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Abstract

It is now understood that introgression can serve as powerful evolutionary force, providing
genetic variation that can shape the course of trait evolution. Introgression also induces a shared
evolutionary history that is not captured by the species phylogeny, potentially complicating
evolutionary analyses that use a species tree. Such analyses are often carried out on gene
expression data across species, where the measurement of thousands of trait values allows for
powerful inferences while controlling for shared phylogeny. Here, we present a Brownian
motion model for quantitative trait evolution under the multispecies network coalescent
framework, demonstrating that introgression can generate apparently convergent patterns of
evolution when averaged across thousands of quantitative traits. We test our theoretical
predictions using whole-transcriptome expression data from ovules in the wild tomato genus
Solanum. Examining two sub-clades that both have evidence for post-speciation introgression,
but that differ substantially in its magnitude, we find patterns of evolution that are consistent
with histories of introgression in both the sign and magnitude of ovule gene expression.
Additionally, in the sub-clade with a higher rate of introgression, we observe a correlation
between local gene tree topology and expression similarity, implicating a role for introgressed
cis-regulatory variation in generating these broad-scale patterns. Our results reveal a general role
for introgression in shaping patterns of variation across many thousands of quantitative traits,
and provide a framework for testing for these effects using simple model-informed predictions.
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Introduction

Introgression— the historical hybridization and subsequent backcrossing of previously isolated
lineages —has come to the forefront of phylogenomics with the availability of genome
sequencing (reviewed in Mallet et al 2016, Taylor and Larson 2019). Introgression has been
recognized as a powerful and frequent source of adaptive variation, with many charismatic
examples including wing pattern mimicry in butterflies (Pardo-Diaz et al. 2012, Zhang et al.
2016), coat color in snowshoe hares (Jones et al. 2018), herbivore resistance in sunflowers
(Whitney et al. 2006), high-altitude adaptation in humans (Huerta-Sanchez et al. 2014), and fruit
color in wild tomatoes (Gibson et al. 2021). Introgressed alleles do not have to underlie discrete
traits to influence the course of evolution: alleles that contribute to quantitative trait variation can
also lead to more similarity than expected between the introgressing lineages (Bastide et al.
2018).

Empirically investigating the effects of introgressed ancestry on quantitative trait evolution
remains a challenge, despite recent theoretical and methodological advances (Bastide et al. 2018,
Hibbins et al. 2020, Wang et al. 2020). This is because many processes besides introgression can
shape the distribution of any particular character, including incomplete lineage sorting and
convergence. It is therefore necessary to sample a large number of traits in order to demonstrate
a genome-wide effect of introgression. Gene expression is commonly used in comparative
analyses between species (e.g. Rifkin et al. 2003, Brawand et al. 2011, Davidson et al. 2012),
allowing for the study of thousands of quantitative traits in a phylogenetic framework.
Introgressed variants acting on gene expression either in cis or in trans may affect the evolution
of gene expression across the genome. This could have potentially deleterious effects on fitness,
which would be consistent with previous evidence for widespread selection against introgressed
alleles (Brandvain et al. 2014, Sankararaman et al. 2014, Schumer et al. 2018, Martin et al.
2019).

Incomplete lineage sorting (ILS) and introgression both introduce shared history that could
influence the evolution of quantitative traits, though neither of these processes are captured by a
standard species phylogeny. Therefore, to paint a complete picture of trait variation among
species, it is necessary to include these sources of topological discordance in order to avoid
errors inherent to methods that typically only consider the species topology (Hahn and Nakhleh
2016). Mendes et al. (2018) showed that when gene tree discordance is unaccounted for,
standard comparative approaches will return inflated evolutionary rate estimates and will
underestimate phylogenetic signal. Despite these challenges, no approach has included all
sources of gene tree discordance into a single framework for quantitative trait evolution. Some
methods have extended the classic Brownian motion model for quantitative trait evolution to
include shared histories due to ILS alone (Mendes et al. 2018), while other work has applied the
Brownian motion model to a phylogenetic network with introgression but no ILS (Bastide et al.
2018). A method including both sources of discordance would provide a complete picture of the
most common causes of shared evolutionary history and their effects on quantitative traits. This
would in turn allow for more accurate inferences of key evolutionary parameters, such as the trait
evolutionary rate.
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To address the effects of historical introgression on quantitative traits, we first develop a
Brownian motion model of trait evolution that includes both ILS and introgression, showing the
expected effects of introgression on the similarity in quantitative traits across species. This model
leads directly to predictions about patterns of trait-sharing on a three-taxon tree, which we test by
leveraging whole-transcriptome gene expression data (Moyle et al. 2021) from the wild tomato
clade in the genus Solanum. This clade includes 13 species that have radiated within the last 2.5
million years, and contains high rates of gene tree discordance due to both ILS and introgression
(Pease et al. 2016, Hamlin et al. 2020). Using ovule expression data from two independent
species triplets with different levels of introgression, we find that transcriptome-wide patterns of
variation in both triplets are consistent with histories of introgression, with quantitatively
stronger signals in the sub-clade with greater introgression. Our analyses demonstrate that
introgression can have measurable effects across the genome, on thousands of quantitative traits.

