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Abstract 30 

It is now understood that introgression can serve as powerful evolutionary force, providing 31 
genetic variation that can shape the course of trait evolution. Introgression also induces a shared 32 
evolutionary history that is not captured by the species phylogeny, potentially complicating 33 
evolutionary analyses that use a species tree. Such analyses are often carried out on gene 34 
expression data across species, where the measurement of thousands of trait values allows for 35 
powerful inferences while controlling for shared phylogeny. Here, we present a Brownian 36 
motion model for quantitative trait evolution under the multispecies network coalescent 37 
framework, demonstrating that introgression can generate apparently convergent patterns of 38 
evolution when averaged across thousands of quantitative traits. We test our theoretical 39 
predictions using whole-transcriptome expression data from ovules in the wild tomato genus 40 
Solanum. Examining two sub-clades that both have evidence for post-speciation introgression, 41 
but that differ substantially in its magnitude, we find patterns of evolution that are consistent 42 
with histories of introgression in both the sign and magnitude of ovule gene expression. 43 
Additionally, in the sub-clade with a higher rate of introgression, we observe a correlation 44 
between local gene tree topology and expression similarity, implicating a role for introgressed 45 
cis-regulatory variation in generating these broad-scale patterns. Our results reveal a general role 46 
for introgression in shaping patterns of variation across many thousands of quantitative traits, 47 
and provide a framework for testing for these effects using simple model-informed predictions.  48 

 49 

  50 
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Introduction 51 

Introgression—the historical hybridization and subsequent backcrossing of previously isolated 52 
lineages—has come to the forefront of phylogenomics with the availability of genome 53 
sequencing (reviewed in Mallet et al 2016, Taylor and Larson 2019). Introgression has been 54 
recognized as a powerful and frequent source of adaptive variation, with many charismatic 55 
examples including wing pattern mimicry in butterflies (Pardo-Diaz et al. 2012, Zhang et al. 56 
2016), coat color in snowshoe hares (Jones et al. 2018), herbivore resistance in sunflowers 57 
(Whitney et al. 2006), high-altitude adaptation in humans (Huerta-Sánchez et al. 2014), and fruit 58 
color in wild tomatoes (Gibson et al. 2021). Introgressed alleles do not have to underlie discrete 59 
traits to influence the course of evolution: alleles that contribute to quantitative trait variation can 60 
also lead to more similarity than expected between the introgressing lineages (Bastide et al. 61 
2018).  62 

Empirically investigating the effects of introgressed ancestry on quantitative trait evolution 63 
remains a challenge, despite recent theoretical and methodological advances (Bastide et al. 2018, 64 
Hibbins et al. 2020, Wang et al. 2020). This is because many processes besides introgression can 65 
shape the distribution of any particular character, including incomplete lineage sorting and 66 
convergence. It is therefore necessary to sample a large number of traits in order to demonstrate 67 
a genome-wide effect of introgression. Gene expression is commonly used in comparative 68 
analyses between species (e.g. Rifkin et al. 2003, Brawand et al. 2011, Davidson et al. 2012), 69 
allowing for the study of thousands of quantitative traits in a phylogenetic framework. 70 
Introgressed variants acting on gene expression either in cis or in trans may affect the evolution 71 
of gene expression across the genome. This could have potentially deleterious effects on fitness, 72 
which would be consistent with previous evidence for widespread selection against introgressed 73 
alleles (Brandvain et al. 2014, Sankararaman et al. 2014, Schumer et al. 2018, Martin et al. 74 
2019). 75 

Incomplete lineage sorting (ILS) and introgression both introduce shared history that could 76 
influence the evolution of quantitative traits, though neither of these processes are captured by a 77 
standard species phylogeny. Therefore, to paint a complete picture of trait variation among 78 
species, it is necessary to include these sources of topological discordance in order to avoid 79 
errors inherent to methods that typically only consider the species topology (Hahn and Nakhleh 80 
2016). Mendes et al. (2018) showed that when gene tree discordance is unaccounted for, 81 
standard comparative approaches will return inflated evolutionary rate estimates and will 82 
underestimate phylogenetic signal. Despite these challenges, no approach has included all 83 
sources of gene tree discordance into a single framework for quantitative trait evolution. Some 84 
methods have extended the classic Brownian motion model for quantitative trait evolution to 85 
include shared histories due to ILS alone (Mendes et al. 2018), while other work has applied the 86 
Brownian motion model to a phylogenetic network with introgression but no ILS (Bastide et al. 87 
2018). A method including both sources of discordance would provide a complete picture of the 88 
most common causes of shared evolutionary history and their effects on quantitative traits. This 89 
would in turn allow for more accurate inferences of key evolutionary parameters, such as the trait 90 
evolutionary rate.  91 
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To address the effects of historical introgression on quantitative traits, we first develop a 92 
Brownian motion model of trait evolution that includes both ILS and introgression, showing the 93 
expected effects of introgression on the similarity in quantitative traits across species. This model 94 
leads directly to predictions about patterns of trait-sharing on a three-taxon tree, which we test by 95 
leveraging whole-transcriptome gene expression data (Moyle et al. 2021) from the wild tomato 96 
clade in the genus Solanum. This clade includes 13 species that have radiated within the last 2.5 97 
million years, and contains high rates of gene tree discordance due to both ILS and introgression 98 
(Pease et al. 2016, Hamlin et al. 2020). Using ovule expression data from two independent 99 
species triplets with different levels of introgression, we find that transcriptome-wide patterns of 100 
variation in both triplets are consistent with histories of introgression, with quantitatively 101 
stronger signals in the sub-clade with greater introgression. Our analyses demonstrate that 102 
introgression can have measurable effects across the genome, on thousands of quantitative traits.  103 

