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sion and RNA velocity information.

MOTIVATION Trajectory inference (Tl) methods are used to infer cell trajectories in a biological process.
Most of the current Tl methods use only single-cell gene expression information. These methods are often
restricted to certain trajectory structures, such as linear or tree structures, and the direction of the trajectory
is hard to determine. On the other hand, RNA velocity inference methods have been developed to predict
short-term cell dynamics, and Tl methods taking advantage of RNA velocity information have been recently
proposed. However, these types of methods are still in their infancy and there are several limitations with
existing methods. We present CellPath, which infers cell trajectories by integrating single-cell gene expres-

SUMMARY

Trajectory inference (Tl) methods infer cell developmental trajectory from single-cell RNA sequencing data.
Current Tl methods can be categorized into those using RNA velocity information and those using only single-
cell gene expression data. The latter type of methods are restricted to certain trajectory structures, and
cannot determine cell developmental direction. Recently proposed Tl methods using RNA velocity informa-
tion have limited accuracy. We present CellPath, a method that infers cell trajectories by integrating single-
cell gene expression and RNA velocity information. CellPath overcomes the restrictions of TI methods that do
not use RNA velocity information: it can find multiple high-resolution trajectories without constraints on the
trajectory structure, and can automatically detect the direction of each trajectory path. We evaluate CellPath
on both real and simulated datasets and show that CellPath finds more accurate and detailed trajectories
than the state-of-the-art TI methods using or not using RNA velocity information.

INTRODUCTION

The availability of large-scale single-cell RNA sequencing
(scRNA-seq) data allow researchers to study the mechanisms
of how cells change during a dynamic process, such as stem
cell differentiation. One fundamental step in understanding the
mechanisms is to reconstruct the trajectories of cells. During
recent years, various trajectory inference (Tl) methods have
been developed to perform this task (Qiu et al., 2017; Street
et al., 2018; Saelens et al.,, 2019; Wolf et al., 2019). These
methods usually first learn the backbone structure of the trajec-
tory, which can be linear, tree, cycle, or other complex graph
structure, and then each cell is mapped to the backbone and
assigned a pseudotime.

Trajectory inference methods have led to significant biological
discoveries, taking advantage of the large-scale, transcriptome-
wide scRNA-seq data (Trapnell et al., 2014; Farrell et al., 2018;
Schiebinger et al., 2019; Cao et al., 2019). However, because
of the fact that scRNA-seq data capture only a snapshot of
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each cell in the cell population, although transcriptome similarity
is used to find temporally neighboring cells, it is very hard to infer
the direction of the trajectories by using only the gene expression
profiles of cells. Moreover, the assumption that cells with similar
gene expression profiles should be sorted next to each other on
the trajectory might not be true in real world scenario (Tritschler
et al., 2019; Qiu et al., 2020).

Most traditional trajectory inference methods assume that all
the cells in the dataset under analysis follow one (connected) tra-
jectory structure. Methods were developed for specific topology
of the backbone structure, including linear (Campbell et al.,
2015), bifurcating (Haghverdi et al., 2016), tree-like (Street
et al., 2018), and cycle structure (Liu et al., 2017). Such con-
straints on the backbone topology confine these Tl methods to
be applicable to only a subset of datasets, and particularly those
where there is only one starting point in the topology. In reality, a
dataset can contain cells from multiple biological processes,
which can correspond to a mixture of different topology types,
or multiple trajectories with different root cells that cannot be
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represented by a pre-defined topology type (Hochgerner et al.,
2018). In fact, even detecting one topology is challenging for
certain topology types, including cycles and complex trees
(Saelens et al., 2019). In some datasets, multiple heterogeneous
sub-trajectories might exist, which can correspond to different
routes of differentiation from the same starting cell state to the
same ending cell state (Weinreb et al., 2018), and this requires
methods that can detect high-resolution trajectories.

The recently developed RNA velocity methods (La Manno
et al., 2018; Bergen et al., 2020) can predict the gene expression
profile at the next time point for each cell. This information can
potentially reveal “flows” of cell dynamics, which provides an
alternative for resolving the loss of direction information in
scRNA-seq data. The packages velocyto (La Manno et al,
2018) and scVelo (Bergen et al., 2020) provide visualizations
with arrows or streamlines to show where the cells are moving
to in 2D space. However, none of these methods or tools output
major cell trajectories extracted from RNA velocity information
and the pseudotime of cells in each trajectory, which is needed
for downstream analysis, such as differential expression, to un-
derstand which biological processes exist in the dataset.

Methods that incorporate RNA velocity information into the
inference of cell trajectories are emerging. VeTra (Weng et al.,
2021) takes the gene expression and RNA velocity projection
in 2D space to construct a graph, finds weakly connected com-
ponents (WCC) (An et al., 2004) that correspond to trajectory
paths and assigns cell pseudotime by using principal curves.
However, using 2D data as input can potentially cause significant
loss of information for both gene expression and RNA velocity
data, and projecting RNA velocity into nonlinear 2D space is a
challenging problem itself (La Manno et al., 2018; Atta et al.,
2021). Moreover, the paths found by WCC are disjoint, which
can cause the resulting paths to be local rather than global
(see examples in the Results). The Directed-PAGA method
implemented in the PAGA package also uses RNA velocity infor-
mation for Tl (Wolf et al., 2019; Theis et al., 2020). Like PAGA
(Wolf et al., 2019) and Slingshot (Street et al., 2018), Directed-
PAGA infers cluster-level trajectories. With a large cluster size,
the method cannot infer high-resolution trajectories, and with a
small cluster size, the output trajectory graph can be too com-
plex to interpret. Another relevant method is CellRank (Theis
et al., 2020), which outputs initial and terminal states and proba-
bilistic fate maps. These outputs are not exactly cell trajectories
and pseudotime, and post-processing steps are needed to
obtain trajectories and pseudotime. dynamo (Qiu et al., 2019)
can estimate RNA velocity and predict cell fates, but it does
not extract cell trajectories from the population of cells.

We hereby present CellPath, a method that outputs multiple
high-resolution trajectories in a dataset by using RNA velocity
information. CellPath connects cells on the basis of the
future gene expression profile of each cell, and identifies major
paths that correspond to main biological processes in the
data. CellPath overcomes certain problems of the traditional Tl
methods, including the difficulty of assigning directions and the
restriction on the topology of the overall trajectory, and is appli-
cable to datasets with any composition of biological processes.
CellPath also has inherent advantages over Tl methods shown in
our results.

2 Cell Reports Methods 7, 100095, October 25, 2021

Cell Reports Methods

The workflow of CellPath is shown in Figure 1. CellPath takes
as input the scRNA-seq count matrix and RNA velocity matrix,
which can be calculated from upstream RNA velocity inference
methods, such as scVelo and velocyto. The basic idea of Cell-
Path is to construct a nearest neighbor graph, and identify major
trajectory paths on the graph. However, the various types of
noise in scRNA-seq data (Vallejos et al., 2017; Zhang et al.,
2019) and noise in the estimated RNA velocity values (Bergen
et al., 2020) pose challenges for the construction of cell-level
graphs. It is common practice to construct “meta-cells,” which
are small clusters of cells, to reduce the effect of noise in each
single cell (Baran et al., 2019; Wolf et al., 2019; Luecken and
Theis, 2019). CellPath follows the same route and starts with
constructing meta-cells and performing a regression model to
obtain smoothed RNA velocity for each meta-cell (STAR
Methods). The use of meta-cells can also reduce the computa-
tion complexity of the downstream trajectory detection. Then
kNN (k-nearest neighbor) graphs are constructed on the meta-
cells, and we apply path finding algorithm to obtain a pool of
possible trajectories within the dataset (STAR Methods). Then,
we design a greedy algorithm to select a small number of major
trajectories within the pool, which gives us the meta-cell-level
trajectories (STAR Methods). Finally, the cell-level trajectories
and cell pseudotime are obtained by an efficient algorithm
named first-order pseudotime reconstruction that we propose
(STAR Methods).

We showcase the application and evaluate the performance
of CellPath on four real datasets and four different types of simu-
lated datasets. The results verify the ability of CellPath in detect-
ing subtle trajectories, and in dealing with trajectories with com-
plex structures, including cycles. The comparison of CellPath
with existing methods shows the superior performance of Cell-
Path over the baseline methods on a wide range of datasets.

