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Abstract

Motivation: The study of the evolutionary history of biological networks enables deep functional understanding of
various bio-molecular processes. Network growth models, such as the Duplication–Mutation with Complementarity
(DMC) model, provide a principled approach to characterizing the evolution of protein–protein interactions (PPIs)
based on duplication and divergence. Current methods for model-based ancestral network reconstruction primarily
use greedy heuristics and yield sub-optimal solutions.

Results: We present a new Integer Linear Programming (ILP) solution for maximum likelihood reconstruction of an-
cestral PPI networks using the DMC model. We prove the correctness of our solution that is designed to find the opti-
mal solution. It can also use efficient heuristics from general-purpose ILP solvers to obtain multiple optimal and
near-optimal solutions that may be useful in many applications. Experiments on synthetic data show that our ILP
obtains solutions with higher likelihood than those from previous methods, and is robust to noise and model mis-
match. We evaluate our algorithm on two real PPI networks, with proteins from the families of bZIP transcription fac-
tors and the Commander complex. On both the networks, solutions from our ILP have higher likelihood and are in
better agreement with independent biological evidence from other studies.

Availability and implementation: A Python implementation is available at https://bitbucket.org/cdal/network-
reconstruction.

Contact: vaibhav.rajan@nus.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

An organism’s genotype and phenotype is mediated by complex bio-
logical interactions. Snapshots of such interactions are graphically
captured by networks and spatio-temporal analysis of biological net-
works has led to deep functional and evolutionary understanding of
molecular and cellular processes (Yamada and Bork, 2009).
Knowledge of the evolution of networks such as protein–protein
interactions (PPIs), metabolic and gene regulatory networks has
been effectively used in the study of: molecular mechanisms in yeast
(Wagner, 2001), cell signaling and adhesion genes (Nichols et al.,
2006), modularity in metabolic networks of bacterial species
(Kreimer et al., 2008) and of protein complexes (Pereira-Leal et al.,
2006), functional modules from conserved ancestral PPIs
(Dutkowski and Tiuryn, 2007), evolutionary trends of biosynthetic
capacity loss in parasites (Borenstein and Feldman, 2009), regula-
tory network inference (Zhang and Moret, 2012) and essential and
disease-related genes in humans (Vidal et al., 2011).

Generative models, called network growth models, that describe
the evolution of networks have been used to explain properties of
networks in other domains, such as the Preferential Attachment
Model (Barabási and Albert, 1999) (for the World Wide Web) and
the Forest Fire Model (Leskovec et al., 2005) (for social networks).
These models encode assumptions of evolutionary processes in terms
of graph operations. The key evolutionary process characterizing
biological networks is duplication and divergence (Wagner, 2001).
Thus, each evolutionary step is modeled by duplication of a network
node (including its incident edges) and deletion of some of the inci-
dent edges. Such models have been elucidated and validated in sev-
eral biological studies (Chung et al., 2003; Vázquez et al., 2003). In
this work, we use the Duplication–Mutation with Complementarity
(DMC) model, which has been found to fit PPI networks better than
other commonly used network growth models (Middendorf et al.,
2005; Navlakha and Kingsford, 2011).

Similar to reconstruction algorithms to infer evolutionary history
of sequences, we can use a network growth model to obtain
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principled model-based reconstruction of ancestral networks.
Assuming such a generative model, ancestral reconstruction seeks to
find the most likely sequence of networks that yields the extant net-
work. This entails inferring the order in which nodes duplicate and
edges are lost at each step during evolution. Several algorithms have
been designed for ancestral network reconstruction. An algorithm
for maximum likelihood ancestral reconstruction based on the
DMC model, called ReverseDMC, was developed by Navlakha and
Kingsford (2011). ReverseDMC greedily (by maximizing the likeli-
hood of that single step) chooses an anchor node that is duplicated,
at each step of evolution.

ReverseDMC uses only extant network topology to infer ances-
tral networks. Variants that can use additional biological informa-
tion of the extant proteins, when available, for ancestral
reconstruction have also been proposed. Such additional informa-
tion include protein duplication history (Jasra et al., 2015; Li et al.,
2013), evolutionary periods of proteins (Zhang et al., 2017) and the
node contents in ancestral networks (Jin et al., 2013). Other techni-
ques for ancestral network reconstruction include the use of graphic-
al models (Pinney et al., 2007), and parsimony-based approaches
that find one or more ancestral reconstructions with the minimum
number of interaction gain/loss events (Patro et al., 2012; Patro and
Kingsford, 2013). These methods also use the gene duplication his-
tory and extant networks of multiple species during ancestral net-
work reconstruction. Some methods use the Preferential Attachment
Model to reconstruct network growth history (Sreedharan et al.,
2019; Young et al., 2019). Most of these methods, including
ReverseDMC, yield only one evolutionary history, which is obtained
by optimizing a mathematical criterion (like likelihood). In many
applications, it is useful to obtain multiple optimal and near-optimal
histories to explore their biological relevance, through alternative
criteria.

In this article, we develop an Integer Linear Programming (ILP)
solution for maximum likelihood reconstruction of ancestral PPI
networks, using only extant network information. We use indicator
variables to determine anchor and duplicated nodes at each step of
evolution. Conditions imposed by the DMC model are formulated
as linear constraints on each consecutive pair of networks during
evolution. We prove the correctness of our ILP formulation.

It is not known whether this problem is polynomial-time solv-
able. However, it appears to be unlikely, since the number of pos-
sible histories grows exponentially with each step. The advantage of
an ILP framework is that it can leverage accurate and efficient heu-
ristics, which are being steadily improved by the optimization com-
munity with readily available implementations in state-of-the-art
general-purpose solvers. These improvements can automatically en-
hance the solution quality for the ancestral reconstruction problem.
Another advantage of using ILP heuristics is that they can find mul-
tiple near-optimal solutions during their search of the solution
space. Thus, they yield multiple reconstructions that can be exam-
ined for their biological relevance. The ILP provides a theoretical
framework for further algorithmic development of the maximum
likelihood network reconstruction problem. We provide a Python
implementation of our model using a general-purpose ILP solver
(https://bitbucket.org/cdal/network-reconstruction).