Results 104 

Brownian motion on a species tree 105 

To accurately model trait variation among species, we require an understanding of the 106 
evolutionary history that relates those species, and a model for how traits are expected to evolve 107 
given that history. We present results using Brownian motion, a statistical model that is 108 
commonly applied to quantitative traits. The evolutionary history relating species has classically 109 
been provided by a species phylogeny. Under Brownian motion, the character states on the tips 110 
of this phylogeny follow a multivariate normal distribution, with the variance and covariances of 111 
this distribution provided by the branch lengths of the phylogeny (Felsenstein 1973).  112 

Consider a phylogeny of three species with the topology ((A,B),C) (Figure 1). In units of 2N 113 
generations, species A and B split at time t1, and C split from the ancestor of A and B at time t2. 114 
The expected phylogenetic variances and covariances for three species can be expressed in a 3x3 115 
matrix, which we denote T: 116 

																																							𝑻	 = 	 $
𝑉𝑎𝑟(𝐴) 𝐶𝑜𝑣(𝐴𝐵) 𝐶𝑜𝑣(𝐴𝐶)
𝐶𝑜𝑣(𝐵𝐴) 𝑉𝑎𝑟(𝐵) 𝐶𝑜𝑣(𝐵𝐶)
𝐶𝑜𝑣(𝐶𝐴) 𝐶𝑜𝑣(𝐶𝐵) 𝑉𝑎𝑟(𝐶)

/																																						[1] 117 

This matrix is multiplied by the evolutionary rate parameter of the Brownian motion model, σ2, 118 
to obtain trait variances and covariances. When only the species phylogeny is considered (i.e. 119 
there is no ILS or introgression), the trait variances (the diagonal elements of T) are determined 120 
by the total time along which evolution can occur for each lineage, so Var(A) = Var(B) = Var(C) 121 
= t2. The covariances are determined by the length of shared internal branches. In the species 122 
tree, only species A and B share an internal branch, so: 123 

𝐶𝑜𝑣(𝐴𝐵	|	𝑛𝑜	𝐼𝐿𝑆	𝑜𝑟	𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) 	= 𝜎!(𝑡! − 𝑡")																																	[2] 124 

Where σ2 corresponds to the trait evolutionary rate per unit time, and Cov(AB) = Cov(BA).  125 

In the absence of other processes, the species pairs BC and AC have zero covariance. However, 126 
trees inferred at individual loci can disagree with the species phylogeny, in which case these 127 
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species pairs could have shared internal branches, and therefore non-zero covariances. This 128 
widespread phenomenon is known as gene tree discordance (e.g. Pollard et al. 2006, White et al. 129 
2009, Hobolth et al. 2011, Fontaine et al. 2015, Pease et al. 2016, Wu et al. 2018, Vanderpool et 130 
al. 2020, Hime et al. 2021) and has multiple biological causes (Degnan and Rosenberg 2009). 131 
Gene trees with the topologies ((B,C),A) or ((A,C),B) contain internal branches shared by 132 
species B+C and A+C, respectively (Figure 1). This results in non-zero covariance terms 133 
between these two species pairs in T, covariance that cannot arise from evolution solely on the 134 
species phylogeny. The consequence of this discordance is that some traits may be closer in 135 
value between species that are not closely related in the species tree. We must therefore include 136 
discordance in our model to appropriately capture this trait covariance. 137 

Modelling the effects of only incomplete lineage sorting on quantitative trait variances and 138 
covariances 139 

One of the most common causes of gene tree discordance is incomplete lineage sorting, which 140 
occurs when ancestral lineages persist through successive speciation events (Hudson 1983, 141 
Pamilo and Nei 1988). For a rooted triplet, there are four possible gene trees in the presence of 142 
ILS: one concordant tree that occurs by lineage sorting with probability 1	 −	𝑒#(%!	#	%"), and 143 

three trees produced by ILS, each with probability "
(
𝑒#(%!	#	%"). One of the three ILS trees is 144 

concordant, while the other two are discordant. These probabilities are the basis for the 145 
multispecies coalescent model. To obtain the expected trait variances and covariances in T, 146 
Mendes et al. (2018) weight the expected gene tree heights and internal branch lengths, 147 
respectively, by their expected frequencies under the multispecies coalescent model. We present 148 
those results here with a slightly different formulation for consistency with the new results 149 
presented below. For the covariance between A and B, we have:  150 

												𝐶𝑜𝑣(𝐴𝐵	|	𝑛𝑜	𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛)151 

= 𝜎! @A1 − 𝑒#(%!#%")B C
𝑒%!(𝑡! − 𝑡")
𝑒%! − 𝑒%" D + F

1
3 𝑒

#(%!#%")HI																												 [3] 152 

In equation 3, σ2 corresponds to the trait evolutionary rate per 2N generations, which is the scale 153 
over which time is measured in the multispecies coalescent model. Inside the square brackets, the 154 
first term is the probability of the gene tree produced by lineage sorting, multiplied by that tree’s 155 
expected internal branch length in units of 2N generations. The second term is the probability of 156 
the concordant tree produced by ILS, which has an expected internal branch length of 1 in units 157 
of 2N generations.  158 

Species pairs BC and AC can only have covariance from discordant trees produced by ILS, 159 
which gives: 160 

𝐶𝑜𝑣(𝐵𝐶	|	𝑛𝑜	𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) 	= 	𝐶𝑜𝑣(𝐴𝐶	|	𝑛𝑜	𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) 	161 

=	𝜎! F
1
3 𝑒

#(%!#%")H																																					[4] 162 
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Again, in these trees the internal branches are of length 1 in units of 2N generations, and so are 163 
not shown explicitly.  164 