RESULTS

Results on real data

We select real datasets with various levels of complexity in their
trajectory structures. We apply CellPath to a mouse hematopoi-
esis dataset (Weinreb et al., 2018) with 13 cell types and 6,555
cells, a dentate gyrus dataset (Hochgerner et al., 2018) with 14
cell types and 2,930 cells, a pancreatic endocrinogenesis data-
set (Bastidas-Ponce et al., 2019), and a human forebrain dataset
(La Manno et al., 2018) to analyze its performance. We compare
the results of CellPath on these four real datasets with baseline
methods that do not use RNA velocity information, including
Slingshot, and baseline methods that use RNA velocity informa-
tion, including Directed-PAGA, VeTra, and CellRank.

CellPath captures parallel trajectories in mouse
hematopoiesis dataset

We apply CellPath to a recently published mouse hematopoiesis
dataset (Weinreb et al., 2018). The authors performed both in vivo
and in vitro experiments to study the transcriptional landscapes
of hematopoietic stem and progenitor cells. In this analysis, we
use the 6,555 in vivo cells from day 4. The data presented in
the original paper (Weinreb et al., 2018) showed four main
cell types differentiated from the undifferentiated cells (neutro-
phils, monocytes, including DC-like monocytes and Neu-like
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Figure 1. Workflow of CellPath

Step 1: CellPath constructs meta-cells and calculates the gene expression and RNA velocity profiles for each meta-cell. Step 2: CellPath constructs a directed
neighborhood graph on meta-cells. Step 3: CellPath uses path finding and selection algorithms to find the most probable meta-cell-level trajectories on the
neighborhood graph. Step 4: CellPath uses first-order pseudotime approximation algorithm to assign cell-level pseudotime to cells.

monocytes, basophils, and megakaryocyte) and other cell types
with less number of cells, including mast cells, eosinophils, den-
dritic cells, and lymphoids (Figure 2A).

The top 20 paths returned by CellPath’s greedy selection strat-
egy (STAR Methods) include paths from undifferentiated cells to
the four major cell types. For example, paths 1, 3, 5, 6, 10, 11, 14,
17, and 19 represent “undifferentiated — Neutrophils”, paths 0,
2,7, 8, and 13 represent “undifferentiated — Monocytes”, paths
4,9, 12, 15, and 16 represent “undifferentiated — Basophils”,
and path 18 represents “undifferentiated — Megakaryocytes”.
In particular, CellPath recovers multiple parallel monocyte differ-
entiation paths within the monocytes differentiation lineage (Fig-

ure 2B). In the original paper (Weinreb et al., 2018), the authors
discussed two distinct routes of monocyte differentiation, one
through Neu-like monocytes and the other through DC (dendritic
cell)-like monocytes, where this discovery was assisted by clonal
information of the cells in addition to the scRNA-seq data. Using
gene expression and RNA velocity information, CellPath also de-
tects these paths: path 8 corresponds to the DC-like route and
path 0 corresponds to the Neu-like route (Figure 2B, right box).
The compositions of cells on both paths 0 and 8 are shown in Fig-
ure 2C to confirm this correspondence. Other paths along the
same direction, paths 2, 7, and 13, are more Neu-like paths as
the number of Neu-like monocytes is much larger than that of
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the DC-like monocytes. We further analyze the differentially ex-
pressed (DE) genes on paths 0 and 8. DE genes are detected
by fitting a generalized additive model (GAM) as a function of
pseudotime to the gene expression levels, and the correspond-
ing p value is calculated by using likelihood ratio test and cor-
rected by using false discovery rate (STAR Methods). We find
DE genes, including Elane and Mpo, on path 0, which are the
marker genes of Neu-like monocytes progenitors (Weinreb
et al., 2018). On path 8, we find Cd74 that is an early DC and
lymphoid marker (Weinreb et al., 2018). That these genes are
differentially expressed along these two paths further confirms
the two different differentiation processes on these two paths,
which both lead to monocytes.

We then calculate a pseudotime for each cell along the path it
belongs to, using the first-order approximation pseudotime
assignment method we propose (STAR Methods). Pseudotime
of cells on paths 0 and 8 is shown in Figure S1A. Traditional Tl
methods, such as Slingshot, tend to merge the different routes
into one path (Figure 2D). Pseudotime of cells on all paths in-
ferred by Slingshot is shown in Figure S1B.

We also apply recently developed methods that use RNA ve-
locity to this dataset. Directed-PAGA (Wolf et al., 2019; Theis
et al., 2020) identifies the lineages from undifferentiated cells to,
respectively, neutrophils, Neu-like monocytes, basophils, and
megakaryocytes (Figure 2E), but it also fails to identify the path
from undifferentiated cells to the DC-like monocytes similar to
Slingshot when using the ground truth cell type annotation of cells
as input. The result of VeTra is largely affected by the parameter
clusternumber, which determines the number of paths to return.
First, we set clusternumber to 4, as there are four major differen-
tiated cell types (Figure S1C). However, path 1 starts from
megakaryocytes, passes through part of basophils and ends at
undifferentiated cells, which is erroneous. We increase cluster-
number to 6 (Figure S1D), and in this case VeTra splits the differ-
entiation to neutrophils into two paths (paths 4 and 5) but still
mixes basophils with mast cells (path 2). CellRank only infers
the initial and terminating cell states from the cell population, so
we run CellRank along with other pseudotime inference methods
to obtain pseudotime. We use the latent_time() function from
scVelo following the CellRank tutorial. As CellRank does not
output trajectories, we only evaluate its pseudotime. The pseu-
dotime obtained with CellRank mistakenly identifies the baso-
phils as the root instead of the undifferentiated cells (Figure S1E).
CellPath captures major trajectories and subtle dynamic
processes in dentate gyrus neurogenesis
To test the ability of CellPath in detecting non-tree-like lineage
structure with multiple roots, we perform CellPath on a mouse
dentate gyrus dataset (Hochgerner et al., 2018). The original pa-
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per where this dataset was published studied the dentate gyrus
neurogenesis process in developing and mature mouse dentate
gyrus regions. We use the same set of cells as used in (Bergen
et al., 2020) with 2,930 cells. AUMAP (Mclnnes et al., 2018) visu-
alization with cell types annotated is shown in Figure 3A. The cell
type annotations come from (Bergen et al., 2020), which are
consistent with those in the original paper. The cells in this data-
set are involved in multiple differentiation lineages, which cannot
be represented by a tree-like differentiation structure (Hoch-
gerner et al., 2018). Therefore, most of the traditional TI methods
that assume the trajectory has tree-like structures are not appli-
cable to this dataset. CellPath, on the contrary, shows promising
results on this dataset and detects both sub-flows in the cell dy-
namics and all the mainstream differentiation lineages in the
dataset.

In Figure 3B, the top 14 paths are shown at the meta-cell
level. The algorithm infers multiple trajectories that follow
the mainstream granule cells lineage, i.e., the differentiation
path from neuronal intermediate progenitor cells (nIPCs), to
neuralblast cells, immature granule cells, and mature granule
cells (paths 0, 3, and 4). In addition, CellPath also detects
paths corresponding to other small lineages: radial glia-like
cells to astrocytes (paths 1, 2, 5, 7, and 8), oligodendrocyte
precursor cells to myelinating oligodendrocytes (path 11).
These paths are expected according to the discussion of
the dataset in the original paper (Hochgerner et al., 2018).
Apart from these high-level lineages that correspond to
distinct cell differentiation, CellPath also captures multiple
small sub-flows of cells within the same cell types, e.g., in-
ferred trajectories within the mature granule cell (path 6) and
endothelial (path 13).

We next focus on analyzing the biological process on path 0
(the “nIPC — neuralblast — immature granule —mature granule”
cell differentiation path, which is also referred to as “central dif-
ferentiation” path) and path 6 (the mature granule internal path).
In Figure 3C we show the cell pseudotime on paths 0 and 6.
Within each path, we detect a list of DE genes (STAR Methods).
We perform gene ontology (GO) analyses on the DE genes de-
tected along path 0 (STAR Methods). The most significant GO
terms are shown in Figure 3D, which shows that the DE genes
are enriched in functions related to the generation, function, or
organization of neurons or neuron parts. This is in line with that
path O corresponds to the main granule generation process.