In experiments with synthetic datasets, our ILP-based solution
obtains reconstructions with higher likelihood than those from
ReverseDMC, which also shows that the greedy heuristic for this
problem is not optimal. Simulation studies show that our recon-
struction algorithm is robust to noise in the extant network and mis-
match in input model parameters. In addition to likelihood, we also
compare the solutions reconstructed by ILP and ReverseDMC in
terms of the node arrival order (measured by Kendall’s Tau), dupli-
cation history (measured by distance between the reconstructed du-
plication tree and the true tree) and similarity of reconstructed
ancestral networks to the true ones (measured by Kernel similarity
of graphs). ILP solutions are found to be superior to ReverseDMC
solutions on all these metrics in our simulations.

We evaluate our algorithm on two real biological networks that
contain PPIs from the families of bZIP transcription factors and the
Commander complex. Our ILP obtains solutions with higher

likelihood, compared to those from ReverseDMC, on both these
networks. We also examine the biological relevance of the results by
comparing the inferred node arrival times as well as the chosen
duplicated nodes at each evolutionary step, in reconstructions from
ReverseDMC and ILP. On both the networks, solutions from our
ILP are in better agreement with independent biological evidence
from ortholog information and sequence similarity.

2 Problem statement

Given a network Gt at time t, and a model of evolution ‘ that speci-
fies a series of operations that generates Ggþ1 from Gg, we want to
find the most probable sequence of networks GS ¼ G1; . . . ;Gt�1:

G�
S ¼ argmax

GS

ðPðGtjGt�1Þ . . .PðG2jG1ÞPðG1ÞÞ; (1)

where the probabilities are conditional on the model ‘ and the ex-
tant network Gt.

We now describe the model that we use and how likelihood is
computed for the model, as given in Navlakha and Kingsford
(2011).

The DMC model assumes that G2 is a simple, connected two-
node graph, has two parameters qcon and qmod, and network evolu-
tion, from any network Gg to Ggþ1, proceeds as follows (see Fig. 1):

1. An anchor node u in Gg is selected at random and duplicated to

form node v. Initially v is connected to all neighbors of u and to

no other nodes.

2. For each neighbor x of u (x is also a neighbor of v), the connect-

ing edge (u, x) or (v, x) is modified with probability qmod; if the

edge is to be modified, then with equal probability, either edge

(u, x) or (v, x) is deleted.

3. Edge (u, v) is added with probability qcon.

Since each time-step adds a node we denote each network by the
number of nodes contained in it: Gg is a network with g nodes.

Let euv denote the edge between the anchor (u) and duplicated
node (v), that is set to 1 if the edge exists and is 0 otherwise. From
step 2 of the DMC model, the probability that u and v share a par-
ticular neighbor is ð1 � qmodÞ and the probability that a node x is a
neighbor of u and not of v, or a neighbor of v and not of u, is
qmod=2. Let N(u) denote the neighbors of u, the intersection NðuÞ \
NðvÞ is the set of common neighbors of u and v and the symmetric
difference NðuÞDNðvÞ is the set of nodes that are neighbors of either
u or v but not both. Then, given u and v are the anchor and dupli-
cated nodes respectively in Gg, we have, ignoring constant terms:

logPðGgjGg�1; ‘Þ ¼ euv logqcon þ ð1 � euvÞ log ð1 � qconÞ
þ

X

NðuÞ\NðvÞ
log ð1 � qmodÞ þ

X

NðuÞDNðvÞ
logqmod:

Once u and v are identified, Gg�1 can be reconstructed by
removing node v and adding edges between u and each node in
NðuÞ � ðNðuÞ \NðvÞÞ, since these edges were present before step 2
of the DMC model. Note that u and v are indistinguishable in Gg: ei-
ther one of them may be deleted to form Gg�1 and the addition of
edges follows mutatis mutandis. In the following we will refer to the

Fig. 1. DMC Model. Left: Yellow anchor node selected. Middle: Anchor node is

duplicated, with edges to all neighbors. Right: Some edges to neighbors are deleted

(with probability qmod=2), edge between the duplicated nodes retained with prob-

ability qcon
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pair of nodes u, v in Gg as duplicated nodes and u in Gg�1 as the an-
chor node.

3 ILP-based solution

3.1 Characterizing a reconstructed sequence
We first state a theorem that characterizes a sequence of networks
that evolves following the DMC model. This forms the basis of our
ILP and is also used in proving its correctness.

Let Gg ¼ fNg;Egg and Gh ¼ fNh;Ehg be two networks, with N,
E representing their sets of nodes and edges, respectively. Nodes and
edges in fNg;Egg are identified with the subscript g and are in low-
ercase (e.g. node ug 2 Ng, edge eh 2 Eh). We use e/ as an indicator
for a ‘dummy edge’ that does not exist in a network. An edge is rep-
resented by the pair of nodes it is incident on. For sets A;B; A=B
denotes the set A – B.

Definition 3.1A pair of networks (Gg, Gh) is DMC-evolvable if Gh can

be obtained from Gg through the DMC model of evolution in one step.

The theorem below (proof in Supplementary Appendix S1) characterizes

DMC-evolvable pairs of networks from a combinatorial perspective

without taking into account model parameters qcon; qmod (that determine

the likelihood of the reconstruction).

Theorem 3.1A network Gg is DMC-evolvable into network Gh in one

step iff:

1. jNhj ¼ jNgj þ 1

2. 9 a function fN : Nh ! Ng and nodes ag 2 Ng and uh; vh 2 Nh such

that

a. fNðuhÞ ¼ fNðvhÞ ¼ ag

b. The restriction of fN : Nh=fuh; vhg ! Ng=fagg is bijective.

3. The function fE : Eh ! Eg [ fe/g given by

i. fEðxh; yhÞ ¼ ðfNðxhÞ; fNðyhÞÞ and

ii. fEðuh; vhÞ ¼ e/, if ðuh; vhÞ 2 Eh

is well-defined and such that

a. 8 node bh that is a neighbor of either uh or vh (or both), and

bh 6¼ uh; bh 6¼ vh, fEðuh; bhÞ ¼ ðag; fNðbhÞÞ and fEðvh;bhÞ ¼ ðag; fNðbhÞÞ.

b. The restriction of fE : Eh=E
uv
h ! Eg is bijective, where

Euv
h ¼ fðxh; yhÞ j yh 2 fuh; vhg; xh 2 Nhg, the set of edges incident on uh

and vh.

