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ABSTRACT
Many recent phylogenetic methods have focused on accurately inferring species trees when
there is gene tree discordance due to incomplete lineage sorting (ILS). For almost all of
these methods, and for phylogenetic methods in general, the data for each locus is assumed
to consist of orthologous, single-copy sequences. Loci that are present in more than a single
copy in any of the studied genomes are excluded from the data. These steps greatly reduce
the number of loci available for analysis. The question we seek to answer in this study is:
What happens if one runs such species tree inference methods on data where paralogy is
present, in addition to or without ILS being present? Through simulation studies and
analyses of two large biological data sets, we show that running such methods on data with
paralogs can still provide accurate results. We use multiple different methods, some of
which are based directly on the multispecies coalescent (MSC) model, and some of which
have been proven to be statistically consistent under it. We also treat the paralogous loci
in multiple ways: from explicitly denoting them as paralogs, to randomly selecting one
copy per species. In all cases the inferred species trees are as accurate as equivalent

analyses using single-copy orthologs. Our results have significant implications for the use of
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ILS-aware phylogenomic analyses, demonstrating that they do not have to be restricted to
single-copy loci. This will greatly increase the amount of data that can be used for

phylogenetic inference.

Key words: Multispecies coalescent; incomplete lineage sorting; gene duplication and loss;

orthology; paralogy.

Species tree inference often requires us to account for the fact that the evolutionary
histories of different loci can disagree with each other, as well as with the phylogeny of the
species. The reasons for this incongruence include biological causes such as incomplete
lineage sorting (ILS) and introgression (broadly interpreted to include all biological
processes involving genetic exchange), as well as technical causes such as the
misidentification of paralogs as orthologs (“hidden paralogy”; Doolittle and Brown, 1994).

The inference of phylogenies can be carried out by concatenating all loci together or
by treating each locus separately (reviewed in Bryant and Hahn, 2020). While
concatenation ignores incongruence, gene tree-based methods allow each locus to take on
its own topology. Some gene tree-based methods rely on a model for how these trees evolve
within the species phylogeny (in addition to probabilistic models of sequence evolution on
the gene trees). The multispecies coalescent (MSC) (Hudson, 1983; Takahata, 1989;
Rannala and Yang, 2003; Degnan and Rosenberg, 2009) has emerged as the most
commonly employed model of such gene genealogies. Indeed, in the last two decades a wide
array of methods and computer programs have been developed for species tree inference
under the MSC; see (Liu et al., 2009; Knowles and Kubatko, 2011; Nakhleh, 2013; Liu
et al., 2015) for recent reviews and surveys of these methods. Other gene tree-based
methods are inspired by the MSC, but do not rely explicitly on this model (e.g., Mirarab
et al., 2014). In either case, the goal is for the methods to be robust to incongruence

caused by ILS.
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Regardless of the method being employed, the inference of species trees usually
assumes that the data consist of only orthologous sequences. Indeed, most phylogenetic
methods require the identification of orthologs; see Smith and Hahn (2021b) for a review of
methods that do not require orthologs. As a result of the common requirement of
orthologous loci, before such inference methods are applied to a phylogenomic dataset
paralogs must be identified and removed from the data. One common approach for
removing paralogs is to use graph-based methods to identify homologous gene families, and
then to use those gene families present in exactly a single copy in each sampled genome for
phylogenetic inference (e.g., Li et al., 2003). Another approach is to use branch-cutting
methods to extract orthologs from larger gene families (e.g., Yang and Smith, 2014).
Neither of these two approaches guarantees that the resulting data set includes only
orthologous sequences (Koonin, 2005). Furthermore, restricting the data to single-copy
genes—which is by far the most common practice in the community—means that much of
the data must be excluded from the analysis. In particular, as more species are sampled,
the frequency of genes that are present in single-copy across all species will decrease
(Emms and Kelly, 2018).

Paralogous sequences are often modeled by a process of gene duplicaton and loss
(GDL) (Boussau et al., 2013). This process can also produce incongruence, as every
duplication event adds a single branch not found in the species tree (losses cannot generate
incongruence). Although the MSC generates a distribution of gene trees due to ILS, it is
likely that GDL models induce a distribution that differs from this. An obvious way to
handle data sets where ILS and GDL could have simultaneously acted on gene families is
to employ models of gene evolution that go beyond the MSC in order to incorporate GDL
as well. Indeed, such models are beginning to emerge (Rasmussen and Kellis, 2012; Li
et al., 2020). However, the more complex the models of gene family evolution, the more
computationally prohibitive statistical inference under these models becomes (Du and

Nakhleh, 2018), rendering their applicability infeasible except for very small data sets in
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terms of the number of species and gene families.

