fast Fourier transform (EVPFFT)
crystal plasticity model in the implicit finite element (FE) method of Abaqus standard through a
user material (UMAT) subroutine to provide a constitutive relationship between stress and strain
at FE integration points. To facilitate the implicit coupling ensuring fast convergence rates, an
analytical Jacobian is provided. The constitutive response at every integration point is obtained by
the full-field homogenization over an explicit microstructural cell. The implementation is a parallel
computing approach involving multi-core central processing units (CPUs) and graphics processing
units (GPUs) for computationally efficient simulations of large plastic deformation of metallic
components with arbitrary geometry and loading boundary conditions. To this end, the EVPFFT
solver takes advantages of GPU acceleration utilizing Nvidia’s high performance computing
software development kit (SDK) compiler and compute unified device architecture (CUDA) FFT
libraries, while the FE solver leverages the message passing interface (MPI) for parallelism across
CPUs. The high-performance hybrid CPU-GPU multi-level framework is referred to as FE-GPU-
EVPCUFFT. Simulations of simple compression of Cu and large strain cyclic reversals of dual
phase (DP) 590 have been used to benchmark the accuracy of the implementation in predicting the
mechanical response and texture evolution. Subsequently, two applications are presented to
illustrate the potential and utility of the multi-level simulation strategy: 4-point bending of textured
Zr bars, in which the model captures the shape variations as a consequence of texture with respect
to the bending plane and another bending of DP1180, in which the model reveals details of spatial

micromechanical fields.
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1. Introduction

Metallic materials experience large plastic shape changes and develop non-linear strain
fields in service and during metal forming. These materials are usually polycrystalline and as such
exhibit anisotropy owing to the preferred distribution of crystallographic orientations (i.e., texture)
as a consequence of prior thermo-mechanical processing history [1-5]. Macroscopic yield surface-
based continuum models are extensively used to model metal plasticity [6-8]. However, these
models lack the ability to consider the anisotropy at a single-crystal level. Advanced multi-level
constitutive relations such as those based on crystal plasticity theory, considering microstructural
evolution and the directionality of deformation mechanisms operating at the single crystal level,
are being developed [9-14].

Crystal plasticity models have been advanced significantly in the course of last few decades
in formulations of Taylor-type upper bound [15-20] and mean-field self-consistent [21-28] models.
While these models are computationally efficient and have proven effective in predicting the
homogenized flow stress and texture evolution of polycrystalline metals, they lack the ability to
explicitly model microstructures and constituent grains. Therefore, these models are unable to
provide qualification and quantification of spatial micromechanical fields resulting from grain-to-
grain interactions. Nevertheless, these models have been coupled with finite elements to model
geometrical shape changes while relaxing the homogenization assumptions with spatial gradients
[11, 12, 29-34]. To facilitate spatial i.e. full-field simulations accounting for grain-to-grain
interactions, crystal plasticity finite element (CPFE) [35-42] and elasto-visco-plastic fast Fourier
transform (EVPFFT) models [43-48] have been developed. The full-field models are more
accurate because the constituent grains deform differently according to their crystal orientation
and interact with surrounding grains crystallographically and morphologically instead of relying
on simpler Taylor iso-strain approximation or self-consistent homogenizations. The major
advantage of EVPFFT over CPFE is in its computational efficiency, especially because of its
suitability for high-performance parallel implementations using multi-core central processing units
(CPUs) and graphics processing units (GPUs) [49-55]. The present paper is concerned with the
coupling of EVPFFT with the implicit finite element method (FEM) inside a user material
(UMAT) subroutine to provide a microstructure-sensitive constitutive response at the meso-scale
for each integration point within a boundary value problem solved with the FEM at the macro-

scale. The resulting constitutive behavior is that of a full-field EVPFFT material, implemented in



the implicit full-field FE code Abaqus. As a result of the two spatial levels, the implementation is
a multi-level full-field’ computational plasticity framework.

Diisseldorf Advanced Material Simulation Kit (DAMASK) has recently been advanced to
incorporate a version of a spectral crystal plasticity full-field model based on FFTs for implicit FE
solvers [56, 57]. The version utilized the finite strain theory and a Piola-Kirchhoff stress-based
constitutive relationship. The framework chains the transformation from the Piola-Kirchhoff stress
to obtain a tangent Jacobian matrix appropriate to the Jaumann rate of Cauchy stress required by
the Abaqus FE solver. The implementation provided approximately a linear convergence. As
presented, the implementation is limited to CPU-only computations not taking advantages of
advanced parallel computing and hardware. The present development is aimed at improving
numerical aspects by adapting EVPFFT and deriving an analytical Jacobian to achieve better
convergence rates. Moreover, the objective is a high-performance parallel computing
implementation involving a hybrid of CPUs and GPUs.

Specifically, the first high performance computing (HPC) implementation of the GPU
accelerated EVPFFT crystal plasticity model [50] into the implicit FE framework [58] is developed
and presented. The obvious motivation for the development is the superior ability of the EVPFFT
formulation compared with any other crystal plasticity formulation to capture the strong explicit
microstructure-induced gradients and anisotropic hardening in a computationally efficient manner.
A key novel aspect of the coupled implementation is the tangent stiffness matrix (Jacobian) for the
nonlinear FE solver obtained analytically. The tangent stiffness matrix is obtained primarily as a
function of the local tangent moduli already available as part of the non-linear EVPFFT numerical
scheme and the elastic stiffness tensor. The convergence behavior is examined and presented in
function of time increment and resolution.

The EVPFFT UMAT subroutine is designed to run on single or multi-GPU hardware, while
the FE model runs on multiple processors leveraging MPI. The framework can take advantages of
both Intel and Nvidia HPC software development kit (SDK) compiler to meet the requirements of
performance portability and platform compatibility leveraging OpenACC as well as the compute
unified device architecture (CUDA) FFT libraries facilitated by OpenACC-CUDA interoperability
[50]. The implementation is referred to as full-field> FE-GPU-EVPCUFFT. The performance
improvements of the hybrid CPU-GPU implementation (FE-GPU-EVPCUFFT) running on single



and multiple GPUs is compared with the CPU-only model (FE-CPU-EVPFFTW) which utilizes
CPUs and the FFTW library.

Accuracy of the implementation is demonstrated using several benchmarks, a simple
compression of polycrystalline Cu and load reversals of an advance high strength (AHSS) dual
phase (DP) 590 steel, comparing the simulation results of the FE-GPU-EVPCUFFT model, the
standalone (SA) EVPFFT solver, and experimental data. Additionally, compression of a Cu single
crystal is simulated to predicts extreme anisotropy and shape changes. Excellent agreement is
achieved because the EVPFFT accounts for the elastic anisotropy, dislocation density-based
thermally activated hardening, development of back-stress, and non-Schmid effects. Subsequently,
two applications are presented to illustrate the potential and versatility of the multi-level simulation
strategy: 4-point bending of textured Zr bars, in which the model captures the shape variations as
a consequence of texture with respect to the bending plane and bending of a cantilever beam of

DP1180, in which the model reveals details of spatial micromechanical fields.

2. Coupling of EVPFFT and FEM

Figure 1 illustrates a graphical abstract of the multi-level FE-EVPFFT model
implementation as a UMAT in Abaqus. In the implementation, every integration point within the
finite element mesh (grid) contains the information of the overall constitutive response of the
microstructural cell also called a representative volume element (RVE) obtained by the
homogenization over the FFT voxels. The RVE is an explicit grain structure consisting of voxels,

which incorporate a crystal orientation and associated slip systems.
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Fig. 1. A graphical illustration of the full-field> multi-level FE-EVPFFT modeling strategy linking
sub-grain physics of deformation at a voxel-level to a grain-level to a microstructural cell-level to
an FE element-level and, finally, to a component-level.

The main equations pertaining to the standard SA EVPFFT solver are given in appendix A
for reference and completeness. This section presents equations pertaining to the implementation
of the EVPFFT model into the implicit finite elements. In the notation that follows, tensors are

denoted by non-italic bold letters, while scalars and tensor components are italic and not bold.

Symbols - and & are used to denote contracted (dot product) and uncontracted (tensor product)

operators.



The Abaqus FE solver satisfies the stress equilibrium and strain compatibility through the
FE weak formulation. To this end, the solver breaks down the applied displacement/load into
increments and the equilibrium state of the solution is obtained using an iterative Newton’s
procedure at the end of each increment. The corresponding principal of virtual work linearized FE

equilibrium equation for each element is
[ [ ]_BTJ]_BdV] AU= “f- [BZaV, (1)
4 v

where, B,J,AU,X and f represent the strain-displacement matrix, Jacobian, displacement

increment, macroscopic Cauchy stress and applied forces, respectively. Atevery UMAT call from
Abaqus solver, the strain increment AE = DAz (calculated using the stretching tensor D in
Abaqus), rotation increment AR, the solution dependent state variables, and time increment At
are provided to the UMAT subroutine. The UMAT subroutine provides the updated stress, the
Jacobian matrix, and updated state variables at every interrogation by the FE solver. It is important
to note that while the calculated Jacobian does not affect the accuracy of the solution, it determines
the convergence rate of the Newton’s iterative solver involved in the implicit FE solver.
Appendix B shows the UMAT subroutine interface provided by Abaqus to incorporate
user defined constitutive laws in the Fortran programing language. The variables relevant for the
present coupling are STATEV(NSTATV), DDSDDE (NTENS, NTENS), STRESS(NTENS),
DSTRAN (NTENS) and DROT (3,3) standing for state-variables, Jacobian, stress, strain
increment, and rotation increment, respectively. Strain increment, rotation increment, stress, and
state variable at the beginning of the time increment are input for a UMAT call, the updated stress,

updated state variables, and Jacobian are returned from the UMAT to the FE solver.

2.1 Spin tensors
The EVPFFT solver is designed to operate under applied stretching tensor, D, calculated
by dividing the strain increment AE by the time increment A7 . The macroscopically imposed

spin, W, is calculated using the rotation increment tensor provided by Abaqus

0 -w w,
W=| w, 0 -w (2-1)
-w, W 0



where w, denote the components of angular velocity as a function of rotation unit vectors, 7, ,

rotation angle increment, A« , and the rotation increment tensor, AR, as follows

. Aa
W, =an =—mn, ;n,=—¢

1
= . AR, ;Aa =cos”'| =[trace(AR)—1] |. (2-2)
i i AZ i Jjk (2 [ ( ) ]j

ijk
Having the imposed spin, the lattice spin used to update the crystal orientations can be calculated
W’ (x) = W-W?(x), (2-3)

where the plastic spin W”(x) is
N
W’ (x) =Y A ()7 (x); A'(x) :%(bs ®n'-n'®b’), 3)
s=1

where A is the antisymmetric Schmid tensor and y*(x) is the shear rate on the slip system s of the

total number of available slip systems, M.