Results
Brownian motion on a species tree

To accurately model trait variation among species, we require an understanding of the
evolutionary history that relates those species, and a model for how traits are expected to evolve
given that history. We present results using Brownian motion, a statistical model that is
commonly applied to quantitative traits. The evolutionary history relating species has classically
been provided by a species phylogeny. Under Brownian motion, the character states on the tips
of this phylogeny follow a multivariate normal distribution, with the variance and covariances of
this distribution provided by the branch lengths of the phylogeny (Felsenstein 1973).

Consider a phylogeny of three species with the topology ((A,B),C) (Figure 1). In units of 2N
generations, species A and B split at time #,, and C split from the ancestor of A and B at time #..
The expected phylogenetic variances and covariances for three species can be expressed in a 3x3
matrix, which we denote T

Var(A) Cov(AB) Cov(AC)
T = |Cov(BA) Var(B) Cov(BC) [1]
Cov(CA) Cov(CB) Var(C)

This matrix is multiplied by the evolutionary rate parameter of the Brownian motion model, o2,
to obtain trait variances and covariances. When only the species phylogeny is considered (i.e.
there is no ILS or introgression), the trait variances (the diagonal elements of T') are determined
by the total time along which evolution can occur for each lineage, so Var(A) = Var(B) = Var(C)
= 1,. The covariances are determined by the length of shared internal branches. In the species
tree, only species A and B share an internal branch, so:

Cov(AB | no ILS or introgression) = o?(t, — t;) [2]
Where o2 corresponds to the trait evolutionary rate per unit time, and Cov(AB) = Cov(BA).

In the absence of other processes, the species pairs BC and AC have zero covariance. However,
trees inferred at individual loci can disagree with the species phylogeny, in which case these
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species pairs could have shared internal branches, and therefore non-zero covariances. This
widespread phenomenon is known as gene tree discordance (e.g. Pollard et al. 2006, White et al.
2009, Hobolth et al. 2011, Fontaine et al. 2015, Pease et al. 2016, Wu et al. 2018, Vanderpool et
al. 2020, Hime et al. 2021) and has multiple biological causes (Degnan and Rosenberg 2009).
Gene trees with the topologies ((B,C),A) or ((A,C),B) contain internal branches shared by
species B+C and A+C, respectively (Figure 1). This results in non-zero covariance terms
between these two species pairs in T', covariance that cannot arise from evolution solely on the
species phylogeny. The consequence of this discordance is that some traits may be closer in
value between species that are not closely related in the species tree. We must therefore include
discordance in our model to appropriately capture this trait covariance.

Modelling the effects of only incomplete lineage sorting on quantitative trait variances and
covariances

One of the most common causes of gene tree discordance is incomplete lineage sorting, which
occurs when ancestral lineages persist through successive speciation events (Hudson 1983,
Pamilo and Nei 1988). For a rooted triplet, there are four possible gene trees in the presence of
ILS: one concordant tree that occurs by lineage sorting with probability 1 — e~(2 =) and

three trees produced by ILS, each with probability ée_(tz =) One of the three ILS trees is

concordant, while the other two are discordant. These probabilities are the basis for the
multispecies coalescent model. To obtain the expected trait variances and covariances in T',
Mendes et al. (2018) weight the expected gene tree heights and internal branch lengths,
respectively, by their expected frequencies under the multispecies coalescent model. We present
those results here with a slightly different formulation for consistency with the new results
presented below. For the covariance between A and B, we have:

Cov(AB | no introgression)
(o e2(t, — t;) 1 __
= g2 l(l —e (2 t1)) (W + <§e (t2 t1)) [3]

In equation 3, 0* corresponds to the trait evolutionary rate per 2N generations, which is the scale
over which time is measured in the multispecies coalescent model. Inside the square brackets, the
first term is the probability of the gene tree produced by lineage sorting, multiplied by that tree’s
expected internal branch length in units of 2N generations. The second term is the probability of
the concordant tree produced by ILS, which has an expected internal branch length of 1 in units
of 2N generations.

Species pairs BC and AC can only have covariance from discordant trees produced by ILS,
which gives:

Cov(BC | no introgression) = Cov(AC | no introgression)

1
= 0'2 <§e_(t2_t1)) [4]
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Again, in these trees the internal branches are of length 1 in units of 2N generations, and so are
not shown explicitly.

