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Abstract 

This paper presents an implementation of the elasto-visco-plastic fast Fourier transform (EVPFFT) 

crystal plasticity model in the implicit finite element (FE) method of Abaqus standard through a 

user material (UMAT) subroutine to provide a constitutive relationship between stress and strain 

at FE integration points. To facilitate the implicit coupling ensuring fast convergence rates, an 

analytical Jacobian is provided. The constitutive response at every integration point is obtained by 

the full-field homogenization over an explicit microstructural cell. The implementation is a parallel 

computing approach involving multi-core central processing units (CPUs) and graphics processing 

units (GPUs) for computationally efficient simulations of large plastic deformation of metallic 

components with arbitrary geometry and loading boundary conditions. To this end, the EVPFFT 

solver takes advantages of GPU acceleration utilizing Nvidia’s high performance computing 

software development kit (SDK) compiler and compute unified device architecture (CUDA) FFT 

libraries, while the FE solver leverages the message passing interface (MPI) for parallelism across 

CPUs. The high-performance hybrid CPU-GPU multi-level framework is referred to as FE-GPU-

EVPCUFFT. Simulations of simple compression of Cu and large strain cyclic reversals of dual 

phase (DP) 590 have been used to benchmark the accuracy of the implementation in predicting the 

mechanical response and texture evolution. Subsequently, two applications are presented to 

illustrate the potential and utility of the multi-level simulation strategy: 4-point bending of textured 

Zr bars, in which the model captures the shape variations as a consequence of texture with respect 

to the bending plane and another bending of DP1180, in which the model reveals details of spatial 

micromechanical fields.  
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1.  Introduction  

Metallic materials experience large plastic shape changes and develop non-linear strain 

fields in service and during metal forming. These materials are usually polycrystalline and as such 

exhibit anisotropy owing to the preferred distribution of crystallographic orientations (i.e., texture) 

as a consequence of prior thermo-mechanical processing history [1-5]. Macroscopic yield surface-

based continuum models are extensively used to model metal plasticity [6-8]. However, these 

models lack the ability to consider the anisotropy at a single-crystal level. Advanced multi-level 

constitutive relations such as those based on crystal plasticity theory, considering microstructural 

evolution and the directionality of deformation mechanisms operating at the single crystal level, 

are being developed [9-14].  

Crystal plasticity models have been advanced significantly in the course of last few decades 

in formulations of Taylor-type upper bound [15-20] and mean-field self-consistent [21-28] models. 

While these models are computationally efficient and have proven effective in predicting the 

homogenized flow stress and texture evolution of polycrystalline metals, they lack the ability to 

explicitly model microstructures and constituent grains. Therefore, these models are unable to 

provide qualification and quantification of spatial micromechanical fields resulting from grain-to-

grain interactions. Nevertheless, these models have been coupled with finite elements to model 

geometrical shape changes while relaxing the homogenization assumptions with spatial gradients 

[11, 12, 29-34]. To facilitate spatial i.e. full-field simulations accounting for grain-to-grain 

interactions, crystal plasticity finite element (CPFE) [35-42] and elasto-visco-plastic fast Fourier 

transform (EVPFFT) models [43-48] have been developed. The full-field models are more 

accurate because the constituent grains deform differently according to their crystal orientation 

and interact with surrounding grains crystallographically and morphologically instead of relying 

on simpler Taylor iso-strain approximation or self-consistent homogenizations. The major 

advantage of EVPFFT over CPFE is in its computational efficiency, especially because of its 

suitability for high-performance parallel implementations using multi-core central processing units 

(CPUs) and graphics processing units (GPUs) [49-55]. The present paper is concerned with the 

coupling of EVPFFT with the implicit finite element method (FEM) inside a user material 

(UMAT) subroutine to provide a microstructure-sensitive constitutive response at the meso-scale 

for each integration point within a boundary value problem solved with the FEM at the macro-

scale. The resulting constitutive behavior is that of a full-field EVPFFT material, implemented in 
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the implicit full-field FE code Abaqus. As a result of the two spatial levels, the implementation is 

a multi-level full-field2 computational plasticity framework.  

Düsseldorf Advanced Material Simulation Kit (DAMASK) has recently been advanced to 

incorporate a version of a spectral crystal plasticity full-field model based on FFTs for implicit FE 

solvers [56, 57]. The version utilized the finite strain theory and a Piola-Kirchhoff stress-based 

constitutive relationship. The framework chains the transformation from the Piola-Kirchhoff stress 

to obtain a tangent Jacobian matrix appropriate to the Jaumann rate of Cauchy stress required by 

the Abaqus FE solver. The implementation provided approximately a linear convergence. As 

presented, the implementation is limited to CPU-only computations not taking advantages of 

advanced parallel computing and hardware. The present development is aimed at improving 

numerical aspects by adapting EVPFFT and deriving an analytical Jacobian to achieve better 

convergence rates. Moreover, the objective is a high-performance parallel computing 

implementation involving a hybrid of CPUs and GPUs.  

Specifically, the first high performance computing (HPC) implementation of the GPU 

accelerated EVPFFT crystal plasticity model [50] into the implicit FE framework [58] is developed 

and presented. The obvious motivation for the development is the superior ability of the EVPFFT 

formulation compared with any other crystal plasticity formulation to capture the strong explicit 

microstructure-induced gradients and anisotropic hardening in a computationally efficient manner. 

A key novel aspect of the coupled implementation is the tangent stiffness matrix (Jacobian) for the 

nonlinear FE solver obtained analytically. The tangent stiffness matrix is obtained primarily as a 

function of the local tangent moduli already available as part of the non-linear EVPFFT numerical 

scheme and the elastic stiffness tensor. The convergence behavior is examined and presented in 

function of time increment and resolution.  

The EVPFFT UMAT subroutine is designed to run on single or multi-GPU hardware, while 

the FE model runs on multiple processors leveraging MPI. The framework can take advantages of 

both Intel and Nvidia HPC software development kit (SDK) compiler to meet the requirements of 

performance portability and platform compatibility leveraging OpenACC  as well as the compute 

unified device architecture (CUDA) FFT libraries facilitated by OpenACC-CUDA interoperability 

[50]. The implementation is referred to as full-field2 FE-GPU-EVPCUFFT. The performance 

improvements of the hybrid CPU-GPU implementation (FE-GPU-EVPCUFFT) running on single 
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and multiple GPUs is compared with the CPU-only model (FE-CPU-EVPFFTW) which utilizes 

CPUs and the FFTW library.  

Accuracy of the implementation is demonstrated using several benchmarks, a simple 

compression of polycrystalline Cu and load reversals of an advance high strength (AHSS) dual 

phase (DP) 590 steel, comparing the simulation results of the FE-GPU-EVPCUFFT model, the 

standalone (SA) EVPFFT solver, and experimental data. Additionally, compression of a Cu single 

crystal is simulated to predicts extreme anisotropy and shape changes. Excellent agreement is 

achieved because the EVPFFT accounts for the elastic anisotropy, dislocation density-based 

thermally activated hardening, development of back-stress, and non-Schmid effects. Subsequently, 

two applications are presented to illustrate the potential and versatility of the multi-level simulation 

strategy: 4-point bending of textured Zr bars, in which the model captures the shape variations as 

a consequence of texture with respect to the bending plane and bending of a cantilever beam of 

DP1180, in which the model reveals details of spatial micromechanical fields.  

 

2. Coupling of EVPFFT and FEM  

 Figure 1 illustrates a graphical abstract of the multi-level FE-EVPFFT model 

implementation as a UMAT in Abaqus. In the implementation, every integration point within the 

finite element mesh (grid) contains the information of the overall constitutive response of the 

microstructural cell also called a representative volume element (RVE) obtained by the 

homogenization over the FFT voxels. The RVE is an explicit grain structure consisting of voxels, 

which incorporate a crystal orientation and associated slip systems.  
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Fig. 1. A graphical illustration of the full-field2 multi-level FE-EVPFFT modeling strategy linking 

sub-grain physics of deformation at a voxel-level to a grain-level to a microstructural cell-level to 

an FE element-level and, finally, to a component-level.  

 

The main equations pertaining to the standard SA EVPFFT solver are given in appendix A 

for reference and completeness. This section presents equations pertaining to the implementation 

of the EVPFFT model into the implicit finite elements. In the notation that follows, tensors are 

denoted by non-italic bold letters, while scalars and tensor components are italic and not bold. 

Symbols  and  are used to denote contracted (dot product) and uncontracted (tensor product) 

operators.  
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The Abaqus FE solver satisfies the stress equilibrium and strain compatibility through the 

FE weak formulation. To this end, the solver breaks down the applied displacement/load into 

increments and the equilibrium state of the solution is obtained using an iterative Newton’s 

procedure at the end of each increment. The corresponding principal of virtual work linearized FE 

equilibrium equation for each element is  

,
V V

dV dVT
B JB U f B

 
= −  

 
   (1) 

where, B, J, U, and f  represent the strain-displacement matrix, Jacobian, displacement 

increment, macroscopic Cauchy stress and applied forces, respectively. At every UMAT call from 

Abaqus solver, the strain increment t D =  (calculated using the stretching tensor D in 

Abaqus), rotation increment R , the solution dependent state variables, and time increment t  

are provided to the UMAT subroutine. The UMAT subroutine provides the updated stress, the 

Jacobian matrix, and updated state variables at every interrogation by the FE solver. It is important 

to note that while the calculated Jacobian does not affect the accuracy of the solution, it determines 

the convergence rate of the Newton’s iterative solver involved in the implicit FE solver.  

 Appendix B shows the UMAT subroutine interface provided by Abaqus to incorporate 

user defined constitutive laws in the Fortran programing language. The variables relevant for the 

present coupling are STATEV(NSTATV), DDSDDE (NTENS, NTENS), STRESS(NTENS), 

DSTRAN (NTENS) and DROT (3,3) standing for state-variables, Jacobian, stress, strain 

increment, and rotation increment, respectively. Strain increment, rotation increment, stress, and 

state variable at the beginning of the time increment are input for a UMAT call, the updated stress, 

updated state variables, and Jacobian are returned from the UMAT to the FE solver. 