There is no biological process discussed in the original paper
that path 6 can be mapped to. Path 6 is mostly inside the mature
granule cells and ends at the lower part of the immature granule
cells (Figure 3B). Out of the detected DE genes on this path
(the full list of DE genes are in Table S1), we found multiple genes

Figure 2. CellPath captures parallel trajectories in mouse hematopoiesis dataset
(A) UMAP visualization of the mouse hematopoiesis dataset. Cell labels are from the original paper (Weinreb et al., 2018).
(B) Meta-cell-level paths inferred by CellPath on mouse hematopoiesis dataset. Gray dots correspond to meta-cells. In particular, path 0 corresponds to the Neu-

like-monocytes and path 8 corresponds to the DC-like monocytes.

(C) Pie charts that show the cell type compositions of cells on paths 0 and 8. Apart from undifferentiated cells, the cells on path 0 are dominated by Neu-like

monocytes and cells on path 8 are dominated by DC-like monocytes.

(D) The cells and their pseudotime of the monocyte lineage inferred by Slingshot. The cell color (from purple to yellow) represents the pseudotime. Cells that do not

belong to the corresponding lineage are colored gray.

(E) Trajectories between clusters inferred by Directed-PAGA using ground truth cluster labels as input.
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that might be relevant to the biological process along this
path. Camk2a (also called the a-isoform of calcium/calmod-
ulin-dependent protein kinase ll) is known to be required for
hippocampal long-term potentiation and spatial learning. Its
deficiency can cause immature dentate gyrus, and other mental
and psychiatric disorders (Yamasaki et al., 2008; Hansel et al.,
2006; Arruda-Carvalho et al., 2014). Adcy? might be involved
in brain development and play a role in memory and learning (in-
formation from GeneCards [Stelzer et al., 2016]), and is known to
be particularly highly expressed in granule cells in the brain (Visel
et al., 2006). The fact that we see the gene expression of both
Camk2a and Adcy1 increase along path 6 within the mature
granule cells (Figures 3E, S2A, and S2C) might indicate the
ongoing maturation of the granule cells or multiple subpopula-
tions in the mature granule cells (Malvaut et al., 2017). Tmsb10
is reported to be expressed in neural progenitors (Artegiani
et al., 2017) and this is in line with its expression level in this
dataset (Figures 3E and S2B), but it is also expressed in some
cells at the early stage of path 6 that were annotated as mature
granule cells in both (Bergen et al., 2020) and (Hochgerner et al.,
2018). Overall, the expression pattern of Camk2a, Adcy1, and
Tmsb10, and the direction of path 6, indicate that some of the
cells at the early stage of path 6 might still represent certain prop-
erties of the immature granule cells although annotated as
mature granule cells. In the future, metabolic labeling-based
scRNA-seq experiments (Hendriks et al., 2019; Erhard et al.,
2019) on the cell type currently annotated as mature granule cells
can potentially reveal whether a dynamic process exists inside
this cell type. Neither Camk2a nor Rasl/10a was discussed in
the original paper of this dataset (Hochgerner et al., 2018) or in
the paper where scVelo was applied to this dataset (Bergen
etal., 2020), making them potentially interesting genes for further
studies.

This potential dynamic process can be observed from the
streamline visualization of scVelo (Figure S2D) and was
mentioned in the scVelo (Bergen et al., 2020) paper but there
was no further discussion. From the streamline visualization of
RNA velocity by scVelo, one can roughly see the trends of the
major paths identified by CellPath. With CellPath, one can
extract the major paths and the cells assigned to each path,
which allows us to perform further analysis, such as analyzing
the functional relevance of the DE genes, to understand the bio-
logical process on each path.

We also apply the baseline algorithms to this dataset. Although
Directed-PAGA finds the mainstream granule lineage, it also out-
puts a path from GABA to mossy cells, and another path from
mossy to mature granule cells, neither of which is supported by
the original paper (Figure S2E). The pseudotime trend from Cell-
Rank (Figure S2F) is overall consistent with the pseudotime pre-
dicted from CellPath paths (paths 0 and 6; Figure 3C). On the con-

¢? CellPress

OPEN ACCESS

trary, VeTra infers wrong direction of the central differentiation
path (NIPC — Neuroblast — Granule immature — Granule
mature) when setting clusternumber to be various values (cluster-
number = 3 in Figure S2G, clusternumber = 4 in Figure S2H).
CellPath captures cell-cycle and branching processes in
pancreatic endocrinogenesis

We further apply CellPath to a mouse pancreatic endocrinogen-
esis dataset (Bastidas-Ponce et al., 2019) to see how CellPath
performs in a dataset that includes cell-cycle structure. The orig-
inal paper (Bastidas-Ponce et al., 2019) generated the dataset to
analyze the differentiation of endocrine progenitor cells in the
pancreatic epithelium. Following Bergen et al. (2020), we used
the cells from E15.5, which includes 3,696 cells. The dataset
covers the endocrine cell differentiation process from ductal
cells to four different endocrine cell sub-types, «, B, 3, and ¢
endocrine cells, through Ngn3"°" endocrine progenitor and
Ngn3hd" endocrine progenitor cells. The UMAP visualization of
the dataset is shown in Figure 4A where the cell type annotation
was obtained from Bergen et al. (2020).

CellPath discovers multiple paths that correspond to «, 8, and
d endocrine cell genesis, and, in particular, a cell-cycle process
at the beginning of endocrine progenitor differentiation. The cell-
cycle process, which was discussed in Bergen et al. (2020) and
the original paper (Bastidas-Ponce et al., 2019), is further
confirmed by the GO analysis based on the paths we detected.
Figure 4B shows the top 7 meta-cell-level paths inferred by Cell-
Path. Path 4 corresponds to o endocrine cell genesis. Paths 0, 2,
3, 5, and 6 correspond to 3 endocrine cell genesis and path 1 cor-
responds to & endocrine cell genesis. Figure 4C shows the cells
and their inferred pseudotime on three representative paths that
correspond to, respectively, the generation of 8, 8, and o cells.

We further conducted DE gene analysis (STAR Methods) on
paths 0, 1, and 4 and found multiple featured genes for different
endocrine cell sub-type generation processes. In path 0 (the B
cell genesis path, Figures 4B and 4C), DE analysis (the full list of
DE genes are in Table S1) discovers Pcsk2, Ero1lb, and Cpe
genes that function in the insulin generation process (information
from GeneCards [Stelzer et al., 2016]), which is in line with that
path O corresponds to the B cell generation trajectory. In path 1
(the 3 cell genesis path; Figures 4B and 4C), one of the DE genes
is Pax4, which is known to have control over the endocrine
cell type specification along with Arx and is abundant in 3 cell line-
age (Collombat 2003). In path 4 (glucagon-producing «. cell gen-
eration path; Figures 4B and 4C), a significant DE gene is Arx,
which was reported as a gene required for o cell fate acquisition
(Collombat 2003).

Each of these paths starts with a cycle structure, which is
considered the cell-cycle process (Bastidas-Ponce et al,
2019; Bergen et al., 2020; Bechard et al., 2016). To confirm
this we took cells in the cycle segment, obtained the DE genes

Figure 3. CellPath captures major trajectories and subtle dynamic processes in dentate gyrus neurogenesis

A) UMAP visualization of the dentate gyrus dataset with cell type annotated.

B) Meta-cell-level paths inferred by CellPath on dentate gyrus dataset. Gray dots corresponds to meta-cells.

D) Top terms of gene ontology analysis of DE genes on path 0, with background genes as the set of expressed genes in the cells on path 0.

¢
(
(C) Pseudotime of cells on paths 0 and 6 inferred by CellPath. Cells that do not belong to the corresponding path are colored gray.
(
(

E) The gene expression level of DE genes Camk2a, Adcy1, Tmsb10 in cells sorted on path 6. The black and red lines correspond to the fitted statistical models
under alternative and null hypothesis, respectively, when conducting likelihood ratio test.
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Figure 4. CellPath captures cell-cycle and branching processes in pancreatic endocrinogenesis

(A) UMAP visualization of pancreatic endocrinogenesis dataset, with cell type annotated using different colors.

(B) Meta-cell-level paths inferred by CellPath on the pancreatic endocrinogenesis dataset. Gray dots corresponds to meta-cells.