For the expected trait variances, all three species share the same expected variance, which is the
total height of all the gene trees weighted by their probabilities. These are:

Var(A | no introgression) = Var(B | no introgression) = Var(C | no introgression) =
o?[(1—e @) (¢, + 1) + (e~ 27 (¢, + 1 + 1/3)] [5]

Where the first term in the square brackets is the contribution from the lineage sorting tree, and
the second term is the contribution from the three ILS trees.

Modelling the effects of introgression and ILS on quantitative trait variances and
covariances

Now, we extend these expressions for species variances and covariances to include both ILS and
introgression. We envision an instantaneous introgression event between species B and C (Figure
1), which occurs at time 7,,. This event can be in either direction, with the probabilities of a locus
following a history of C — B introgression or B — C introgression represented using 9, or 0s,
respectively. To capture the processes of ILS and introgression simultaneously, we imagine that
each possible history at an individual locus can be represented by a “parent tree” within which
lineage sorting or ILS occurs according to the multispecies coalescent process (Meng and
Kubatko 2009, Liu et al. 2014, Hibbins and Hahn 2019, Hibbins et al. 2020). This is sometimes
referred to as the multispecies network coalescent (Wen et al. 2016, Degnan 2018). For our
model, we consider three parent trees (see Supplementary Figure 2): one with no introgression,
which occurs with probability 1 — (0, + 03), and two parent trees for the two possible directions
of introgression, which occur with probabilities of either &, or ; (these probabilities represent
the "rate" of introgression in our model). Each of these three parent trees can generate four
possible gene trees with three possible topologies (Figure 1, arrow 1), which vary in the
frequency of topologies and expected branch lengths depending on each parent tree's parameters
(as in the model of ILS-only described in the previous section).

To obtain expressions for the expected variances and covariances under this model, we must sum
the contributions of all gene trees within each parent tree, and then sum the contribution of each
parent tree (Figure 1, arrow 2). For the covariance between A and B, this gives:

Cov(AB | ILS and introgression)
etz(t, — ty) 1
= ¢g? l(l — (82 + 83)) l(l - e_(tz_tl)) (ﬁ) + (56_(t2_t1))l
1 1
+ 82 <§e—(t2_tm)) + 83 <§e_(t1_tm))l [6]

Note that the term inside the inner square brackets in equation 6 is the same as in equation 3, but
is now weighted by the probability of a history with no introgression. In addition, there are two
additional terms denoting the contributions of trees generated by ILS that follow a history of
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introgression (because ILS occurs regardless of the history at a locus). For a complete derivation,
including the expectations of each gene tree within each parent tree, see the Supplementary
Materials and Methods.

For the covariance between B and C, we have:

Cov(BC | ILS and introgression)
1
2 [(1 - (52 + 53)) [§ e_(tz_tl):l

—(ty—tm e (tZ m) —(ty—tm
+ 5, l(l —e( )) (ﬁ) (3 ( ))l
—(t1—tm e (tl m) —(t1—tm
83 l( ( )) ( —etm ) ( ) ” [7]

Introgression occurs between B and C in our model, so B and C are sister in the parent trees that
represent the two directions of introgression (see Supplementary Materials and Methods,
Supplementary Figure 2). This means that these parent trees can each produce two gene trees
with BC as sister species: one from lineage sorting and one from ILS. The contributions of these
two gene trees in each parent tree are captured in the last two terms of equation 7. The first term
corresponds to the contribution of ILS from the parent tree without introgression, i.e. equation 4.

Finally, for the covariance between A and C, we have
Cov(AC | ILS and introgression) = o2 [(1 — (6, +63)) Ge‘(tz‘tl)) +
5, Ge—(tz—tm)) + 6, Ge—(tl—tm))] 8]

Since gene trees where A and C are sister can only be produced by ILS in our model, equation 8
is simply the sum of the gene trees with this topology produced by each of the three parent trees.

Lastly, we consider the expected trait variance with introgression. As with the covariances, we
sum the total contribution of each gene tree within a parent tree, and then sum these
contributions across each parent tree. All three share the same gene tree heights and therefore
have the same expected variances. This gives:
Var(A) = Var(B) = Var(C)
2 [(1 — (8, +85))[(1 —e @) (£, + 1) + (e C2~)) (¢, + 1 + 1/3)]
8,[(1 — e~C=tm)) (¢, + 1) + (e~ E27tm)(¢, + 1+ 1/3)]
83[(1—e~C=tm)(t; + 1) + (e~ Cr=t)) (e, + 1 + 1/3)]] [9]

+
+
The first term represents the contribution of the parent tree with no introgression, the same as in

equation 5. The second two terms represent the contributions to the total variance from C — B
and B — C introgression, respectively. When T is updated to include all these expectations, it
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becomes possible to model character states under Brownian motion while accounting for both
ILS and introgression.