 

2.1 Spin tensors 

The EVPFFT solver is designed to operate under applied stretching tensor, D, calculated 

by dividing the strain increment E  by the time increment t . The macroscopically imposed 

spin, W , is calculated using the rotation increment tensor provided by Abaqus   

3 2

3 1

2 1

0

0 ,

0

w w

w w

w w

− 
 

= −
 
 − 

W   (2-1) 
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where 
iw denote the components of angular velocity as a function of rotation unit vectors, 

in , 

rotation angle increment,  , and the rotation increment tensor, R , as follows 

 1 1
; ; cos ( ) 1 .

2
i i i i ijk jkw n n n R trace

t


  −  

= = = −   =  − 
  

R   (2-2) 

Having the imposed spin, the lattice spin used to update the crystal orientations can be calculated 

*( ) ( ),p=W x W - W x   (2-3) 

where the plastic spin ( )p
W x  is  

( )
1

1
( ) ( ) ( ); ( ) ,

2

N
p s s s s s s s

s


=

= =  −  W x x x x b n n b   (3) 

where s  is the antisymmetric Schmid tensor and ( )s x is the shear rate on the slip system s of the 

total number of available slip systems, N.  

 

2.2 Derivation of Jacobian   

The evaluation of the appropriate Jacobian plays a significant role in determining the order 

of convergence. The Jacobian is used by the FE solver to iteratively guess the nodal displacement 

field in order to satisfy the equilibrium requirement in the current time increment from t to t t+

. A more accurate Jacobian facilitates a closer guess to the actual solution. The Jacobian matrix 

can be defined as a continuum operator 
E




 or as a consistent tangent operator 

E

 


. The present 

plasticity problem is formulated incrementally through the use of the Jaumann rate as the objective 

rate with the consistent tangent operator. Therefore, the constitutive equation at the crystal level 

in EVPFFT (appendix A) is appropriately adjusted to a generic form of the Jaumann stress rate, 

( )( ) ( ) ( ) ( )p
x C x x x



 =  −  [31, 59-62]  

( )* * * *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e p
x C x x W x x x W x C x x x W x x x W x =  +  −  =  −  +  −    (4-1) 

where 
*

W is the lattice spin,   is the rate of Cauchy stress, and C is the elastic stiffness tensor.  

Integrating Eq. (4-1) in the fixed coordinate system from time t to t + Δt leads to  

( ) * *( ) ( ) ( ) ( ) ( ) ( ) ( ) (p     x C x x x, W x x x W x) = −  +  −   (4-2) 

The above incremental form meets the requirement for the FE integration scheme in Abaqus to 
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update stress using ( )t t t + =  +  x . Note that 
*W  is 

* tW . We would like to point out that 

the field and state variables (such as texture) are all expressed in the global frame at the current 

configuration. Therefore, our implementation is consistent with the default treatment of rotations 

in Abaqus.       

The superscript 
t t+

 implies the quantity at the current time increment and is dropped from all 

tensors for brevity. The derivative of the increment in Cauchy stress with respect to strain 

increment is  

( ) ( ) ( )

( )

( )

* *

* *

( ) ( ) ( ) ( ) ( ) ( )( , )( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( , )( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

(

t tp

p

t





    

    

 

  

  



I

W x x x x x W xxx x
C x C x

x x x x x

xx x
C x C x

x x x

W x x W x x

x

     +    +         
= − + −

        

      
 = − +

       

  + 

 

( )

( )

* *

* *
* *

0

0

( ) ( ) ( ) ( )

) ( )

( , )( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

t

p

t
t

t

  



 

  

  
  

   



x W x x W x

x

xx x
C x C x

x x x

W x x W x x
x W x x W x

x x x x

x

x

  + 
−

 

      
 = −

       

 
     

+  + +  + 
        

 


−

 

* *
* *( ) ( ) ( )
( ) ( ) ( ) ( ) .

( ) ( ) ( )

t   
  

  

W x x W x
W x x W x x

x x x

 
    

+  + +  
      

 

  

(5-1) 

Note that ( )
0

( )

t



x

x


=

 
 since the stress in crystals at the beginning of the time increment is constant 

( )

* *
*

*

( , )( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) (
( )

( ) ( )

p

t

t

 

  

    
 

    

  

 

xx x
C x C x

x x x

W x x W x x x
x x W x

x x x x x

W x x
x

x x

      
 = −

       

           
+  +  +                  

     
−  + 

    

( )

*
*

* *
*

) ( ) ( )
( ) ( )

( ) ( ) ( )

( , )( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

p

 
 

  

 

  

    


   

x W x x
W x x

x x x

xx x
C x C x

x x x

W x x x W x
x W x x

x x x x

    
+           

      
 = −

       

         
+  + −             

*( ) ( )
( ) .

( ) ( )




 

x x
W x

x x

    
+        

 
(5-2) 
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Since strain and stress tensors are symmetric, the terms above including *( )W x  are 

antisymmetric owing to *( )W x being antisymmetric ( )* *( ) ( )
T

 W x W x = −
  

 . This allows us to 

write the above equations while keeping the operation of 
( )

( )





x

x

 

 
consistently from the right, as 

follows 

( )

* *

* *

( , )( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

p

T

 

  

   

   

 
 

 

xx x
C x C x

x x x

W x x W x x
x x

x x x x

x x
W x W x

x x

      
 = −

       

             
−  +  +                         

    
+ 

    
.

T

 
 
 

  (5-3) 

Since for any tensor , ( ) ( )2T sym+ = we can rewrite the above equation in a more condensed 

form as 

( )

*
*

( , )( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )
2 ( ) ( ) .

( ) ( ) ( )

p

sym

 

  

  


  

xx x
C x C x

x x x

W x x x
x W x

x x x

      
 = − +

       

      
− +          

  (5-4) 

We also provide the indicial form of the above equation  

( )

*

*

( , )( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )( )
2 ( ) ( ) .

( ) ( ) ( )

p

mnij pq

ijkl ijmn

kl pq kl

pj pjmn
ip ip

mn kl kl

C C

W
sym W

 

  




  

 

  

 


  

xx x
x x

x x x

x xx
x x

x x x

  
= − +

  

  
− +     

  (5-5) 

After incorporating the local tangent moduli, 
p



 

 
, already available as part of the non-linear 

EVPFFT numerical scheme (see appendix A) and similarly deriving 
* p 

 

W W −
=

   
, we obtain 
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( ) ( )

( ) ( )

1

0 1

1

1

0

( ) ( )( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )
( )

( ) ( )

2

( )

n
s ss s

N bs

s ss
c c

n
s ss s

N bs

s ss
c c

s

n

n

sym




 



 



 


 







P x xx P x P x x
C x C x

x x x x

P x xx P x x
x

x x x

P
x

−

=

−

=

   −    
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(5-6) 

 

Using Voigt notation (e.g., , 1, 6, , ;ij k ij k ijkl kl k lC C    =→ → → ), the above equation 

generates a system of 36 linear equations and 36 unknowns which is solved for the local Jacobian 

( )

( )





x

x

 

 
 using Gauss-Jordan elimination (GJE). This is accomplished by grouping the terms that 

include the term ( )

( )





x

x

 

 
 on one side ( ( )

( )





x
A B

x

 
=

 
) and the matrix inversion ( 1( )

( )

−
=



x
A B

x




). 

The overall consistent tangent stiffness is then obtained by applying the homogenization (i.e., the 

volume averaging) over voxels of a given RVE, 
( )

( )

 

 

x
J =

E x

   
=

  
. The derived macroscopic 

average Jacobian is an approximation because the volume average of local partial derivatives does 

not include explicit couplings over the microstructure. Given that the macro-scale stress is the 

volume average of local stresses, the Jacobian does not include a chain rule contribution for the 

change in local deformation increment with macro-scale deformation increment. The consequence 

of such approximation in the Jacobian is decreased rate/speed of convergence, while solution 

accuracy is not affected. Nevertheless, the enhanced Jacobian without the approximation would 

contain extra calculations, which would extend the overall computational time.  

 

2.3 Solution recovery and identification of state variables 

State variables, STATEV(NSTATV), need to be available to recover the fields at the 

beginning of each time increment at each integration point. The number of state variables plays a 

role in computational efficiency and memory usage. Simulations of large models where the high-

resolution FE model embeds high-resolution RVEs are memory demanding. State variables that 

need to be saved per voxel in the FE-EVPFFT implementation include total strain, ( )x , Cauchy 
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stress, ( )x , plastic strain, , ( )p t
x , crystallographic orientation, g(

1 2, ,  ), debris dislocation 

density, deb , forward and reversible dislocation densities, , ,s s s

forw rev rev  + −
, and back-stress, ( )s

bs x

. Note that the last four are per slip system, N. Considering that these variables are per voxel, the 

total storage depends on the RVE size as  

NSTATV= 
1 2 3 (22 4 ),N N N N   +   (6) 

where 1 2 3, ,N N N represent the number of voxels in X, Y, Z. State variables are read as input at the 

beginning of a time increment, updated in UMAT, and passed back to Abaqus for storage at the 

end of the time increment for the next increment.  

 

3. Nvidia HPC compiler and hybrid CPU-GPU FE-GPU-EVPCUFFT  

Abaqus’ custom UMAT subroutines are usually compiled and linked by Intel Fortran 

compiler, which does not support GPU programming. To the authors’ knowledge, none of the 

crystal plasticity UMAT developments in the literature so far are able to utilize GPUs. The Nvidia 

HPC SDK compiler suite, which is based on the former Portland Group, Inc. (PGI) compilers, 

supports both CUDA [63, 64] and OpenACC [65, 66] to facilitate GPU programming in Fortran 

and C/C++.  

To ensure performance portability, CUDA-OpenACC interoperability [50] is used in the 

SA EVPFFT termed here as SA-GPU-EVPCUFFT. As a result, the SA-GPU-EVPCUFFT solver 

is capable of running high-resolution crystal plasticity simulations with dramatic reduction in 

computational time. For instance, utilizing a single Nvidia Tesla V100 GPU, up to 43x speed up 

is obtained relative to the original EVPFFT utilizing FOURN for the FFT calculations [48, 50]. 

Moreover, the multi-GPU performance of the solver lies within just about perfect scalability on 

distributed nodes of supercomputers [50].  

To enable running our GPU accelerated UMAT linked with the FEM, the Abaqus 

environment file “abaqus_v6.env” is modified to include the Nvidia compiler and linker flags, 

enabling Abaqus FE solver to link with the Nvidia HPC compiler instead of Intel. Note that 

switching back to Intel compiler is still possible by changing the compiler flags in the environment 

file and therefore we are able to run our simulations leveraging both Intel and Nvidia compilers. 