Definition 3.2A sequence of networks GS ¼ G2; . . . ;Gt is DMC-evolv-

able if for every pair of consecutive networks

ðGi;Giþ1Þ; i ¼ f2; 3; . . . ; t � 1g, Gi is DMC-evolvable into Giþ1.

3.2 Our ILP
To recover the entire sequence GS, given the extant network Gt, we
have to identify the following:

• Anchor nodes in each of the networks G2; . . . ;Gt�1,
• Duplicated nodes in each of the networks G3; . . . ;Gt,
• Edges in each of the networks G3; . . . ;Gt�1.

We will construct an Integer Linear Program (ILP) to obtain the
solution. We denote the ith node in the gth graph by ig and will omit
the subscript in variable names, to avoid clutter, when the graph is
clear from the context. For each graph, G2; . . . ;Gt, we will use bin-
ary edge indicators eijg that denote presence or absence of an edge

and binary node indicators xig; yig; zig; aig. Subscripts i, j refer to
nodes and g refers to network Gg that has nodes 1; . . . ; g. We will
set xig to 1 if the ith node in Gg is a duplicated node and aig to 1 if
the ith node in Gg is an anchor node. To identify a common neigh-
bor of the duplicated nodes, we will use the indicator yig and to iden-
tify a neighbor of either one of the duplicated nodes (but not both),
we will use the indicator zig. Note that eijg; 8i; j are known in net-
works G2 and Gt and unknown in all the other networks. All the
binary node indicators are unknown in all the networks. The log of
the probability in Equation 1 can now be expressed as:

lP ¼
Xt

g¼1

ð
Xg

i¼1

Xg

j¼1

ðeijgxigxjg logqcon

þ ð1 � eijgÞxigxjg log ð1 � qconÞÞ

þ
Xg

k¼1

ykgð1 � qmodÞ þ
Xg

k¼1

zkgqmodÞ:

Thus we want to maximize lP subject to all the constraints (2–23
below) posed by the extant graph and the model, which we shall
now describe.

3.3 Anchors, duplicated nodes and neighbors
Each network, except G2, has exactly two duplicated nodes:

Xg

i¼1

xig ¼ 2; 8g 2 f3; . . . ; tg: (2)

Each network, except Gt, has exactly one anchor node:

Xg

i¼1

aig ¼ 1; 8g 2 f2; . . . ; t � 1g: (3)

The product eijgxig is 1 if and only if the ith node is a duplicated
node and there is an edge from the jth node to the ith node. If the
kth node is a common neighbor there should be exactly 2 edges to
the duplicated nodes in the network. Since there are only 2 dupli-

cated nodes per network, for the kth node, the sum
Pg

i¼1

eikgxig can

take only three values: 0, 1 or 2. For values 0 and 1, constraint 4 sets
ykg ¼ 0 and for value 2, constraints 4 and 5 set ykg ¼ 1.

2ykg �
Xg

i¼1

eikgxig; 8k;8g 2 f3; . . . ; tg; (4)

ykg �
Xg

i¼1

eikgxig � 1; 8k; 8g 2 f3; . . . ; tg: (5)

To identify a neighbor of one of the duplicated nodes, but not
both, i.e. to set zkg, there should be exactly 1 edge to the duplicated
nodes in the network. We have to ensure that one of the duplicated
nodes, which may also satisfy this criterion if the duplicated nodes
have an edge between them, is not selected. We can pose these con-
straints using an auxiliary binary node variable wkg:

wkg þ 2ykg ¼
Xg

i¼1

eikgxig; 8k; 8g 2 f3; . . . ; tg; (6)

zkg � wkg � xkg; 8k;8g 2 f3; . . . ; tg; (7)

zkg � wkg; 8k; 8g 2 f3; . . . ; tg; (8)

zkg � 1 � xkg; 8k;8g 2 f3; . . . ; tg: (9)

Since there are only two duplicated nodes per network, for the
kth node, the sum

Pg

i¼1

eikgxig can take only three values: 0, 1 or 2.

• If the value is 2, then constraints 4 and 5 ensure that ykg ¼ 1 and

constraint 6 sets wkg ¼ 0 yielding zkg ¼ 0 through constraint 8.
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• If the value is 1, then wkg ¼ 1 since constraints 4 and 5 ensure

that ykg ¼ 0. In this case if xkg ¼ 1 then constraint 9 ensures that

zkg ¼ 0 and if xkg ¼ 0 then constraint 7 ensures that zkg ¼ 1.
• Finally, if the value is 0, then wkg ¼ 0 (constraints 4, 5, 6) and

zkg ¼ 0 through constraint 8.

We use another binary node variable nkg to indicate a neighbor

of a duplicated node, which may be a common neighbor or neighbor
of either of the duplicated nodes:

nkg ¼ ykg þ zkg; 8k;8g 2 f3; . . . ; tg: (10)

3.4 Phantom edges
During reconstruction, we have to learn the correspondence be-
tween nodes in Gg and nodes in the previous network Gg�1 to set
the values of the unknown edges. In particular, we want to associate

the duplicated nodes in network Gg with the anchor node in Gg�1.
To learn this association, we use indicator variables P

ig�1

jg
for pairs of

nodes ðig�1; jgÞ where the subscript indicates the network to which
the node belongs. Since these are edges that do not exist in the net-
work, but are artificial constructions for our inference, we call them

phantom edges. We can view them as directed edges to a network
from the previous network. See Figure 2 for an illustration.

On each node jg in a network, except in G2, there must be exact-
ly one incoming phantom edge from any of the nodes (ig�1) in the
previous network:

Xg�1

ig�1¼1

P
ig�1

jg
¼ 1; 8jg8g 2 f3; . . . ; tg: (11)

From each node (ig�1) in the (previous) network, except from Gt,
there must be at least 1 and at most 2 outgoing phantom edges.

Anchor nodes will have 2 phantom edges and all other nodes will
have only 1:

Xg

jg¼1

P
ig�1

jg
� 1; 8ig�18g 2 f3; . . . ; tg; (12)

Xg

jg¼1

P
ig�1

jg
� 2; 8ig�18g 2 f3; . . . ; tg: (13)

3.5 Edge reconstruction
We now add the final set of constraints for edges in all the ancestral

networks that are determined by the model and edges in the extant
network. This is done by mapping edges from Gg to Gg�1 for which
we will use the phantom edges. The known edges in the extant net-

work shall be mapped backwards up to the first graph G2. We have
to ensure the following three conditions:

1. An edge between duplicated nodes should not be mapped to any

edge in the previous network since the duplicated nodes are

from a single anchor node.