Given that much progress in terms of accuracy and computational efficiency has
been made on gene tree-based, ILS-aware species tree inference methods, we ask in this
paper the following question: are these inference methods robust to the presence of
paralogs in the data? If they are, then the reach of gene tree-based inference methods is
significantly extended and the exclusion of paralogous loci from phylogenomic data sets is
deemed unnecessary, thus providing more signal for the inference task. To answer this
question, we study the performance of five species tree inference methods, all of which use
gene trees as the input data: The maximum pseudo-likelihood method of Yu and Nakhleh
(2015) as implemented by the function InferNetwork MPL in PhyloNet (Wen et al., 2018),
ASTRAL-III (Zhang et al., 2018), NJg (Liu and Yu, 2011), ASTRAL-Pro (Zhang et al.,
2020), and FastMulRFS (Molloy and Warnow, 2020). The latter two methods were
developed with paralogs in mind, and so should serve as a good baseline for comparison to
the MSC-inspired methods. In particular, ASTRAL-Pro makes use of counts of quartets
from speciation, but not duplication, events. Thus, there is a connection between the
ASTRAL-Pro method and orthology detection.

To test these methods, we use both simulated and real data. We simulate across a
wide range of GDL rates and levels of ILS, and use two genome-scale empirical datasets
with thousands of loci that contain branches with very different levels of discordance. We
also sample the gene family data in multiple ways, in all cases finding that the inferences
made by all methods are quite accurate, and are mostly identical to the accuracy of the
inferences when using only single-copy orthologs. Particularly striking is the finding that
these methods infer very accurate species trees when all gene tree incongruence is due to
GDL, and ILS is not a factor. We find that gene tree estimation error affects the methods’
performances at a similar, or even higher, level than ILS. We also find that methods
designed specifically to take GDL into account, namely ASTRAL-Pro and FastMulRFS, do

not generally have higher accuracy than the other methods. Overall, our results support
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the use of approaches that account for gene tree incongruence, regardless of its causes.

METHODS
Species tree inference methods

For species tree inference, we use five different methods. The first three assume that

the input data come from single-copy genes:

e The maximum pseudo-likelihood inference function InferNetwork MPL in PhyloNet,
which implements the method of Yu and Nakhleh (2015). This method amounts to

running MP-EST (Liu et al., 2010) when restricted to trees with no reticulations.
e ASTRAL-III (Zhang et al., 2018; Rabiee et al., 2019), Version 5.6.3.
o NJg (Liu and Yu, 2011).

While the maximum likelihood method of Yu et al. (2014) as implemented by the

InferNetwork ML function in PhyloNet (Wen et al., 2018) is relevant here, it is much more

computationally demanding than maximum pseudo-likelihood, so we chose not to run it.
For comparison, we also use two methods that were designed specifically with

paralogs in mind:
e ASTRAL-Pro (Zhang et al., 2020).
e FastMulRFS (Molloy and Warnow, 2020).

For the sake of conclusions that we draw from this study, it may be helpful to
highlight the differences between these methods. InferNetwork MPL optimizes a
pseudo-likelihood function that is derived based on the assumptions of the MSC. This
function is very different, for example, from a likelihood function based on a model of gene
duplication and loss (Arvestad et al., 2009). Therefore, its accuracy in inferring species
trees from data with paralogs reflects directly on the performance of MSC-based methods

on such data. None of the other four methods make direct use of the MSC, though
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ASTRAL, ASTRAL-Pro, and NJg have all been shown to be statistically consistent under
the MSC, at least when both gene lengths and the number of genes go to infinity. Their
accuracy on data with paralogs therefore reflects the suitability of these methods, rather
than the MSC itself, for analyzing such data. Legried et al. (2020) proved that
ASTRAL-ONE and ASTRAL-multi are statistically consistent under the GDL model of
Arvestad et al. (2009), whereas Markin and Eulenstein (2020) and Hill et al. (2020) proved
that ASTRAL-ONE and ASTRAL-multi are statistically consistent under the unified
GDL/ILS model (the DLCoal model) of Rasmussen and Kellis (2012). ASTRAL-Pro is
conjectured to be statistically consistent under the DLCoal model (Zhang et al., 2020).
FastMulRF'S has been proven to be statistically consistent under a model of either only
duplication or only loss (Molloy and Warnow, 2020).

Given a collection of trees corresponding to gene families (one tree per gene family),

we generated four types of input to each of the methods:

e ONLY: The input consists of trees of only gene families that are present in exactly

one copy in each of the species.

e ONLY-NoDup: The input consists of trees of ONLY gene families that have no

history of gene duplication. These are canonical single-copy orthologs.

e ONE: The input consists of trees of all gene families, but where a single copy per
species per gene family is selected at random and the remaining copies are removed.
If a gene family has no copies at all for some species, then the resulting tree of that

gene family also has no copies for that species.

e ALL: The input consists of trees of all gene families, but where all copies of a gene in
a species are treated as multiple alleles from different individuals within the species.
Similar to ONE, if a gene family has no copies at all for some species, then the

resulting tree of that gene family also has no copies for that species.