(C) Pseudotime of cells on paths 0, 1, and 4 inferred from CellPath. Cells that do not belong to the corresponding path are colored gray.
(D) Top GO terms of DE genes on the cycle segment of path 0.

along the cycle part of path 0, and performed GO analysis of the  genes are found in the set of DE analysis, such as Kif23, Cispn,
DE genes (STAR Methods). The most significant GO terms (Fig-  Aurkb, and Spc24.

ure 4D) show clear relevance to the cell-cycle process, e.g., cell We test baseline methods on the pancreatic endocrinogenesis
division, mitotic sister chromatid segregation, mitotic spindle as-  dataset. Given the ground truth cell clusters, Directed-PAGA
sembly checkpoint, etc. In addition, multiple cell-cycle-related finds differentiation paths to four different endocrine cell
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sub-types, a, B, 3, and ¢ cells (Figure S3A). However, due to the
fact that it only uses coarse clusters for Tl, it cannot find the cell-
cycle structure in the ductal cell population. We then increased
the resolution parameter in its Louvain clustering function (reso-
lution = 3), which led to more clusters. However, the cell-cycle
structure still cannot be detected with more clusters (Figure S3B).
With clusternumber = 3, VeTra detects differentiation paths to
ductal cells, € cells, and a path mixed with o, 8, and 3 cells (Fig-
ure S3C). Increasing clusternumber to 4, 5, and 6 (while keeping
other parameters as default) does not separate o, $, and 3 cells
(Figures S3D-S3F, the last path in each subfigure). The pseudo-
time inferred from CellRank is again generally consistent with the
pseudotime we inferred on the paths by CellPath (Figures 4C and
S3G).

CellPath finds multiple cell flows in forebrain linear
dataset

We further tested CellPath on a human forebrain glutamatergic
neuron genesis dataset (La Manno et al., 2018). The dataset pro-
files 1,720 cells during the glutamatergic neuron differentiation
process. Figure S4A shows a linear trajectory from radial glia
progenitors to fully differentiated neurons. CellPath is able to
find multiple differentiation paths that are in line with the overall
linear trajectory structure (Figures S4B and S4C). All the paths
correspond well to the glutamatergic neuron differentiation pro-
cess where the radial glia cells differentiate into neuroblast cells
and then into mature neurons. The result of the Directed-PAGA
algorithm is shown in Figure S4D. Directed-PAGA detects wrong
direction from radial glia 1 to neuroblast 1 cell types. We set clus-
ternumber = 1 for VeTra as we do not expect multiple cell fates in
this dataset with a simple trajectory. The inferred pseudotime
from both VeTra and CellRank is consistent with the CellPath
result (Figures S4C, S4E, and S4F).

Pseudotime consistency across paths

The pseudotime inferred by CellPath encodes the relative devel-
opmental orders of cells in a path it belongs to. Due to the
complexity of a dataset, a cell can belong to more than one
path, often representing multiple fate possibilities of the cell.
Although it is not expected that the same cell’s pseudotimes in
different paths are exactly the same, the chance that they are
drastically different is very low according to our path selection
algorithm.

We analyze the consistency between the pseudotimes of the
same cell in different paths. For each cell that is associated
with more than one path, we calculate Diff,s:, which represents
the difference of the same cell’s pseudotimes across all paths
that it belongs to. Diff,s: is @ measure we define, which ranges
between 0 and 0.5 (STAR Methods). We then divide all cells
covered by top paths into the following four categories: (1) cells
which have a unique path; (2) cells with more than one path and
Diffost< = 0.1; (3) cells with more than one path and 0.1< Diff,st<

= 0.25; (4) cells with more than one path and Diff,s;>0.25. The
proportions of cells in each category are shown in Figure S4G
for all the four real datasets analyzed above.

The result shows that (1) in the hematopoiesis and the dentate
gyrus datasets, most of the cells have a unique path, and when
the cells have more than one path, their pseudotimes in different
paths are highly consistent; (2) there are a large number of cells in
the pancreas dataset with more than one path assignment, but

¢? CellPress
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the pseudotime is highly consistent with small Diff,s:; (3) the fore-
brain dataset has the largest proportion of cells with relatively
large Diff,s: among all datasets but the proportion itself is small
(10.2%).

Results on simulated data

Experiment design

To be able to test CellPath with other trajectory topologies and to
obtain quantitative measures on the performance of CellPath, we
generate simulated data. We use two different tools to generate
simulated data, dyngen (Cannoodt et al., 2021) and VeloSim
(Zhang and Zhang 2021), which can generate unspliced counts,
spliced counts, and the true RNA velocity with a given topology,
using very different principles for data simulation.

The simulated datasets are generated with a variety of ground
truth backbone structures. Using VeloSim, we generate datasets
with three different trajectory structures. The first one is a “cycle-
tree” structure, which consists of a cycle and a tree with three
branching events (STAR Methods). A biological example of this
structure is where the cells first go through cell cycle and then
start to differentiate into different cell types. The second one is
a “multi-cycle” structure where the trajectory traverses a cycle
structure more than once (STAR Methods). The third one is a bi-
nary tree structure with three terminal cell states (STAR
Methods). Using dyngen, we generate datasets of two different
topologies, one with a binary tree trajectory structure and the
other with a bifurcating structure where each of the two branches
has two fine lineages (STAR Methods).

We compare our result with three existing methods that use RNA
velocity information, CellRank, VeTra, and Vdpt, and two methods
that do not use RNA velocity information, Slingshot and reCAT (Liu
etal., 2017). We provide root cell information to Slingshot as a pri-
ority because it cannot detect the root cell. reCAT is a Tl method
designed particularly to detect cycle structures. Vdpt (velocity
diffusion pseudotime) is a function implemented in the scVelo
package (Bergen et al., 2020), which was developed on the basis
of diffusion pseudotime (Haghverdi et al., 2016) and utilizes RNA
velocity for transition matrix construction and root cell finding.
Vdpt outputs only the pseudotime of cells not the backbone of
the trajectories. The results show that CellPath has the advantages
of separating close lineages and detecting different biological pro-
cesses, such as cell-cycle and branching trajectories, in complex
structures with mixed topology.

CellPath accurately infers cycle and tree structures in
complex trajectory topology

In this section, we present the results of CellPath and other exist-
ing methods on two sets of datasets simulated by VeloSim,
which both contain cycle structures, one is referred to as cy-
cle-tree and the other multi-cycle.

The cycle-tree structure is inspired by the fact that that some
real-world datasets can capture cells that are undergoing
different biological processes, including cell cycle and cell differ-
entiation. For example, in the pancreatic data (Bastidas-Ponce
et al., 2019), cells first exit the cell-cycle process and then enter
the differentiation process. To generate a simulated dataset with
similar scenarios, we use a topology where we have a complex
tree with three branching events following a cycle structure (Fig-
ure 5A). Figure 5C shows the UMAP visualization of the dataset.
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Figure 5. CellPath accurately infers cycle and tree structures in complex trajectory topology

(A) Ground truth trajectory backbone of the “cycle-tree” dataset. The cells first go through a cell-cycle process then differentiate into four final lineages (marked by
“four ending branches”).

(B) Meta-cell-level paths generated by CellPath on the simulated cycle-tree dataset visualized using UMAP.

(legend continued on next page)
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The top 4 paths detected by CellPath correspond to the
ground truth backbone, where each path starts from the “start”
point at the cell-cycle part, exits the cycle and ends at one of the
four ending branches (Figures 5A and 5B). Note that some parts
of the paths overlap in the visualization of Figures 5B and 5D,
which provide more information on which cells are covered by
each path. Figure 5D also shows the pseudotime of cells on
each path estimated by CellPath, which shows the correct in-
ferred direction of each path.

CellRank focuses on inferring the initial and terminating cell
states from the cell population, so we run CellRank along with
other pseudotime inference methods to obtain pseudotime.
There are two potential choices, diffusion pseudotime (DPT)
and the latent_time() function in scVelo. With simulated datasets,
we can measure the accuracy of each choice, so we run
CellRank with both methods and present the best performing
one, which is DPT in this case (Figure 5E). Similar to CellRank,
Vdpt also outputs only pseudotimes of cells but not the trajectory
structure. The pseudotimes from these two methods inferred for
the cells in the tree part are overall correct, but they have diffi-
culty inferring the correct pseudotime for the cycle part (Figures
5E and S5B). We provide the ground truth root cell cluster when
running Slingshot. Slingshot finds four paths, including the cell-
cycle path, where it breaks the cell cycle into multiple parts but
it fails to distinguish the ending branches (Figure S5A). In VeTra,
we first set clusternumber to 4, corresponding to the four ground
truth fates. In VeTra’s paths 0 and 1 the pseudotime has very low
accuracy (Figure 5F). Setting clusternumber to 5 allows VeTra to
separate the four cell fates, but each path provides only a local
view and the origin of each cell fate is not seen from these paths
(Figure S5C).