For the expected trait variances, all three species share the same expected variance, which is the 165 
total height of all the gene trees weighted by their probabilities. These are:  166 

𝑉𝑎𝑟(𝐴	|	𝑛𝑜	𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) = 𝑉𝑎𝑟(𝐵	|	𝑛𝑜	𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) = 𝑉𝑎𝑟(𝐶	|	𝑛𝑜	𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) = 167 

																																	𝜎!KA1 − 𝑒#(%!#%")B(𝑡! + 1) + A𝑒#(%!#%")B(𝑡! + 1 + 1/3)M																															[5] 168 

Where the first term in the square brackets is the contribution from the lineage sorting tree, and 169 
the second term is the contribution from the three ILS trees.  170 

Modelling the effects of introgression and ILS on quantitative trait variances and 171 
covariances 172 

Now, we extend these expressions for species variances and covariances to include both ILS and 173 
introgression. We envision an instantaneous introgression event between species B and C (Figure 174 
1), which occurs at time tm. This event can be in either direction, with the probabilities of a locus 175 
following a history of C → B introgression or B → C introgression represented using δ2 or δ3, 176 
respectively. To capture the processes of ILS and introgression simultaneously, we imagine that 177 
each possible history at an individual locus can be represented by a “parent tree” within which 178 
lineage sorting or ILS occurs according to the multispecies coalescent process (Meng and 179 
Kubatko 2009, Liu et al. 2014, Hibbins and Hahn 2019, Hibbins et al. 2020). This is sometimes 180 
referred to as the multispecies network coalescent (Wen et al. 2016, Degnan 2018). For our 181 
model, we consider three parent trees (see Supplementary Figure 2): one with no introgression, 182 
which occurs with probability 1 – (δ2 + δ3), and two parent trees for the two possible directions 183 
of introgression, which occur with probabilities of either δ2 or δ3 (these probabilities represent 184 
the "rate" of introgression in our model). Each of these three parent trees can generate four 185 
possible gene trees with three possible topologies (Figure 1, arrow 1), which vary in the 186 
frequency of topologies and expected branch lengths depending on each parent tree's parameters 187 
(as in the model of ILS-only described in the previous section).  188 

To obtain expressions for the expected variances and covariances under this model, we must sum 189 
the contributions of all gene trees within each parent tree, and then sum the contribution of each 190 
parent tree (Figure 1, arrow 2). For the covariance between A and B, this gives:  191 

									𝐶𝑜𝑣(𝐴𝐵	|	𝐼𝐿𝑆	𝑎𝑛𝑑	𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛)192 

= 𝜎! @A1 − (δ! + δ()B @A1 − 𝑒#(%!#%")B C
𝑒%!(𝑡! − 𝑡")
𝑒%! − 𝑒%" D + F

1
3 𝑒

#(%!#%")HI 									193 

+ δ! F
1
3 𝑒

#(%!#%#)H + δ( F
1
3 𝑒

#(%"#%#)HI																																																																							[6] 194 

Note that the term inside the inner square brackets in equation 6 is the same as in equation 3, but 195 
is now weighted by the probability of a history with no introgression. In addition, there are two 196 
additional terms denoting the contributions of trees generated by ILS that follow a history of 197 
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introgression (because ILS occurs regardless of the history at a locus). For a complete derivation, 198 
including the expectations of each gene tree within each parent tree, see the Supplementary 199 
Materials and Methods.  200 

For the covariance between B and C, we have:       201 

									𝐶𝑜𝑣(𝐵𝐶	|	𝐼𝐿𝑆	𝑎𝑛𝑑	𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) 									202 

= 𝜎! R	A1 − (𝛿! + 𝛿()B T
1
3 𝑒

#(%!#%")U203 

+	 							𝛿! @A1 − 𝑒#(%!#%#)B C
𝑒%!(𝑡! − 𝑡))
𝑒%! − 𝑒%# D	+	F

1
3 𝑒

#(%!#%#)HI 																															204 

+	 							𝛿( @A−𝑒#(%"#%#)B C
𝑒%"(𝑡" − 𝑡))
𝑒%" − 𝑒%# D F

1
3 𝑒

#(%"#%#)HIV																																																											[7] 205 

             206 

Introgression occurs between B and C in our model, so B and C are sister in the parent trees that 207 
represent the two directions of introgression (see Supplementary Materials and Methods, 208 
Supplementary Figure 2). This means that these parent trees can each produce two gene trees 209 
with BC as sister species: one from lineage sorting and one from ILS. The contributions of these 210 
two gene trees in each parent tree are captured in the last two terms of equation 7. The first term 211 
corresponds to the contribution of ILS from the parent tree without introgression, i.e. equation 4.  212 

Finally, for the covariance between A and C, we have  213 

				𝐶𝑜𝑣(𝐴𝐶	|	𝐼𝐿𝑆	𝑎𝑛𝑑	𝑖𝑛𝑡𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) 	= 	𝜎! XA1 − (𝛿! + 𝛿()B Y
"
(
𝑒#(%!#%")Z 	+214 

	𝛿! Y
"
(
𝑒#(%!#%#)Z + 𝛿( Y

"
(
𝑒#(%"#%#)Z[																																																																																																				[8]    215 

Since gene trees where A and C are sister can only be produced by ILS in our model, equation 8 216 
is simply the sum of the gene trees with this topology produced by each of the three parent trees.  217 

Lastly, we consider the expected trait variance with introgression. As with the covariances, we 218 
sum the total contribution of each gene tree within a parent tree, and then sum these 219 
contributions across each parent tree. All three share the same gene tree heights and therefore 220 
have the same expected variances. This gives:  221 