2.2 Derivation of Jacobian

The evaluation of the appropriate Jacobian plays a significant role in determining the order
of convergence. The Jacobian is used by the FE solver to iteratively guess the nodal displacement
field in order to satisfy the equilibrium requirement in the current time increment from ¢ to ¢+ At
. A more accurate Jacobian facilitates a closer guess to the actual solution. The Jacobian matrix

can be defined as a continuum operator Z—E or as a consistent tangent operator ?ﬁ The present
AE

plasticity problem is formulated incrementally through the use of the Jaumann rate as the objective
rate with the consistent tangent operator. Therefore, the constitutive equation at the crystal level

in EVPFFT (appendix A) is appropriately adjusted to a generic form of the Jaumann stress rate,
o(x) = C(x)(&®-&"(x))[31, 59-62]
6(x) = C(x)&° () + W' (x)o(x) —o(x) W' (x) = C(x) (é(x) - (x)) + W (x)o(x) —o(x) W' (x) (4-1)

where W' is the lattice spin, & is the rate of Cauchy stress, and Cis the elastic stiffness tensor.

Integrating Eq. (4-1) in the fixed coordinate system from time # to # + A¢ leads to
Ac(x) = C(x)(Ae(x) — A" (x%,0)) + AW’ (X)0(x) — 5(x) AW (x) (4-2)

The above incremental form meets the requirement for the FE integration scheme in Abaqus to



update stress using £ ==’ +(Ac(x)) . Note that AW is W'At. We would like to point out that

the field and state variables (such as texture) are all expressed in the global frame at the current
configuration. Therefore, our implementation is consistent with the default treatment of rotations
in Abaqus.

t+At
The superscript D implies the quantity at the current time increment and is dropped from all

tensors for brevity. The derivative of the increment in Cauchy stress with respect to strain

increment is

0AG(x) _ ) OAE(x) ) a(AsP(x,c)) . a(Aw*(x)[cf(x)+ Ac(x)]) _ 6([0’(x) + Acy(x)] AW*(x))
OAg(x) OAe(x) OAg(x) OAg(x) OAg(x)
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Ae(x) - BOAE(x)

8000 _ o 8(ae” (x,0)) aAc(x) (5-1)
OAg(x) OAc(x)  OAg(x)
N OAW’ (x) o' ()4 AW’ (x )ac’(x)+aAw*( )A () + AW’ (x )aAc(x)

OAg(x) dAe(x)  dAe(x) Ag(x)
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0

Note that 95°() _ o since the stress in crystals at the beginning of the time increment is constant

dAE(x)
OAc(x) — C(x)-C(x) 6(A8”(x,c)) O0Ao(x)
OAe(x) O0Ac(x)  OAg(x)
[[(MW (%) 6Ac(x):| 0+ [aAw*(x) 6A0(x)} A+ AW () 6A0'(x)]
OAo(x) OAe(x) OAo(x) OAe(x) OAg(X)
o OAW’ (x) OAG(x) +6Ac(x) AW’ (x)+ Ac(x) OAW’ (x) OAc(x) (5-2)
OAo(x) OAe(x) | OAe(x) OAo(x) 0Ag(x)
OAo(X)

&(x)

OAs
aAW (x) OAo(x)
6AG(X) OAg(X)

=C(x)-C(x) 6(ASP(X’G)) oRo(z)
B OAo(x)  OAe(x)

6A0'(x)] [ (X)[aAW*(x) aAc(x)}_aAG(x) AW (X)].

} (x)+ AW’ (x )aA &(x) OAc(x) OAe(x) | 0OAs(x)



Since strain and stress tensors are symmetric, the terms above including AW'(x) are
* . . . * T * .
antisymmetric owing to AW (x) being antisymmetric [(AW (x)) =-AW (x)} . This allows us to

OAoc(X)

consistently from the right, as
OAg(x)

write the above equations while keeping the operation of

follows

OAG(x)
OAg(x)

o028V 0 2800 ]) , (o [ 2AW () 28000 ' . (5-3)
OAo(x) OAe(x) OAc(x) OAe(x)

AW (02290 ) [ aw () 220 !
OAg(X) OAg(x) )

8(2e’ (x.0)) Ao (x)
OAc(x) OAe(x)

=C(x)- C(x)|:

Since for any tensor (1, (D +07 ) = 2sym (D) we can rewrite the above equation in a more condensed

form as
O0Ac(x) = C(x) - C(x) a(As (X,O')) OAc(x) N
OAg(x) OAoc(x) OAe(x) (5-4)
2Sym[_c (X)[aAw*(x) 6A0'(x)]+ AW (0 6A0'(x)].
OAc(x) O0Ag(x) OAg(X)
We also provide the indicial form of the above equation
, olAe? (x,
OAc,(x) _C(0-C. (x) ( el (x 0')) 0Ac,,(x) N
OAg,,(x) / ! OAc, (x)  OAg,(X) (5-5)

OAW, (X) DAc, (X) AW ) oA, (X)
O0Ac,, (x) OAg,(x) P 0Ag,(x) )

2sym (—O‘ip (x)

p
After incorporating the local tangent moduli, OAg , already available as part of the non-linear
OAW'  —BAW”

, wWe obtain
OAc OAc

EVPFFT numerical scheme (see appendix A) and similarly deriving



OAo(x) 3 ¥y PP %) PP(x)-0(x)-7,’ " OAG(X)
dne(x) I TAY COX,. 2" (o(x)) [ 7. (o(x)) ] BAE(x)
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/

Using Voigt notation (e.g., o, -0, —>¢,.C, —>C, ; k=16 ), the above equation

generates a system of 36 linear equations and 36 unknowns which is solved for the local Jacobian

Zic((x)) using Gauss-Jordan elimination (GJE). This is accomplished by grouping the terms that

e(X

include the term 9o (x) on one side ( AM= B) and the matrix inversion (M =A"'B).
0Ag(x) OAg(x) OAg(x)

The overall consistent tangent stiffness is then obtained by applying the homogenization (i.e., the

volume averaging) over voxels of a given RVE, J= OAX _ [OAS()\ The derived macroscopic
OAE OAg(x)

average Jacobian is an approximation because the volume average of local partial derivatives does
not include explicit couplings over the microstructure. Given that the macro-scale stress is the
volume average of local stresses, the Jacobian does not include a chain rule contribution for the
change in local deformation increment with macro-scale deformation increment. The consequence
of such approximation in the Jacobian is decreased rate/speed of convergence, while solution
accuracy is not affected. Nevertheless, the enhanced Jacobian without the approximation would

contain extra calculations, which would extend the overall computational time.

2.3 Solution recovery and identification of state variables

State variables, STATEV(NSTATYV), need to be available to recover the fields at the
beginning of each time increment at each integration point. The number of state variables plays a
role in computational efficiency and memory usage. Simulations of large models where the high-
resolution FE model embeds high-resolution RVEs are memory demanding. State variables that

need to be saved per voxel in the FE-EVPFFT implementation include total strain, €(x), Cauchy
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stress, O(X), plastic strain, €”(x), crystallographic orientation, g(¢,,®,¢,), debris dislocation

density, p,,; . forward and reversible dislocation densities, },,,»Py,» Py, » and back-stress, 7, (X)

. Note that the last four are per slip system, N. Considering that these variables are per voxel, the
total storage depends on the RVE size as
NSTATV= N, xN,x N, x(22+4xN), (6)

where N|,N,, N, represent the number of voxels in X, Y, Z. State variables are read as input at the

beginning of a time increment, updated in UMAT, and passed back to Abaqus for storage at the

end of the time increment for the next increment.

3. Nvidia HPC compiler and hybrid CPU-GPU FE-GPU-EVPCUFFT

Abaqus’ custom UMAT subroutines are usually compiled and linked by Intel Fortran
compiler, which does not support GPU programming. To the authors’ knowledge, none of the
crystal plasticity UMAT developments in the literature so far are able to utilize GPUs. The Nvidia
HPC SDK compiler suite, which is based on the former Portland Group, Inc. (PGI) compilers,
supports both CUDA [63, 64] and OpenACC [65, 66] to facilitate GPU programming in Fortran
and C/C++.

To ensure performance portability, CUDA-OpenACC interoperability [50] is used in the
SA EVPFFT termed here as SA-GPU-EVPCUFFT. As a result, the SA-GPU-EVPCUFFT solver
is capable of running high-resolution crystal plasticity simulations with dramatic reduction in
computational time. For instance, utilizing a single Nvidia Tesla V100 GPU, up to 43x speed up
is obtained relative to the original EVPFFT utilizing FOURN for the FFT calculations [48, 50].
Moreover, the multi-GPU performance of the solver lies within just about perfect scalability on
distributed nodes of supercomputers [50].