We then calculate the Kendall rank correlation (Kendall 1938)
to quantify the accuracy of cell pseudotime or ordering for Cell-
Path, Slingshot, VeTra, CellRank, and Vdpt. We generate 10
simulated datasets with the cycle-tree structure by using
different random seeds. For each dataset, a Kendall rank corre-
lation is calculated for each path for CellPath, VeTra, and Sling-
shot. In the case of Vdpt and CellRank, the pseudotime of all the
cells are compared together with the ground truth pseudotime.
As VeTra takes UMAP embedding as input and its performance
also appears to be affected by the UMAP parameter min_dist,
we take the average performance over multiple min_dist values
(min_dist = {0.4,0.5,0.8}) when calculating the Kendall rank cor-
relations. The results are summarized by using boxplots (Fig-
ure 5G), which show that CellPath infers more accurate ordering
of cells compared with the other methods.

Then, we perform CellPath, Slingshot, VeTra, CellRank, Vdpt,
and reCAT on the multi-cycle dataset (Figure S5D). Detecting cy-
cle structures from a population of cells is shown to be challenging
(Saelens et al., 2019). There are only a small number of methods
that can detect the cycle structures and they tend to perform

¢? CellPress

poorly (Saelens et al., 2019). The scenarios we generate here are
more complex than a single cycle. In the multi-cycle structure
we generate cells over a full cycle and then continue to cycle
and eventually form nearly two parallel cycles. We would like to
test whether CellPath or other methods canfind the cycle structure
and further distinguishing the two cycles.

Figure S5E shows that CellPath can accurately find the multi-
ple-cycle structure. CellRank does not detect the cycle structure
(Figure S5F). VeTra and reCAT can reconstruct one cycle with cor-
rect direction, but they mix cells from the two cycles together (Fig-
ures S5G and S5J). Vdpt finds one cycle with opposite direction
(Figure S5H). Slingshot outputs two paths that form a bifurcating
structure without the RNA velocity information even with the
root cell given (Figure S51). We generate five simulated multi-cycle
datasets with different random seeds, and Figure S5K shows the
Kendall rank correlation of the pseudotime inferred by these
methods on the five datasets. One can observe that CellPath
has the highest correlation among all methods.

CellPath detects lineages leading to various cell fates in
tree-structured datasets

In this section, we test CellPath along with CellRank, Slingshot,
and VeTra on datasets with tree-structured trajectories. Tree
structures are the most common trajectory topology in differen-
tiating cell populations. We generate multiple tree-structured da-
tasets by using both VeloSim and dyngen. In all datasets, the tra-
jectory topologies have two branching points with three
terminating fates (Figure 6A and S6A).

CellPath is able to detect all three trajectory fates on datasets
generated by both VeloSim (Figure 6B) and dyngen (Figure SEB).
Slingshot, with the ground truth root information provided,
shows good trajectory detection ability in both simulation sce-
narios (Figures 6C and S6C).

We tested VeTra with both clusternumber = 3 (the ground truth
number of fates) and clusternumber = 4. On the VeloSim tree da-
taset, VeTra finds the local paths corresponding to the three cell
fates, although the pseudotime on each path has relatively low
accuracy (Figure 6D, 6E, and 6G). On the dyngen tree dataset,
it infers wrong directions for the majority of the paths (Figures
S6D, S6E, and S6G). This can be because VeTra uses 2D
nonlinear embedding space, such as UMAP or TSNE, of the orig-
inal data as input. The 2D representation of the original gene
expression and RNA velocity data can have a significant amount
of information loss, and visualization methods, such as UMAP
and TSNE, do not guarantee preserving the trajectory and there
can be distortions on the global and local properties of the orig-
inal dataset (Chari et al., 2021). Moreover, it finds paths using the
WCC method, which does not allow paths to share cells; thus, it
tends to output local paths that lack context.

We run CellRank jointly with latent_time() in scVelo. CellRank
infers erroneous cell differentiating directions in some simulation
datasets (Figure 6F). This can be because of the errors in inferred

©
()
E
(
(

Ground truth pseudotime annotation of the cycle-tree dataset.

F

and Slingshot.

Cell-level pseudotime of cells on the top 4 paths inferred by CellPath. Cells that do not belong to the corresponding path are colored gray.

The inferred pseudotime by CellRank plus the latent_time() function in scVelo.

The trajectories and cell pseudotime inferred by VeTra (clusternumber = 4).

G) Boxplot of the Kendall rank correlation coefficient scores of CellPath, CellRank, VeTra (clusternumber = 4, averaged over min_dist values {0.4,0.5,0.8}), Vdpt,
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Figure 6. CellPath infers cell fates in datasets with tree-structured trajectories simulated by VeloSim
(A) Ground truth pseudotime and cell fates of a dataset. Two branching events lead to three terminal cell fates.

(B) Cell pseudotime of the top 3 paths inferred by CellPath in PCA space. Cells that do not belong to the corresponding path are colored gray.

(C) Trajectories found by Slingshot and pseudotime on each path.
(D) Trajectories found by VeTra and pseudotime of cells on each path (clusternumber = 3).

(E) VeTra results with clusternumber = 4.

(F) The inferred pseudotime of CellRank plus the latent_time() function in scVelo.
(G) Boxplot of the Kendall rank correlation scores of CellPath, CellRank, Slingshot, and VeTra (clusternumber = 3, averaged over min_dist values {0.4,0.5,0.8}).
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Figure 7. CellPath distinguishes close branches in branching dataset simulated by dyngen

(A) Ground truth simulated trajectories visualized in PCA. The dataset includes two main branches, and two parallel lineages in each main branch. Cells in different
trajectories are colored differently.

(B) The top 4 meta-cell-level paths detected by CellPath visualized using PCA. Gray dots correspond to meta-cells.

(legend continued on next page)
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RNA velocity when using the dynamical mode of scVelo, which is
required by the latent_time() function. We quantify the pseudo-
time inference accuracy by using Kendall rank correlation. The
boxplots (Figures 6G and S6G) show that CellPath and Slingshot
generally perform best on tree-structured data when true root in-
formation is provided to Slingshot.

CellPath distinguishes close branches in branching
dataset

To test the ability of CellPath on distinguishing close trajectory
paths, we generate datasets that have complex branching back-
bone structures. Bifurcation or multifurcation trajectory struc-
tures are often seen in cell differentiation processes (Wagner
et al., 2018; Plass et al., 2018). It has been a challenge to accu-
rately detect the branching point, and to distinguish between the
branches that are relatively close. We generated a branching da-
taset by using dyngen. dyngen creates the branching events
through the activation or suppression relationships in gene reg-
ulatory networks. If the specified topology for dyngen is “bifur-
cating,” the simulation starts with a starting cell and the cell
then evolves until the branching point, depending on the gene
expression profile of the genes at the branching point, the cell
will evolve along one of the branches. dyngen then repeats this
process, and next time the cell might choose the other branch.
Repeating this process multiple times gives us multiple fine line-
ages, which should group into two main branches. Figure 7A
shows the data where there are four fine lineages (that is, the
simulation is repeated four times).

As can be observed from Figure 7A, the two lineages in every
branch are slightly separated as they start from different starting
cells. We set out to test whether CellPath can capture
the different lineages and infer high-resolution trajectories. As
shown in Figures 7B and 7C, the top 4 paths output from
CellPath correspond to the four fine lineages obtained from the
four runs in the simulation. CellPath is able to distinguish lineages
of cells that originate from different root cells. We set clusternum-
ber = 4 (ground truth number of cell fates) when running VeTra,
and provide root cell cluster when running Slingshot. Slingshot
detects two paths corresponding to the two main branches (Fig-
ure 7D), but fails to capture the difference between the fine line-
ages. VeTra does not distinguish the close lineages either (Fig-
ure 7E). Also, the directions of some paths from VeTra are
wrong. We consider that the power of CellPath in distinguishing
close lineages mainly comes from incorporating the RNA velocity
information and the use of the modest size of meta-cells. Without
the direction information from RNA velocity, even with small clus-
ters at the clustering step, a method like Slingshot tends to cross-
link clusters from different lineages as the lineages are close to
each other in the gene expression space. We do not test CellRank
and Vdpt on this dataset, as they cannot separate cells into
different trajectories.