𝑉𝑎𝑟(𝐴) 	= 	𝑉𝑎𝑟(𝐵) 	= 	𝑉𝑎𝑟(𝐶) 	222 

=	𝜎! XA1 − (δ! + δ()BKA1 − 𝑒#(%!#%")B(𝑡! + 1) + A𝑒#(%!#%")B(𝑡! + 1 + 1/3)M223 

+ 									δ!KA1 − 𝑒#(%!#%#)B(𝑡! + 1) + A𝑒#(%!#%#)B(𝑡! + 1 + 1/3)M224 

+ 									δ(KA1 − 𝑒#(%"#%#)B(𝑡" + 1) + A𝑒#(%"#%#)B(𝑡" + 1 + 1/3)M[ 															[9] 225 

The first term represents the contribution of the parent tree with no introgression, the same as in 226 
equation 5. The second two terms represent the contributions to the total variance from C → B 227 
and B → C introgression, respectively. When T is updated to include all these expectations, it 228 
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becomes possible to model character states under Brownian motion while accounting for both 229 
ILS and introgression. 230 

Testing for the effect of introgression on quantitative traits  231 

To evaluate whether patterns of quantitative trait variation are consistent with a history of 232 
introgression, we use a simple test statistic that employs the same logic as the D3 test for 233 
introgression (Hahn and Hibbins 2019; see also the f3 statistic of Reich et al. 2009). Imagine that 234 
species A, B, and C have values q1, q2, and q3 for a hypothetical quantitative trait, respectively. 235 
Given the species tree ((A,B),C), and assuming the Brownian motion model of trait evolution 236 
described in the previous sections, the expected distance between trait values q2 and q3 should be 237 
equal to the expected distance between q1 and q3. This is because species C is equidistant to 238 
species A and B in the phylogeny, and this tree determines quantitative trait variances and 239 
covariances. The same relationship between distances is expected when considering the ILS-only 240 
model, because of symmetries in expected gene tree frequencies and branch lengths, and 241 
therefore in trait covariances (see equation 4).  242 

However, introgression can introduce additional covariance between one pair of species, 243 
resulting in that pair having more similar trait values than the other non-sister pair (see equations 244 
7 and 8). This naturally leads to the following test statistic: 245 

																																																											𝑄( 	= 	
|𝑞! − 𝑞(| 	− 	 |𝑞" − 𝑞(|
|𝑞! − 𝑞(| 	+ 	 |𝑞" − 𝑞(|

																																																			[10] 246 

The numerator of Q3 takes the difference in trait distances between the two pairs of non-sister 247 
species; when there is no introgression, this numerator—and therefore Q3—has an expected 248 
value of 0. When a significant non-zero value of Q3 is observed, the statistic is consistent with a 249 
history of introgression. In addition, the sign of the statistic can tell us which species were 250 
involved in introgression (but not the direction of introgression). For example, a negative Q3 251 
value would be consistent with introgression between species B and C, since that would result in 252 
q2 and q3 having more similar values (and therefore a smaller distance between them). The 253 
denominator of Q3 is the sum of the two trait distances, which normalizes the statistic between 0 254 
and 1, allowing it to be compared across traits with different mean values. We imagine that this 255 
statistic will be applied to many individual quantitative traits, each providing a separate value of 256 
Q3.  The significance for a dataset consisting of many traits can then be evaluated either by 257 
testing for a mean value of Q3 significantly different from 0, or by using a sign test with the null 258 
expectation that positive and negative Q3 values should be equally frequent (see the analyses 259 
below for more details).  260 

To confirm the effects of introgression predicted by the model, and the ability of Q3 to detect it, 261 
we performed a power analysis. First, to illustrate the conceptual basis for Q3, we contrasted two 262 
conditions: an ILS-only condition and an ILS + introgression condition (Figure 2). Both 263 
scenarios use the three-taxon tree described in previous sections, simulating quantitative traits as 264 
the sum of contributions of many genes (and therefore gene trees; see Methods). For 20,000 265 
independent simulated traits we calculated the mean and standard error of the difference in trait 266 
value at the tips of the tree between each pair of species (Figure 2).  As predicted by our model, 267 
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the taxa involved in introgression had a higher covariance and more similar trait values than the 268 
non-introgressing pair of taxa when averaging across the 20,000 traits (Figure 2).  269 

Second, we performed a power analysis across 90 different parameter combinations: three values 270 
each of the timing of introgression, the level of ILS, and the number of genes, and four values of 271 
the rate of introgression. We simulated 100 datasets for each set of parameters and asked how 272 
often Q3 was significantly different from 0 in the direction predicted by introgression. We found 273 
the most important parameter to be the rate of introgression: at a rate of 1% (i.e. 1% of the 274 
genome has been introgressed), power was consistently low (1-6%) regardless of other 275 
simulation parameters (Figure 3, Supplementary Figure 1). At higher rates of introgression, 276 
power was increased when introgression was more recent relative to speciation, when the level 277 
of ILS was lower, and when more genes (traits) were considered. When 5,000 genes were used, 278 
power reached 67% under the best-case scenario (Supplementary Figure 1); this increased to 279 
97% with 15,000 genes (Figure 3). Simulations under a no-introgression scenario yielded false 280 
positive rates of less than 5% across all conditions (Supplementary Figure 2).  281 

Gene expression variation is consistent with inferred histories of introgression in Solanum 282 