To enable running our GPU accelerated UMAT linked with the FEM, the Abaqus
environment file “abaqus_v6.env” is modified to include the Nvidia compiler and linker flags,
enabling Abaqus FE solver to link with the Nvidia HPC compiler instead of Intel. Note that
switching back to Intel compiler is still possible by changing the compiler flags in the environment
file and therefore we are able to run our simulations leveraging both Intel and Nvidia compilers.
Appendix C presents a schematic of the environment file where the Nvidia complier and its

corresponding flags replace the Intel compiler to facilitate GPU utilization. The overall schematic
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and the detailed flow-chart of the hybrid FE-GPU-EVPCUFFT are shown in Fig. 2. Abaqus FE
solver utilizes CPUs and MPI for domain decomposition at the mesh-level, while the underlying
voxelized microstructural RVE embedded in each integration point of an element runs on GPU.
Fig. 3 illustrates the GPU utilization and the details pertaining to performance profiling of the GPU
accelerated UMAT called as an internal process by the ABAQUS standard solver. The profile data
is obtained by Nvidia visual profiler (nvvp) v2020. Note that the GPU utilized to report this figure
is a Nvidia GeForce RTX 2060. Examining the performance benchmark results indicate proper
utilization of GPU hardware i.e. the GPU is kept busy during the simulation. Furthermore, the
amount of time spent to transfer the data from GPU to CPU and vice versa [indicated by narrow
brown bars — CPU-GPU data copy] is small [orders of milli seconds] w.r.t the compute time where
calculations are performed on GPU [wide green bars]. The performance benchmarks provided later

in the text are reported for more advanced Nvidia Tesla GPUs.
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Fig. 2. Illustration of Abaqus utilizing CPUs and MPI for domain decomposition at the mesh level,

while a microstructural cell embedded at an integration point runs on GPU. Flowchart of the
developed hybrid implementation.
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Fig. 3. (a) Evidence of UMAT GPU utilization within Abaqus standard solver provided by Nvidia-
smi. (b) Performance and profiling details pertaining to the GPU accelerated UMAT called as an
internal process by Abaqus solver. The information is provided by Nvidia visual profiler v2020.
The GPU utilized to report this figure is the Nvidia GeForce RTX 2060.
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4. Model validation

In order to evaluate the accuracy of the FE-GPU-EVPCUFFT multiscale model, several
benchmarks are performed, and results are compared with the SA-GPU-EVPCUFFT solver and
experimental observations. We compare the modeling results under the monotonic, cyclic, and

shear boundary conditions, which the SA model can handle.
4.1. Simple compression and shear of polycrystalline copper

First, we compare simple compression and shear of a polycrystalline oxygen free high

conductivity copper (OFHC) between SA-GPU-EVPCUFFT and multiscale FE-GPU-
EVPCUFFT. Copper has face-centered cubic (FCC) structure deforming on {110}<T1 1> family of

slip systems. Calibration of true stress-true strain is performed in compression using SA-GPU-
EVPCUFFT up to a true strain level of 0.47 under an applied quasi static strain rate of 0.001 s™! at
room temperature. The model features a dislocation density (DD)-based hardening law. A
polycrystalline RVE of 8 voxels with 100 crystal orientations (i.e., ~5 voxels per grain) and
randomly distributed orientations (i.e., uniform texture) was prepared synthetically in the

DREAM.3D software package [67]. Single crystal elastic stiffness constants (i.e., C,,,C,,,C,, )

and the established DD hardening parameters are listed in Table 1. Experimental data used for

calibration of data is reported in [68].

The FE-GPU-EVPCUFFT model was run using a single linear FE element of type C3D8
with 8 integration points, each embedding the same 8° RVE microstructure of 100 grains. The
analysis of simple shear in 23 (YZ) direction was performed in order to verify the correct treatment
of rotations in the finite-deformation kinematic framework. It should be noted that a multiscale
FE-GPU-EVPCUFFT simulations, even for resolution RVEs (i.e., 8°), requires a large number of
state variables since the information is stored per voxel and per slip system. Figure 4 compares the
true stress - true strain curves and deformed textures for the SA-GPU-EVPCUFFT and multiscale
FE-GPU-EVPCUFFT. Textures are also represented as individual orientations to facilitate a
complete visual comparisons. The SA model utilized a constant applied strain rate of 0.001 s™'. In
contrast, some numerical fluctuations in state variables from one integration point to another

within the element were unavoidable. Even though the fluctuations were extremely small, they
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were sufficient to cause some appreciable differences between curves calculated using the SA and

FE models.

Table 1. Single crystal elastic constants [69] and dislocation density hardening parameters
established for OFHC Cu.

Parameter Eq. # Value

C, [MPa] 168,400
C,,[MPa] A2 121,400
C,.[MPa] 74,500
7, [MPa] A24b 7.0

k, [m_l] A3l 1.5e08
D[MPa] A31 55.0

g A3l 0.13

p;w |t=0 [m*Z] A30 1.0e10

H A25 0.0

q A33 0.1

U[MPa] A25 46,500

n Ala 20
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Fig. 4. (a) An 8 microstructural cell used for the compression and shear simulations of
polycrystalline Cu using SA-GPU-EVPCUFFT and FE-GPU-EVPCUFFT wherein the cell was
embedded at each integration points of a single FE element of type C3DS. (b) True stress — true
strain curves and pole figures showing comparisons between simulated strength and texture
evolution in simple compression using SA-GPU-EVPCUFFT and FE-GPU-EVPCUFFT at 0.47
strain. The measured stress-strain curve is also provided. (c) True stress — true strain curves and
pole figures showing comparisons between simulated strength and texture evolution in simple
shear using SA-GPU-EVPCUFFT and FE-GPU-EVPCUFFT at 0.47 strain. Tensor components
Bl ; for simple compression and I, ; for simple shear are plotted. The provided texture intensity
pole figures are simulated using the FE-GPU-EVPCUFFT model. Those simulated using SA-
GPU-EVPCUFFT are not appreciably different and are not shown.
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4.2. Cyclic loading of DP590 steel

The simple compression verification in the last section has verified the accuracy of the
multiscale model for monotonic loading and thus the correct implementation and state variable
manipulation. In addition to monotonic deformations, the SA-GPU-EVPCUFFT solver and its
advanced multiscale FE-GPU-EVPCUFFT version are further compared in predicting the cyclic
deformation and underlying non-linear unloading and the Bauschinger effect. To this end, we
simulate load reversals for DP 590 steel and compare the results with the experimental data from
[48]. The FE-GPU-EVPCUFFT model utilized an 8* RVE with 100 ferrite grains within a single
C3D8 element. The material 7.7% martensitic phase distributed uniformly within the ferritic phase.
Considering such a distribution, # (the number) of martensitic voxels spreading within ferritic
phase is 40 out of total 512. The microstructure together with the initial texture of ferrite as the
predominating phase are provided in Fig. 5a [48]. As for Cu, the microstructure is synthetically
generated and initialized with texture in DREAM.3D [67]. The texture shown in the figure is
enforced in the ferrite, while martensite has a uniformly distributed texture. Since the volume
fraction of martensite is small compared to that of ferrite, the resulting overall texture is very close

to the ferrite texture.

The cyclic loading using FE-GPU-EVPCUFFT was set as three loading steps (i.e., tension-
compression-tension). Figure 5b compares the SA and FE multiscale model simulation results with
experiments at tensile pre-strains of 1%, 2%, 4%, 6%, 8%, and 10% under a quasi-static strain rate
of £0.001s™! at room temperature. Material constants used in the DD hardening law and the back-

stress law are taken from [48].
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Fig. 5. Load reversal simulation cases for DP590 steel under a quasi-static strain rate of £0.001s
! at room temperature to validate the FE-GPU-EVPCUFFT implementation by comparing the
simulation results with the SA predictions and experimental measurements from [48]. The
simulations utilized an 8* microstructural cell consisting of 100 different crystal orientations in
ferrite and 40 in martensite embedded at integration points of a single C3D8 element. (a) DP590
starting microstructure with 7.7% martensitic fraction [48], (b) cyclic tension-compression
response for (1) 1%, (i1) 2%, (ii1) 4%, (iv) 6%, (v) 8%, and, (vi) 10% tensile pre-strain levels.

4.3. Uniaxial compression of a cylinder embedding a single crystal of Cu

Validations are further advanced to simulate simple compression of a multi-element FE
cylinder embedding 8 RVE microstructures with an underlying single copper crystal of Goss
texture (i.e., [001][110] in miller-indices notation or [90° 45° 90°] in Bunge-Euler notation). In
order to improve the computational efficiency of the simulation, symmetries are applied to the FE
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model. The imposed symmetries are justified by the crystal orientation, which is orthorhombic.
One eighth of the cylinder is modeled and discretized with 240 C3DS8 brick elements and 48 C3D6
wedge elements. This elemental configuration is chosen to ensure consistency in validation against
the data reported in [31, 68]. The FE model is then compressed along the Z axis to a strain of 0.5
under quasi-static strain rate of 0.001s™! at room temperature and the deformed models are
compared with the experimental observations. Parameters listed in Table 1 are used for this

simulation.

Figure 6 illustrates the model configuration and compares the deformed shape of the
cylinder simulated using the FE-GPU-EVPCUFFT model against the experimental data [68]. The
cross-sectional geometry of the simulated model is obtained by extracting the nodal coordinates
of the FE mesh at the end of the simulation. Results show that the model predicts the ovality of the
deformed cylinder’s cross section owing to the anisotropy of deformation along X and Y directions
(i.e., slip systems accommodating strain in the Y direction have zero Schmid factors and therefore
no strain is obtained in the Y direction). This case study shows the superiority of crystal plasticity
in predicting anisotropic deformations considering crystallographic slips compared to the isotropic
plasticity (e.g., J2), for which prediction of an oval shape is not possible. The deformed cross-

section would remain circular due to isotropic deformation in all directions.
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Fig. 6. FE-GPU-EVPCUFFT simulation of compression of a Cu single crystal discretized with
240 C3DS8 brick elements and 48 C3D6 wedge elements under quasi static strain rate of 0.001s™
at room temperature: (a) {110} pole figure showing the crystal orientation embedded at every

voxel of an 8 microstructural cell, which is the embedded at every integration point of the 1/8
FE mesh used in the simulation, (b) simulation setup before and after compression and a view
along Z before (blue) and after (red) compression, (c) external coordinates of nodes in the
deformed configuration at 0.5 strain superimposed on the experimentally deformed specimen of
Cu single crystal. Absence of flow of the cylinder in the Y direction demonstrates accuracy of the
model.

5. Applications

After the successful validation of the FE-GPU-EVPCUFFT implementation, we apply the
model for two metal forming case studies leveraging multi-element FE models. In section 5.1, we
perform two simulations of four point bending of clock-rolled Zr with hexagonal close-packed

(HCP) crystal structure, where the deformed beam’s shape and cross sections are examined and
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compared with the experimental photographs. In section 5.2, we present another bending case
study to reveal micromechanical fields over a higher resolution two-phase microstructural cell.

Table 2 lists the hardware specifications used to perform the simulations.