2. An edge (xg, ng) between a duplicated node xg and its neighbor

ng in network Gg should be mapped to an edge ðag�1;ng�1Þ be-

tween the anchor ag�1 and its neighbor ng�1 in network Gg�1.

3. Any other edge should be mapped back to a unique edge in the

previous network and there should be no other unmapped edge

in the previous network.

To set these constraints, we will use three variables defined as
follows. A binary indicator variable, for two nodes ig and jg in Gg, is
defined as

S1
ijg ¼

Xg

k¼1

akðg�1ÞP
kg�1

ig
P
kg�1

jg
:

It is non-zero if and only if there are two phantom edges from an

anchor node kg�1 in Gg�1 to ig and jg in Gg. For each edge (i, j), each

term in S1
ijg is the product of akðg�1Þ;P

ig�1

kg
;P

jg�1

kg
. This term has value 1

iff akðg�1Þ ¼ P
ig�1

kg
¼ P

jg�1

kg
¼ 1 which creates a mapping from nodes i,

j to the anchor node in the previous network (see Fig. 3).
Another binary indicator variable, for two nodes ig and jg in Gg,

is defined as

S2a
ijg ¼

Xg�1

l;k¼1

alðg�1Þð1 � akðg�1ÞÞP
kg�1

jg
P
lg�1

ig
elkðg�1Þ:

It is non-zero if and only if there are two phantom edges from an
anchor node alðg�1Þ and its neighbor ð1 � akðg�1ÞÞ connecting them
respectively to ig and jg in Gg and there is an edge elkðg�1Þ in Gg�1.
For a symmetric condition, for phantom edges from an anchor node
alðg�1Þ and its neighbor ð1 � akðg�1ÞÞ connecting them respectively to
jg and ig in Gg, we define another binary indicator variable, for two
nodes ig and jg in Gg, as

S2b
ijg ¼

Xg�1

l;k¼1

alðg�1Þð1 � akðg�1ÞÞP
kg�1

ig
P
lg�1

jg
elkðg�1Þ:

Each term in the sums S2a
ijg and S2b

ijg is used to create a mapping
from nodes i, j to an anchor node and its neighbor in the previous
network (see Fig. 3).

Finally, another binary indicator variable, for two nodes ig and jg
in Gg, is defined as

Tijg ¼
Xg�1

l;k¼1

P
lg�1

ig
P
kg�1

jg
elkðg�1Þ:

It is non-zero if and only if there are two phantom edges from
(any) nodes kg�1 and lg�1 in Gg�1 to ig and jg in Gg respectively and
there is an edge elkðg�1Þ. Each term in Tijg is a product of phantom
nodes incoming at i and j in Gg and the edge elkðg�1Þ in the previous
network Gg�1, which when set to 1 creates a mapping from edge
ði; jÞ 2 Gg to edge ðl; kÞ 2 Gg�1 (see Fig. 3).

Fig. 2. Phantom edges between networks. Each node ig of a network Gg is connected

to all the nodes jg in Gg through phantom edges P
iðg�1Þ
jg . Not all phantom edges

shown

Fig. 3. For each pair of nodes (i, j), we use phantom edges to find the appropriate

mapping. Variables S1
ijg; S

2a
ijg; S

2b
ijg ;Tijg encode different possible conditions all of

which are not true at the same time
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We set the constraints for each pair of nodes (ig, jg) in graph Gg

based on node indicators for duplicated nodes (xig) and neighbor
nodes (nig):

• If both (ig, jg) are duplicated nodes, i.e. xigxjg ¼ 1, then we have

to set S1
ijg ¼ 1 to ensure that duplicated nodes connect to an an-

chor node in the previous network. Other indicators, S2a
ijg ¼ S2b

ijg ¼
Tijg ¼ 0 to ensure that no edge in Gg�1 is mapped to an edge, if

any, between ig and jg (see Fig. 4).
• If the nodes (ig, jg) are such that one of them is a duplicated node

and the other a neighbor, i.e. xignig ¼ 1 or xjgnig ¼ 1, then we set

S1
ijg ¼ 0 so the anchor node in the previous network does not con-

nect to this pair through any phantom edges, and we set S2b
ijg ¼

xjgnig; S
2a
ijg ¼ xignjg to ensure that phantom edges connect the an-

chor and its neighbor in the previous graph to nodes (ig, jg). Note

that there may not be an edge between (ig, jg), if jg is a neighbor

to the other duplicated node and not ig as shown in Figure 5.

Since both the duplicated nodes map to the anchor, this con-

straint is set as required. We set Tijg ¼ 1 to ensure that there is

exactly one edge between ðlg�1; kg�1Þ and Tijg � eijg since there

may or may not be an edge between (ig, jg). Note that this and

the previous cases are mutually exclusive since nig and xig are

never both set to 1 for the same node.
• If both the above cases are not true, i.e.

xigxjg ¼ xignig ¼ xjgnig ¼ 0, then we set S1
ijg ¼ S2b

ijg ¼ S2a
ijg ¼ 0 since

we do not want an edge between (ig, jg) to map to any edge con-

necting to an anchor in the previous network and we set Tijg ¼
eijg to ensure that there is a single edge ðlg�1;kg�1Þ if eijg ¼ 1. If

eijg ¼ 0, then this ensures there is no edge in the previous network

mapped to (ig, jg) (see Fig. 6).