We used previously generated introgression and gene expression datasets from the wild tomato 283 
clade, Solanum section Lycopersicon, to empirically evaluate the effects of introgression on 284 
thousands of expression traits. This clade includes the domesticated tomato, S. lycopersicum, and 285 
its 12 wild relatives, which have all originated in the last 2.5 million years. The first dataset is a 286 
phylogenetic analysis of 29 accessions (i.e. populations) across these 13 tomato species and two 287 
outgroups (Pease et al. 2016). This dataset includes an introgression analysis based on D-288 
statistics (Green et al. 2010, Durand et al. 2011) across all possible quartets, which provides a 289 
comprehensive overview of patterns of introgression in the clade. The second dataset is 290 
normalized quantitative expression of 14,556 genes expressed in ovules from six accessions 291 
across five tomato species. This includes published data for five accessions across four species 292 
(Moyle et al. 2021), while data from the other two species are previously unpublished. 293 
Expression levels for each gene are represented as reads per kilobase of transcript, per million 294 
mapped reads (RPKM). Samples were collected on the day of flower opening for 1-4 individuals 295 
of each species grown in a common greenhouse (Moyle et al. 2021).  296 

Combining these two datasets, we sought to identify triplets of species with both evidence of 297 
introgression (from sequence data) and available gene expression data, so that we could apply 298 
the Q3 statistic. Additionally, we wanted these triplets to vary in the magnitude of introgression, 299 
so that the magnitude of the effect of introgression on trait variation could be evaluated in 300 
addition to the presence or absence of an effect. With these considerations in mind, we identified 301 
two triplets. The first consists of the accessions LA3475 (S. lycopersicum), LA1589 (S. 302 
pimpinellifolium), and LA0716 (S. pennellii), with LA3475 and LA1589 as sister taxa, and 303 
evidence of introgression between LA1589 and LA0716 (D = 0.057, P = 0.0015, Pease et al. 304 
2016) (Figure 4A). Using the Dp statistic (Hamlin et al. 2020) on site pattern counts from Pease 305 
et al., we obtained a value of 0.0013, corresponding to a genomic rate of introgression of 0.13%. 306 
We hereafter refer to this triplet as the “low” triplet because of the relatively low observed rate of 307 
introgression. The other triplet consists of LA3778 (S. pennellii), LA1777 (S. habrochaites), and 308 
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LA1316 (S. chmielewskii), with LA3778 and LA1777 as sister taxa, and significant introgression 309 
between LA1777 and LA1316 (D = 0.135, P = 2.34 x 10-35, Pease et al. 2016) (Figure 4A). We 310 
obtained a Dp value of 0.0744 for this triplet, corresponding to a rate of introgression of 7.44%; 311 
this value is likely an underestimate, as Dp tends to underestimate the true value at higher rates of 312 
introgression (Hamlin et al. 2020). As the rate of introgression is much higher for this triplet, we 313 
refer to it as the “high” triplet.  314 

We used expression values from 14,556 genes available in both the low and high triplets. For 315 
each gene we calculated a separate value Q3, averaging across genes to obtain a mean value for 316 
each triplet. We obtained transcriptome-wide mean Q3 values of -0.012 and -0.019 for the low 317 
and high triplet, respectively (Figure 4B). The values we observe are consistent with the histories 318 
of introgression inferred from the sequence data in both sign and magnitude. Both triplets have 319 
negative values, which is consistent with introgression between S. pimpinellifolium and S. 320 
pennellii in the low triplet, and between S. habrochaites and S. chmiewlewskii in the high triplet 321 
(see Figure 4A for the accessions assigned as q1, q2, and q3 in each triplet). The Q3 value is also 322 
more negative in the high triplet, which is consistent with the higher level of introgression 323 
inferred from sequence data.  324 

The signal of introgression from quantitative traits was also statistically significant in both 325 
triplets, using either method for assessing significance. Using a bootstrapping approach to ask 326 
whether the mean values were different from 0 (see Methods), we obtained P = 0.0012 and P < 327 
0.0001 for the low and high triplets, respectively (Figure 4B). We obtained similar results when 328 
testing for a significant excess of either positive or negative Q3 values (i.e. a sign test) at 329 
individual genes using bootstrapping (Figure 4C; see Methods). For the low triplet, we observed 330 
7432 negative and 7124 positive genes (P = 0.0134); for the high triplet, 7533 negative and 7020 331 
positive genes (P < 0.0001). Again, the larger number of negative Q3 values in the high triplet is 332 
consistent with a higher amount of introgression. 333 

Gene-level analysis of expression data 334 

The expression level of genes can be affected by either cis-acting or trans-acting variants. 335 
Because cis-acting variants are most often found near the gene they affect (Wray et al. 2003, Hill 336 
et al 2020), we might expect these regulatory elements to share the same local gene tree topology 337 
as the nearby genic protein-coding region; any signature of introgression would likely be 338 
reflected in both regions. While recombination either before or after introgression will uncouple 339 
the tree topology in the regulatory region from that in the coding region, we might expect to see 340 
an association between patterns of similarity in expression levels and patterns of gene tree 341 
discordance if cis-acting variants are common. 342 

To test for such a relationship, we looked for an association between coding-region tree 343 
topologies and expression similarity among species in both triplets. Using trees estimated from 344 
each protein-coding gene (Pease et al. 2016), we identified 11,061 genes for which both the tree 345 
topology and expression values from all species were available. For each gene, we obtained the 346 
rooted tree topology for the relevant triplet and also determined which pair of species was most 347 
similar in expression value. We assume that expression similarity reflects the local topology at 348 
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whichever locus has the largest effect on expression, such that the most similar pair of species 349 
represents the sister species in this topology.  350 

In the low triplet, we found no significant relationship (P = 0.776, c2 test of independence) 351 
between protein-coding gene tree topology and expression similarity (Figure 5A). In the high 352 
triplet, however, we did observe a significant relationship (P = 0.019, Figure 5B). For gene trees 353 
with a topology consistent with introgression (where S. habrochaites and S. chmielewskii are 354 
sister), there were significantly more genes where expression was also most similar between 355 
these species than expected by chance (476 observed vs. 449 expected). In other words, we 356 
found that gene expression similarity is correlated with the tree topology of protein-coding genes 357 
in the high triplet, in a fashion consistent with cis-acting effects of introgressed variation on 358 
expression.  359 