Cell Reports Methods

We then calculate the Kendall rank correlation between the in-
ferred pseudotime and the ground truth pseudotime. The corre-
lation is measured on each path inferred by each method. The
values are shown as dots in Figure 7F. Overall, CellPath and
Slingshot have comparable correlation scores and both
methods obtain higher correlation scores than VeTra. We further
tested how well the inferred trajectory paths correspond to the
ground truth trajectories in terms of the assignment of cells to
trajectories. We define an average entropy score (STAR
Methods), to measure the “purity” of cells on each inferred
path in terms of which true trajectory they are from. Ideally, the
cells assigned to each inferred path should come from the
same true trajectory, and this corresponds to a score of 1. Fig-
ure 7G shows the comparison of CellPath, VeTra, and Slingshot
using this score (higher is better), and CellPath has the highest
score compared with the other two methods.

Effect of hyper-parameters

Major parameters of CellPath include the number of meta-cells,
the scaling parameter y (Equation 5 in the STAR Methods), and
the weight of distance penalty B (Equation 5). We provide guid-
ance on how to set these parameters in STAR Methods. Using
the tree-structured datasets simulated with dyngen (ground truth
pseudotime shown in Figure S6A), here we show that CellPath is
robust to a range of values for the number of meta-cells and the
distance weight B, and that the high-scaling parameter y that we
suggest in the STAR Methods is preferable.

Figures S7TA-S7D shows the performance of CellPath with
different numbers of meta-cells on simulated datasets with
around 2,000 single cells. Both the inferred paths and the accu-
racy of predicted pseudotime on each path are shown. When the
number of meta-cells changes from 40 to 200, the performance
remains similar. Increasing the number of meta-cells to 500 de-
teriorates the performance, which is likely because the small
meta-cell size (4 single cells in each meta-cell on average)
does not denoise the data sufficiently.

Figures S7E and S7F shows the performance of CellPath with
different values for the weight of distance penalty $ in Equation 5.
This parameter is introduced to provide extra control on the gene
expression similarity of adjacent cells within a trajectory, but as
the gene expression similarity is already considered when con-
structing knn graph, we recommend to set p small (default value
is 0.3, STAR Methods “Neighborhood graph construction”). As
shown in the boxplot (Figure S7F), the change in this parameter
has little effect on the final performance.

Figures S7G and S7H show the performance of CellPath with
different values for the scaling parameter y in Equation 5.
Because this parameter is introduced to augment the difference
between edge weights, setting it large helps CellPath to better
distinguish different edges when constructing paths. Indeed, in
the boxplot (Figure S7H), we see that increasing y improves

(C) Cells and their pseudotime on the top 4 paths inferred by CellPath. Cells that do not belong to the corresponding path are colored gray.

(D) The cells and their pseudotime on trajectories inferred by Slingshot.
(E) The cells and their pseudotime on trajectories inferred by VeTra.

(F) Kendall rank correlation coefficient scores of the pseudotime inferred from CellPath, VeTra, and Slingshot. The score is calculated for each trajectory path

separately. Each path in each method corresponds to a dot in the plot.

(G) Average entropy score of CellPath, VeTra, and Slingshot. The score ranges from 0 to 1, higher is better.
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the overall performance (default value is 3, STAR Methods
“Neighborhood graph construction”).

The boxplots shown in Figures S7D, S7F, and S7H are ob-
tained by running CellPath ten times for each dataset and param-
eter setting. The Kendall rank correlation is calculated for each
predicted path separately.

DISCUSSION

We present CellPath, a method to detect multiple high-resolution
trajectories in scRNA-seq datasets, taking advantage of the RNA
velocity information. CellPath constructs small clusters of cells
that we call meta-cells to leverage the noise in gene expression
measurement in single cells and, most importantly, it uses RNA
velocity information to guide the direction of connections be-
tween meta-cells, thus eliminating a number of connections be-
tween meta-cells that have only gene expression similarity. It is
shown in our results that the major and fine lineages detected
by CellPath are biologically meaningful (in terms of real data) or
expected by simulation. We have shown the ability of CellPath
in detecting different biological processes (e.g., cell cycle and
cell differentiation in the pancreatic endocrinogenesis dataset)
and in distinguishing close lineages (e.g., the distinct routes of
monocyte differentiation in the mouse hematopoiesis dataset).

We have conducted extensive tests to compare CellPath with
other RNA velocity-based methods for Tl, including VeTra, Cell-
Rank, and Directed-PAGA. Although the RNA velocity
information has brought advantages, including automatically de-
tecting the topology and directions of trajectory paths, chal-
lenges in the estimation of RNA velocity still exist (Bergen
etal., 2021). Current methods, such as CellPath, VeTra, and Cell-
Rank, adopt various manners to mitigate the noise in RNA veloc-
ity. In the case of CellPath, the meta-cell construction denoises
the original data while preserving the information in the original
data as much as possible. Compared with VeTra, CellPath has
two additional features that can be advantageous: first, Cell-
Path’s path selection algorithm assigns each path a score and
users can investigate the paths from high to low scores. In VeTra,
all paths are equally important and users need to specify the
number of paths to output. This parameter (clusternumber)
largely affects the results and can be hard to determine in prac-
tice. Second, CellPath allows paths to share certain cells (e.g.,
undifferentiated cells that differentiate into multiple cell fates),
whereas VeTra finds disjoint sets of cells, which makes detecting
global paths difficult.

Interestingly, on datasets with tree-structured trajectories,
Slingshot performs very well when true root information is given
and can perform better than some methods that use RNA veloc-
ity information. However, it fails to distinguish close lineages that
CellPath is able to detect.

Limitations of the study

Given the noise in the estimated RNA velocity, the performance
of all RNA velocity-based methods are affected by accuracy in
RNA velocity inference. These methods will benefit from better
measurements of RNA velocity, with the development of either
experimental technologies or computational methods for RNA
velocity estimation. CellPath can detect both global and local
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paths, and it will be useful to align these local paths into a global
view. It can be a future direction to find possible connecting
points between paths.
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Materials availability
This study did not generate new unique reagents.

Data and code availability

® The datasets that are analyzed within the current study are publicly available. The accession numbers are listed in the key re-
sources table.

o CellPath is publicly available as a Python package on GitHub (https://github.com/PeterZZQ/CellPath), and has been deposited
at Zenodo (the DOl is listed in the key resources table). It is also uploaded to PyPi and can be installed via pip install cellpath.
Scripts for running the comparisons with baselines methods on real and simulated data are also available on the GitHub
repository.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Estimating RNA velocity for each gene in each cell

For a given set of cells, our method takes as input three matrices: the unspliced mRNA count matrix, the spliced mRNA
count matrix, and the RNA velocity matrix. Each matrix is of dimension M by N, where M is the number of genes and N is the number
of cells.
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The RNA velocity matrix can be calculated by an existing methods, such as scVelo (Bergen et al., 2020) and velocyto (La Manno
et al., 2018). In the results presented in this manuscript, the RNA velocity matrix is calculated using scVelo.

Meta-cell construction

RNA velocity estimation at single cell level can be very noisy and even erroneous, given the noisy measurements of the count
matrices especially the unspliced mMRNA count matrix and the stringent assumptions on RNA velocity estimation. Even though
current RNA velocity estimation methods take precautions to ameliorate the inaccuracy in estimation (e.g., velocyto and scVelo
use k-nearest neighbor (kNN) graphs to denoise the measurement; scVelo relaxes the steady-state assumption of velocyto to
dynamical model), using RNA velocity for trajectory inference can still suffer from the inaccuracy of upstream RNA velocity
calculation. Here we propose to perform meta-cell construction as a denoising step prior to finding the trajectory paths.

We assume the single cell gene-expression data that share strong similarities in the expression space are the noisy realizations of
the underlying meta-cell gene-expression profile (Baran et al., 2019). Meta-cells are constructed by clustering the single cells and
deriving a profile for the meta-cell. Both K-means and Leiden clustering are implemented in CellPath. K-means was used in all
the results we present except the Mouse Hematopoiesis dataset, where Leiden clustering was used. CellPath also provides the op-
tions of using both unspliced and spliced counts for clustering, or using only spliced counts for clustering. We have used both un-
spliced and spliced counts for the presented results.