Testing for the effect of introgression on quantitative traits

To evaluate whether patterns of quantitative trait variation are consistent with a history of
introgression, we use a simple test statistic that employs the same logic as the D; test for
introgression (Hahn and Hibbins 2019; see also the f; statistic of Reich et al. 2009). Imagine that
species A, B, and C have values g, ., and g; for a hypothetical quantitative trait, respectively.
Given the species tree ((A,B),C), and assuming the Brownian motion model of trait evolution
described in the previous sections, the expected distance between trait values ¢, and g; should be
equal to the expected distance between g; and g;. This is because species C is equidistant to
species A and B in the phylogeny, and this tree determines quantitative trait variances and
covariances. The same relationship between distances is expected when considering the ILS-only
model, because of symmetries in expected gene tree frequencies and branch lengths, and
therefore in trait covariances (see equation 4).

However, introgression can introduce additional covariance between one pair of species,
resulting in that pair having more similar trait values than the other non-sister pair (see equations
7 and 8). This naturally leads to the following test statistic:

_ laz — a3| — |q1 — qs]
la2 — q3| + |q1 — qs]

The numerator of Q; takes the difference in trait distances between the two pairs of non-sister
species; when there is no introgression, this numerator—and therefore Q;—has an expected
value of 0. When a significant non-zero value of Qs is observed, the statistic is consistent with a
history of introgression. In addition, the sign of the statistic can tell us which species were
involved in introgression (but not the direction of introgression). For example, a negative Q;
value would be consistent with introgression between species B and C, since that would result in
q» and g; having more similar values (and therefore a smaller distance between them). The
denominator of Qs is the sum of the two trait distances, which normalizes the statistic between O
and 1, allowing it to be compared across traits with different mean values. We imagine that this
statistic will be applied to many individual quantitative traits, each providing a separate value of
Q5. The significance for a dataset consisting of many traits can then be evaluated either by
testing for a mean value of Qs significantly different from O, or by using a sign test with the null
expectation that positive and negative Qs values should be equally frequent (see the analyses
below for more details).

Qs [10]

To confirm the effects of introgression predicted by the model, and the ability of Qsto detect it,
we performed a power analysis. First, to illustrate the conceptual basis for Qs, we contrasted two
conditions: an ILS-only condition and an ILS + introgression condition (Figure 2). Both
scenarios use the three-taxon tree described in previous sections, simulating quantitative traits as
the sum of contributions of many genes (and therefore gene trees; see Methods). For 20,000
independent simulated traits we calculated the mean and standard error of the difference in trait
value at the tips of the tree between each pair of species (Figure 2). As predicted by our model,
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the taxa involved in introgression had a higher covariance and more similar trait values than the
non-introgressing pair of taxa when averaging across the 20,000 traits (Figure 2).

Second, we performed a power analysis across 90 different parameter combinations: three values
each of the timing of introgression, the level of ILS, and the number of genes, and four values of
the rate of introgression. We simulated 100 datasets for each set of parameters and asked how
often Qs was significantly different from 0O in the direction predicted by introgression. We found
the most important parameter to be the rate of introgression: at a rate of 1% (i.e. 1% of the
genome has been introgressed), power was consistently low (1-6%) regardless of other
simulation parameters (Figure 3, Supplementary Figure 1). At higher rates of introgression,
power was increased when introgression was more recent relative to speciation, when the level
of ILS was lower, and when more genes (traits) were considered. When 5,000 genes were used,
power reached 67% under the best-case scenario (Supplementary Figure 1); this increased to
97% with 15,000 genes (Figure 3). Simulations under a no-introgression scenario yielded false
positive rates of less than 5% across all conditions (Supplementary Figure 2).

Gene expression variation is consistent with inferred histories of introgression in Solanum

We used previously generated introgression and gene expression datasets from the wild tomato
clade, Solanum section Lycopersicon, to empirically evaluate the effects of introgression on
thousands of expression traits. This clade includes the domesticated tomato, S. lycopersicum, and
its 12 wild relatives, which have all originated in the last 2.5 million years. The first dataset is a
phylogenetic analysis of 29 accessions (i.e. populations) across these 13 tomato species and two
outgroups (Pease et al. 2016). This dataset includes an introgression analysis based on D-
statistics (Green et al. 2010, Durand et al. 2011) across all possible quartets, which provides a
comprehensive overview of patterns of introgression in the clade. The second dataset is
normalized quantitative expression of 14,556 genes expressed in ovules from six accessions
across five tomato species. This includes published data for five accessions across four species
(Moyle et al. 2021), while data from the other two species are previously unpublished.
Expression levels for each gene are represented as reads per kilobase of transcript, per million
mapped reads (RPKM). Samples were collected on the day of flower opening for 1-4 individuals
of each species grown in a common greenhouse (Moyle et al. 2021).