Appendix C presents a schematic of the environment file where the Nvidia complier and its 

corresponding flags replace the Intel compiler to facilitate GPU utilization. The overall schematic 



12 

 

and the detailed flow-chart of the hybrid FE-GPU-EVPCUFFT are shown in Fig. 2. Abaqus FE 

solver utilizes CPUs and MPI for domain decomposition at the mesh-level, while the underlying 

voxelized microstructural RVE embedded in each integration point of an element runs on GPU. 

Fig. 3 illustrates the GPU utilization and the details pertaining to performance profiling of the GPU 

accelerated UMAT called as an internal process by the ABAQUS standard solver. The profile data 

is obtained by Nvidia visual profiler (nvvp) v2020. Note that the GPU utilized to report this figure 

is a Nvidia GeForce RTX 2060. Examining the performance benchmark results indicate proper 

utilization of GPU hardware i.e. the GPU is kept busy during the simulation. Furthermore, the 

amount of time spent to transfer the data from GPU to CPU and vice versa [indicated by narrow 

brown bars – CPU-GPU data copy] is small [orders of milli seconds] w.r.t the compute time where 

calculations are performed on GPU [wide green bars]. The performance benchmarks provided later 

in the text are reported for more advanced Nvidia Tesla GPUs.  

  



13 

 

 
Fig. 2. Illustration of Abaqus utilizing CPUs and MPI for domain decomposition at the mesh level, 

while a microstructural cell embedded at an integration point runs on GPU. Flowchart of the 

developed hybrid implementation.  
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Fig. 3.  (a) Evidence of UMAT GPU utilization within Abaqus standard solver provided by Nvidia-

smi. (b) Performance and profiling details pertaining to the GPU accelerated UMAT called as an 

internal process by Abaqus solver. The information is provided by Nvidia visual profiler v2020. 

The GPU utilized to report this figure is the Nvidia GeForce RTX 2060.  
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4. Model validation  

 In order to evaluate the accuracy of the FE-GPU-EVPCUFFT multiscale model, several 

benchmarks are performed, and results are compared with the SA-GPU-EVPCUFFT solver and 

experimental observations. We compare the modeling results under the monotonic, cyclic, and 

shear boundary conditions, which the SA model can handle.  

 4.1. Simple compression and shear of polycrystalline copper  

 First, we compare simple compression and shear of a polycrystalline oxygen free high 

conductivity copper (OFHC) between SA-GPU-EVPCUFFT and multiscale FE-GPU-

EVPCUFFT. Copper has face-centered cubic (FCC) structure deforming on  110 111  family of 

slip systems. Calibration of true stress-true strain is performed in compression using SA-GPU-

EVPCUFFT up to a true strain level of 0.47 under an applied quasi static strain rate of 0.001 s-1 at 

room temperature. The model features a dislocation density (DD)-based hardening law. A 

polycrystalline RVE of 83 voxels with 100 crystal orientations (i.e., ~5 voxels per grain) and 

randomly distributed orientations (i.e., uniform texture) was prepared synthetically in the 

DREAM.3D software package [67]. Single crystal elastic stiffness constants (i.e., 
11 12 44, ,C C C ) 

and the established DD hardening parameters are listed in Table 1. Experimental data used for 

calibration of data is reported in [68].  

The FE-GPU-EVPCUFFT model was run using a single linear FE element of type C3D8 

with 8 integration points, each embedding the same 83 RVE microstructure of 100 grains. The 

analysis of simple shear in 23 (YZ) direction was performed in order to verify the correct treatment 

of rotations in the finite-deformation kinematic framework. It should be noted that a multiscale 

FE-GPU-EVPCUFFT simulations, even for resolution RVEs (i.e., 83), requires a large number of 

state variables since the information is stored per voxel and per slip system. Figure 4 compares the 

true stress - true strain curves and deformed textures for the SA-GPU-EVPCUFFT and multiscale 

FE-GPU-EVPCUFFT. Textures are also represented as individual orientations to facilitate a 

complete visual comparisons. The SA model utilized a constant applied strain rate of 0.001 s-1. In 

contrast, some numerical fluctuations in state variables from one integration point to another 

within the element were unavoidable. Even though the fluctuations were extremely small, they 
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were sufficient to cause some appreciable differences between curves calculated using the SA and 

FE models.  

 

Table 1. Single crystal elastic constants [69] and dislocation density hardening parameters 

established for OFHC Cu.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Eq. # Value 

11[ ]C MPa  

A2 

168,400 

12 [ ]C MPa  121,400 

44 [ ]C MPa  74,500 

0 [ ]MPa  A24b 7.0 

1

1 [ ]k m−
 A31 1.5e08 

[ ]D MPa  A31 55.0 

g  A31 0.13 

2

0| [ ]s

forw t m −

=  A30 1.0e10 

H  A25 0.0 

q A33 0.1 

[ ]MPa   A25 46,500 

n  A1a 20 
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Fig. 4. (a) An 83 microstructural cell used for the compression and shear simulations of 

polycrystalline Cu using SA-GPU-EVPCUFFT and FE-GPU-EVPCUFFT wherein the cell was 

embedded at each integration points of a single FE element of type C3D8. (b) True stress – true 

strain curves and pole figures showing comparisons between simulated strength and texture 

evolution in simple compression using SA-GPU-EVPCUFFT and FE-GPU-EVPCUFFT at 0.47 

strain. The measured stress-strain curve is also provided. (c) True stress – true strain curves and 

pole figures showing comparisons between simulated strength and texture evolution in simple 

shear using SA-GPU-EVPCUFFT and FE-GPU-EVPCUFFT at 0.47 strain. Tensor components 

33 for simple compression and 23 for simple shear are plotted. The provided texture intensity 

pole figures are simulated using the FE-GPU-EVPCUFFT model. Those simulated using SA-

GPU-EVPCUFFT are not appreciably different and are not shown.  
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4.2. Cyclic loading of DP590 steel  

 The simple compression verification in the last section has verified the accuracy of the 

multiscale model for monotonic loading and thus the correct implementation and state variable 

manipulation. In addition to monotonic deformations, the SA-GPU-EVPCUFFT solver and its 

advanced multiscale FE-GPU-EVPCUFFT version are further compared in predicting the cyclic 

deformation and underlying non-linear unloading and the Bauschinger effect. To this end, we 

simulate load reversals for DP 590 steel and compare the results with the experimental data from 

[48]. The FE-GPU-EVPCUFFT model utilized an 83 RVE with 100 ferrite grains within a single 

C3D8 element. The material 7.7% martensitic phase distributed uniformly within the ferritic phase. 

Considering such a distribution, # (the number) of martensitic voxels spreading within ferritic 

phase is 40 out of total 512. The microstructure together with the initial texture of ferrite as the 

predominating phase are provided in Fig. 5a [48]. As for Cu, the microstructure is synthetically 

generated and initialized with texture in DREAM.3D [67]. The texture shown in the figure is 

enforced in the ferrite, while martensite has a uniformly distributed texture. Since the volume 

fraction of martensite is small compared to that of ferrite, the resulting overall texture is very close 

to the ferrite texture.  

The cyclic loading using FE-GPU-EVPCUFFT was set as three loading steps (i.e., tension-

compression-tension). Figure 5b compares the SA and FE multiscale model simulation results with 

experiments at tensile pre-strains of 1%, 2%, 4%, 6%, 8%, and 10% under a quasi-static strain rate 

of 0.001 s-1 at room temperature. Material constants used in the DD hardening law and the back-

stress law are taken from [48].  
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Fig. 5. Load reversal simulation cases for DP590 steel under a quasi-static strain rate of 0.001 s-

1 at room temperature to validate the FE-GPU-EVPCUFFT implementation by comparing the 

simulation results with the SA predictions and experimental measurements from [48]. The 

simulations utilized an 83 microstructural cell consisting of 100 different crystal orientations in 

ferrite and 40 in martensite embedded at integration points of a single C3D8 element. (a) DP590 

starting microstructure with 7.7% martensitic fraction [48], (b) cyclic tension-compression 

response for (i) 1%, (ii) 2%, (iii) 4%, (iv) 6%, (v) 8%, and, (vi) 10% tensile pre-strain levels.  

 

4.3. Uniaxial compression of a cylinder embedding a single crystal of Cu  

 Validations are further advanced to simulate simple compression of a multi-element FE 

cylinder embedding 
38  RVE microstructures with an underlying single copper crystal of Goss 

texture (i.e., [001][110] in miller-indices notation or [90° 45° 90°] in Bunge-Euler notation). In 

order to improve the computational efficiency of the simulation, symmetries are applied to the FE 
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model. The imposed symmetries are justified by the crystal orientation, which is orthorhombic. 

One eighth of the cylinder is modeled and discretized with 240 C3D8 brick elements and 48 C3D6 

wedge elements. This elemental configuration is chosen to ensure consistency in validation against 

the data reported in [31, 68]. The FE model is then compressed along the Z axis to a strain of 0.5 

under quasi-static strain rate of 0.001s-1 at room temperature and the deformed models are 

compared with the experimental observations. Parameters listed in Table 1 are used for this 

simulation.  

Figure 6 illustrates the model configuration and compares the deformed shape of the 

cylinder simulated using the FE-GPU-EVPCUFFT model against the experimental data [68]. The 

cross-sectional geometry of the simulated model is obtained by extracting the nodal coordinates 

of the FE mesh at the end of the simulation. Results show that the model predicts the ovality of the 

deformed cylinder’s cross section owing to the anisotropy of deformation along X and Y directions 

(i.e., slip systems accommodating strain in the Y direction have zero Schmid factors and therefore 

no strain is obtained in the Y direction). This case study shows the superiority of crystal plasticity 

in predicting anisotropic deformations considering crystallographic slips compared to the isotropic 

plasticity (e.g., J2), for which prediction of an oval shape is not possible. The deformed cross-

section would remain circular due to isotropic deformation in all directions.  
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Fig. 6. FE-GPU-EVPCUFFT simulation of compression of a Cu single crystal discretized with 

240 C3D8 brick elements and 48 C3D6 wedge elements under quasi static strain rate of 0.001s-1 

at room temperature: (a) {110} pole figure showing the crystal orientation embedded at every 

voxel of an 
38  microstructural cell, which is the embedded at every integration point of the 1/8 

FE mesh used in the simulation, (b) simulation setup before and after compression and a view 

along Z before (blue) and after (red) compression, (c) external coordinates of nodes in the 

deformed configuration at 0.5 strain superimposed on the experimentally deformed specimen of 

Cu single crystal. Absence of flow of the cylinder in the Y direction demonstrates accuracy of the 

model.  