The above three sets of conditions are incorporated in the fol-
lowing constraints:

S1
ijg ¼ xigxjg; 8ig; jg; 8g 2 f3; . . . ; tg; (14)

S2a
ijg ¼ xignjg; 8ig; jg; 8g 2 f3; . . . ; tg; (15)

S2b
ijg ¼ xjgnig; 8ig; jg; 8g 2 f3; . . . ; tg: (16)

We define an auxiliary binary variable Pijg that is set to 0 if S2a
ijg ¼

0 and S2b
ijg ¼ 0 and 1 otherwise (i.e. the logical OR); also, we set

Qijg ¼ xigxjg:

Pijg � S2a
ijg; 8ig; jg; 8g 2 f3; . . . ; tg; (17)

Pijg � S2b
ijg ; 8ig; jg;8g 2 f3; . . . ; tg; (18)

Pijg � S2a
ijg þ S2b

ijg ; 8ig; jg; 8g 2 f3; . . . ; tg: (19)

Variables Tijg and eijg are set using Pijg and Qijg:

Tijg � Pijg; 8ig; jg; 8g 2 f3; . . . ; tg; (20)

Tijg � 1 þ Pijg �Qijg; 8ig; jg;8g 2 f3; . . . ; tg; (21)

eijgð1 �QijgÞ � Tijgð1 �QijgÞ; 8ig; jg;8g 2 f3; . . . ; tg; (22)

eijgð1 � PijgÞ � Tijgð1 � PijgÞ; 8ig; jg; 8g 2 f3; . . . ; tg: (23)

• If Qijg ¼ xigxjg ¼ 1, then constraints 21 and 22 ensure that Tijg ¼
Pijg ¼ 0 since both S2a

ijg and S2b
ijg are 0. If Pijg ¼ 0;Qijg ¼ 1, then

constraint 22 is void and constraint 23 ensures that eijg � Tijg.
• If Qijg ¼ xigxjg ¼ 0 and Pijg ¼ 1 (i.e. either S2a

ijg or S2b
ijg is 1 which is

only possible if xignig ¼ 1 or xjgnig ¼ 1) then constraint 20

ensures that Tijg ¼ 1. If Pijg ¼ 1;Qijg ¼ 0, then constraint 23 is

void and constraint 22 ensures that eijg � Tijg.
• If Qijg ¼ xigxjg ¼ 0 and Pijg ¼ 0, then constraints 20 and 21 do

not impose any value on Tijg. If Pijg ¼ 0;Qijg ¼ 0, then con-

straints 22 and 23 ensure that eijg ¼ Tijg.

Finally, we set eijg ¼ ejig8ig; jg;8g 2 f2; . . . ; tg to ensure that the
edges are undirected.

3.6 Proof of correctness
We prove (in Supplementary Appendix S2) the correctness of the
ILP:

Theorem 3.2A feasible solution to the above ILP yields a DMC-

evolvable sequence of networks.

3.7 Complexity, heuristics and multiple solutions
Since ILP is, in general, NP-hard (Karp, 1972), optimal solutions for
very large networks may not be found in polynomial time.
Typically, the worst-case time complexity is exponential in the num-
ber of variables. In our formulation, for an extant network of n
nodes, there are Oðn2Þ node indicator variables, Oðn3Þ edge indica-
tor variables and Oðn3Þ indicator variables for phantom edges.

For many practical ILP problems, it is infeasible to explore the
entire search space of solutions. A common approach is to use
Linear Programming (LP) relaxations (where the variables are not
constrained to be integers) which can be solved efficiently in polyno-
mial time. The objective function value of the LP relaxation provides
a theoretical upper bound (for maximization problems) on the ILP
solution. This fact is used in branch-and-bound methods to divide
the problem in to smaller sub-problems in a hierarchical manner
and determine which sub-problems can be eliminated from the

Fig. 4. If both (ig, jg) are duplicated nodes (denoted by x), then S1
ijg ¼ 1 shall connect

the duplicated nodes to a single anchor node (denoted by a) in the previous network

Fig. 5. A duplicated node (x) and a neighbor (y or z) must connect to an anchor (a)

and its neighbor in the previous network. This is done through the variables S2a
ijg; S

2b
ijg

Fig. 6. Left: An edge between non-duplicated nodes is mapped back to an edge in

the previous network. Right: If there is no edge between a pair of non-duplicated

nodes, there should be no edge in the mapped nodes in the previous network
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search. Cutting-plane methods also uses LP relaxations to reduce the
search space. Known feasible solutions from other heuristics (e.g. in
our case the solution from ReverseDMC) can also be used to reduce
the search space. During such explorations, multiple sub-optimal
but feasible solutions may be found that are themselves useful. See
Smith and Taskin (2008) for a recent tutorial focusing on biomed-
ical applications and Wolsey (2020) for more details.

The development of heuristics for solving ILP is an active re-
search area; due to its practical importance efficient software imple-
mentations are also being developed and updated regularly. These
solvers have various heuristics to limit the size of the branch-and-
bound tree and reduce the search space. These heuristics are
designed to run for a pre-specified period of time, during which they
find multiple (near-optimal) solutions. Although in practice, there is
a trade-off between the running time and quality of solutions found,
there are no formal guarantees, in general, of quality improvement
over time.

In our case, multiple histories provided by the ILP solver yield
different evolutionary histories. They may be of equal likelihood
and is often the case in our experiments. Even when the histories
have the same likelihood, they can differ in other characteristics,
such as node arrival order or network structures. We illustrate this
with a simulation in Supplementary Appendix S5. Thus, while likeli-
hood can be a good first criterion to select a reconstructed history,
multiple solutions should further be evaluated in the light of other
biological evidence to select the most plausible history. We discuss
this further in the following sections, where small networks allow us
to investigate the entire reconstructed history manually.

3.8 Designing heuristics using ILP
The time and memory requirements of the ILP heuristics from stand-
ard solvers may be prohibitively expensive for large networks.
Supplementary Appendices S6.4 and S7.1 discuss these performance
issues further. Nevertheless, ILP solvers can also be useful in sub-
routines within larger heuristics to solve the problem. To illustrate
this, we design a simple Divide and Conquer Heuristic using the
ILP, called DCH-ILP. In DCH-ILP, the input network is first parti-
tioned into smaller subgraphs. The ILP is used to reconstruct history
of each subgraph. Finally, the reconstructed histories of each sub-
graph are combined to form the final reconstructed history. There
are many ways to design the partitioning step and the final combin-
ation step. As a preliminary study we choose simple design choices
for these steps as detailed in Supplementary Appendix S7.