Combining these two datasets, we sought to identify triplets of species with both evidence of
introgression (from sequence data) and available gene expression data, so that we could apply
the Qs statistic. Additionally, we wanted these triplets to vary in the magnitude of introgression,
so that the magnitude of the effect of introgression on trait variation could be evaluated in
addition to the presence or absence of an effect. With these considerations in mind, we identified
two triplets. The first consists of the accessions LA3475 (S. lycopersicum), LA1589 (S.
pimpinellifolium), and LAO716 (S. pennellii), with LA3475 and LA1589 as sister taxa, and
evidence of introgression between LAI589 and LAO716 (D =0.057, P =0.0015, Pease et al.
2016) (Figure 4A). Using the D, statistic (Hamlin et al. 2020) on site pattern counts from Pease
et al., we obtained a value of 0.0013, corresponding to a genomic rate of introgression of 0.13%.
We hereafter refer to this triplet as the “low” triplet because of the relatively low observed rate of
introgression. The other triplet consists of LA3778 (S. pennellii), LAI1777 (S. habrochaites), and
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LAI316 (S. chmielewskii), with LA3778 and LA1777 as sister taxa, and significant introgression
between LAI777 and LA1316 (D =0.135, P =2.34 x 10%, Pease et al. 2016) (Figure 4A). We
obtained a D, value of 0.0744 for this triplet, corresponding to a rate of introgression of 7.44%;
this value is likely an underestimate, as D, tends to underestimate the true value at higher rates of
introgression (Hamlin et al. 2020). As the rate of introgression is much higher for this triplet, we
refer to it as the “high” triplet.

We used expression values from 14,556 genes available in both the low and high triplets. For
each gene we calculated a separate value Qs, averaging across genes to obtain a mean value for
each triplet. We obtained transcriptome-wide mean Qs values of -0.012 and -0.019 for the low
and high triplet, respectively (Figure 4B). The values we observe are consistent with the histories
of introgression inferred from the sequence data in both sign and magnitude. Both triplets have
negative values, which is consistent with introgression between S. pimpinellifolium and S.
pennellii in the low triplet, and between S. habrochaites and S. chmiewlewskii in the high triplet
(see Figure 4A for the accessions assigned as ¢, ¢», and ¢; in each triplet). The Qs value is also
more negative in the high triplet, which is consistent with the higher level of introgression
inferred from sequence data.

The signal of introgression from quantitative traits was also statistically significant in both
triplets, using either method for assessing significance. Using a bootstrapping approach to ask
whether the mean values were different from O (see Methods), we obtained P =0.0012 and P <
0.0001 for the low and high triplets, respectively (Figure 4B). We obtained similar results when
testing for a significant excess of either positive or negative Q5 values (i.e. a sign test) at
individual genes using bootstrapping (Figure 4C; see Methods). For the low triplet, we observed
7432 negative and 7124 positive genes (P = 0.0134); for the high triplet, 7533 negative and 7020
positive genes (P < 0.0001). Again, the larger number of negative Qs values in the high triplet is
consistent with a higher amount of introgression.

Gene-level analysis of expression data

The expression level of genes can be affected by either cis-acting or frans-acting variants.
Because cis-acting variants are most often found near the gene they affect (Wray et al. 2003, Hill
et al 2020), we might expect these regulatory elements to share the same local gene tree topology
as the nearby genic protein-coding region; any signature of introgression would likely be
reflected in both regions. While recombination either before or after introgression will uncouple
the tree topology in the regulatory region from that in the coding region, we might expect to see
an association between patterns of similarity in expression levels and patterns of gene tree
discordance if cis-acting variants are common.

To test for such a relationship, we looked for an association between coding-region tree
topologies and expression similarity among species in both triplets. Using trees estimated from
each protein-coding gene (Pease et al. 2016), we identified 11,061 genes for which both the tree
topology and expression values from all species were available. For each gene, we obtained the
rooted tree topology for the relevant triplet and also determined which pair of species was most
similar in expression value. We assume that expression similarity reflects the local topology at

10
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whichever locus has the largest effect on expression, such that the most similar pair of species
represents the sister species in this topology.

In the low triplet, we found no significant relationship (P = 0.776, y test of independence)
between protein-coding gene tree topology and expression similarity (Figure 5A). In the high
triplet, however, we did observe a significant relationship (P = 0.019, Figure 5B). For gene trees
with a topology consistent with introgression (where S. habrochaites and S. chmielewskii are
sister), there were significantly more genes where expression was also most similar between
these species than expected by chance (476 observed vs. 449 expected). In other words, we
found that gene expression similarity is correlated with the tree topology of protein-coding genes
in the high triplet, in a fashion consistent with cis-acting effects of introgressed variation on
expression.