Table 2. Hardware specs of workstations leveraged for simulations and benchmarks

Workstation # | 1 (1 node) 2 (1 node) 3 (5 nodes)
0S CentOS Linux | CentOS Linux release CentOS Linux release 7.6
release 7.6 7.0
. Nvidia HPC SDK | Nvidia HPC SDK 2020 >
Compiler 2020 (v20.9) (v20.9) Nvidia HPC SDK 2020 (v20.9)
ABAQUS 2020 2020 2020
release
- gﬁgRg — )éli‘l’}l(g Intel(R) Xeon(R) CPU | Intel(R) Xeon(R) Gold 6130
E5- . H
3. 00GHz 5-2605 v4 @ 2.10GHz | CPU @ 2.10GHz
System memory
(GB) 376 512 772
# of CPU cores | 72 72 32
# of threads per ) ) 5
core
# of sockets 2 2 2
# of cores per 13 18 16
socket
NVIDIA Tesla V100 | 2 NVIDIA Tesla K80
GPU (32 GB) GPUs (4 Gk210 GPUS) NVIDIA Tesla V100 (32 GB)
CUDA “toolkit | 4 9.1 10.1
version
System memory
(GB) 376 512 772

5.1. Four-point bending of Zr beams

In this section, we perform two simulations of four-point bending for a Zr bar by applying
bending in two orthogonal directions. Plastic anisotropy relative to the loading directionally is
simulated using FE-GPU-EVPCUFFT and validated against experimental observations.

The Zr beams cut from a clock-rolled Zr plate are deformed as shown in Fig. 7a. Since Zr
has an HCP crystal structure, the slip systems accommodating plastic deformation are more

complex than FCC or body centered cubic (BCC) material. We consider three modes of prismatic
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<a> slip {TIOO} <TT20>, basal <a> slip {0001} <TT20> , and, 1% order pyramidal <c+a> slip
{10T1}<TT23>. The FE-GPU-EVPCUFFT solver in its present form does not handle twinning.

However, under quasi-static strain rates of 0.001 s and room temperature, twining does not play
a significant role in the deformation of the material. Implementation of twining in the solver is
planned in the future research. Fig. 7b and ¢ shows the initial microstructure and crystallographic
texture (pole figures), which show a strong basal component and orthotropic symmetry.

The specimen is then deformed in two orthogonal directions of in-plane-compression (IPC)
where the crystal <¢> axis is perpendicular to the bending plane and through-thickness-
compression (TTC) where the <¢> axis is parallel to the bending plane. The calibration of true
stress — true strain curves are then facilitated by a set of dislocation density hardening parameters
for all three slip systems. It is notable that deformation of the modes is tied to each other owing to
their internal interactions, therefore, modification of DD hardening parameters is done
concurrently. In addition, tension-compression asymmetry observed in IPC and IPT (in-plane-
tension) is predicted by considering the non-Schmid effects for the prismatic and pyramidal slip
modes [70, 71]. It is known for HCP metals that these two modes contribute the most for non-
Schmid stress projections on the glide plane, and, in the glide direction where two orthogonal shear
stress components and the three normal stress components are included in the activation criterion
[70]. Figure 7d presents the calibrated Zr curves using the SA-GPU-EVPCUFFT solver under
compression in two orthogonal IPC and TTC directions, and tension in the IPT direction. The
accuracy of fitting/calibration justifies the adequacy of considering only slip deformations as
responsible for the prediction of material response under quasi-static loading and room
temperature. It is important to mention that a single set of parameters are established to fit all I[PC,
TTC, and IPT curves concurrently. Material constants and DD hardening parameters for Zr are
presented in Table 3. The non-Schmid parameters are provided by Table 4.

Once the material is calibrated using the SA solver, the four-point beam bending
simulations of Zr are performed using the FE-GPU-EVPCUFFT model. The deformation setup is
illustrated in Fig. 7a. A bending test is carried out utilizing two moving internal pins and two fixed
external ones. The internal pins are placed 6.35 mm apart while the distance between the fixed pins
is 12.7 mm. The deformation is applied to the sample by moving the internal pins in the TTC

direction (as shown in Fig.7a) by 6 mm. The Zr bar has a length of 50.8 mm and square cross
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section of 6.35 mm length. The FE model of the bar is then created for only a quarter of the beam
owing to the orthotropic sample symmetry. This reduces the total number of FE elements and thus

improves in computational cost. The model is discretized with 300 (20 x 5% 3) quadratic C3D20R

elements with reduced integration points embedding 8 microstructural RVEs consisting of 100

different crystal orientations (grains).

The deformed shapes and cross sections of the beams between experimentally measured
and FE-GPU-EVPCUFFT simulated are compared in Figs. 7e and f. The cross-sectional shapes of
the beams pertaining to the simulations are obtained by extracting the nodal coordinates of the
deformed FE model and superimposed on top of experimental photographs [72]. Examining Fig.
7f reveals that anisotropy of the deformed shape of the beam’s cross section is well captured in
loading in two different directions of IPC and TTC. In case of loading in the TTC (Z) direction,
the cross section becomes more distorted towards a wedge-shape area, while in case of loading in
a perpendicular direction to TTC (X or Z), the shape remains almost intact, maintaining a square
cross section. In other words, the Zr bars show much higher strength in TTC direction compared
to IPC direction as evident by stress-strain curves. This is owing to the strong anisotropy of the
material introduced by sharp basal component of the crystallographic texture and consequently

activation of harder-to-activate slip systems in the <¢> direction.
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Fig. 7. Simulation of four-point beam bending of clock-rolled (CR) Zr under quasi-static strain
rate of 0.001 s at room temperature using FE-GPU-EVPCUFFT. Due to the orthotropic sample
symmetry, a quarter of the beam is discretized with 300 (20 x5 x 3) quadratic C3D20R elements
with reduced integration. (a) Experimental setup featuring internal pins (displacing downwards for

6 mm) and two fixed external pins. (b) Microstructural cell (8’) embedded at each integration
point. (c) Pole figures showing the initial texture of the Zr plate. (d) Comparison of measured and
simulated true stress — true strain curves used to calibrate the SA-GPU-EVPCUFFT model (IPT —
in-plane tension, IPC — in-plane compression, and TTC — through-thickness compression). ()
Experimentally deformed and predicted beam shoving the strain fields. (f) Comparison between
measured and predicted cross-sections for the Zr beams (IP=X=Y, and TT=2).

Table 3. Single crystal elastic constants [69]
C,, =143,500MPa,C,,=72,500MPa,C,, = 65,400MPa,C,, =164,900MPa,C,, =32,100MPa ,

1=33.5GPa and calibrated dislocation density hardening law parameters for clock-rolled Zr.

Parameter Prismatic Pyramidal Basal

Slip mode {T100}(1120)  {10T1}(T123) {0001}(1120)
t*,[MPa] 15.5 194.5 58.5

ke [mfl] 5.0e7 5.0e8 4.0e8
D“[MPa] 15.0 500.0 60.0

g 0.04 0.01 0.015

p(f)l [m—2] 1.0el1 1.0el1 1.0el1

H* 0.0 0.0 0.0

q° 14.4 14.4 14.4

Table 4. Non-Schmid constants calibrated to promote the tension-compression asymmetry
exhibited by the clock-rolled Zr plate.

Prismatic Pyramidal
{T100}(1120) {10T1}(TT123)
c e o Ca ci &) o Ca
0.0 0.0 012  -0.012 0.0 0.0 0.05  -0.05
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5.2. Bending of a cantilever beam of DP1180 steel to reveal heterogeneous micromechanical

fields

This section demonstrates the advantage of the full-field? implementation over mean-field
models (e.g. self-consistent FE models) [59]. We show that the FE-GPU-EVPCUFFT framework
facilitates the qualification and quantification of micromechanical fields within the underlying

microstructures embedded at each integration point of the FE elements.

To demonstrate this potential, a cantilever beam bending simulation of dual-phase DP1180
steel microstructure of higher resolution (128x4x128) is embedded. Instead of a cubed RVE, we
choose a slice of RVE for computational efficiency. It is important to mention that while higher
resolutions (e.g. 256° ) are simulated with the SA solver in earlier works [48, 50, 73], a resolution
of 128x4x128 for the multiscale FE-GPU-EVPCUFFT model is considered as a large data set.
This is owing to the large number of required state variables and high memory usage correspond
to such resolution which slows down the FE simulations considerably. Memory requirement for
running FE-GPU-EVPCUFFT with underlying RVE resolution of 128x4x128 was 364 GBs.
Simulation was run using 5 MPI processes controlling 5 Nvidia Tesla V100 GPUs. Workstation

#3 was utilized for this simulation.

The DP 1180 steel contains 45% martensite distributed within the ferritic phase. Figure 8a
shows the initial texture, which is evidently orthotropic justifying the use of mirror symmetries in
the model setup. Calibration of the material and corresponding DD hardening parameters were
presented in the earlier work [48]. In addition to those calibrations, we add the predictions of
tension-compression asymmetry promoted by the non-Schmid law. Figure 8b illustrates the true
stress — true strain predictions by SA-GPU-EVPCUFFT for quasi-static strain rate of 0.001 s™! and
room temperature. Table 5 lists the non-Schmid constants utilized for the concurrent modeling of

tension and compression curves for DP 1180 steel to give rise to the asymmetry.

27



1500

z 0.84 1.00 1.23 1.51 1.85 2.28 2.80

c | |
- Max:344 &
D Texture intensity Z, 1000
{100} BLUN 1n E
3 500 ===Exp. T
2 —Exp. C
= —==Sim. T
= Sim. C
0
0 0.04 0.08 0.12
True strain

(a) (b)

Fig. 8. Calibration of non-Schmid constants to predict the tension-compression asymmetry for
DP1180 using the SA-GPU-EVPCUFFT model: (a) pole figures showing the initial texture [48]
and (b) comparison of measured (Exp.) and simulated (Sim.) true stress — true strain curves in
tension (T) and compression (C) under the quasi-static strain rate of 0.001 s™' at room temperature.

Table 5. Non-Schmid constants calibrated to predict the tension-compression asymmetry
exhibited by DP1180 steel.

C1 2 C3 Cq

0.0 0.0 0.04 -0.04

The FE model corresponding to the DP 1180 beam is discretized over 10 (2x1x5) C3D20
elements embedding 128x4x128 microstructural RVE with 253 grains. Of these, 114 grains with
29,494 voxels are martensite. The XZ plane symmetry is exploited to double the computational

efficiency.

Figure 9a shows the FE model consisting of C3D20 elements, the corresponding boundary
conditions, and underlying DP1180 martensitic-ferritic microstructure embedded in each
integration point of the FE model. The beam’s geometry has a dimension of 10mm x5 mm x40 mm
, fixed at one end and deformed 1mm downwards at the other end (cantilever beam). Figure. 9b

shows the deformed FE model displaying the axial strain and VM stress contours. The wall clock

time for this simulation was about 7.2 days.