 

 

5. Applications  

After the successful validation of the FE-GPU-EVPCUFFT implementation, we apply the 

model for two metal forming case studies leveraging multi-element FE models. In section 5.1, we 

perform two simulations of four point bending of clock-rolled Zr with hexagonal close-packed 

(HCP) crystal structure, where the deformed beam’s shape and cross sections are examined and 
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compared with the experimental photographs. In section 5.2, we present another bending case 

study to reveal micromechanical fields over a higher resolution two-phase microstructural cell. 

Table 2 lists the hardware specifications used to perform the simulations.  

  

Table 2. Hardware specs of workstations leveraged for simulations and benchmarks 

Workstation # 1 (1 node) 2 (1 node) 3 (5 nodes) 

OS 
CentOS Linux 

release 7.6   

CentOS Linux release 

7.0   
CentOS Linux release 7.6   

Compiler 
Nvidia HPC SDK 

2020 (v20.9) 

Nvidia HPC SDK 2020 

(v20.9) 
Nvidia HPC SDK 2020 (v20.9) 

ABAQUS 

release 
2020 2020 2020 

CPU 
Intel(R) Xeon(R) 

Gold 6154 CPU @ 

3.00GHz 

Intel(R) Xeon(R) CPU 
E5-2695 v4 @ 2.10GHz 

Intel(R) Xeon(R) Gold 6130 

CPU @ 2.10GHz 

System memory 

(GB) 
376 512 772 

# of CPU cores 72 72 32 

# of threads per 

core 
2 2 2 

# of sockets 2 2 2 

# of cores per 

socket  
18 18 16 

GPU   
NVIDIA Tesla V100 

(32 GB) 
2 NVIDIA Tesla K80 

GPUs (4 Gk210 GPUs)  
NVIDIA Tesla V100 (32 GB) 

CUDA toolkit 

version 
11.0 9.1 10.1 

System memory 

(GB) 
376 512 772 

 

5.1. Four-point bending of Zr beams  

In this section, we perform two simulations of four-point bending for a Zr bar by applying 

bending in two orthogonal directions. Plastic anisotropy relative to the loading directionally is 

simulated using FE-GPU-EVPCUFFT and validated against experimental observations.   

The Zr beams cut from a clock-rolled Zr plate are deformed as shown in Fig. 7a. Since Zr 

has an HCP crystal structure, the slip systems accommodating plastic deformation are more 

complex than FCC or body centered cubic (BCC) material. We consider three modes of prismatic 
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<a> slip  1100 1120 , basal <a> slip  0001 1120 , and, 1st order pyramidal <c+a> slip 

 1011 1123 .  The FE-GPU-EVPCUFFT solver in its present form does not handle twinning. 

However, under quasi-static strain rates of 0.001 s-1 and room temperature, twining does not play 

a significant role in the deformation of the material. Implementation of twining in the solver is 

planned in the future research. Fig. 7b and c shows the initial microstructure and crystallographic 

texture (pole figures), which show a strong basal component and orthotropic symmetry.  

The specimen is then deformed in two orthogonal directions of in-plane-compression (IPC) 

where the crystal <c> axis is perpendicular to the bending plane and through-thickness-

compression (TTC) where the <c> axis is parallel to the bending plane. The calibration of true 

stress – true strain curves are then facilitated by a set of dislocation density hardening parameters 

for all three slip systems. It is notable that deformation of the modes is tied to each other owing to 

their internal interactions, therefore, modification of DD hardening parameters is done 

concurrently. In addition, tension-compression asymmetry observed in IPC and IPT (in-plane-

tension) is predicted by considering the non-Schmid effects for the prismatic and pyramidal slip 

modes [70, 71]. It is known for HCP metals that these two modes contribute the most for non-

Schmid stress projections on the glide plane, and, in the glide direction where two orthogonal shear 

stress components and the three normal stress components are included in the activation criterion 

[70]. Figure 7d presents the calibrated Zr curves using the SA-GPU-EVPCUFFT solver under 

compression in two orthogonal IPC and TTC directions, and tension in the IPT direction. The 

accuracy of fitting/calibration justifies the adequacy of considering only slip deformations as 

responsible for the prediction of material response under quasi-static loading and room 

temperature. It is important to mention that a single set of parameters are established to fit all IPC, 

TTC, and IPT curves concurrently. Material constants and DD hardening parameters for Zr are 

presented in Table 3. The non-Schmid parameters are provided by Table 4.  

Once the material is calibrated using the SA solver, the four-point beam bending 

simulations of Zr are performed using the FE-GPU-EVPCUFFT model. The deformation setup is 

illustrated in Fig. 7a. A bending test is carried out utilizing two moving internal pins and two fixed 

external ones. The internal pins are placed 6.35 mm apart while the distance between the fixed pins 

is 12.7 mm. The deformation is applied to the sample by moving the internal pins in the TTC 

direction (as shown in Fig.7a) by 6 mm. The Zr bar has a length of 50.8 mm and square cross 
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section of 6.35 mm length. The FE model of the bar is then created for only a quarter of the beam 

owing to the orthotropic sample symmetry. This reduces the total number of FE elements and thus 

improves in computational cost. The model is discretized with 300 ( 20 5 3  ) quadratic C3D20R 

elements with reduced integration points embedding 
38 microstructural RVEs consisting of 100 

different crystal orientations (grains).  

The deformed shapes and cross sections of the beams between experimentally measured 

and FE-GPU-EVPCUFFT simulated are compared in Figs. 7e and f. The cross-sectional shapes of 

the beams pertaining to the simulations are obtained by extracting the nodal coordinates of the 

deformed FE model and superimposed on top of experimental photographs [72]. Examining Fig. 

7f reveals that anisotropy of the deformed shape of the beam’s cross section is well captured in 

loading in two different directions of IPC and TTC. In case of loading in the TTC (Z) direction, 

the cross section becomes more distorted towards a wedge-shape area, while in case of loading in 

a perpendicular direction to TTC (X or Z), the shape remains almost intact, maintaining a square 

cross section. In other words, the Zr bars show much higher strength in TTC direction compared 

to IPC direction as evident by stress-strain curves. This is owing to the strong anisotropy of the 

material introduced by sharp basal component of the crystallographic texture and consequently 

activation of harder-to-activate slip systems in the <c> direction.  
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Fig. 7. Simulation of four-point beam bending of clock-rolled (CR) Zr under quasi-static strain 

rate of 0.001 s-1 at room temperature using FE-GPU-EVPCUFFT. Due to the orthotropic sample 

symmetry, a quarter of the beam is discretized with 300 ( 20 5 3  ) quadratic C3D20R elements 

with reduced integration. (a) Experimental setup featuring internal pins (displacing downwards for 

6 mm) and two fixed external pins. (b) Microstructural cell (
38 ) embedded at each integration 

point. (c) Pole figures showing the initial texture of the Zr plate. (d) Comparison of measured and 
simulated true stress – true strain curves used to calibrate the SA-GPU-EVPCUFFT model (IPT – 

in-plane tension, IPC – in-plane compression, and TTC – through-thickness compression). (e) 

Experimentally deformed and predicted beam shoving the strain fields. (f) Comparison between 

measured and predicted cross-sections for the Zr beams (IP=X=Y, and TT=Z).  

 

Table 3. Single crystal elastic constants [69] 

11 12 13 33 44143,500 , 72,500 , 65,400 , 164,900 , 32,100C MPa C MPa C MPa C MPa C MPa= = = = = , 

33.5GPa =  and calibrated dislocation density hardening law parameters for clock-rolled Zr.  

Parameter Prismatic  Pyramidal Basal 

Slip mode  1100 1120   1011 1123   0001 1120  

0 [ ]MPa  15.5 194.5 58.5 

1

1 [ ]k m −
 5.0e7 5.0e8 4.0e8 

[ ]D MPa
 

15.0 500.0 60.0 

g  0.04 0.01 0.015 

2

0 [ ]m −
 1.0e11 1.0e11 1.0e11 

H
 0.0 0.0 0.0 

q  14.4 14.4 14.4 

 

Table 4. Non-Schmid constants calibrated to promote the tension-compression asymmetry 

exhibited by the clock-rolled Zr plate.  

Prismatic  Pyramidal 

 1100 1120    1011 1123  

c1 c2 c3 c4  c1 c2 c3 c4 

0.0 0.0 0.12 -0.012  0.0 0.0 0.05 -0.05 
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5.2. Bending of a cantilever beam of DP1180 steel to reveal heterogeneous micromechanical 

fields  

 This section demonstrates the advantage of the full-field2 implementation over mean-field 

models (e.g. self-consistent FE models) [59]. We show that the FE-GPU-EVPCUFFT framework 

facilitates the qualification and quantification of micromechanical fields within the underlying 

microstructures embedded at each integration point of the FE elements.  

 To demonstrate this potential, a cantilever beam bending simulation of dual-phase DP1180 

steel microstructure of higher resolution (128 4 128  ) is embedded. Instead of a cubed RVE, we 

choose a slice of RVE for computational efficiency. It is important to mention that while higher 

resolutions (e.g. 2563 ) are simulated with the SA solver in earlier works [48, 50, 73], a resolution 

of 128 4 128   for the multiscale FE-GPU-EVPCUFFT model is considered as a large data set. 

This is owing to the large number of required state variables and high memory usage correspond 

to such resolution which slows down the FE simulations considerably. Memory requirement for 

running FE-GPU-EVPCUFFT with underlying RVE resolution of 128 4 128   was 364 GBs. 

Simulation was run using 5 MPI processes controlling 5 Nvidia Tesla V100 GPUs. Workstation 

#3 was utilized for this simulation.  

The DP 1180 steel contains 45% martensite distributed within the ferritic phase. Figure 8a 

shows the initial texture, which is evidently orthotropic justifying the use of mirror symmetries in 

the model setup. Calibration of the material and corresponding DD hardening parameters were 

presented in the earlier work [48]. In addition to those calibrations, we add the predictions of 

tension-compression asymmetry promoted by the non-Schmid law. Figure 8b illustrates the true 

stress – true strain predictions by SA-GPU-EVPCUFFT for quasi-static strain rate of 0.001 s-1 and 

room temperature. Table 5 lists the non-Schmid constants utilized for the concurrent modeling of 

tension and compression curves for DP 1180 steel to give rise to the asymmetry.  
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Fig. 8. Calibration of non-Schmid constants to predict the tension-compression asymmetry for 

DP1180 using the SA-GPU-EVPCUFFT model: (a) pole figures showing the initial texture [48] 

and (b) comparison of measured (Exp.) and simulated (Sim.) true stress – true strain curves in 

tension (T) and compression (C) under the quasi-static strain rate of 0.001 s-1 at room temperature.  