Discussion

Phylogenetic comparative methods provide powerful tools for studying the origins of trait
variation among species. However, the rampant gene tree discordance uncovered in many
phylogenomic studies paints a more complicated picture of the shared history among species. To
date, most models of trait evolution employed by comparative methods have assumed that only
the species phylogeny contributes to trait covariance, and have ignored covariance due to
discordant gene trees. Our model builds on previous work (Mendes et al. 2018, Bastide et al.
2018) to incorporate both ILS and introgression into a single framework that captures the most
common causes of discordance and their effects on quantitative trait evolution. We show that
introgression leads to more discordance and stronger patterns of covariance in quantitative traits
among non-sister species than ILS alone, paralleling results for binary traits under the same
multispecies network coalescent framework (Hibbins et al. 2020).

Our model makes several assumptions and simplifications related to expected levels of genetic
covariance between species. First, we have modeled post-speciation introgression as a single
instantaneous pulse of exchange between one pair of non-sister species. Many other possible
introgression scenarios are possible, such as multiple pulses or continuous periods of gene flow.
Although each of these scenarios will increase the variance in gene tree topologies, we expect
that they will still leave a detectable signature on quantitative traits because they still lead to gene
tree asymmetries. In contrast, other gene flow scenarios—such as introgression between sister
taxa, or between both pairs of non-sister taxa in a triplet at equal rates—will not result in a
detectable signature of gene tree asymmetry. Second, we have assumed that the expected
frequencies and coalescence times of loci contributing to trait variation follow neutral
expectations. Through a local reduction in N, directional selection may reduce the rate of gene
tree discordance due to ILS, while increasing the rate of discordance due to introgression (Pease
and Hahn 2013, Munch et al. 2016, Martin et al. 2019). This increase in the rate of introgression
relative to ILS may allow for greater power to detect a signal of introgression in quantitative
traits, as we show in our power analysis. This implies that positive selection, especially on
introgressed variants (e.g. Setter et al. 2020), will make it more likely for quantitative traits to
covary between non-sister taxa.
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We also make key assumptions about the model of trait evolution. Our model assumes that traits
evolve under a Brownian motion process, rather than alternative processes such as the Ornstein-
Uhlenbeck (OU) (Hansen 1997) or early-burst (Simpson 1944, Blomberg et al. 2003) models.
While it may be uncommon for traits to evolve according to an early-burst model (Harmon et al.
2010), many quantitative characters are likely to be constrained in some way, which can be
modelled by the OU process. For gene expression in particular, evidence suggests that over long
phylogenetic timescales the OU process is a better fit to the data (Bedford and Hartl 2009,
Catalan et al. 2019, Chen et al. 2019). However, multiple non-biological factors may favor the fit
of OU models over Brownian motion, including small amounts of error in measured quantitative
traits (Cooper et al. 2016). While we do not expect the model of trait evolution to affect
asymmetries between species in thousands of traits, future work incorporating additional models
of trait evolution, and their effect on trait covariances in particular, would be useful.

A key assumption of our statistical analysis is that each gene expression trait evolves
independently. However, many genes show correlated patterns of expression, either because of
locally shared cis-acting elements or because of frans-acting factors that affect the expression of
many genes across the genome (Wray et al. 2003, Hill et al 2020). If, for instance, such a trans-
acting factor is introgressed and affects many genes in a similar way, then treating each gene as
an independent observation would constitute pseudoreplication of measurements. However, there
are two pieces of evidence that suggest pseudoreplication is not a major problem in our analyses.
First, previous data from experimental introgression lines between S. lycopersicum and S.
pennellii are not consistent with a large role of introgressed loci on background gene expression:
Guerrero et al. (2016) found that each introgressed gene had downstream effects on the
expression of only 0.4 genes on average. Second, we find here that the number of genes where
expression is more similar between introgressing species is higher in the triplet with a higher rate
of introgression. This is again consistent with largely local effects of each introgressed locus on
gene expression. Based on these observations, we conclude that we likely have many thousands
of independent data points testing the relationship between introgression and expression
variation, even if the true correlation structure is unknown.