For each meta-cell, its denoised gene-expression vector is calculated as the average of the gene-expression data of cells within
the corresponding cluster. To obtain its smoothed RNA velocity measurement, we first construct a kernel regression model using the
Gaussian radial basis function (RBF) (Murphy 2012), f(x) = v, where the input {x,-},f’ﬂeRM is the single cell gene-expression data
(using spliced counts) and the output {v;}{_, is the RNA velocity values, then use this function f(x) =v to calculate the meta-cell’s
RNA velocity v from its gene-expression profile X.

In the process described above, n is the number of cells in the cluster corresponding to the meta-cell. This means that the
smoothed RNA velocity measurement for a meta-cell is estimated based on the data within the cluster.

The kernel regression considers that the function lies within the reproducing kernel Hilbert space H with projection & : RM — H.
And the kernel function can be calculated using the projection k(x;,x;) = (®(x;), ®(x;))». We use Gaussian kernel which is one of
the most widely used kernel smoothers for the regression model:

X; — X2 )
k(x;, %)) = exp( - 202’2) (Equation 1)
The final function is the linear combination of kernel functions
N
f(x) = > ak(x, %) (Equation 2)

i=1

The coefficients o are calculated as o« = (K+ 6I)’1v, derived from minimizing an MSE loss function including an L2-regularization
term on a. The Kernel matrix K is simply calculated from the kernel function K; = k(x;,x;).

In our implementation, the kernel regression model f(x) = v is learned using the sklearn package in Python. The parameter & which
controls the regularization on « is set to be 1.

NEIGHBORHOOD GRAPH CONSTRUCTION

The cell differentiation mechanism can be modeled mathematically as a low dimensional manifold within a continuous high dimen-
sional expression space (Morris et al., 2014; Tritschler et al., 2019), which provide a strong theoretical support of manifold learning
method in single-cell data analysis. Currently, manifold-learning-based methods (Moon et al., 2019; Haghverdi et al., 2016; Weinreb
et al., 2017) for single-cell dataset construct neighborhood graph with different kinds of kernels to approximate the underlying mani-
fold, which achieves promising results in single-cell dataset.

Construction of neighborhood groups are commonly used in single cell RNA-seq data analysis prior to graph-based clustering
methods (Wolf et al., 2019; Butler et al., 2018). In existing work, the neighborhood graph construction process uses distance or sim-
ilarity measurements of gene-expression profiles between cells and yields a weighted undirected graph. In our work, the RNA velocity
information provides direction information on where each cell is going next. To incorporate the direction information, we construct a
weighted directed graph that penalizes both the “direction difference” (detailed below) and transcriptome distance between every
two cells. The graph construction process can be separated by two steps: k-nearest neighbor graph construction with selected k,
and weight assignment to the edges in the kNN graph.

To calculate the direction penalty on an edge from cell i to cell j, we first define an angle 6. This is the angle between the direction
from cell i to its future state defined by the RNA velocities of its genes, and the direction from cell i to cellj. We then define the direction
penalty as 2,(i,j) =1 — cos(#) where cos(f) € (0, 1], and
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cos(f) = ———M——
= T [, vl

(Equation 3)
And distance penalty from cell i to cell j represents the transcriptome difference between the two cells in terms of spliced mRNA
counts. It is calculated as

dy _ X =%l

Last(i,f) = T (Equation 4)

where dpax = rpaﬁ(_)d,;ni, which is the largest distance from cell i to its neighbors. We have that 24s:(i,j) € (0, 1].
nie Neigh(i
Finally, the weight e(i,j) of an edge from cells j to j is calculated as follows:

e(i,j) = [MBLaist(i.f) + £4(i.f))]" (Equation 5)

B and A are hyper-parameters. B is used to adjust the relative contribution of the distance penalty and the direction penalty to the
weight e(i.j), and A is used to augment the difference between small and large weights.

Detection of trajectory paths

Having constructed the weighted directed kNN graph on the meta-cells, we next detect trajectory paths in this graph which represent
the cell dynamics in the dataset. We conduct two steps: first, we find a pool of candidate paths on the neighborhood graph, then we
select the final paths using a greedy strategy as our reconstructed trajectories. The aim is to find a small set of paths that cover as
many vertices as possible.

Shortest-paths algorithms are suitable for weighted directed graphs to approximate the distance within the manifold between two
vertices. However, shortest path algorithms can suffer from the noisy measurements, and the Floyd-Warshall algorithm which finds
all-pairs shortest paths for a graph has O(N?) time complexity (Floyd 1962; Warshall 1962). These problems are ameliorated through
the following: 1) the use of meta-cells in the first step can increase robustness to noise; 2) instead of finding the shortest paths be-
tween any two pairs for the pool, we limit the start vertices to be those with indegree at most 3 in the kNN graph, and then use the
Dijkstra’s algorithm (Dijkstra 1959) which finds the shortest paths from a single start vertex to all other vertices. This practice accel-
erates the algorithm considerably and achieves comparable final results to those obtained using the Floyd-Warshall algorithm.

The pool of paths found with the procedure above can contain up to N? paths. Next we would like to select a small number of paths
which cover most of the vertices. We design a greedy path selection strategy which is conducted after initially removing some “bad
paths”.

The paths that cover too few cells (the threshold varies with the total number of cells in the dataset), or have low average edge
weights (with threshold 0.5) within the path are considered as “bad paths” and removed before he greedy selection. The shortest
paths algorithm finds a path between two nodes as long as those two nodes are connected. As a result, some directed shortest paths
that connect two nodes but have large average edge weight usually have low time-coupling between neighboring nodes within the
path and do not convey a true biological causality relationship.

The greedy algorithm picks paths iteratively and at each step it chooses the path with the highest score, which is defined as for a
path p: Sp = £+l +1. I, is the length of path p in terms of the number of vertices in this path, and /, is the number of vertices which
were not covered by any chosen path before choosing p but now are covered by path p. This means that the paths are selected based
on both their own number of vertices and the number of vertices newly covered by this path. { is the parameter which finds a balance
between I, and /,. With the greedy selection strategy, most meta-cells are covered by the first several paths.

Assigning pseudotime to the cells on each trajectory path

Once we have the trajectory paths that cover the meta-cells, we proceed to assign pseudotime to the cells associated with the meta-
cells on each path. Each meta-cell path can be considered as a linear trajectory structure for the cells covered by the meta-cells.
Existing methods to assign cell-level pseudotime fall into two categories: principal-curve-based pseudotime assignment (Campbell
et al., 2015; Street et al., 2018) and random-walk-based pseudotime assignment (Haghverdi et al., 2016; Weinreb et al., 2017; Farrell
et al., 2018). However, these methods can not be readily used for our needs and they do not take advantage of the inferred meta-cell
level paths, as root cell is the only information that is needed in these methods. Here we propose a first order approximation pseu-
dotime assignment method, which is an efficient method with linear time complexity.

After obtaining meta-cell paths, the relative order between meta-cells is known, and we only need to assign orders for cells within
each meta-cell. We can consider each predicted trajectory path as a smooth curve that passes through the “center” of each meta-
cell on this path. The meta-cell center corresponds to the meta-cell gene expression X which is the denoised version of all the cells
within the meta-cell. We denote the smooth curve by a function f(t) : R— RY, where t is the pseudotime and M is the number of
genes. As f(t) passes through all the meta-cell centers, for any meta-cell i, there exists a point on the curve with f(t;) = x;, and
the derivative of f( +) at {; is the RNA velocity v; of the meta-cell x;. Applying first order Taylor expansion on f(t), we have

f(t) = f(t) +F ()t —t)+o(t —t)=x +Vvi(t—t)+o(t —t) (Equation 6)
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where o(t —t;) denotes the higher order derivative terms of f(t). When t is close to t;, we consider that o(t —t;) is small enough to be
neglected, then we have f(t) =x; + v;(t — t;). This means that inside each meta-cell, the part of f(t) curve can be approximated by
g(t) =x; +v;(t —t;) which is a linear function.

Now for any cell j in the meta-cell (with center x;), to obtain its pseudotime, we project it to the linear function g(t) instead of the
original function f(t) for which we do not have the analytical form.