 

Table 5. Non-Schmid constants calibrated to predict the tension-compression asymmetry 

exhibited by DP1180 steel.  

c1 c2 c3 c4 

0.0 0.0 0.04 -0.04 

  

 The FE model corresponding to the DP 1180 beam is discretized over 10 ( 2 1 5  ) C3D20 

elements embedding 128 4 128   microstructural RVE with 253 grains. Of these, 114 grains with 

29,494 voxels are martensite. The XZ plane symmetry is exploited to double the computational 

efficiency.  

  Figure 9a shows the FE model consisting of C3D20 elements, the corresponding boundary 

conditions, and underlying DP1180 martensitic-ferritic microstructure embedded in each 

integration point of the FE model. The beam’s geometry has a dimension of 10 5 40mm mm mm 

,  fixed at one end and deformed 1mm  downwards at the other end (cantilever beam). Figure. 9b 

shows the deformed FE model displaying the axial strain and VM stress contours. The wall clock 

time for this simulation was about 7.2 days.  

 To examine the embedded microstructural evolution, two elements, one with the high stress 

and another with low stress are selected and the correspond underlying micromechanical stress 
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fields are extracted and plotted in Fig. 9c. The multiscale FE-GPU-EVPCUFFT predicts the 

contrast between the martensitic and ferritic phases, where the higher levels of stress are predicted 

in the harder martensitic regions compared to the softer ferrite grains. The results demonstrate the 

capability of the full-field2 implementation to capture the heterogeneity of micromechanical fields 

corresponding to various FE elements experiencing dissimilar states of deformation. 

 

 

Fig. 9. Simulations of DP1180 steel cantilever beam bending using the FE-GPU-EVPCUFFT 

model. The beam has dimension of 10 5 40mm mm mm   and is displaced downwards in –X at 

the free end for 1mm . (a) FE model consisting of C3D20 quadratic element depicting the applied 

XZ symmetry and microstructural cell of 128 4 128   resolution, (b) the deformed FE model with 

some exaggeration (the deformation scale factor of 5) showing the von Mises (VM) stress and 
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axial strain contours, and (c) predicted fields of VM stress over the cell after bending in the regions 

of high and low deformation.  

 

 

6. Numerical tests for order of convergence  

In order to examine the convergence of the FE-GPU-EVPCUFFT solver, we follow the 

method provided in [31], where a generic system of nonlinear equations is solved using the 

standard Newton method. Governing equations of the study are written in terms of the 

macroscopic/global quantities (the capital letters). A residual defined as  

( ) ( ) appt  =    −   X ,  (7-1) 

where 
app denotes the applied macroscopic stress, which known in advance. The constant 

applied stress is Δ𝚺𝑎𝑝𝑝 = 〈Δ𝛔𝑎𝑝𝑝〉 = {5.42, 7.10, −12.51, −1.01 , 0.38, 4.01 }. The 

corresponding Jacobian for the Newton method is that of the FE-GPU-EVPCUFFT UMAT 

 .
 

=
 



 

X
J =   (7-2) 

The FE-GPU-EVPCUFFT UMAT calculates stress Δ𝛔(Δ𝛆, 𝛥𝑡) at every voxel given an increment 

in strain and time (in seconds). The local stress field is subsequently averaged into Δ𝚺 = 〈Δ𝛔〉 for 

the comparison with the applied macroscopic stress Δ𝚺𝑎𝑝𝑝 to obtain a next guess. The material 

parameters and texture were those of polycrystalline Cu (Fig. 4). The residual is iteratively 

minimized. The solution error 
ie  at the ith iteration is then defined based on norm of the sought 

solution and the current guess, as follows 

* .i ie =  −    (7-3) 

The sought solution of the problem, which corresponds to the applied stress, is known a priori 

Δ𝐄∗ = {0.0008235, 0.001477, −0.002301, −0.0008762, −0.0001393,   0.001745}. The initial 

guess was the elastic strain corresponding to the applied stress. By definition, the order of 

convergence, a, is  

1

1:linear

; 0; 1 2:super-linear .

2:quadratic

i

a

i

a
e

b b a
e
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+
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
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 

  (7-4) 
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where b indicates the rate of convergence. Utilizing this methodology, we study the effects of both 

time increment and underlying microstructural resolution on the order of convergence for the FE-

GPU-EVPCUFFT multiscale model. Fig. 10a shows the 
1ie +
 versus 

ie  log plots as a function of 

time increment: t =0.02, t =0.05, and, t =0.1 second. Table 6a lists numbers for subsequent 

Newton iterations arriving at the converged solution. Note that a larger time increment results in 

higher # of iteration attempts to reach the same tolerance. Results indicate a quadratic order of 

convergence upon the elastic guess to reach the error in the range of 
3

110 1ie−

+  , followed by a 

super-linear order of convergence for a tolerance range of 
6 3

110 10ie− −

+   . Varying the time 

increment from t =0.02 to t =0.05 and t =0.1, results in a similar trend with slightly lower 

convergence rates and an increase in number of attempts to obtain the same tolerance.  

Fig. 10b shows the effect of RVE resolution on the order of convergence for a time 

increment of t =0.1. Table 6b lists the orders of convergence as a function of RVE size with 

correspond resolutions of 8 4 8  , 16 4 16  , 32 4 32  , and 64 4 64  . The frequency indicates 

the subsequent NR iterations. Results indicate while the convergence rate for lower RVE 

resolution of  8 4 8   is slightly faster with lower # of solution attempts, negligible difference is 

observed for the orders of convergence belonging to the microstructural resolutions of 16 4 16   

and higher.  

 

 

Fig. 10. Convergence benchmarks in compression of a cube FE model with eight C3D8 elements 

using the FE-GPU-EVPCUFFT implementation showing log(
1ie +
)-log(

ie ) for: (a) microstructural 

RVE resolution of 8 4 8   and time increments of t =0.02, t =0.05, and, t =0.1 and (b) 
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microstructural RVE resolutions of 8 4 8  , 16 4 16  , 32 4 32  , and 64 4 64   for time 

increment of t =0.1.  

 

Table 6a. Variation in the order of convergence as function of time increment for the compression 

of the cube FE model with eight C3D8 elements embedding a microstructural cell of 8 4 8  voxel 

resolution.  

Time increment    Orders of convergence for subsequent Newton iterations 

t =0.02 3.5671, 1.6835, 1.2385, 1.1112 

t =0.05 3.8722, 1.4731, 1.1984, 1.1512, 1.1321, 1.1166 

t =0.1 4.3686, 1.6102, 1.1439, 1.0907, 1.0842, 1.0776, 1.0720 

 

Table 6b. Order of convergence as a function of RVE resolution for the compression of the cube 

FE model embedding eight C3D8 elements using a time increment of t =0.1.  

RVE resolution   Orders of convergence for subsequent Newton iterations  

8 4 8   4.3686, 1.6102, 1.1439, 1.0907, 1.0842, 1.0776, 1.0720 

16 4 16   4.3050, 1.4615, 1.0881, 1.0924, 1.0841, 1.0777, 1.0720, 1.0672, 1.0630     

32 4 32   4.2505, 1.4388, 1.1057, 1.1054, 1.0947, 1.0868, 1.0797, 1.0739, 1.0688     

64 4 64   4.2684, 1.4793, 1.1016, 1.1046, 1.0941, 1.0861, 1.0793, 1.0735, 1.0684 

 

An additional convergence benchmark was performed involving a simple compression of 

a multi-element cube FE model discretized using eight C3D8 elements and underlying RVE 

resolutions of 8 4 8  , 16 4 16  , 32 4 32  , and 64 4 64   to a strain of 20% also for Cu. We 

performed this test even though Fig. 10 and Tables 5a and 5b indicate that microstructural 

resolution and time increment play a secondary effect in the convergence behavior. We list the # 

of iterations based on the Abaqus “.sta” output for the first 20 increments. Table 6c lists the # of 

iterations as a function of underlying microstructural RVE resolutions and time increments of t

=0.02 and t =0.1. It is realized that choosing a smaller time increment of t =0.02 results in 

only one iteration per increment. Increasing the time increment to t =0.1 increases the # of 

iterations to 2-3 per increment at the start of the simulation, converging to one iteration at some 

point. As is evident, the # of iterations is really small compared to the first convergence test likely 
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because simple compression is easier to converge than the generic test and because Abaqus relies 

on a modified NR scheme to accelerate the convergence.  

   

Table 6c. # of iterations per increment taken from the ABAQUS “.sta” output as a function of 

embedded RVE resolutions and time increment for the compression of the cube FE model 

discretized with eight C3D8 elements.  

# of iterations 

Increment # 
t =0.1 t =0.02 

8 4 8   16 4 16   32 4 32   64 4 64   8 4 8   16 4 16   32 4 32   64 4 64   

1 3 3 3 3 3 3 3 3 

2 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 1 

5 2 2 2 2 1 1 1 1 

6 3 3 3 3 1 1 1 1 

7 3 3 3 3 1 1 1 1 

8 2 2 2 2 1 1 1 1 

9 1 1 1 1 1 1 1 1 

10 2 2 1 1 1 1 1 1 

11 2 2 2 2 1 1 1 1 

12 2 2 2 1 1 1 1 1 

13 1 1 1 2 1 1 1 1 

14 2 2 2 1 1 1 1 1 

15 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 

17 1 1 1 1 1 1 1 1 

18 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 
 

7. Performance benchmarks 

 This section is dedicated to parallel performance benchmarks of the CPU-only and 

hybrid CPU-GPU implementations of the multiscale full-field2 model. First, the MPI performance 

offered by ABAQUS standard solver is assessed where the strong scalability as a function of # of 

FE elements and # of MPI processes are explored. Second, the performance improvements of 

hybrid FE-GPU-EVPCUFFT for single and multiple GPU(s) over the FE-CPU-EVPFFTW 

implementation are discussed in detail. Workstations #1 and #2 listed in Table 2 are utilized for 

these benchmarks.  
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7.1 MPI scalability  

 The FE solver in ABAQUS standard takes the advantage of MPI domain 

decomposition [49, 74-80], where slices of the FE model containing one or more elements run on 

their own MPI processors, concurrently. MPI parallel simulations are enabled when the models 

are discretized with more than one element and is enabled by passing the flag “cpus=N” where N 

indicates the total number of CPUs utilized for parallel simulations. Thread-based parallelization 

is also an option for parallel simulations on shared memory (i.e., OpenMP) by adding the flag 

“mp_mode=THREADS”, however, the MPI implementation has been shown to be much more 

efficient [49, 81, 82]. Threaded parallelization usually suffers from false sharing of caches and the 

page size granularity that occurs in physical memory mapping. In contrast,  such memory access 

problems are automatically avoided when using MPI [49].  