4 Experiments

4.1 Simulations
We test the performance of our algorithm and ReverseDMC, the
Greedy approach of Navlakha and Kingsford (2011), in simulations
where the complete evolutionary history is known. Evolution is
simulated following the DMC model starting from an initial net-
work of two connected nodes. For each simulated instance, the ex-
tant network is provided as input to ReverseDMC and ILP. The
maximum runtime of ILP is fixed to 24 h for each instance. All
experiments were run on a server running Ubuntu 16.04.6 with 50
cores [Intel(R) Xeon(R) Gold 6130 CPU 2.10 GHz], and 1 TB
RAM. Gurobi (version 7.5.2) (www.gurobi.com), a state-of-the-art
solver which is free for academic use, was used to solve the ILP in all
the experiments.

We use four evaluation metrics to assess the reconstructed histor-
ies. The likelihood of the entire reconstruction is our first metric.
The second metric evaluates the node arrival order during evolution.
For the inferred histories this is determined by inverting the list of
removed nodes from each step of the reconstruction. The correlation
between this ranked list and the true arrival order are compared
using Kendall’s Tau (Kendall, 1945) (definition given in
Supplementary Appendix S4). Our third metric compares the net-
works generated at each step of reconstruction with their corre-
sponding true networks. We use graph kernels, which provides a
measure of structural similarity between graphs (Vishwanathan

et al., 2010). For an extant network Gt, given the true sequence of
graphs, GS ¼ G3; . . . ;Gt�1 and a reconstructed history,
ĜS ¼ Ĝ3; . . . ; Ĝt�1, we compute the kernel similarity:Pt�1

i¼3

kðGi; ĜiÞ=ðt � 2Þ, where k is a graph kernel. This measures the
average similarity of the entire reconstruction. We use the
Weisfeiler-Lehman kernel that measures similarity based on iso-
morphism of subgraphs within the input graphs (Shervashidze et al.,
2011). In these three metrics, higher values indicate better
performance.

Due to the symmetry between the anchor and duplicated nodes
in the DMC model, at every evolutionary step, switching the new
node and the anchor does not change the likelihood. This makes
Kendall’s Tau a difficult performance metric: a high score is hard to
obtain for any algorithm based on DMC model. So, we use a fourth
metric, the Robinson-Foulds (RF) distance (Robinson and Foulds,
1981) between binary duplication history trees. A duplication his-
tory tree is constructed from a given history (true or inferred) in the
following top-down manner. The first node, in G1, forms the root
and the nodes in G2 are attached as children to the root. At each
step of the evolutionary history the anchor node in Gg�1 becomes
the parent to the pair of duplicated nodes in Gg, that are created and
attached to the parent in the tree. At the end of this process, we ob-
tain a tree where the leaves correspond to the nodes in the extant
network and the internal nodes represent duplication events, with-
out distinguishing the newly duplicated node and its anchor. We cal-
culate the RF distance between duplication trees from a
reconstructed history and the true evolutionary history. Lower RF
distance indicates better performance.

4.1.1 Reconstruction with true model parameters

We simulated 1500 extant networks with number of nodes in the ex-
tant network varying from 6 to 10. For each simulation, the value of
each DMC parameter (qcon and qmod) was randomly chosen from
the interval ½0:1; 0:9�, rounded to one decimal. The same parameters
were used during reconstruction, for both ReverseDMC and our
ILP.

Figure 7 shows that there were no simulations where solutions
from ILP have a lower likelihood than that of ReverseDMC. Since
these are small networks, both ReverseDMC and ILP were able to
find optimal solutions in 76% of the cases, while in 24% of the cases
ILP found solutions with higher likelihood. The fact that ILP could
find solutions with higher likelihood shows that ReverseDMC is not
guaranteed to find optimal solutions. Histories reconstructed from
ILP had better correlation with the true histories, with respect to
node arrival order, in 93% of the cases. With respect to RF distance,
76% of the histories, from ILP and ReverseDMC, had equal RF dis-
tance to the true evolutionary tree. In 20% of the cases trees from
ILP reconstructions were closer to the true tree, while trees from

Fig. 7. Reconstruction with true model parameters. Proportion of simulations where

reconstructed histories from ILP scored better (ILP > G), equal (ILP¼G) and worse

(ILP < G) than the reconstructions from ReverseDMC, the Greedy approach of

Navlakha and Kingsford (2011), for four metrics - log likelihood (LKL), Kendall’s

Tau (KTau), RF Distance (RF) and Kernel Similarity (Sim). Numbers below each

bar indicate percentages
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ReverseDMC reconstructions were closer to the true tree only in 4%
of the cases. The kernel similarity values of the reconstructed net-
works were not lower than those from ReverseDMC in 79% of the
cases.

Each subplot in Figure 8 plots 1500 pairs of performance scores
ðSReverseDMC; SILPÞ, one from each simulation. The diagonal in each
subplot indicates equal scores from both ILP and ReverseDMC. The
scatterplot of log likelihood shows that all the ILP log likelihood
scores are either higher (above the diagonal) or equal (on the diag-
onal) to that of ReverseDMC. The increase in log likelihood is not
much since these are small extant networks. Kendall’s Tau and
Kernel Similarity scores of most of the simulations are higher for ILP
and the increase in Kendall’s Tau can be considerably high for many
instances. RF distances are discrete and we again see that there can
be up to 4 units of improvement even in these small trees.

Overall, reconstructed histories from ILP have higher likelihood
and obtain node arrival orders, duplication events and inferred net-
works that are closer to the true evolutionary history compared to
those from ReverseDMC.

4.1.2 Additional simulations

We evaluate two other settings:

• Reconstruction from a noisy extant network using the true model

parameters.
• Reconstruction from the extant network when the true model

parameters are unknown.

The details of these simulations can be found in Supplementary
Appendices S6.1 and S6.2. The relative performance trend remains
the same as before: reconstructed histories from ILP have higher
likelihood and obtain node arrival orders, duplication events and
inferred networks that are closer to the true evolutionary history
compared to those from ReverseDMC. With increasing noisy edges
(up to 20%) in the extant networks there is no significant change in
the proportion of solutions where ILP obtains better, equal or worse
solutions compared to ReverseDMC with respect to each of the
three metrics. When true model parameters ðqmod; qconÞ are not used
during reconstruction, the performance of both ReverseDMC and
ILP deteriorates with increasing deviation from the true parameters;
and is more affected by mismatch in qmod values. This is consistent

with the findings in Navlakha and Kingsford (2011) for
ReverseDMC.