Denoting the projected version of x; by X;, we have

- X — X))V V;
&=M+LL414',
vl llvill

Note that the pseudotime we obtain is equal-spaced, meaning that we basically obtain the relative order between cells. Then for all

cells in the same meta-cell, we simply compare their corresponding projected pseudotime {t; : X; =f(t;)} on f(t). It is obvious that the
(X —X;) - v;
fIvill2

, where x; is the meta-cell expression, v; is the velocity of the meta-cell, x; is the

(Equation 7)

ordering of #; is the same as the ordering of the term

(X —X;)V;
Mvilly
true cells within the cluster, and then sort the result to obtain the ordering of cells in the meta-cell. We call this method to obtain cell

ordering a first order approximation method.
In addition, principal curve and random walk based methods are also implemented in our CellPath package. We use mean first
passage time (Hunter 2018) as the pseudotime for the random walk based method.

in Equation 7.

Therefore, within each cluster, we calculate

Differentially expressed gene detection and gene ontology analysis
A few methods were proposed to detect differentially expressed genes along a continuous trajectory. These methods generally test
the significance of the expression level of a gene depending on a variable like pseudotime. Generalized linear models (GLM) (Trapnell
etal., 2014) and impulse models (Fischer et al., 2018) were used to model the dependency. Here we use a generalized additive model
(GAM) which can model more patterns than GLMs.

The alternative hypothesis is that the gene-expression level x depends on pseudotime t. We assume the gene expression data
follows a negative binomial distribution, and use spline function f() as the building block for the model, then we have

x = Binomial(f(t)) (Equation 8)
The null hypothesis is that the gene-expression level is irrelevant of the pseudotime, where we have
x = Binomial(c), ¢ is constant (Equation 9)

We test the two nested models in Equations 8 and 9 using likelihood ratio test. We test different genes one by one, and use false
discovery rate (FDR) to correct the p-value for multiple testing and obtain adjusted p-values. We select deferentially expressed genes
with p-value smaller than 0.05, and perform gene ontology (GO) enrichment analysis with TopGO (Alexa and Rahnenfuhrer 2021).

Hyper-parameter selection
The main hyper-parameters in the method include: (1) number of meta-cells; (2) weight of distance penalty p in Equation 5. (3) scaling
parameter y in Equation 5. Taking both the performance and running time into account, we recommend the number of meta-cell to be
around 200. The number varies according to the complexity of the trajectory itself: the more complex the trajectory structure is, the
more meta-cell is needed. In order to distinguish trajectory paths which are close, like the two cycles in the multi-cycle structure, the
meta-cell size needs to be small, with a compromise on the noise reduction effect of larger meta-cells. Weight of distance penalty
does not severely affect the performance, and we set the default value to be 0.3. Scaling parameter y amplifies the difference of edge
weights, and should be set to 3 or 4 for better performance.

The default clustering method to construct meta-cells is K-means. Although both K-means and Leiden clustering are implemented
for flexibility, we recommend using K-means clustering especially if one targets at a large number of meta-cells (>100).

Pseudotime consistency across paths
For a given cell, denote the paths it is associated with as p+,p2,---,pn. For each path p;, represent the position of the cellin the path as a
percentile, L;, that is, if the cell is at the beginning of the path, L; = 0%, and if it is at the end of the path, L; = 100%. The differences

among Ly,Lo, -+, Ls is calculated as: Diffyst = %ZL (Li - %ZLL,»).

Real datasets

We demonstrate the performance of CellPath using three previously published single-cell RNA-seq datasets.

Mouse hematopoiesis dataset

The original paper collected hematopoietic stem and progenitor cells(HSPC) from both in vivo and in vitro experiments using inDrops
scRNA-sEquation We take the day 4 cell population in in vitro dataset, which includes totally 6555 cells that cover neutrophils,
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monocytes, basophils, megakaryocyte, mast cells, eosineophils, dendritic cells and lymphoids generation lineages. Due to the size of
the dataset, the RNA velocity is calculated using the “stochastic” mode of scvelo, which is faster than the “dynamical” mode.
Dentate gyrus dataset

The original paper collected multiple dentate gyrus samples at different time points during mouse development (Hochgerner et al.,
2018). The scRNA-seq process is performed using droplet-based approach and 10x Genomics Chromium Single Cell Kit V1. As in
scVelo, we take the cells corresponding to the P12 and P35 time points from the original dataset. 2930 cells are incorporated that
cover the full developmental process of granule cells from neuronal intermediate progenitor cells (nIPCs). The RNA velocity is calcu-
lated using the “dynamical” mode of scvelo.

Pancreatic endocrinogenesis dataset

The dataset used to test CellPath is sampled from E15.5 of the original Pancreatic Endocrinogenesis dataset (Bastidas-Ponce et al.,
2019). This dataset has 3696 cells and covers the whole lineage from Ductal cell through Endocrine progenitor cells and pre-endo-
crine cells to four different endocrine cell subtypes. The dataset is obtained through droplet-based approach and 10x Genomics
Chromium. The RNA velocity is calculated using the “dynamical” mode of scvelo.

Human forebrain dataset

The dataset profiles 1720 using droplet-based scRNA-seq method, which incorporates cells span from radial glia to mature gluta-
matergic neuron within glutamatergic neuronal lineage in developing human forebrain (La Manno et al., 2018). The RNA velocity is
calculated using the “stochastic” mode of scvelo.

Simulated data

We generated 1 branching dataset and 4 tree-structured datasets using dyngen (version 0.3.0). The branching dataset includes
totally 1587 cells and 99 genes. Since each simulation run of dyngen corresponds to the differentiation trajectory of one cell,
we run dyngen 4 times to simulate 4 trajectories. This is achieved by setting the “backbone” parameter to be “bifurcating” and
“num_simulations” to be 4 in “initialise_model()” function of dyngen. We generate 3 tree-structured dataset with 2000 cells and
100 genes, and 1 with 2000 cells and 610 genes. The “backbone” parameters of all tree-structured datasets are set to be
“binary_tree”.

We generated the “cycle-tree”, “multi-cycle” and tree-structured dataset using VeloSim. Totally 10 “cycle-tree” datasets, 5
“multi-cycle” datasets and 4 tree-structured datasets are generated, with the same parameters but different random seeds. We
generate 785 cells with 600 genes for each “cycle-tree” dataset, and 360 cells with 600 genes for each “multi-cycle” dataset. We
generate 1999 cells with 500 genes for each tree-structured dataset.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics on the results in simulated datasets

We use two measures to evaluate the performance of trajectory reconstruction on simulated datasets in Results. On each trajectory
path, we test whether the cells ordering we inferred is correct with Kendall rank correlation coefficient (Kendall’s Tau) measurement
(Kendall 1938). With the branching dataset, we would like to test whether cells are assigned to the correct paths, and we defined an
average entropy score for this. The average entropy score is calculated as follows: for each inferred trajectory, we take the cells in-
ferred to be on this trajectory, and group these cells according to their ground truth trajectory origin. Then we calculate the proportion
of cells that belong to different ground truth trajectory, and obtain a discrete distribution. We then calculate the entropy of this dis-
tribution. That is, for inferred trajectory je J, denoting the cells that belong to simulation i by S;(i), then the proportion and entropy of
this trajectory can be calculated as

_ [si0)]

p;(i) = SIS (Equation 10)

H =~ pi(i)log pyi) (Equation 11)

After calculating the average of entropy H; overall je J, we normalize the score into a range between 0 and 1 by dividing it with the
maximum entropy that the trajectory can achieve (the proportion distribution is even). The final score is then calculated as 1 minus the
normalized average entropy, in order to make higher scores correspond to better cell assignments to trajectories. An average entropy
score that equals to 1 corresponds to the ground truth cell assignment.

When calculating the average entropy score in branching dataset, we only use the cells after the branching point (correspond to the
cell colored black in Figure 7A) to better quantify the trajectory detection accuracy. In order to find the branching point, we separate
the cells in branching datasets into segments according to their ground truth pseudotime, and calculate the variance of gene expres-
sion within every segment. The branching segment should correspond to the first segment with a sudden increase of gene expression
variance (we set the variance cutoff to be 0.13). The branching point is selected to be the starting cell (according to the pseudotime)
within the segment.
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Analysis of hyper-parameter selection

When testing the performance of CellPath with different numbers of meta-cells, we set the weight of distance penalty § to be 0.5 and
the scaling parameter y to be 4. When testing the performance of CellPath with different weights of distance penalty B, we set the
number of meta-cells to be 200 and the scaling parameter y to be 4. When testing the performance of CellPath with different scaling

parameters v, we set the number of meta-cells to be 200 and the weight of distance penalty § to be 0.5. We use K-means clustering to
find meta-cells within the dataset.
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