Discussion  360 

Phylogenetic comparative methods provide powerful tools for studying the origins of trait 361 
variation among species. However, the rampant gene tree discordance uncovered in many 362 
phylogenomic studies paints a more complicated picture of the shared history among species. To 363 
date, most models of trait evolution employed by comparative methods have assumed that only 364 
the species phylogeny contributes to trait covariance, and have ignored covariance due to 365 
discordant gene trees. Our model builds on previous work (Mendes et al. 2018, Bastide et al. 366 
2018) to incorporate both ILS and introgression into a single framework that captures the most 367 
common causes of discordance and their effects on quantitative trait evolution. We show that 368 
introgression leads to more discordance and stronger patterns of covariance in quantitative traits 369 
among non-sister species than ILS alone, paralleling results for binary traits under the same 370 
multispecies network coalescent framework (Hibbins et al. 2020).  371 

Our model makes several assumptions and simplifications related to expected levels of genetic 372 
covariance between species. First, we have modeled post-speciation introgression as a single 373 
instantaneous pulse of exchange between one pair of non-sister species. Many other possible 374 
introgression scenarios are possible, such as multiple pulses or continuous periods of gene flow. 375 
Although each of these scenarios will increase the variance in gene tree topologies, we expect 376 
that they will still leave a detectable signature on quantitative traits because they still lead to gene 377 
tree asymmetries. In contrast, other gene flow scenarios—such as introgression between sister 378 
taxa, or between both pairs of non-sister taxa in a triplet at equal rates—will not result in a 379 
detectable signature of gene tree asymmetry. Second, we have assumed that the expected 380 
frequencies and coalescence times of loci contributing to trait variation follow neutral 381 
expectations. Through a local reduction in Ne, directional selection may reduce the rate of gene 382 
tree discordance due to ILS, while increasing the rate of discordance due to introgression (Pease 383 
and Hahn 2013, Munch et al. 2016, Martin et al. 2019). This increase in the rate of introgression 384 
relative to ILS may allow for greater power to detect a signal of introgression in quantitative 385 
traits, as we show in our power analysis. This implies that positive selection, especially on 386 
introgressed variants (e.g. Setter et al. 2020), will make it more likely for quantitative traits to 387 
covary between non-sister taxa. 388 
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We also make key assumptions about the model of trait evolution. Our model assumes that traits 389 
evolve under a Brownian motion process, rather than alternative processes such as the Ornstein-390 
Uhlenbeck (OU) (Hansen 1997) or early-burst (Simpson 1944, Blomberg et al. 2003) models. 391 
While it may be uncommon for traits to evolve according to an early-burst model (Harmon et al. 392 
2010), many quantitative characters are likely to be constrained in some way, which can be 393 
modelled by the OU process. For gene expression in particular, evidence suggests that over long 394 
phylogenetic timescales the OU process is a better fit to the data (Bedford and Hartl 2009, 395 
Catalán et al. 2019, Chen et al. 2019). However, multiple non-biological factors may favor the fit 396 
of OU models over Brownian motion, including small amounts of error in measured quantitative 397 
traits (Cooper et al. 2016). While we do not expect the model of trait evolution to affect 398 
asymmetries between species in thousands of traits, future work incorporating additional models 399 
of trait evolution, and their effect on trait covariances in particular, would be useful. 400 

A key assumption of our statistical analysis is that each gene expression trait evolves 401 
independently. However, many genes show correlated patterns of expression, either because of 402 
locally shared cis-acting elements or because of trans-acting factors that affect the expression of 403 
many genes across the genome (Wray et al. 2003, Hill et al 2020). If, for instance, such a trans-404 
acting factor is introgressed and affects many genes in a similar way, then treating each gene as 405 
an independent observation would constitute pseudoreplication of measurements. However, there 406 
are two pieces of evidence that suggest pseudoreplication is not a major problem in our analyses. 407 
First, previous data from experimental introgression lines between S. lycopersicum and S. 408 
pennellii are not consistent with a large role of introgressed loci on background gene expression: 409 
Guerrero et al. (2016) found that each introgressed gene had downstream effects on the 410 
expression of only 0.4 genes on average. Second, we find here that the number of genes where 411 
expression is more similar between introgressing species is higher in the triplet with a higher rate 412 
of introgression. This is again consistent with largely local effects of each introgressed locus on 413 
gene expression. Based on these observations, we conclude that we likely have many thousands 414 
of independent data points testing the relationship between introgression and expression 415 
variation, even if the true correlation structure is unknown.   416 

Our power analysis suggests that we should have had low power to detect an effect of 417 
introgression in the low triplet, which has a rate of introgression of less than 1%. One 418 
explanation for the fact that we do detect an effect that the introgressed variation in this triplet 419 
affects the downstream regulation of a large set of correlated genes, though the discussion in the 420 
previous paragraph likely rules out this possibility. Very recent introgression is also an unlikely 421 
explanation, as our power analysis shows that the timing of introgression does not have an effect 422 
at low rates. As previously discussed, directional selection on introgressed variation in the low 423 
triplet could also improve the power; evaluating this possibility would be an interesting future 424 
direction. Finally, we may simply have been fortunate to observe a positive result, even with 425 
reduced (but non-zero) power in this area of parameter space. Distinguishing random chance 426 
from other processes would also be facilitated by testing additional triplets; unfortunately, we 427 
have exhausted the independent triplets possible from our data, having used six of the eight 428 
available accessions with gene expression data. Very few multispecies transcriptomic datasets 429 
are currently available in systems with widespread introgression, though similar tests may be 430 
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possible from data in the butterfly genus, Heliconius (Catalán et al. 2018, Catalán et al. 2019). 431 
Analyzing or generating such datasets in other systems would help to confirm the generality of 432 
our findings.  433 