To examine the embedded microstructural evolution, two elements, one with the high stress

and another with low stress are selected and the correspond underlying micromechanical stress
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fields are extracted and plotted in Fig. 9c. The multiscale FE-GPU-EVPCUFFT predicts the
contrast between the martensitic and ferritic phases, where the higher levels of stress are predicted
in the harder martensitic regions compared to the softer ferrite grains. The results demonstrate the
capability of the full-field’ implementation to capture the heterogeneity of micromechanical fields

corresponding to various FE elements experiencing dissimilar states of deformation.

(a) , I Ferrite I Martensite
/
/
Integration points;”
©3020) /

(b)

LE, LE33
(Avg 75%)

VM stress [MPa]
Logarithmic strain

_—
)
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Fig. 9. Simulations of DP1180 steel cantilever beam bending using the FE-GPU-EVPCUFFT
model. The beam has dimension of 10mmx5Smmx40mm and is displaced downwards in —X at

the free end for 1mm . (a) FE model consisting of C3D20 quadratic element depicting the applied

XZ symmetry and microstructural cell of 128x4x128 resolution, (b) the deformed FE model with
some exaggeration (the deformation scale factor of 5) showing the von Mises (VM) stress and
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axial strain contours, and (c) predicted fields of VM stress over the cell after bending in the regions
of high and low deformation.

6. Numerical tests for order of convergence

In order to examine the convergence of the FE-GPU-EVPCUFFT solver, we follow the
method provided in [31], where a generic system of nonlinear equations is solved using the
standard Newton method. Governing equations of the study are written in terms of the

macroscopic/global quantities (the capital letters). A residual defined as

AX(Ag) = AZ(Ag, At) — AZ“” (7-1)

where AX“?” denotes the applied macroscopic stress, which known in advance. The constant
applied stress is AXP = (Ac?PP) = {5.42,7.10,—12.51, —1.01,0.38, 4.01}. The
corresponding Jacobian for the Newton method is that of the FE-GPU-EVPCUFFT UMAT

y=0AX _OAX (7-2)
OAE  OAE

The FE-GPU-EVPCUFFT UMAT calculates stress Ac(Ag, At) at every voxel given an increment
in strain and time (in seconds). The local stress field is subsequently averaged into AX = (Ao) for
the comparison with the applied macroscopic stress AL?PP to obtain a next guess. The material
parameters and texture were those of polycrystalline Cu (Fig. 4). The residual is iteratively

minimized. The solution error e at the i iteration is then defined based on norm of the sought

solution and the current guess, as follows
¢, =|AE" - AE,. (7-3)

The sought solution of the problem, which corresponds to the applied stress, is known a priori
AE* = {0.0008235,0.001477,—0.002301,—0.0008762,—0.0001393, 0.001745}. The initial
guess was the elastic strain corresponding to the applied stress. By definition, the order of
convergence, a, 1S

a =1:linear

ei—t,l <b; b>0; 1< a < 2:super-linear. (7-4)
ei

a > 2:quadratic
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where b indicates the rate of convergence. Utilizing this methodology, we study the effects of both
time increment and underlying microstructural resolution on the order of convergence for the FE-

GPU-EVPCUFFT multiscale model. Fig. 10a shows the e, versus ¢ log plots as a function of

time increment: Az =0.02, Az=0.05, and, Az =0.1 second. Table 6a lists numbers for subsequent
Newton iterations arriving at the converged solution. Note that a larger time increment results in

higher # of iteration attempts to reach the same tolerance. Results indicate a quadratic order of

convergence upon the elastic guess to reach the error in the range of 10° < e., <1, followed by a

super-linear order of convergence for a tolerance range of 107° < e, < 107 . Varying the time

increment from Az=0.02 to Az=0.05 and Az=0.1, results in a similar trend with slightly lower
convergence rates and an increase in number of attempts to obtain the same tolerance.

Fig. 10b shows the effect of RVE resolution on the order of convergence for a time
increment of Az=0.1. Table 6b lists the orders of convergence as a function of RVE size with
correspond resolutions of 8x4x8, 16x4x16, 32x4x32, and 64x4x64. The frequency indicates
the subsequent NR iterations. Results indicate while the convergence rate for lower RVE
resolution of 8x4x8 is slightly faster with lower # of solution attempts, negligible difference is

observed for the orders of convergence belonging to the microstructural resolutions of 16x4x16

and higher.
].()“ 1[)[1
Time inc. : ” RVE Res. :
¢ 002 . ."‘:-‘I ¢ 8x4x8
—102f # 0.05 || 5 102} K16x4xI16
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Fig. 10. Convergence benchmarks in compression of a cube FE model with eight C3D8 elements
using the FE-GPU-EVPCUFFT implementation showing log(e,,, )-log(e ) for: (a) microstructural

RVE resolution of 8x4x8 and time increments of Az=0.02, Az=0.05, and, Az=0.1 and (b)
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microstructural RVE resolutions of 8x4x8, 16x4x16, 32x4x32, and 64x4x64 for time
increment of Az=0.1.

Table 6a. Variation in the order of convergence as function of time increment for the compression
of the cube FE model with eight C3D8 elements embedding a microstructural cell of 8x4x8 voxel
resolution.

Time increment Orders of convergence for subsequent Newton iterations
Ar=0.02 3.5671, 1.6835, 1.2385, 1.1112

At =0.05 3.8722,1.4731, 1.1984, 1.1512, 1.1321, 1.1166

Ar=0.1 4.3686, 1.6102, 1.1439, 1.0907, 1.0842, 1.0776, 1.0720

Table 6b. Order of convergence as a function of RVE resolution for the compression of the cube
FE model embedding eight C3D8 elements using a time increment of Az =0.1.

RVE resolution Orders of convergence for subsequent Newton iterations

8x4x8 4.3686, 1.6102, 1.1439, 1.0907, 1.0842, 1.0776, 1.0720

16x4x16 4.3050, 1.4615, 1.0881, 1.0924, 1.0841, 1.0777, 1.0720, 1.0672, 1.0630
32x4x32 4.2505, 1.4388, 1.1057, 1.1054, 1.0947, 1.0868, 1.0797, 1.0739, 1.0688
64 x4 x 64 4.2684,1.4793,1.1016, 1.1046, 1.0941, 1.0861, 1.0793, 1.0735, 1.0684

An additional convergence benchmark was performed involving a simple compression of
a multi-element cube FE model discretized using eight C3D8 elements and underlying RVE
resolutions of 8x4x8, 16x4x16, 32x4x32, and 64x4x64 to a strain of 20% also for Cu. We
performed this test even though Fig. 10 and Tables 5a and 5b indicate that microstructural
resolution and time increment play a secondary effect in the convergence behavior. We list the #
of iterations based on the Abaqus “.sta” output for the first 20 increments. Table 6c lists the # of
iterations as a function of underlying microstructural RVE resolutions and time increments of At
=0.02 and Az=0.1. It is realized that choosing a smaller time increment of Az =0.02 results in
only one iteration per increment. Increasing the time increment to Az =0.1 increases the # of
iterations to 2-3 per increment at the start of the simulation, converging to one iteration at some

point. As is evident, the # of iterations is really small compared to the first convergence test likely
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because simple compression is easier to converge than the generic test and because Abaqus relies

on a modified NR scheme to accelerate the convergence.

Table 6c¢. # of iterations per increment taken from the ABAQUS “.sta” output as a function of
embedded RVE resolutions and time increment for the compression of the cube FE model
discretized with eight C3D8 elements.

# of iterations

Increment # Ar=0.1 At =0.02
8x4x8  16x4x16 32x4x32  64x4x64  8x4x8  16x4x16  32x4x32  64x4x64

1 3 3 3 3 3 3 3 3
2 I I 1 I 1 | | |
3 1 1 I I 1 " | |
4 I 1 I I " . | |
5 2 2 2 2 " " | |
6 3 3 3 3 1 1 1 1
7 3 3 3 3 1 1 1 1
8 2 2 2 2 1 1 | |
9 1 I I I . ) | |
10 2 2 1 1 1 1 1 1
= 2 2 2 2 1 1 1 1
12 2 2 2 1 1 I I 1
13 L ! 1 2 1 I 1 1
14 2 2 2 I 1 . | |
15 ! ! 1 1 1 I I 1
16 L ! ! 1 1 I I 1
17 L ! ! 1 1 I I 1
18 ! ! I 1 1 1 1 1
19 ! ! I 1 1 1 1 1
20 ! ! I 1 1 1 1 1

7. Performance benchmarks

This section is dedicated to parallel performance benchmarks of the CPU-only and
hybrid CPU-GPU implementations of the multiscale full-field> model. First, the MPI performance
offered by ABAQUS standard solver is assessed where the strong scalability as a function of # of
FE elements and # of MPI processes are explored. Second, the performance improvements of
hybrid FE-GPU-EVPCUFFT for single and multiple GPU(s) over the FE-CPU-EVPFFTW
implementation are discussed in detail. Workstations #1 and #2 listed in Table 2 are utilized for

these benchmarks.
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7.1 MPI scalability

The FE solver in ABAQUS standard takes the advantage of MPI domain
decomposition [49, 74-80], where slices of the FE model containing one or more elements run on
their own MPI processors, concurrently. MPI parallel simulations are enabled when the models
are discretized with more than one element and is enabled by passing the flag “cpus=N" where N
indicates the total number of CPUs utilized for parallel simulations. Thread-based parallelization
is also an option for parallel simulations on shared memory (i.e., OpenMP) by adding the flag
“mp_mode=THREADS”, however, the MPI implementation has been shown to be much more
efficient [49, 81, 82]. Threaded parallelization usually suffers from false sharing of caches and the
page size granularity that occurs in physical memory mapping. In contrast, such memory access

problems are automatically avoided when using MPI [49].