 In order to benchmark the performance of MPI parallelization offered by implicit FE 

solver in ABAQUS standard, two performance benchmarks are performed. The benchmarks are 

performed on workstation 1. Only “real” cores are used with no hyperthreading. Also, the locality 

was ensured meaning that the domains are bound to always the same CPU. First, we study the 

effect of the increase in number of FE elements on the wall clock time for simulations of simple 

compression of a cube to a strain of 2% in 10 increments with #1, #2, #4, #8, #16, #32, and, #64 

C3D8 elements utilizing a single CPU (i.e. serial mode). The CPU-only implementation (aka FE-

CPU-EVPFFTW) utilizes the FFTW3 library [49, 83]. Fig. 11a presents the variation of wall clock 

time as a function of # of FE elements. Results indicate an almost linear trend where an increase 

in wall clock time is proportional to the # of elements utilized in the simulation.   
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Fig. 11. Performance benchmarks of CPU-only FE-CPU-EVPFFTW implementation as a function 

of # of FE elements and # of MPI processes. (a) Scalability of wall cock time as a function of # of 

FE elements for a uniaxial compression of a cube with #1, #2, #4, #8, #16, #32, and, #64 C3D8 

elements. (b) Strong scalability leveraging #1, #2, #4, #8, #16, #32, and, #64 MPI processes.  

 

 A second benchmark is conducted by simple compressions of the same FE cube with 

64 C3D8 elements leveraging 1, 2, 4, 8, 16, 32, and 64 CPU cores to obtain the strong scalability 

of MPI runs on a single node.  Fig. 11b shows the results of this benchmark. A saturation is 

observed in the strong scalability, where, deviations from perfect strong scalability become more 

significant utilizing 32 and 64 MPI processes. The current benchmark indicates best performance 

gains leveraging #16 or less CPUs where individual CPUs are assigned with at least #4 elements. 

Each MPI process should be assigned with a minimum computational workload to obtain an 

efficient parallel scalability. The performance degradation occurred with increasing number of 

CPU cores is owing to hyperthreading deficiency and shared memory bandwidth among all the 

threads and may be improved by running on distributed nodes with non-uniform memory access 

(NUMA) .The current benchmark indicates a computationally efficient parallel simulation 

leveraging #16 or less CPUs with a correspond parallel efficiency of 50% and more, where, each 

CPU is assigned with at least #4 elements. This is because each MPI process should be assigned 

with considerable computational workload to obtain an efficient parallel scalability. Load 

imbalance and performance degradation that occurs depending on which elements of the model 
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(i.e., element IDs) are assigned to a specific CPU core are potentially another source of imperfect 

strong scalability [84].  

 

7.2 Hybrid FE-GPU-EVPCUFFT performance   

This section elaborates on the performance improvements of the hybrid CPU-GPU FE-

GPU-EVPCUFFT implementation over the CPU-only FE-CPU-EVPFFTW model. The hybrid 

solver utilizes single or multiple GPU(s) leveraging OpenACC and the CUFFT library [50, 66, 85, 

86].  

7.2.1 Single-GPU 

Single GPU performance is evaluated as a function of microstructure resolutions by 

simulation of simple compression of a single FE element of type C3D8 to a strain of 2% in 10 

increments embedding microstructural RVEs with 16 4 16  , 32 4 32  , 64 4 64   and, 

128 4 128   discretizing voxels. The benchmark is performed on workstation 1 featuring a Nvidia 

Tesla V100 GPU (32 GB) controlled by a single core of Intel(R) Xeon(R) Gold 6154 CPU @ 

3.00GHz. 

Figure 12 depicts the outcomes of the single GPU benchmark. It is realized that the 

performance gain of FE-GPU-EVPCUFFT over the FE-CPU-EVPFFTW becomes more 

significant with increase in resolution of embedded microstructures. This is expected since GPUs 

are much more efficient in computation of large data sets. The inferior result for the low resolution 

16x4x16 RVE is due to a low workload to take advantage of the GPU hardware. Results indicate 

improvement in performance gain with an increase in underlying microstructural RVE resolutions. 

The hybrid FE-GPU-EVPCUFFT speeds up the simulations ~2.5x for an embedded RVE 

resolution of 128 4 128  .  

According to Amdahl’s law [49, 50, 87], the net obtained speed up is contingent on the 

ratio of UMAT computations to the FE solver itself which is not trivial to measure since the 

Abaqus solver reports the total time spent in FE and UMAT altogether. Amdahl's law limits the 

overall GPU performance. The speed up reported for UMAT solver does not isolate the speed up 

obtained in the UMAT itself but the overall performance of Abaqus FE solver with the UMAT. 

Even in case of one element model, execution time of the FE solver is not negligible compared to 
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that of UMAT utilization. For instance, if FE solver is taking 30% of the total wall clock time (i.e. 

the fraction to accelerate is f=0.7) and if the UMAT solver runs 26x (p=26) faster leveraging GPUs 

(the SA solver has a speed up of 26x for the resolution of 128 4 128  ), the net speed up according 

to Amdahl’s law [49, 87] is 𝑆 =
1

(1−𝑓)+
𝑓

𝑝

= 3.04, which is close to the obtained speed up herein. 

Figure 13 reflects the Amdahl’s law for the UMAT implementation presented herein, where the 

variation in the net speed up vs the speedup in UMAT is shown.  

The memory motion associated with transferring data between the CPU and GPU is the 

key issue for GPU scalability of the UMAT. While the SA solver is independent meaning that all 

data except I/O is created on GPU to avoid memory/data transfer between CPU and GPU hardware, 

the state variables are inevitably transferred back and forth from GPU to CPU and vice versa in 

the UMAT. As Abaqus FE solver is opaque not allowing for any GPU programming, all state 

variables that are already on GPU’s memory need to be copied to CPU for Abaqus at the end of 

each iteration for every integration point. Profiling the UMAT solver to compare the memory copy 

time w.r.t. the compute time shows that the memory copy time is small compared to compute time 

but the number of invocations of memory copy is large, which is the limiting factor in the net 

performance.  
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Fig. 12. (a) Performance benchmark comparison for the hybrid CPU-GPU implementation (FE-

GPU-EVPCUFFT) versus the CPU-only UMAT (FE-CPU-EVPFFTW) for the compression of a 

single C3D8 FE model. The FE-CPU-EVPFFTW model utilizes a single core of Intel(R) Xeon(R) 

Gold 6154 CPU @ 3.00GHz and FFTW3 libraries, while the FE-GPU-EVPCUFFT hybrid solver 

takes the advantage of a single Nvidia Tesla V100 GPU (32 GB) leveraging OpenACC and CUFFT 

libraries.  

 

 

Fig. 13. Net speed up as a function of UMAT acceleration on GPU and UMAT workload.  

 

7.2.2 Multi-GPUs  

The purpose of this section is not to compare a multi-GPU performance w.r.t to a single-

GPU performance - such benchmarks have been presented in a previously published work [88] -  

but to elaborate on the potential performance gains where adequate # of GPUs are not available 

for utilization. That is, to confirm that one is still able to take advantages of a hybrid MPI-GPU 

parallel implementation maintaining the MPI utilization offered by FE domain decomposition 

while benefiting from the GPU acceleration either on a single GPU or multiple GPUs with 

imperfect strong scalability. 

Multi-GPU utilization is more involved compared to single-GPU implementation and 

requires the parallel information at FE domain decomposition level which is obtained from 

ABAQUS standard built-in functions. To determine the element IDs assigned to a MPI process, 

ABAQUS offers the functions “GETNUMCPUS” and “GETRANK”, representing the size (i.e., 

total number of MPI processes) and rank (i.e., current MPI process #), respectively. These 
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functions are similar to “MPI_Comm_size” and “MPI_Comm_rank” commonly used by MPI 

standard libraries such as OpenMPI. Note that “GETNUMCPUS” output is determined by the flag 

“cpus=N” accompanying the ABAQUS job submission, where, N is the # of MPI processes.  

Simple compressions of a cube FE model with 4 elements of type C3D8 to a strain of 2% 

in 10 increments embedding microstructural RVEs with 64 4 64   resolutions are simulated on 

workstation 2 utilizing 1, 2, and 4 Nvidia Tesla K80 GPUs where the total number of MPI 

processes is kept at 4 for all benchmarks. Table 7 presents the four configuration setups. A 1:1 

ratio of CPUs has been used alongside the GPUs. We have ensured that each MPI process is bound 

to one CPU using always the same GPU, otherwise, significant overheads would arise from 

switching across multiple devices adversely impacting the multi-GPU performances.  

The benchmark narrows down the focus on UMAT-only acceleration facilitated by GPUs 

by maintaining the same number of MPI processes utilized for FE solver. Such benchmark is 

helpful when access to GPUs is limited on a workstation but it is still preferred to take the 

advantage of GPUs to accelerate UMAT. Fig. 14 shows an almost perfect strong scalability of the 

multi-GPU benchmark for FE-GPU-EVPCUFFT (i.e., wall clock times is halved by doubling the 

# of GPUs). It is also important to mention that when number of GPUs pertaining to each element 

is less than one (i.e., several elements access a GPU), the performance may be adversely affected 

by overutilization resulted from concurrent access to the GPU hardware. Therefore, it is advised 

to limit the number of GPUs per MPI process. The ideal performance is obtained when # of FE 

elements and # of GPUs are the same where each FE element is assigned to a unique GPU 

hardware. The GPU parallelization would become profoundly effective if there are more GPUs 

available than MPI processes as more than one GPU would be solving one RVE.  

 

Table 7. Configuration setups for the multi-GPU performance benchmark utilizing FE-GPU-

EVPCUFFT on workstation 2.    