Our analysis of gene expression is consistent with the idea that introgression between wild 434 
tomato species has broadly influenced variation in gene expression among species. An 435 
alternative explanation is that species with more similar gene expression may be more likely to 436 
introgress, possibly due to reduced negative fitness consequences from hybrid dysregulation. 437 
There are again a number of pieces of evidence that argue against the latter interpretation. 438 
Guerrero et al. (2016) found no evidence for an association between the magnitude of differential 439 
expression between tomato introgression lines and the sterility of hybrids. While those 440 
experiments had fewer generations of hybridization than wild introgressed populations—and 441 
were conducted in a greenhouse—they do not indicate that general expression levels are a barrier 442 
to introgression. Furthermore, here we observe a correlation between expression similarity at 443 
specific genes and the tree topology inferred from their protein-coding sequences (Figure 5B). 444 
This association suggests a direct causal effect of introgressed genes on their expression: cis-445 
regulatory differences at introgressed loci lead to a relationship between local tree topologies and 446 
expression levels (cf. Scally et al. 2012). Such a relationship is highly unlikely to instead be due 447 
to a barrier to introgression. The fact that we do not observe the same correlation in the "low" 448 
triplet (Figure 5A) could be due either to a comparative lack of statistical power in this triplet, or 449 
due to more recombination between the protein-coding regions the tree topologies were inferred 450 
from and the cis-regulatory regions driving expression. Introgression will reduce the 451 
opportunities for recombination, which could explain why the "high" triplet retains a higher 452 
signal. Alternatively, it may be that trans-acting variation is much more common in this triplet, a 453 
scenario that would not lead to an association between local gene tree topologies and local gene 454 
expression. We cannot definitively distinguish among these possibilities given only the data 455 
presented here. Finally, it is possible that some form of experimental or technical artefact could 456 
be responsible for asymmetries in many traits, though we note that the sister species in both 457 
triplets examined here always show the greatest similarity in gene expression (Supplementary 458 
Tables 1 and 2). The association we observe between tree topologies and expression similarity at 459 
individual genes is also inconsistent with an artefact. 460 

Overall, our results demonstrate both theoretically and empirically that introgression can affect 461 
patterns of quantitative trait evolution. While considerable attention and excitement has 462 
justifiably been devoted to the power of introgression as an evolutionary force shaping trait 463 
variation, this is a double-edged sword, as most phylogenetic comparative methods do not 464 
account for gene tree discordance. Previous work has shown that discordance due solely to ILS 465 
can lead to overestimates of the rate of quantitative trait evolution and to underestimates of 466 
phylogenetic signal (Mendes et al. 2018). The effects of introgression in misleading our 467 
inferences will be worse, as it both increases overall discordance and generates asymmetries in 468 
trait sharing. Future phylogenetic comparative approaches should strive to evaluate the 469 
contributions of both ILS and/or introgression on trait evolution, allowing for more accurate 470 
evolutionary inferences. Doing so will pave the way for more powerful inferences about the 471 
evolutionary forces that shape trait variation among species.  472 
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 473 

Materials and Methods  474 

Description of datasets  475 

We use ovule gene expression data that is described in Moyle et al. (2021). The dataset consists 476 
of normalized quantitative expression for 14,556 genes measured in six accessions across five 477 
species (two different accessions of S. pennellii were used in the two triplets). For each 478 
accession, samples were collected on the day of flower opening for 1-4 biological replicates 479 
(individual plants) grown in a common greenhouse. When applicable, we took the average 480 
expression value across replicates within each accession for our analyses. Raw sequencing reads 481 
for this dataset are available on the SRA under BioProject PRJNA714065. The dataset 482 
containing normalized expression for each replicate, in addition to the scripts for all analyses, are 483 
available from https://github.com/mhibbins/intro_quant_traits.  484 

We use phylogenomic data that is described in Pease et al. (2016). The dataset consists of 485 
transcriptomes from 29 accessions across 13 species, including the six accessions used in our 486 
analyses. Pease et al. used MVFtools to estimate transcriptome-wide D-statistics for all possible 487 
rooted triplets (2925 total values) across the 27 ingroup accessions. From this dataset we selected 488 
the two triplets to use in our analyses. Pease et al. also inferred gene trees for each individual 489 
protein-coding region (19,116 genes total) using RAxML (Stamatakis 2014); we used this data in 490 
our gene-level analyses. Both datasets are published in the Dryad repository 491 
https://doi.org/10.5061/dryad.182dv.  492 

Simulation of quantitative traits & power analyses 493 

We simulated the effect of introgression on quantitative trait values (as shown in Figure 2) under 494 
two models: an ILS-only model and a model with ILS and introgression. For the ILS-only 495 
model, we used values of 1 and 1.3 for the speciation time of A and B, and the speciation of C 496 
from the ancestor of A and B, respectively (all in units of 2N generations). The introgression 497 
condition maintained the same speciation times, with the addition of an introgression event from 498 
C into B at a time of 0.5, with δ2 = 0.1. Using these parameters, we used our model to construct 499 
expected variance/covariance matrices with σ2 = 1 using a custom R function (script available at 500 
https://github.com/mhibbins/intro_quant_traits/blob/main/scripts/bm_model_sims.R). We then 501 
simulated trait values by drawing from a multivariate normal distribution using the R function 502 
mvrnorm with means of 0 and the constructed matrices. 503 