Our power analysis suggests that we should have had low power to detect an effect of
introgression in the low triplet, which has a rate of introgression of less than 1%. One
explanation for the fact that we do detect an effect that the introgressed variation in this triplet
affects the downstream regulation of a large set of correlated genes, though the discussion in the
previous paragraph likely rules out this possibility. Very recent introgression is also an unlikely
explanation, as our power analysis shows that the timing of introgression does not have an effect
at low rates. As previously discussed, directional selection on introgressed variation in the low
triplet could also improve the power; evaluating this possibility would be an interesting future
direction. Finally, we may simply have been fortunate to observe a positive result, even with
reduced (but non-zero) power in this area of parameter space. Distinguishing random chance
from other processes would also be facilitated by testing additional triplets; unfortunately, we
have exhausted the independent triplets possible from our data, having used six of the eight
available accessions with gene expression data. Very few multispecies transcriptomic datasets
are currently available in systems with widespread introgression, though similar tests may be

12



431
432
433

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461
462
463
464
465
466
467
468
469
470
471
472

possible from data in the butterfly genus, Heliconius (Catalan et al. 2018, Catalédn et al. 2019).
Analyzing or generating such datasets in other systems would help to confirm the generality of
our findings.

Our analysis of gene expression is consistent with the idea that introgression between wild
tomato species has broadly influenced variation in gene expression among species. An
alternative explanation is that species with more similar gene expression may be more likely to
introgress, possibly due to reduced negative fitness consequences from hybrid dysregulation.
There are again a number of pieces of evidence that argue against the latter interpretation.
Guerrero et al. (2016) found no evidence for an association between the magnitude of differential
expression between tomato introgression lines and the sterility of hybrids. While those
experiments had fewer generations of hybridization than wild introgressed populations —and
were conducted in a greenhouse —they do not indicate that general expression levels are a barrier
to introgression. Furthermore, here we observe a correlation between expression similarity at
specific genes and the tree topology inferred from their protein-coding sequences (Figure 5B).
This association suggests a direct causal effect of introgressed genes on their expression: cis-
regulatory differences at introgressed loci lead to a relationship between local tree topologies and
expression levels (cf. Scally et al. 2012). Such a relationship is highly unlikely to instead be due
to a barrier to introgression. The fact that we do not observe the same correlation in the "low"
triplet (Figure 5A) could be due either to a comparative lack of statistical power in this triplet, or
due to more recombination between the protein-coding regions the tree topologies were inferred
from and the cis-regulatory regions driving expression. Introgression will reduce the
opportunities for recombination, which could explain why the "high" triplet retains a higher
signal. Alternatively, it may be that trans-acting variation is much more common in this triplet, a
scenario that would not lead to an association between local gene tree topologies and local gene
expression. We cannot definitively distinguish among these possibilities given only the data
presented here. Finally, it is possible that some form of experimental or technical artefact could
be responsible for asymmetries in many traits, though we note that the sister species in both
triplets examined here always show the greatest similarity in gene expression (Supplementary
Tables 1 and 2). The association we observe between tree topologies and expression similarity at
individual genes is also inconsistent with an artefact.

Overall, our results demonstrate both theoretically and empirically that introgression can affect
patterns of quantitative trait evolution. While considerable attention and excitement has
justifiably been devoted to the power of introgression as an evolutionary force shaping trait
variation, this is a double-edged sword, as most phylogenetic comparative methods do not
account for gene tree discordance. Previous work has shown that discordance due solely to ILS
can lead to overestimates of the rate of quantitative trait evolution and to underestimates of
phylogenetic signal (Mendes et al. 2018). The effects of introgression in misleading our
inferences will be worse, as it both increases overall discordance and generates asymmetries in
trait sharing. Future phylogenetic comparative approaches should strive to evaluate the
contributions of both ILS and/or introgression on trait evolution, allowing for more accurate
evolutionary inferences. Doing so will pave the way for more powerful inferences about the
evolutionary forces that shape trait variation among species.

13



473

474

475

476
477
478
479
480
481
482
483
484

485
486
487
488
489
490
491
492

493

494
495
496
497
498
499
500
501
502
503

504
505
506
507
508
509
510

511

Materials and Methods
Description of datasets

We use ovule gene expression data that is described in Moyle et al. (2021). The dataset consists
of normalized quantitative expression for 14,556 genes measured in six accessions across five
species (two different accessions of S. pennellii were used in the two triplets). For each
accession, samples were collected on the day of flower opening for 1-4 biological replicates
(individual plants) grown in a common greenhouse. When applicable, we took the average
expression value across replicates within each accession for our analyses. Raw sequencing reads
for this dataset are available on the SRA under BioProject PRINA714065. The dataset
containing normalized expression for each replicate, in addition to the scripts for all analyses, are
available from https://github.com/mhibbins/intro_quant_traits.

We use phylogenomic data that is described in Pease et al. (2016). The dataset consists of
transcriptomes from 29 accessions across 13 species, including the six accessions used in our
analyses. Pease et al. used MVFtools to estimate transcriptome-wide D-statistics for all possible
rooted triplets (2925 total values) across the 27 ingroup accessions. From this dataset we selected
the two triplets to use in our analyses. Pease et al. also inferred gene trees for each individual
protein-coding region (19,116 genes total) using RAxML (Stamatakis 2014); we used this data in
our gene-level analyses. Both datasets are published in the Dryad repository
https://doi.org/10.5061/dryad.182dv.