In order to benchmark the performance of MPI parallelization offered by implicit FE
solver in ABAQUS standard, two performance benchmarks are performed. The benchmarks are
performed on workstation 1. Only “real” cores are used with no hyperthreading. Also, the locality
was ensured meaning that the domains are bound to always the same CPU. First, we study the
effect of the increase in number of FE elements on the wall clock time for simulations of simple
compression of a cube to a strain of 2% in 10 increments with #1, #2, #4, #8, #16, #32, and, #64
C3D8 elements utilizing a single CPU (i.e. serial mode). The CPU-only implementation (aka FE-
CPU-EVPFFTW) utilizes the FFTW3 library [49, 83]. Fig. 11a presents the variation of wall clock
time as a function of # of FE elements. Results indicate an almost linear trend where an increase

in wall clock time is proportional to the # of elements utilized in the simulation.
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Fig. 11. Performance benchmarks of CPU-only FE-CPU-EVPFFTW implementation as a function
of # of FE elements and # of MPI processes. (a) Scalability of wall cock time as a function of # of
FE elements for a uniaxial compression of a cube with #1, #2, #4, #8, #16, #32, and, #64 C3D8
elements. (b) Strong scalability leveraging #1, #2, #4, #8, #16, #32, and, #64 MPI processes.

A second benchmark is conducted by simple compressions of the same FE cube with
64 C3D8 elements leveraging 1, 2, 4, 8, 16, 32, and 64 CPU cores to obtain the strong scalability
of MPI runs on a single node. Fig. 11b shows the results of this benchmark. A saturation is
observed in the strong scalability, where, deviations from perfect strong scalability become more
significant utilizing 32 and 64 MPI processes. The current benchmark indicates best performance
gains leveraging #16 or less CPUs where individual CPUs are assigned with at least #4 elements.
Each MPI process should be assigned with a minimum computational workload to obtain an
efficient parallel scalability. The performance degradation occurred with increasing number of
CPU cores is owing to hyperthreading deficiency and shared memory bandwidth among all the
threads and may be improved by running on distributed nodes with non-uniform memory access
(NUMA) .The current benchmark indicates a computationally efficient parallel simulation
leveraging #16 or less CPUs with a correspond parallel efficiency of 50% and more, where, each
CPU is assigned with at least #4 elements. This is because each MPI process should be assigned
with considerable computational workload to obtain an efficient parallel scalability. Load

imbalance and performance degradation that occurs depending on which elements of the model
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(i.e., element IDs) are assigned to a specific CPU core are potentially another source of imperfect

strong scalability [84].

7.2 Hybrid FE-GPU-EVPCUFFT performance

This section elaborates on the performance improvements of the hybrid CPU-GPU FE-
GPU-EVPCUFFT implementation over the CPU-only FE-CPU-EVPFFTW model. The hybrid
solver utilizes single or multiple GPU(s) leveraging OpenACC and the CUFFT library [50, 66, 85,
86].

7.2.1 Single-GPU

Single GPU performance is evaluated as a function of microstructure resolutions by
simulation of simple compression of a single FE element of type C3D8 to a strain of 2% in 10
increments embedding microstructural RVEs with 16x4x16, 32x4x32, 64x4x64 and,
128 x4 x128 discretizing voxels. The benchmark is performed on workstation 1 featuring a Nvidia
Tesla V100 GPU (32 GB) controlled by a single core of Intel(R) Xeon(R) Gold 6154 CPU @
3.00GHz.

Figure 12 depicts the outcomes of the single GPU benchmark. It is realized that the
performance gain of FE-GPU-EVPCUFFT over the FE-CPU-EVPFFTW becomes more
significant with increase in resolution of embedded microstructures. This is expected since GPUs
are much more efficient in computation of large data sets. The inferior result for the low resolution
16x4x16 RVE is due to a low workload to take advantage of the GPU hardware. Results indicate
improvement in performance gain with an increase in underlying microstructural RVE resolutions.
The hybrid FE-GPU-EVPCUFFT speeds up the simulations ~2.5x for an embedded RVE
resolution of 128 x4 x128.

According to Amdahl’s law [49, 50, 87], the net obtained speed up is contingent on the
ratio of UMAT computations to the FE solver itself which is not trivial to measure since the
Abaqus solver reports the total time spent in FE and UMAT altogether. Amdahl's law limits the
overall GPU performance. The speed up reported for UMAT solver does not isolate the speed up
obtained in the UMAT itself but the overall performance of Abaqus FE solver with the UMAT.

Even in case of one element model, execution time of the FE solver is not negligible compared to
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that of UMAT utilization. For instance, if FE solver is taking 30% of the total wall clock time (i.e.
the fraction to accelerate is /=0.7) and if the UMAT solver runs 26x (p=26) faster leveraging GPUs

(the SA solver has a speed up of 26x for the resolution of 128 x4 x128), the net speed up according

1
1=+

to Amdahl’s law [49, 87] is § = 7 = 3.04, which is close to the obtained speed up herein.

14

Figure 13 reflects the Amdahl’s law for the UMAT implementation presented herein, where the

variation in the net speed up vs the speedup in UMAT is shown.

The memory motion associated with transferring data between the CPU and GPU is the
key issue for GPU scalability of the UMAT. While the SA solver is independent meaning that all
data except I/O is created on GPU to avoid memory/data transfer between CPU and GPU hardware,
the state variables are inevitably transferred back and forth from GPU to CPU and vice versa in
the UMAT. As Abaqus FE solver is opaque not allowing for any GPU programming, all state
variables that are already on GPU’s memory need to be copied to CPU for Abaqus at the end of
each iteration for every integration point. Profiling the UMAT solver to compare the memory copy
time w.r.t. the compute time shows that the memory copy time is small compared to compute time
but the number of invocations of memory copy is large, which is the limiting factor in the net

performance.

32x4x32  64x4x64 128x4x128

RVE resolution (# of voxels)

\O
xp7 B FE-GPU-EVPCUFFT
S8 B FE-CPU-EVPFFTW

0 2000 4000 6000 8000 10000 12000 14000
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Fig. 12. (a) Performance benchmark comparison for the hybrid CPU-GPU implementation (FE-
GPU-EVPCUFFT) versus the CPU-only UMAT (FE-CPU-EVPFFTW) for the compression of a
single C3D8 FE model. The FE-CPU-EVPFFTW model utilizes a single core of Intel(R) Xeon(R)
Gold 6154 CPU @ 3.00GHz and FFTW3 libraries, while the FE-GPU-EVPCUFFT hybrid solver
takes the advantage of a single Nvidia Tesla V100 GPU (32 GB) leveraging OpenACC and CUFFT
libraries.
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Fig. 13. Net speed up as a function of UMAT acceleration on GPU and UMAT workload.

7.2.2 Multi-GPUs

The purpose of this section is not to compare a multi-GPU performance w.r.t to a single-
GPU performance - such benchmarks have been presented in a previously published work [88] -
but to elaborate on the potential performance gains where adequate # of GPUs are not available
for utilization. That is, to confirm that one is still able to take advantages of a hybrid MPI-GPU
parallel implementation maintaining the MPI utilization offered by FE domain decomposition
while benefiting from the GPU acceleration either on a single GPU or multiple GPUs with
imperfect strong scalability.

Multi-GPU utilization is more involved compared to single-GPU implementation and
requires the parallel information at FE domain decomposition level which is obtained from
ABAQUS standard built-in functions. To determine the element IDs assigned to a MPI process,
ABAQUS offers the functions “GETNUMCPUS” and “GETRANK?”, representing the size (i.e.,

total number of MPI processes) and rank (i.e., current MPI process #), respectively. These
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functions are similar to “MPI_Comm _size” and “MPI_Comm rank” commonly used by MPI
standard libraries such as OpenMPI. Note that “GETNUMCPUS” output is determined by the flag
“cpus=N" accompanying the ABAQUS job submission, where, N is the # of MPI processes.

Simple compressions of a cube FE model with 4 elements of type C3DS to a strain of 2%
in 10 increments embedding microstructural RVEs with 64x4x64 resolutions are simulated on
workstation 2 utilizing 1, 2, and 4 Nvidia Tesla K80 GPUs where the total number of MPI
processes is kept at 4 for all benchmarks. Table 7 presents the four configuration setups. A 1:1
ratio of CPUs has been used alongside the GPUs. We have ensured that each MPI process is bound
to one CPU using always the same GPU, otherwise, significant overheads would arise from
switching across multiple devices adversely impacting the multi-GPU performances.

The benchmark narrows down the focus on UMAT-only acceleration facilitated by GPUs
by maintaining the same number of MPI processes utilized for FE solver. Such benchmark is
helpful when access to GPUs is limited on a workstation but it is still preferred to take the
advantage of GPUs to accelerate UMAT. Fig. 14 shows an almost perfect strong scalability of the
multi-GPU benchmark for FE-GPU-EVPCUFFT (i.e., wall clock times is halved by doubling the
# of GPUs). It is also important to mention that when number of GPUs pertaining to each element
is less than one (i.e., several elements access a GPU), the performance may be adversely affected
by overutilization resulted from concurrent access to the GPU hardware. Therefore, it is advised
to limit the number of GPUs per MPI process. The ideal performance is obtained when # of FE
elements and # of GPUs are the same where each FE element is assigned to a unique GPU
hardware. The GPU parallelization would become profoundly effective if there are more GPUs

available than MPI processes as more than one GPU would be solving one RVE.

Table 7. Configuration setups for the multi-GPU performance benchmark utilizing FE-GPU-
EVPCUFFT on workstation 2.

# of MPI # of GPUs
configuration # of FE processes for accelerating the # of elements per
elements FE domain GPU-EVPCUFFT GPU
decomposition UMAT
1 4 4 1 4
2 4 4 2
3 4 4 4 1
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Fig. 14. Multi-GPU performance benchmark of the hybrid FE-GPU-EVPCUFFT model
simulating the compression of the cube FE model with #4 elements of type C3D8 embedding
microstructural cell of 64x4x64 resolution. The benchmark is performed on workstation #2
utilizing #1, #2, and #4 Nvidia Tesla K80 GPUs with #4 MPI processes for all three cases. Results
indicate almost perfect strong scalability of the multi-GPU utilization.

8. Summary and conclusions

The paper presented the first GPU-enabled parallel implementation of the EVPFFT full-
field crystal plasticity solver in the implicit FEM, leveraging a hybrid CPU-GPU hardware. The
FE solver utilizes MPI for domain decomposition while the underlying microstructural RVE runs
on multiple GPUs concurrently. The implementation is referred to as full-field> FE-GPU-
EVPCUFFT. GPU-supported multiscale simulations are facilitated by Nvidia HPC SDK compiler
leveraging OpenACC and CUDA FFT libraries.

An analytical Jacobian is derived and implemented to facilitate the implicit coupling and
ensure a fast order of convergence. The convergence rates of the multiscale implementation are
verified as a function of time increment and embedded microstructural resolutions and regarded
as satisfactory.