We performed a power analysis to assess the statistical power of Q3. Using the simulation 504 
approach described above, we simulated 100 trait datasets under all combinations of the 505 
following parameters: 5000, 10000, and 15000 for the number of genes; 0.1, 0.5, and 1 for t2 – t1; 506 
0.1, 0.25, and 0.5 for t1 – tm; and 0, 0.01, 0.05, and 0.1 for the rate of introgression. We evaluated 507 
significance for each dataset using a one-sample t-test with H0: Q3 = 0. A result was considered a 508 
true positive for our analysis when P < 0.05 and the sign of the mean simulated Q3 value was 509 
consistent with the simulated history of introgression.  510 

Testing quantitative traits for introgression 511 
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We calculated average expression values across individual replicates of each accession before 512 
estimating Q3 for each gene. To assess the significance of both our estimated Q3 means and 513 
signs, we used bootstrap-resampling. For the mean Q3 values, we tested the null hypothesis of Q3 514 
= 0 by randomly sampling 10,000 datasets of 14,556 genes each with replacement from the 515 
empirical gene expression dataset, and estimating the mean value of each. We assessed the rank i 516 
of the observed Q3 values among these resampled datasets, and a two-tailed P-value was 517 
estimated using the following formula:  518 

𝑃 = 1 − 2 ∗ |0.5 − (𝑖/𝑛)| 519 

where n is the number of observations (in this case, 10,000). This formula measures the deviation 520 
of the observed value from the center of the bootstrapped dataset, which has a rank of 0.5. For 521 
the sign of individual genes' Q3 values, we tested the null hypothesis that the number of negative 522 
and positive signs are equal by randomly sampling 10,000 datasets of 14,556 genes each. For 523 
each resampled dataset we counted the number of negative and positive Q3 values, ranking the 524 
datasets from the one with the greatest excess of negative values to the greatest excess of positive 525 
values. The rank of the observed data against these resampled datasets was calculated, and two-526 
tailed P-values were evaluated using the same formula as above.  527 

For the analysis of the relationship between gene-level tree topology and expression similarity, 528 
we made use of gene trees inferred using RAxML by Pease et al. (2016). We used the Python 529 
package ete3 (Huerta-Cepas et al. 2016) to prune these gene trees down to the accessions 530 
involved in our test triplets. We then obtained the overlapping set of genes for which both 531 
topologies and expression data were available, and recorded the expression “topology” based on 532 
the minimum pairwise distance in expression values. The counts of gene tree topology and 533 
expression topology were placed into a 3x3 contingency table for each triplet, and we tested for a 534 
significant association using a c2 test of independence.  535 
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Figures  544 

 545 

Figure 1: Modelling quantitative trait evolution under the combined effects of ILS and 546 
introgression. 1) From a phylogenetic network with known parameters, the multispecies network 547 
coalescent model can be used to predict the expected frequency and branch lengths of each gene 548 
tree topology. 2) These gene trees contribute to trait covariances through their internal branches, 549 
and to trait variances through their total heights. The contribution of each gene tree to the overall 550 
quantities in T is weighted by its expected frequency. 3) Once the values of T are estimated, 551 
character states under Brownian motion can be simulated by drawing from a multivariate normal 552 
with a mean of 0 and variance of σ2T.  553 

 554 

 555 
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 556 

Figure 2: Quantifying the effect of introgression on quantitative trait variation. For ILS-only (top 557 
row) and ILS + introgression (bottom row) conditions, we show the expected 558 
variance/covariance matrix (middle-left column, variances not shown for clarity) and the average 559 
difference in quantitative trait values between each pair of species across 20,000 simulated traits 560 
(middle-right column). The expectations for the Q3 statistic are also shown (far-right column). 561 

 562 

 563 

 564 

 565 
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 567 

 568 

 569 

 570 

 571 
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 574 

Figure 3: Power analysis of the ability of Q3 to detect a signature of introgression from 15,000 575 
simulated genes (σ2 = 1). Each cell reports the proportion of 100 simulated datasets where Q3 576 
was significantly different from 0 in the direction expected from the simulated history of 577 
introgression. Within each matrix, the x-axis is the time of introgression relative to speciation 578 
(larger values mean relatively more recent introgression), and the y-axis is the rate of 579 
introgression. There is one matrix for each of three times between speciation events, which 580 
determine the levels of ILS (decreasing from left to right, as the times increase). The greatest 581 
power comes in scenarios with little ILS, high rates of introgression, and recent introgression 582 
events. 583 

 584 

 585 

 586 

 587 

 588 

 589 
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 590 

Figure 4: Ovule gene expression variation in tomatoes is consistent with inferred histories of 591 
introgression. A) Histories of speciation and introgression for our chosen triplets in Solanum. B) 592 
Mean and standard error of Q3 across all genes in each triplet. C) Difference in the number of 593 
genes with a negative vs. positive Q3 value for both triplets. Density plots show the distribution 594 
of this difference across 10,000 bootstrapped datasets. Observed values for the two triplets 595 
relative to the bootstrap distributions are shown with arrows.  596 
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 605 

Figure 5: Relationships between coding sequence tree topology (rows) and gene expression 606 
similarity (columns) in the low (A) and high (B) triplets. Note that for expression similarity, we 607 
did not explicitly construct trees from expression data—the tree representation is simply meant 608 
to depict observed expression distances. Only discordant trees and expression patterns are 609 
shown, but c2 P-values (0.776 and 0.019 for panels A and B, respectively) are reported from the 610 
full 3x3 table (see Supplementary Tables 1 and 2 for the full tables). The cases where both the 611 
tree topology and pattern of expression are consistent with the inferred history of introgression 612 
for that triplet are highlighted in blue. Each cell reports the observed number of genes (O) in 613 
each category, and the number expected (E) from the c2 distribution.  614 

 615 
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