The ILP results above are obtained using the solution from
ReverseDMC as a known feasible solution to initialize the ILP solv-
er. We study in more detail, in Supplementary Appendix S6.3, the
effect of initializing the ILP with a feasible solution from
ReverseDMC in two cases: (i) on small input networks where ILP
finds the optimal solution within a few hours, and (ii) on larger in-
put networks, where the ILP cannot find an optimal solution in rea-
sonable time, but ILP heuristics are used to find sub-optimal
solutions with a pre-specified running time. We find that the initial-
ization makes no difference to either the running time or the likeli-
hood of the solution obtained.

In Supplementary Appendix S7.1, we evaluate the performance
of DCH-ILP on large simulated input networks of sizes up to 400
nodes. We study the effect of pre-specified runtime limits for ILP
within DCH-ILP on the quality of the solutions obtained, and find
that in general, increasing the runtime leads to improvement in like-
lihood of the solution.

4.2 Real networks
We reconstruct the history of two PPI networks using both
ReverseDMC and ILP algorithms. Each algorithm is run for a range
of values of qcon and qmod (qcon 2 ½0:1; 0:4; 0:7; 0:9� and
qmod 2 ½0:3; 0:7�), the solution with the best likelihood is chosen for
further analysis. The maximum runtime of ILP is fixed to 24 h for
each instance. The solution from ReverseDMC is used as a known
feasible solution to initialize the ILP solver. For each extant network
we analyze two solutions, denoted by ILP1 and ILP2, among the
multiple solutions given by the ILP solver.

Since the true evolutionary histories are not known, we cannot
use the evaluation metrics that are used in our simulation studies.
We evaluate the biological relevance of the results in two ways.
First, we compare the node arrival times of the reconstructions fol-
lowing the procedure described in Navlakha and Kingsford (2011).
The key idea is to estimate the protein arrival time using available
ortholog information, with the assumption that proteins that arrive
earlier in history have higher number of orthologs. Thus, the list of
proteins in the extant network in descending order of number of
orthologs is considered to be the ‘true’ node arrival order (AT). We
determine the number of orthologs for each protein using OrthoDB
(Kriventseva et al., 2019), by counting the number of genes at the
highest level at which ortholog information was available for all the
proteins in the networks (vertebrata for bZIP and metazoa for
Commander). The reconstruction history of both Greedy and ILP
identifies the removed node at each step: this provides the recon-
structed node arrival order (AR) for each algorithm. AT and AR are
compared using Kendall’s Tau (Kendall, 1945) that measures correl-
ation between two ranked lists (definition given in Supplementary
Appendix S6). Higher values indicate better correlation.

Our second evaluation is based on the sequence similarities be-
tween all the inferred anchors and duplicated nodes. Since at each
time step in evolution (by the DMC model) the anchor gene (a)
duplicates into another gene (d), we expect the pairwise similarity
between a and d to be higher than the pairwise similarity between a
and the remaining genes at that time step. Given the extant network
Gt and its reconstructed evolutionary history:
ĜS ¼ Ĝ3; . . . ; Ĝt�1;Gt, along with chosen anchors and duplicated
nodes in each network, we compute a score qðĜiÞ for each network
in Ĝi 2 ĜS, using pairwise sequence similarity (Needleman and
Wunsch, 1970) between the chosen anchor node protein and the
duplicated node protein. The final score for the reconstruction, that
we call Anchor-Duplicate Similarity Score (ADSS), is given byP

Ĝi2ĜS
qðĜiÞ=ðt � 2Þ, where we normalize by the number of net-

works in ĜS. The network Ĝ2 is not considered since in the first
evolutionary step (from Ĝ1 to Ĝ2) there is only one gene that dupli-
cates and there are no other genes to compare with. Thus given two
reconstructions of the same extant network, higher ADSS indicates
better choice of anchor and duplicate nodes in the reconstruction.

Fig. 8. Scatterplot of log likelihood (top left), Kendall’s Tau (top right), RF Distance

(bottom left) and Kernel Similarity (bottom right) values from reconstructions from

ILP (y axis) and ReverseDMC (x axis). Each marker corresponds to reconstruction

from a single extant network, except for RF distance where the size of the marker is

proportional to the number of extant networks, shown in the annotated text, for

which the pair of values are obtained. For log likelihood, Kendall’s Tau and Kernel

Similarity, instances above the diagonal indicate better performance scores by ILP.

For RF distance instances below the diagonal indicate better performance scores by

ILP. In all plots, diagonal indicates equal performance scores
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4.2.1 bZIP transcription factors

The basic-region leucine zipper (bZIP) transcription factors are a
protein family involved in many cellular processes including the
regulation of development, metabolism, circadian rhythm and re-
sponse to stress and radiation (Amoutzias et al., 2006; Pinney et al.,
2007). The interactions between these proteins are strongly medi-
ated by their coiled-coil leucine zipper domains and so, the strength
of these interactions can be accurately predicted using just sequence
information (Fong et al., 2004). With the method of Fong et al.
(2004), Pinney et al. (2007) constructed extant networks on a set of
bZIP proteins for multiple species. We took the H. sapiens network
and merged subunits for the same protein into one node, to obtain
the extant network used in our experiment (Fig. 9).

Table 1 shows the likelihood, Node Arrival Time Accuracy
(measured by Kendall’s Tau) and ADSS of the solutions obtained
from ReverseDMC and ILP, for ancestral reconstruction of the bZIP
Network. With respect to all three metrics, the two solutions
obtained by ILP (ILP1 and ILP2) are better than that of
ReverseDMC. Between ILP1 and ILP2, ILP1 has better Kendall’s
Tau and ILP2 has better ADSS. Table 2 shows the order of arrival of
proteins of the two ILP solutions and the solution from
ReverseDMC. The order based on ortholog information that is used
to calculate Kendall’s Tau is also shown in the leftmost column.

Sequence-based phylogenetic analysis of bZIP transcription fac-
tors by Amoutzias et al. (2006) revealed a highly conserved ancient
core network containing proteins JUN, FOS and ATF3, that pro-
vides additional evidence of the correctness of our reconstruction. In
Table 2 we observe that these three proteins appear early in the
order of both ILP1 and ILP2 (before the seventh step) while JUN
and ATF3 arrive after the seventh step in the order inferred by
ReverseDMC. Comparing ILP1 and ILP2, we notice that the major
difference between the two solutions lies in the arrival order of
ATF6 and XBP1. It is known that XBP1 and ATF6 interact in the
pathway of unfolded protein response (UPR) (Mitra and Ryoo,
2019). However, to our knowledge, there is no evidence favoring
the earlier arrival of one or the other.