The FE-GPU-EVPCUFFT model is validated against the SA solver and experimental
measurements for monotonic simple compression and texture evolution of FCC Cu under large

deformation. Validation is extended for cyclic response of DP 590 steel with for a wide range of
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strain amplitudes. Benchmarks corroborate the accuracy of the multiscale implementation. In these
simulations, the multiscale model takes the advantage of a reversible dislocation density hardening
law that enables dislocation annihilation and utilizes an intra-granular kinematic hardening back-
stress law to capture the nonlinear unloading and Bauschinger effect upon load reversals.
Predictions of tension-compression asymmetry are enabled leveraging the non-Schmid effects.

After validations, the full-field*> model is applied to study several metal forming
simulations. First, a uniaxial compression of a multi-element cylinder embedding a single copper
crystal is simulated and the deformed shape and ovality of the cross section is compared to the
experimental photographs of the deformed cylinder. Second, two simulations of four-point
bending of clock-rolled Zr bars are performed in two different loading directions of parallel and
perpendicular to the bending plane where the deformed shapes and cross sections are compared
with the measured data. Finally, the unique capability of the full-field> implementation is
demonstrated leveraging a beam bending of a martensitic-ferritic DP 1180 steel embedding high-
resolution underlying microstructures per integration point. The results provide insights into
variations of micromechanical fields within individual elements experiencing dissimilar states of
deformation.

The paper concludes showing several performance benchmarks comparing the
computational efficiency of the CPU-only FE-CPU-EVPFFTW model with the more advanced
hybrid CPU-GPU FE-GPU-EVPCUFFT solver taking the advantage of multiple GPUs. The hybrid
full-field? FE-GPU-EVPCUFFT spectral crystal plasticity package presented herein can improve
computational efficiency for simulating microstructure-property-processing linkage of metallic

materials.
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Appendix A

Description of EVPFFT

A standard EVPFFT is based on a power-law relation between a plastic strain rate, £”(x)

, and Cauchy stress, 6 (X), through a superposition of shearing rates on slip systems, N [89, 90]

N N s . _ s n
éﬁ(x) — ZPS (X) 7/\ (X) — 7}OZPS (X)[P (X) GEX) Tbs (X)] , (Ala)
s=1 s=1 Tc (X)
s 1 N N S N
PSC=5(b ®n'+n' ®b’), (Alb)
P * =c (t' ®b*)+c,( ®n’)+c,(n° ®n’)+c,(t° @t ) —(c; +¢,)(b° ®b°),
(Alc)
P'=P +P’. (Ald)

In the above equations, ¥ and 7.’ are the shearing rate and the slip resistance, respectively.
Furthermore, the parameter y, is a reference shearing rate (taken as 0.001 /s) and » is the power-
law visco-plastic exponent chosen to be 20 to ensure proper selection of the active slip systems.

The term 7, *(x) is the slip-system level kinematic back-stress influencing the driving force to slip.

The Burgers vector b* and the slip system normal n* with t' =b*xn’ define the geometry of a

slip system, s. Selection of slip systems is based on the crystal structure of the simulated materials

varying from FCC which deforms by {110}<T11> family/mode of slip systems to BCC structure
deforming by {Tl 1}<1 10) and {Tl 1}(211) slip modes to HCP structure deforming by prismatic

slip {1100} (1120), basal slip {0001}(1120) and pyramidal slip {I0T1}{1123) modes. It should

be noted that positive s+ and negative s- directions per slip systems are considered separately. The
onset of acitvation for these slip systems varies depends on the local crystal orientation relative to
a loading direction and a value of the resistance to slip. However, in addition to loading projected
on the glide plane and in the glide direction, the model can consider two orthogonal shear stress
components and three normal stress components to influence the activation criterion. These aspects

are referred to as the non-Schmid effects [73, 91-94] and help in predicting the tension-
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compression asymmetry. The non-Schmid coefficients c¢,,c,,c;,c, weight the non-Schmid
contributions.
The elasto-plastic constitutive response is described using the Hooke’s law

o_t+At (X) _ C(X) 8e,t+At (X) _ C(X) (8t+At (X) gt (X) _ ép,t+At (X, O'HN)At) , (AZ)

where o(X) is the Cauchy stress, €C(X) is the elastic stiffness tensor in the global (sample) frame

obtained by applying crystal to sample transformations utilizing the crystal elastic constants, and

€(x),e°(x), and €”(X) denote the total, elastic, and plastic strains, respectively. Based on Eq.

(A2), the total strain is

8[+At (X) — Cfl(x) o_HAt (X) + sp,t(x) + ép,t+At (X, GHA[ )At. (A3)

After adding and subtracting the stiffness of a reference linear medium, C°, multiplied by
the displacement gradient 2, , (x) from the Cauchy stress, we obtain [44]
o,(x)=0,(x)+C°u, ,(x)=C° u, ,(X). (A4)

Furthermore, we can write

o (x) = Coijkl u,, (x)+ ¢g— (x), (AS5)
with
$,(x)=0,(x)— Cowuk‘l (x), (A6)

where the term ¢U(X) represents the polarization field. After incorporating the equilibrium
equation, 0y (X) =0, into Eq. (A5) we obtain

Coijkluk,lj (x)+¢, ,(x)=0. (AT)
Relying on Green’s approach to solve the partial differential equations [95], Green’s function
G,,, (x) is associated to the displacement field U (X) as

C’ Gy (X=X +6,,6(x—x")=0. (A8)

The convolution theorem [96] is then used to obtain the local displacement gradient fluctuation

tensor
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i, ()= [, Gy (x=x)g, (x)dx". (A9)

The strain field around the average strain value, £, is

£, (0= E, + T (sym( 14,004, K (A10)

where the symbols F7*/ and "~ " indicate inverse Fourier transforms and direct Fourier transform,

respectively. k is a point (frequency) in the Fourier space. The tensor /° ?jkl (k) is

ykl (k) =—kk le (k); le (k)= [Ckﬁ,klk,]’]. (All)
An iterative procedure is used to obtain a solution for Eq. (A7). If we consider el.j(") and
/%/(i)to be an initial guess for the strain and stress fields, respectively, we get from Eq. (A6)
¢, (x)=2"(x)-C°, e, (). (A12)
Eq. (A10) is then used for the next guess for the strain field
" (x) = E, + FT"! (sym(£°,0)) g (). (AL3)
To use the stress directly rather than the polarization, Eq. (A13) is revised as [97]
e, " (x)=E, + FT'(&," +sym(I"%,, (k) A, (K)). (Al4)

An augmented Lagrangian scheme is used [98] to minimize the residual as a function of the stress,
oV and strain, g"*"

Rk (G(iH)) — Gk(iJrl) + Cklogl(iﬂ) (G(Hl)) _ /Ik(i) _ Ckloel(iﬂ)’ (Al 5)
In Eq. (A15), the following notation is used for the symmetric tensors & and c,,,

o, >0, k=16
k (A16)
Cyy = Cy» kil=16.

Eq. (A15) can be solved using the Newton Raphson (NR) method as
oR,
oo, '°

(i+1,j+1) _ (i+l,j) _
Oy =0y (

(i+1.)) )_1 Rl (O'(M’j))a (Al 7)

where o, “*/*P is the (j+1) trial for stress field o, “*". Note that “j” counts the NR stress

iterations, while “i”” counts the field equilibrium iterations. Using Eq. (A3), the Jacobian is
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oR 0 0 02, Al
a_o_t‘c(m.n =0y +qu qu +At qu 8—0(]'] e ( )

. p
The term —q‘ oy 18
(o2
0,

n-1
o’ ‘ =g ZN PP, P'(x)-o(x)—7,,’ . (A19)
ao_l Uit 0 s=1 Tcs (G(Hl,j) (X)) TL.S (G(iJrl,j) (X))
Incorporating Eq. (A19) into Eq. (A18) gives
n—1
8Rk - 0 -1 . 0 N PquSl PS (X) : c(X) - Z-bss AZO
8_01 S = 5/{/ + qu qu + (At n ;/0) Ck‘] Z.y:l z_cs (c(i+1,j) (X)) TCS (O_(HI,_/‘) (X)) : ( )

Minimizing the residual R, by the NR’s iterations, the solution for stress is obtained at

each FFT voxel as the next trial for Eq. (A12) and Eq. (A14). The procedure continues until the

convergence to 7oL, 1s reached for each crystal stress
(Gk(HLM) _Gk(iﬂ,j))(o_k(iﬂ,jﬂ) _Gk(;+1,_/))

/ @9 @
ﬂ‘!/' /111

Given the power-law exponent 7 and the tolerance, the total number of iterations for stress is in

< TOL,, =10"°. (A21)

the range between 3 and 6.

The stress and strain field tolerances ( 7o,

stress_ field >

TOL ) after solving Eq. (A15)

strain _ field

are

<( Uk(m) _ /Ik(”)( Gk(m) _ /Ik(i) )>
; Zl;(") 2;,»(")

<( 8k(i+1> _ eku) )( gk(i+1> _ eko') )>
2

“ @@
3El'/ Elfi

= TOLstressiﬁeld = 1076) (A22a)

= TOLstrainiﬁeld = 10_6 (A22b)

where () represents the volume average. Tensors X and E are the deviatoric stress and the

plastic strain of the homogenized polycrystal by averaging over voxels
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> (o,0)

X === ———  N,N,,N, =#of voxelsin X,Y,Z,
N, x N, x N, (A23)
2 (&7 ()
LoXyz
TN XN, x N,

The total number of iterations for obtaining the field solution varies between 10 and 25 for the

selected tolerances in Eq. (A22).