 

configuration 

 

# of FE 

elements  

# of MPI 

processes for 

FE domain 

decomposition  

# of GPUs 

accelerating the   

GPU-EVPCUFFT 

UMAT   

# of elements per 

GPU 

1 4 4 1   4 

2 4 4 2   2 

3 4 4 4 1 
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Fig. 14.  Multi-GPU performance benchmark of the hybrid FE-GPU-EVPCUFFT model 

simulating the compression of the cube FE model with #4 elements of type C3D8 embedding 

microstructural cell of 64 4 64   resolution. The benchmark is performed on workstation #2 

utilizing #1, #2, and #4 Nvidia Tesla K80 GPUs with #4 MPI processes for all three cases. Results 

indicate almost perfect strong scalability of the multi-GPU utilization.  

 

8. Summary and conclusions 

 The paper presented the first GPU-enabled parallel implementation of the EVPFFT full-

field crystal plasticity solver in the implicit FEM, leveraging a hybrid CPU-GPU hardware. The 

FE solver utilizes MPI for domain decomposition while the underlying microstructural RVE runs 

on multiple GPUs concurrently. The implementation is referred to as full-field2 FE-GPU-

EVPCUFFT. GPU-supported multiscale simulations are facilitated by Nvidia HPC SDK compiler 

leveraging OpenACC and CUDA FFT libraries.  

An analytical Jacobian is derived and implemented to facilitate the implicit coupling and 

ensure a fast order of convergence. The convergence rates of the multiscale implementation are 

verified as a function of time increment and embedded microstructural resolutions and regarded 

as satisfactory. 

The FE-GPU-EVPCUFFT model is validated against the SA solver and experimental 

measurements for monotonic simple compression and texture evolution of FCC Cu under large 

deformation. Validation is extended for cyclic response of DP 590 steel with for a wide range of 
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strain amplitudes. Benchmarks corroborate the accuracy of the multiscale implementation. In these 

simulations, the multiscale model takes the advantage of a reversible dislocation density hardening 

law that enables dislocation annihilation and utilizes an intra-granular kinematic hardening back-

stress law to capture the nonlinear unloading and Bauschinger effect upon load reversals. 

Predictions of tension-compression asymmetry are enabled leveraging the non-Schmid effects.  

After validations, the full-field2 model is applied to study several metal forming 

simulations. First, a uniaxial compression of a multi-element cylinder embedding a single copper 

crystal is simulated and the deformed shape and ovality of the cross section is compared to the 

experimental photographs of the deformed cylinder. Second, two simulations of four-point 

bending of clock-rolled Zr bars are performed in two different loading directions of parallel and 

perpendicular to the bending plane where the deformed shapes and cross sections are compared 

with the measured data. Finally, the unique capability of the full-field2 implementation is 

demonstrated leveraging a beam bending of a martensitic-ferritic DP 1180 steel embedding high-

resolution underlying microstructures per integration point. The results provide insights into 

variations of micromechanical fields within individual elements experiencing dissimilar states of 

deformation.  

The paper concludes showing several performance benchmarks comparing the 

computational efficiency of the CPU-only FE-CPU-EVPFFTW model with the more advanced 

hybrid CPU-GPU FE-GPU-EVPCUFFT solver taking the advantage of multiple GPUs. The hybrid 

full-field2 FE-GPU-EVPCUFFT spectral crystal plasticity package presented herein can improve 

computational efficiency for simulating microstructure-property-processing linkage of metallic 

materials.  
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Appendix A 

Description of EVPFFT 

A standard EVPFFT is based on a power-law relation between a plastic strain rate, ( )x
p

, and Cauchy stress, ( )x , through a superposition of shearing rates on slip systems, N [89, 90]  

0

1 1
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.s s s

sc nsP P P= +   (A1d) 

In the above equations, 
s  and 

s

c are the shearing rate and the slip resistance, respectively. 

Furthermore, the parameter 
0  is a reference shearing rate (taken as 0.001 /s) and n is the power-

law visco-plastic exponent chosen to be 20 to ensure proper selection of the active slip systems. 

The term ( )s

bs x  is the slip-system level kinematic back-stress influencing the driving force to slip. 

The Burgers vector 
s

b  and the slip system normal 
s

n  with 
s s s= t b n  define the geometry of a 

slip system, s. Selection of slip systems is based on the crystal structure of the simulated materials 

varying from FCC which deforms by  110 111  family/mode of slip systems to BCC structure 

deforming by  111 110  and  111 211  slip modes to HCP structure deforming by prismatic 

slip  1100 1120 , basal slip  0001 1120  and pyramidal slip  1011 1123  modes. It should 

be noted that positive s+ and negative s- directions per slip systems are considered separately. The 

onset of acitvation for these slip systems varies depends on the local crystal orientation relative to 

a loading direction and a value of the resistance to slip. However, in addition to loading projected 

on the glide plane and in the glide direction, the model can consider two orthogonal shear stress 

components and three normal stress components to influence the activation criterion. These aspects 

are referred to as the non-Schmid effects  [73, 91-94] and help in predicting the tension-
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compression asymmetry. The non-Schmid coefficients 
1 2 3 4, , ,c c c c  weight the non-Schmid 

contributions.  

The elasto-plastic constitutive response is described using the Hooke’s law  

( ), , ,( ) ( ) ( ) ( ) ( ) ( ) ( , ) ,t t e t t t t p t p t t t t t+ + + + += = − − x C x x C x x x x       (A2) 

where ( )x is the Cauchy stress, ( )C x is the elastic stiffness tensor in the global (sample) frame 

obtained by applying crystal to sample transformations utilizing the crystal elastic constants, and 

( )x , ( )e
x , and ( )p

x  denote the total, elastic, and plastic strains, respectively. Based on Eq. 

(A2), the total strain is  

1 , ,( ) ( ) ( ) ( ) ( , ) .t t t t p t p t t t t t+ − + + += + + x C x x x x       
 (A3) 

After adding and subtracting the stiffness of a reference linear medium, 
0

C , multiplied by 

the displacement gradient , ( )k lu x from the Cauchy stress, we obtain [44] 

0 0

, ,( ) ( ) ( ) ( )ij ij ijkl k l ijkl k lC u C u = + −x x x x . (A4) 

Furthermore, we can write  

0

,( ) ( ) ( ),ij ijkl k l ijC u = +x x x  (A5) 

 with 

0

,( ) ( ) ( ),ij ij ijkl k lC u = −x x x  (A6) 

where the term ( )ij x  represents the polarization field. After incorporating the equilibrium 

equation, , ( ) 0ij j =x , into Eq. (A5) we obtain 

0

, ,( ) ( ) 0.ijkl k lj ij jC u + =x x  
(A7) 

Relying on Green’s approach to solve the partial differential equations [95], Green’s function 

( )kmG x  is associated to the displacement field ( )ku x  as 

0

, ( ') ( ') 0.ijkl km lj imC G  − + − =x x x x  (A8) 

The convolution theorem [96] is then used to obtain the local displacement gradient fluctuation 

tensor 
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3, ,( ) ( ') ( ') '.k l ki jl ij
R

u G d= −x x x x x  
(A9) 

The strain field around the average strain value, ijE , is  

( )( )1 0 ˆˆ( ) ( ) ( ) ,ij ij ijkl klE FT sym  −= +x k k   
(A10) 

where the symbols FT-1 and "^"  indicate inverse Fourier transforms and direct Fourier transform, 

respectively. k  is a point (frequency) in the Fourier space. The tensor 
0ˆ ( )ijkl k  is  

0 ˆˆ ( ) ( )ijkl j l ikk k G = −k k ; 
1ˆ ( ) [ ] .ik kjil l jG C k k −=k  (A11) 

An iterative procedure is used to obtain a solution for Eq. (A7). If we consider 
( )i

ije  and 

( )i

ij to be an initial guess for the strain and stress fields, respectively, we get from Eq. (A6) 

( ) ( ) 0 ( )( ) ( ) ( )i i i

ij ij ijkl klC e = −x x x . (A12) 

Eq. (A10) is then used for the next guess for the strain field  

( )( )( 1) 1 0 ( )ˆˆ( ) ( ) ( ) .i i

ij ij ijkl kle E FT sym  + −= +x k k  
(A13) 

To use the stress directly rather than the polarization, Eq. (A13) is revised as [97] 

 

(A14) 

An augmented Lagrangian scheme is used [98] to minimize the residual as a function of the stress, 

( 1)i+ , and strain, ( 1)i+  

( 1) ( 1) 0 ( 1) ( 1) ( ) 0 ( 1)( ) ( ) ,i i i i i i

k k kl l k kl lR C C e  + + + + += + − −   (A15) 

In Eq. (A15), the following notation is used for the symmetric tensors 
ij and 

ijklC  

 
1, 6

, 1, 6.

,

,

ij k

ijkl kl

k

k lC C

  =

=

→

→
  (A16) 

Eq. (A15) can be solved using the Newton Raphson (NR) method as 

( 1, )

( 1, 1) ( 1, ) 1 ( 1, )( ) ( ),i j

i j i j i jk
k k l

l

R
R 


+

+ + + − +
= −

 
  (A17) 

where ( 1, 1)i j

k
+ + is the (j+1) trial for stress field ( 1)i

k
+ . Note that “j” counts the NR stress 

iterations, while “i” counts the field equilibrium iterations. Using Eq. (A3), the Jacobian is  

( 1) 1 ( ) 0 ( )ˆˆ ˆ( ) ( ( ( )) ( )).i i i

ij ij ij ijkl kle E FT e sym  + −= + +x k k
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( 1, ) ( 1, )

0 1 0 .i j i j

p

qk
kl kq ql kq

l l

R
C C t C




 
+ +

−


= + + 
  

 (A18) 

The term ( 1, )i j

p

q

l




+



 
 is 

( ) ( )
( 1, )

1

0 ( 1, ) ( 1, )1

( ) ( )
.

( ) ( )
i j

n
p s s s s

Nq q l bs

s i j s i js
l c c

P P
n

 


  
+

−

+ +=

   −
 
 
 


P x x

x x




 
 (A19) 

Incorporating Eq. (A19) into Eq. (A18) gives 

( ) ( )
( 1, )

1

0 1 0

0 ( 1, ) ( 1, )1

( ) ( )
( ) .