Simulation of quantitative traits & power analyses

We simulated the effect of introgression on quantitative trait values (as shown in Figure 2) under
two models: an ILS-only model and a model with ILS and introgression. For the ILS-only
model, we used values of 1 and 1.3 for the speciation time of A and B, and the speciation of C
from the ancestor of A and B, respectively (all in units of 2N generations). The introgression
condition maintained the same speciation times, with the addition of an introgression event from
C into B at a time of 0.5, with §, = 0.1. Using these parameters, we used our model to construct
expected variance/covariance matrices with 0% = 1 using a custom R function (script available at
https://github.com/mhibbins/intro_quant_traits/blob/main/scripts/bm_model_sims.R). We then
simulated trait values by drawing from a multivariate normal distribution using the R function
mvrnorm with means of O and the constructed matrices.

We performed a power analysis to assess the statistical power of Q. Using the simulation
approach described above, we simulated 100 trait datasets under all combinations of the
following parameters: 5000, 10000, and 15000 for the number of genes; 0.1,0.5, and 1 for 1, — #;;
0.1,0.25,and 0.5 for #, — t,,; and 0,0.01, 0.05, and 0.1 for the rate of introgression. We evaluated
significance for each dataset using a one-sample #-test with Hy: Q5 = 0. A result was considered a
true positive for our analysis when P < 0.05 and the sign of the mean simulated Q5 value was
consistent with the simulated history of introgression.

Testing quantitative traits for introgression
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We calculated average expression values across individual replicates of each accession before
estimating Q; for each gene. To assess the significance of both our estimated Q5 means and
signs, we used bootstrap-resampling. For the mean Q; values, we tested the null hypothesis of Qs
=0 by randomly sampling 10,000 datasets of 14,556 genes each with replacement from the
empirical gene expression dataset, and estimating the mean value of each. We assessed the rank i
of the observed Qs values among these resampled datasets, and a two-tailed P-value was
estimated using the following formula:

P=1-2x05-(i/n)|

where 7 is the number of observations (in this case, 10,000). This formula measures the deviation
of the observed value from the center of the bootstrapped dataset, which has a rank of 0.5. For
the sign of individual genes' Qs values, we tested the null hypothesis that the number of negative
and positive signs are equal by randomly sampling 10,000 datasets of 14,556 genes each. For
each resampled dataset we counted the number of negative and positive Qs values, ranking the
datasets from the one with the greatest excess of negative values to the greatest excess of positive
values. The rank of the observed data against these resampled datasets was calculated, and two-
tailed P-values were evaluated using the same formula as above.

For the analysis of the relationship between gene-level tree topology and expression similarity,
we made use of gene trees inferred using RAxML by Pease et al. (2016). We used the Python
package ete3 (Huerta-Cepas et al. 2016) to prune these gene trees down to the accessions
involved in our test triplets. We then obtained the overlapping set of genes for which both
topologies and expression data were available, and recorded the expression “topology” based on
the minimum pairwise distance in expression values. The counts of gene tree topology and
expression topology were placed into a 3x3 contingency table for each triplet, and we tested for a
significant association using a ?test of independence.
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Figure 2: Quantifying the effect of introgression on quantitative trait variation. For ILS-only (top
row) and ILS + introgression (bottom row) conditions, we show the expected
variance/covariance matrix (middle-left column, variances not shown for clarity) and the average
difference in quantitative trait values between each pair of species across 20,000 simulated traits
(middle-right column). The expectations for the Q; statistic are also shown (far-right column).
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Figure 3: Power analysis of the ability of Q; to detect a signature of introgression from 15,000
simulated genes (02 = 1). Each cell reports the proportion of 100 simulated datasets where Q;
was significantly different from O in the direction expected from the simulated history of
introgression. Within each matrix, the x-axis is the time of introgression relative to speciation
(larger values mean relatively more recent introgression), and the y-axis is the rate of
introgression. There is one matrix for each of three times between speciation events, which
determine the levels of ILS (decreasing from left to right, as the times increase). The greatest
power comes in scenarios with little ILS, high rates of introgression, and recent introgression
events.
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Figure 4: Ovule gene expression variation in tomatoes is consistent with inferred histories of
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Mean and standard error of Qs across all genes in each triplet. C) Difference in the number of
genes with a negative vs. positive Qs value for both triplets. Density plots show the distribution
of this difference across 10,000 bootstrapped datasets. Observed values for the two triplets
relative to the bootstrap distributions are shown with arrows.
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