4.2.2 Commander network

Commander is a multiprotein complex that is broadly conserved
across vertebrates and is involved in several roles including pro-
inflammatory signaling and vertebrate embryogenesis (Mallam and

Marcotte, 2017). A well characterized sub-complex of Commander,
CCC, made of COMMD1, CCDC22, CCDC93 and C16orf62, is
known to be involved in endosomal protein trafficking (Bartuzi
et al., 2016; Mallam and Marcotte, 2017). Defects in the
Commander complex are associated with developmental disorders
(Liebeskind et al., 2019; Mallam and Marcotte, 2017).
Reconstructing the evolutionary history of interactions in the com-
plex can shed light on the conservation and stability of the proteins
and their interactions, which in turn can aid understanding of the
sources of dysfunction of the complex. We use the network dis-
cussed in Liebeskind et al. (2019), shown in Figure 10, as the extant
network for ancestral reconstruction.

Table 3 shows the likelihood, Node Arrival Time Accuracy
(measured by Kendall’s Tau) and ADSS for ancestral reconstruction
by both ReverseDMC and ILP. On this network too, on all three
metrics, the solutions obtained by ILP are better than that of
ReverseDMC. Table 4 shows the order of arrival of proteins inferred
by the reconstructions from ReverseDMC and ILP. Among all the
commander proteins, COMMD1 is the best studied and is found to
be highly conserved with multiple key functions (Riera-Romo,
2018). Indeed, in OrthoDB, COMMD1 has the maximum number
of orthologs, among these proteins. In solution ILP1, COMMD1 is
seen to arrive early, at the third step, while in the reconstruction
from ReverseDMC it arrives only at the eighth step of evolution.
ILP2, on the other hand, despite having similar values in all the three
metrics, to those from ILP1, has COMMD1 in the eigth step of evo-
lution. Thus, in the light of available additional evidence, solution
ILP1 should be favored over solution ILP2.

In Supplementary Appendix S7.2, we discuss the reconstruction,
from DCH-ILP and ReverseDMC, of a larger Mouse

Fig. 9. Extant bZIP network used in our experiment

Table 1. Likelihood, node arrival time accuracy and ADSS for an-

cestral reconstruction of the bZIP network obtained with

qcon ¼ 0:7;qmod ¼ 0:4

Algorithm Log-likelihood Kendall’s Tau ADSS

ReverseDMC �21 �0.23 �1901.55

ILP1 �19.6 0.18 �1797.11

ILP2 �19.6 �0.03 �1749.31

Table 2. Left: Anchor proteins in the bZIP network given in

descending order of the number of orthologs

Gene Orthologs Time step ReverseDMC ILP1 ILP2

JUN 820 2 FOS, ATF6, FOS,

ATF2 546 CREB ATF2 ATF2

ATF6 453 3 ATF6 FOS XBP1

ATF4 432 4 BATF ATF3 ATF3

FOS 339 5 ATF4 CREB JUN

OASIS 285 6 ATF2 JUN CREB

CREB 268 7 E4BP4 CEBP CEBP

CEBP 259 8 JUN BATF BATF

E4BP4 255 9 ATF3 PAR PAR

PAR 244 10 CEBP ATF4 ATF4

ATF3 229 11 PAR E4BP4 E4BP4

BATF 227 12 XBP1 OASIS OASIS

XBP1 203 13 OASIS XBP1 ATF6

Note: Right: Arrival order at each step of evolution, based on reconstruc-

tions from ReverseDMC and two solutions from ILP.

Fig. 10. Extant Commander network used in our experiment
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Cytomegalovirus Herpesvirus PPI network (Fossum et al., 2009)
comprising 111 proteins.

5 Conclusion

We presented an ILP formulation for maximum-likelihood recon-
struction of the evolution of a PPI network using the DMC model.
We proved the correctness of the ILP formulation, that is designed
to find the optimal solution. Since ILP is NP-hard, for large net-
works, an optimal solution may not be found in polynomial time.
However, heuristics from general-purpose ILP solvers can be used to
find multiple near-optimal solutions in a pre-specified period of
time.

We compared the solutions obtained by ILP heuristics with those
from ReverseDMC (Navlakha and Kingsford, 2011), the previous
best algorithm for this problem. On simulated data, we found that
ILP always obtains solutions that are superior to those from
ReverseDMC, in terms of not only likelihood, but also node arrival
order, duplication history and similarity of reconstructed ancestral
networks to the true ones. Further, the ILP solutions are robust to
noise in extant networks and mismatch in input model parameters.
We evaluated both the algorithms on two real PPI networks, con-
taining proteins from the bZIP transcription factors and
Commander complex respectively. On both the networks, solutions
from our ILP had higher likelihood and were in better agreement
with independent biological evidence from ortholog information
and sequence similarity. We also illustrate the value of obtaining
multiple solutions on both simulated and real data. Even when solu-
tions are of equal likelihood, they differ in other characteristics such
as node arrival order or network structure. Our analysis emphasizes
the need for considering multiple equi-likelihood histories in the
light of additional biological evidence.

A limitation of our solution is the running time of ILP heuris-
tics—it can take a considerably long time to find good solutions for
large networks. Memory requirements of ILP solver also increase
substantially with increase in size of input networks. However, the
ILP can be useful as a sub-routine in larger scalable heuristics.

We conducted a preliminary study with DCH-ILP, a simple divide-
and-conquer strategy where the input network was partitioned into
smaller networks and then solved using our ILP. Despite the strong
assumptions made about the partitions, DCH-ILP performs well on
the networks tested. Future work can improve the method by inves-
tigating other design choices made in the heuristic.

To our knowledge, this is the first ILP to a model-based network
reconstruction problem. We believe it is a valuable tool for further
theoretical and algorithmic development in network reconstruction
problems. For instance, the constructs used to design the ILP can be
used for other evolutionary models such as the Preferential
Attachment model. The ILP framework could also be generalized to
handle multiple input networks as well as to take into account add-
itional information, such as gene duplication histories.
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