( ) ( )
i j

n
s s s s

N q lk bs
kl kq ql kq s i j s i js

l c c

P PR
C C t n C


 

  
+

−

−

+ +=

   −
  + + 
 
 


P x x

x x




 
 (A20) 

Minimizing the residual 
kR by the NR’s iterations, the solution for stress is obtained at 

each FFT voxel as the next trial for Eq. (A12) and Eq. (A14). The procedure continues until the 

convergence to 
NRTOL   is reached for each crystal stress  

( )( )( 1, 1) ( 1, ) ( 1, 1) ( 1, )

6

( ) ( )
10

i j i j i j i j

k k k k

NR
i i

ij ij

TOL
   

 

+ + + + + +

−
− −

= . (A21) 

Given the power-law exponent n and the tolerance, the total number of iterations for stress is in 

the range between 3 and 6. 

The stress and strain field tolerances (
_ _,stress field strain fieldTOL TOL  ) after solving Eq. (A15) 

are 

( )( )( 1) ( ) ( 1) ( )

6

_

' ( ) ' ( )

10 )
3

2

i i i i

k k k k

stress field

i i

ij ij

TOL
   

 

+ +

−
− −

=  (A22a) 

( )( )( 1) ( ) ( 1) ( )

6

_

' ( ) ' ( )

10
2

3

i i i i

k k k k

strain field

i i

ij ij

e e
TOL

E E

 + +

−
− −

=  (A22b) 

where 〈〉 represents the volume average. Tensors '

ij  and '

ijE  are the deviatoric stress and the 

plastic strain of the homogenized polycrystal by averaging over voxels 
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( )

( )

'

, ,'

1 2 3

1 2 3

, ,'

1 2 3

( )

; , , # , , ,

( )

.

ij

X Y Z

ij

p

ij

X Y Z

ij

N N N of voxels in X Y Z
N N N

E
N N N







= =
 

=
 





x

x
  (A23) 

The total number of iterations for obtaining the field solution varies between 10 and 25 for the 

selected tolerances in Eq. (A22).  

 

Slip-system level reversible dislocation density hardening   

     A dislocation density-based hardening law is implemented in the EVPFFT model in earlier 

works [48, 73]. In the description, s and s  denote the slip systems interacting with each other. 

The rate of dislocation density evolution is a thermally activated process, dependent on the 

temperature and strain rate. The law considers bi-directional motion of dislocations on a given 

plane allowing dislocations to annihilate when moved in the opposite direction. The evolution of 

slip resistance (the critical resolves shear stress, CRSS) per slip system is driven by the following 

three contributing terms  

0 .s s s

c forest deb   = + +  
(A24a) 

The first term, 
0

s , contributes to the initial value (i.e., initial yield point) which does not evolve 

and itself consists of three terms  

0 0 0, 0, ,s s

HP forest   = + +  
(A24b) 

where 0  is the frictional term embedding the effects of solid solution and precipitate hardening 

depending on the material (i.e. Peierls stress) [73], 0,

s

HP  represents the Hall-Petch contribution of 

grain size and shape (barrier effects), and  0, forest  denotes the forest dislocation density content 

distributed through the initial material. The Hall-Petch term is defined as [99] 
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0,
22 2

2
, ,

ˆˆ ˆ

s s

HP mfp
s

ss smfp
yx z

H b
d

d bb b

a b c


 = =

    
+ +        

    

 
(A25) 

where , ,b H  are the Burgers vector, shear modulus, and Hall-Petch calibration coefficient, 

respectively. The quantities , ,a b c  are the ellipsoidal dimensions representing a grain and 

ˆ ˆ ˆ, ,s s s

x y zb b b  denote a unit vector in the Burgers direction in the grain to estimate the dislocation mean-

free-path, 
s

mfpd . While the term is not always calibrated due to lack of mechanical data with 

variable grain size, the model provides an opportunity to account for it.  

Contribution of statistically stored dislocation density, 
s

forest  , to the total slip resistance, 

is defined using  

,s s s

forest tot tot

s s

b L    




= +   (A26) 

where  denotes the system interaction parameter usually taken to be 0.9 [100-102], while L  is 

the latent hardening coefficient, usually set to 1.05 [48, 103]. The total dislocation density 
s

tot  is 

described based on two contributions of forward (i.e., non-reversible) and reversible dislocation 

populations [104], to possibly capture a deformation path dependence in the hardening law and 

dislocation dissolution upon load reversal. Implementation of the concept necessitates the 

consideration of two slip system directions with opposite Burger directions (i.e. ,s s+ −
 ) on a given 

plane attached to the reversible dislocation populations. Consequently, the total dislocation density 

is  

s s s s

tot forw rev rev   + −= + + , (A27) 

with 
s

forw denotes the forward dislocation density and ,s s

rev rev + −
 imply reversible populations 

correspond to the slip directions s+ and s− , respectively. The forward dislocation density 

population is evolved as a function of rate of storage and the rate of recovery as [48, 73, 101, 103] 

1 2(1 ) ( , ) 0

s

forw s s s s

forw rev forws
p k k T for d


    



+ +


= − + − 
, (A28a) 
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1 2(1 ) ( , ) 0

s

forw s s s s

forw rev forws
p k k T for d


    



− −


= − + − 
, (A28b) 

where 
1k  is a calibration constant driving the rate of generation, while 

2k drives the rate of 

recovery [99]. The constant p  is the shear reversibility in the range between 0 and 1 to separate 

the fraction of forward and reversible populations. For low to moderate strain levels, 1p =  [104] 

meaning that dislocations can glide in the opposite direction at the loading reversal. The reversible 

populations depend on the direction of shearing according to 

1 2

1

( , ) ,

0

,

s
s s srev
forw rev revs

s

m
s s

s srev rev
forw revs s

tot

pk k T

for d

k


   




 
 

 

+
+ +

+

− −
+


= + − 





 
= − +  

   

     (A29) 

 

1 2

1

( , ) ,

0

,

s
s s srev
forw rev revs

s

m
s s

s srev rev
forw revs s

tot

pk k T

for d

k


   




 
 

 

−
− −

−

+ +
−


= + − 





 
= − +  

   

 (A30) 

 

0 0 0 ,| 0 ; | 0 ; |s s s s

rev t rev t forw t initial   + −

= = == = =   

where, the exponent m  controls the rate of dislocation recombination and is usually taken as 0.5 

[105]. The parameter 
2 ( , )k T is defined as a function of temperature and strain rate as follows 

1
2 3

0

1 ln ,
( )

Bk b k T
k

g D b

 



  
= −  

  
 (A31) 

where g is an effective activation enthalpy established by calibration, Bk  is the Boltzmann 

constant, 0  is a reference rate of strain set to 107 s-1, and D is the drag stress also established by 

calibration.   

The last term of slip resistance, 
deb , is a consequence of the debris population [106] and 

is defined as 

1
0.086 log ,deb deb

deb

b
b

  


 
=  

 
 

 (A32) 

where, deb  is the debris dislocation density, which evolves using  
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2 ( , ) s s

deb deb tot

s

d q b k T d    = . (A33) 

In Eq. (A33), the parameter q is a debris-related fitting constant separating the portion of removed 

dislocations [
,

2 ( , )

s

rem tot s

tots
k T


 




=


] from the debris.  

 

Back-stress law   

A phenomenological approach to intra-granular kinematic back-stress effects has been 

implemented in EVPFFT [48, 73, 107]. The inter-granular effects are explicitly accounted for. The 

approach is a computationally efficient simplification of the back-stress estimation possible using 

strain gradient plasticity formulations [108]. Consistent with the self-internal back-stress 

formulations [109], the back-stress either assists or hinders the resolved shear stresses on the slip 

systems [110, 111]. Specifically, while 𝜏𝑏𝑠
𝑠+

 acts in the direction opposing the driving stress on s+, 

i.e. 𝐏𝑠+
∙ 𝛔 − 𝜏𝑏𝑠

𝑠+
= 𝜏𝑐

𝑠, meaning that 𝜏𝑏𝑠
𝑠+

 lowers the driving stress, 𝜏𝑏𝑠
𝑠−

 benefits the driving stress 

on the slip system s-: 𝐏𝑠−
∙ 𝛔 − 𝜏𝑏𝑠

𝑠−
= 𝜏𝑐

𝑠. The back-stress evolves once the grains start deforming 

plastically ( / 0s + −  ) and can saturate [48]  
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, ,
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/ /

1
ln 1

1 exp , 0,

,
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bs sys bs bs sys

bs sys bs sys
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s

s sat s s

s s
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d for
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


 

     

 
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+ −

+ − + − + −

− + + −

 −
= − 

   


    
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    


= − 



 (A34a) 
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(A34b) 
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where 
,

/

bs sys

s + −
 is the back-stress for the two opposite directions, s+  and s− . bsA  and   are the 

back-stress calibration parameters. The calibration parameter bsA controls the asymmetry of 

non-linear unloading [112]. Finally, the calibration parameter 
bs

sat is the saturation limit for 

evolution of the back-stress. The proposed back-stress law enables predictions of non-linear 

unloading and Bauschinger effect (BE) upon load reversal under cyclic loadings and during 

strain-path-changes [48].  

 

Appendix B 

UMAT variables are shown in Fig. B1. The array size NTENS is set to 6 e.g. (

, , , , ,xx yy zz xy xz yz      ) using Abaqus’ notation, which does not conform to Voigt. While the 

order in Abaqus notation is (11, 22, 33, 12, 13,23), the order in EVPFFT corresponds to the Voigt 

order (11, 22, 33, 23, 13, 23). Therefore, proper substitution in the components 12 and 23 was 

necessary. The number of direct stress components are defined by NDI, which is 3 ( , ,xx yy zz   ). 

The FE element number and integration point ID are defined by NOEL and NPT, respectively. 

The variable TIME is a vector of two components where TIME (1) and TIME (2) imply the values 

of step time and total time at the beginning of the current increment, respectively. The increment 

number and time increment value are KINC and DTIME, respectively.  

 

 

Fig. B1. UMAT subroutine interface for incorporating constitutive laws in Abaqus.  

 

 

Appendix C 

Fig. C1. Shown the environment file adjusted for UMAT simulations on GPUs using 

Nvidia HPC SDK compiler. 

 



51 

 

  
Fig. C1. Abaqus environment file “Abaqus_v6.env” for UMAT simulations on GPUs using Nvidia 

HPC SDK compiler.  

 

Data availability 

The raw/processed data required to reproduce these findings cannot be shared at this time due to 

technical or time limitations.  
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