Slip-system level reversible dislocation density hardening

A dislocation density-based hardening law is implemented in the EVPFFT model in earlier
works [48, 73]. In the description, s and s’ denote the slip systems interacting with each other.
The rate of dislocation density evolution is a thermally activated process, dependent on the
temperature and strain rate. The law considers bi-directional motion of dislocations on a given
plane allowing dislocations to annihilate when moved in the opposite direction. The evolution of
slip resistance (the critical resolves shear stress, CRSS) per slip system is driven by the following

three contributing terms

s __ A24
= +7,,- (A24a)

c

S A
Ty +7T

forest

The first term, z;, contributes to the initial value (i.e., initial yield point) which does not evolve

and itself consists of three terms

S—

s A24b
Ty =To + Ty yp + T ( )

, forest >
where 7, is the frictional term embedding the effects of solid solution and precipitate hardening
depending on the material (i.e. Peierls stress) [73], 2'3'7 »p represents the Hall-Petch contribution of

grain size and shape (barrier effects), and 7, .., denotes the forest dislocation density content

distributed through the initial material. The Hall-Petch term is defined as [99]
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where b, u, H are the Burgers vector, shear modulus, and Hall-Petch calibration coefficient,

respectively. The quantities a,b,c are the ellipsoidal dimensions representing a grain and

b.,b,b. denote a unit vector in the Burgers direction in the grain to estimate the dislocation mean-

free-path, d,‘;ﬁ,. While the term is not always calibrated due to lack of mechanical data with
variable grain size, the model provides an opportunity to account for it.
Contribution of statistically stored dislocation density, T;bm, , to the total slip resistance,

is defined using

Toen =0 21 [P0 LY Pl (A26)

where ¥ denotes the system interaction parameter usually taken to be 0.9 [100-102], while L is

the latent hardening coefficient, usually set to 1.05 [48, 103]. The total dislocation density p,, is
described based on two contributions of forward (i.e., non-reversible) and reversible dislocation
populations [104], to possibly capture a deformation path dependence in the hardening law and
dislocation dissolution upon load reversal. Implementation of the concept necessitates the
consideration of two slip system directions with opposite Burger directions (i.e. § s ) on a given
plane attached to the reversible dislocation populations. Consequently, the total dislocation density
is
ptf)t = p;onv + p}:/ + p:e_v 4 (A27)

with p}o,,w denotes the forward dislocation density and ,0:;, ,O,Se_v imply reversible populations

correspond to the slip directions s and s, respectively. The forward dislocation density

population is evolved as a function of rate of storage and the rate of recovery as [48, 73, 101, 103]

ap ;orw s S+ . s S+ A28
ays :(1_p)kl \'p_fbrw-l_prev_k2(87T)p_/bntv:|f0rd7 >O 5 ( a)
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aIL)Sorw s S— . s §—
a—;f = (1= Pk \| P + P — ks (6.T) )., | for dy™ >0, (A28b)

where k, 1is a calibration constant driving the rate of generation, while £, drives the rate of
recovery [99]. The constant p is the shear reversibility in the range between 0 and 1 to separate
the fraction of forward and reversible populations. For low to moderate strain levels, p =1 [104]

meaning that dislocations can glide in the opposite direction at the loading reversal. The reversible

populations depend on the direction of shearing according to

6 \; R s+ . S+ |

. |Jordy" >0 o
0 ; s s+ r:f
67/ ptot J
6 Sjv S — . 5= |

i (A30)
oo ——( 2,

S+ S

prev |t:0: O ) p;:v |t:0 = 0 5 p;orw |t:0: pinitial,
where, the exponent » controls the rate of dislocation recombination and is usually taken as 0.5
[105]. The parameter £, (&,7)1s defined as a function of temperature and strain rate as follows
kb | kT h{,i]], (A31)
g

k, =

D(®) |&

where g is an effective activation enthalpy established by calibration, k, is the Boltzmann

constant, &, is a reference rate of strain set to 107 s™', and D is the drag stress also established by

calibration.

The last term of slip resistance, 7,,, is a consequence of the debris population [106] and
is defined as

(A32)

1
7., =0.086u by log| —— |,
deb H O\ P e g[b\/al

where, P, is the debris dislocation density, which evolves using
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dy' (A33)

APy = q blpusky (€,T)p5,

In Eq. (A33), the parameter ¢ is a debris-related fitting constant separating the portion of removed

a S
dislocations [% =k,(£,T)p;,] from the debris.
/4

Back-stress law

A phenomenological approach to intra-granular kinematic back-stress effects has been
implemented in EVPFFT [48, 73, 107]. The inter-granular effects are explicitly accounted for. The
approach is a computationally efficient simplification of the back-stress estimation possible using
strain gradient plasticity formulations [108]. Consistent with the self-internal back-stress

formulations [109], the back-stress either assists or hinders the resolved shear stresses on the slip
systems [110, 111]. Specifically, while rg: acts in the direction opposing the driving stress on s*,
ie.Ps" .o — Tf,: = 77, meaning that TZZ lowers the driving stress, 75, benefits the driving stress
on the slip system s: P$ - ¢ — 75, = 5. The back-stress evolves once the grains start deforming

plastically (**~ > 0) and can saturate [48]

* S+/— _1 Z-‘H'/_

bs sys

y =—In|l1- o
1% T

* S+/—
z_er/— — z_sat [l_exp(_v(]/ +d}/s+/]jj’ fOl" 7/_ls+/— S 0, (A34a)

b sys s | L L T P YT b

Z_S—/+ — _A Z_s+/—

bs,sys bs " hy s

s/~ z’f“’ - T}ﬁ,,
}/ — _}/b ln bs bs ..s:at
(4, +D7”

sokS+/—

+ d s+/—

T:_”’ =—(4,, +Dz*" exp[¥J+ o, | for ™" <0, (A34b)
5,5y5 bs.sys }/b bs bssys
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where Tf”f is the back-stress for the two opposite directions, S* and § . 4, and V are the

back-stress calibration parameters. The calibration parameter A4, controls the asymmetry of

non-linear unloading [112]. Finally, the calibration parameter ij is the saturation limit for

evolution of the back-stress. The proposed back-stress law enables predictions of non-linear
unloading and Bauschinger effect (BE) upon load reversal under cyclic loadings and during
strain-path-changes [48].

Appendix B

UMAT variables are shown in Fig. B1. The array size NTENS is set to 6 e.g. (
2., 2 X X

Y2 Tz T xy? T xz?

2’ ) using Abaqus’ notation, which does not conform to Voigt. While the
order in Abaqus notation is (11, 22, 33, 12, 13,23), the order in EVPFFT corresponds to the Voigt
order (11, 22, 33, 23, 13, 23). Therefore, proper substitution in the components 12 and 23 was
necessary. The number of direct stress components are defined by NDI, which is 3 (2,2 ,X_).
The FE element number and integration point ID are defined by NOEL and NPT, respectively.
The variable TIME is a vector of two components where TIME (1) and TIME (2) imply the values

of step time and total time at the beginning of the current increment, respectively. The increment

number and time increment value are KINC and DTIME, respectively.

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,RPL,DDSDDT,DRPLDE,DRPLDT,
STRAN, DSTRAN,TIME,DTIME,TEMP,DTEMP, PREDEF,DPRED,CMNAME, NDI,NSHR,NTENS,
NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT,DFGRD0,DFGRD1,NOEL,NPT,
LAYER,KSPT,KSTEP,KINC)

Fig. B1. UMAT subroutine interface for incorporating constitutive laws in Abaqus.

Appendix C

Fig. C1. Shown the environment file adjusted for UMAT simulations on GPUs using
Nvidia HPC SDK compiler.
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#abaqus v6.env : Modified to suit GPU utilization by Nvidia HPC SDK compiler
fortCmd = "pgf90" # <-- Fortran compiler

compile fortran = [fortCmd, '-V','-Mpreprocess', '-Minfo=accel mp', '-Mextend'
'-fast', '-tp=px' , '-c¢','-fPIC','-Mr8', '-DABQ LNX86 64',6 '-DABQ FORTRAN', '-
I%I', 'sP', '-DGPU','-DUSEACCPARALLEL', '-DCollapse', '-DGPU NR', '-
DGPU_Update_ Schmid', '-DGPU_DGrain', '-DGPU_Inverse_ the Greens',6 '-
DGPU_update orient', '-DGPU_update disgrad', '-DGPU_step_wvm calc', '-
DGPU_Copy_ disgrad_to_velgrad', '-DGPU_Get Smacro' ,'-DGPU_fft dim init xk gb'
'-DGPU_init_sg', '-DGPU_init ept' ,'-DGPU_£ft3d c2r', '-DGPU_fft3d r2c', '-
DGPU_step update disgrad etc' ,'-UGPU_DD Harden' ,'-Mcuda', '-
ta=tesla:cc70,cudall.l' ,'-ta=tesla:cc70,cudall.l,pinned’', '-
ta=tesla:cc70,cudall.l,fastmath','-DUSE_CUFFT' ,'-DUSE CUFFT_ SERIAL',6 '-
DFFT choice=fft_cufft', '-Mcudalib=cufft' ,'-DFFT_MPI_MODULE=fft_cufft serial',
I/opt/nv1d1a/hpc sdk/Llnux x86_64/20.11/cuda/11. 1/1nclude/‘ =
L/opt/nvidia/hpc_sdk/Linux x86 64/20 11/cuda/11.1/1ib64/', '-Mr8' ,'-Mextend’]
link sl = [fortCmd, '-shared', '%E',6'-o', '%U', '&F', '%A', 'sL',6'$B', '-
DGPU', '-DUSEACCPARALLEL', '-DCollapse', '-DGPU_NR', '-DGPU_Update_Schmid', '-
DGPU_DGrain', '-DGPU_Inverse_the Greens',6 '-DGPU _update_orient',6K '-
DGPU_ppdate_disgrad' '-DGPU_step_vm_calc', '-DGPU_Copy_ disgrad_ to_velgrad',6 '-
DGPU_Get_ Smacro' ,'-DGPU_fft dim . 1n1t xk gb' ,'-DGPU_init sg', '-DGPU_init ept’
'—DGPU_fft3d_02r ' -DGPU_. fft3d r2c', '-DGPU_step update disgrad etc' ,'-
UGPU_DD_Harden' ,'—Mcuda ; -ta—tesla cc70,cudall.l1' ,'-
ta=tesla:cc70,cudall.l,pinned', '-ta=tesla:cc70,cudall.l,fastmath','-
DUSE_CUFFT' ,'-DUSE_CUFFT_SERIAL', '-DFFT_choice=fft cufft', '-Mcudalib=cufft'

—DFFT MPI MODULE—fft cufft serial', '-
I/opt/nv1d1a/hpc sdk/Llnux %86 _64/20.11/cuda/11.1/include/", '-
L/opt/nv;dla/hpc_sdk/Llnux_386_64/20 11/cuda/11.1/1ib64/', '-Mr8' ,'-Mextend',
' /home/adnan/FE_GPU_EVPCUFFT/fftc_cufft.o']

Fig. C1. Abaqus environment file “Abaqus_v6.env”’ for UMAT simulations on GPUs using Nvidia
HPC SDK compiler.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to
technical or time limitations.
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