ONLY corresponds to the practice that is followed in many phylogenomic studies, though
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it does not necessarily guarantee that the included genes are orthologs. Instead, “hidden
paralogs” (Doolittle and Brown, 1994) or “pseudoorthologs” (Koonin, 2005) may occur:
these are cases in which complementary losses result in single-copy paralogs present in
different species. ONLY-NoDup corresponds to a scenario where researchers know which
genes have a history of duplication and can exclude them from their analysis. ONE is likely
to have some hidden paralogs in the input, unless GDL does not occur. By construction,
ALL has all orthologs and paralogs as input, but these are effectively labeled as orthologs
with multiple individuals sampled per species, since InferNetwork MPL, ASTRAL-III, and

NJg were not originally developed with paralogs in mind.

Simulation setup

For model species trees, we used the trees of 16 fungal species and 12 fly species
reported in Rasmussen and Kellis (2012) and shown in Figure 1. The 16 fungal species are:
Candida albicans (Calb), Candida tropicalis (Ctro), Candida parapsilosis (Cpar),
Lodderomyces elongisporus (Lelo), Candida guilliermondii (Cgui), Debaryomyces hansenii
(Dhan), Candida lusitaniae (Clus), Saccharomyces cerevisiae (Scer), Saccharomyces
paradozus (Spar), Saccharomyces mikatae (Smik), Saccharomyces bayanus (Sbay), Candida
glabrata (Cgla), Saccharomyces castellii (Scas), Kluyveromyces lactis (Klac), Ashbya
gossypii (Agos), and Kluyveromyces waltii (Kwal). Note that Saccharomyces castellii has
since been re-named Naumovozyma castellii (https://www.uniprot.org/taxonomy/27288),
Kluyveromyces waltii has since been re-named Lachancea waltii
(https://www.uniprot.org/taxonomy/1089441), and Ashbya gossypii has been re-named
Eremothecium gossypii (https://www.uniprot.org/taxonomy/33169).

The 12 fly species are: Drosophila melanogaster (Dmel), Drosophila simulans
(Dsim), Drosophila sechellia (Dsec), Drosophila erecta (Dere), Drosophila yakuba (Dyak),
Drosophila ananassae (Dana), Drosophila pseudoobscura (Dpse), Drosophila persimilis

(Dper), Drosophila willistoni (Dwil), Drosophila mojavensis (Dmoj), Drosophila virilis
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Fig. 1. The species trees reported in Rasmussen and Kellis (2012), which we use as the topologies in the simulations
and in the empirical data analysis. a) The species tree of 16 fungal species. b) The species tree of 12 fly species.
The species tree topologies and their branch lengths in units of million years are taken from
http://compbio.mit.edu/dlcoal/.

173 To generate gene trees while allowing for ILS and GDL, we used SimPhy (Mallo

w et al., 2015) with the parameters specified below (assuming all species are diploid).

s SimPhy uses the three-tree model developed in Rasmussen and Kellis (2012) to simulate

w data. In this model, a locus tree is simulated within the branches of the species tree. All

7 incongruence between the locus tree and the species tree is due to GDL. Then, a gene tree

s is simulated within the branches of the locus tree, where all incongruence between the

o locus tree and the gene tree is due to ILS. The resulting gene tree differs from the species

1w tree due to a combination of ILS and GDL. Using the locus trees as input to an inference

w  method amounts to using data where all incongruence is solely due to GDL (but not ILS).

1w Setting the rates of GDL to 0 amounts to generating gene trees where all incongruence is

s solely due to ILS. Note that SimPhy makes two further assumptions relevant to the results

e presented here: first, it assumes no hemiplasy of new duplication mutations. That is, all

s new duplicates immediately fix before they can be lost during a polymorphic phase.
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Rasmussen and Kellis (2012) found that this assumption affected 5% of gene families
simulated under similar conditions. Furthermore, hemiplasy results in an excess of
apparent gene losses, which should not affect inferences of species trees. The second
assumption is that all gene families are independent: no events duplicate or delete more
than a single gene at a time. In real data, large-scale events (including whole-genome
duplications) can affect many genes at a time.

For the fungal tree simulated datasets, we used five different duplication and loss
rates (assuming duplication and loss rates are equal): 0 (to investigate the performance
when ILS, but not GDL, acted on the gene families), 1 x 1071, 2 x 1071% 5 x 107'%, and
10 x 10719 per generation. We take the case where the rate is 1 x 1071° to be similar
similar to the duplication rate of 7.32 x 107! and loss rate of 8.59 x 107! used by
Rasmussen and Kellis (2011), and denote this rate as “1x”. We used two effective
population sizes: 107 and 5 x 107, where the former was also used by Rasmussen and Kellis
(2012) as the true population size. We assumed 0.9 years per generation as in Rasmussen
and Kellis (2012) and used 4 x 107'% as the nucleotide mutation rate per site per
generation, similar to the rates of 3.3 x 107!* and 3.8 x 107! used by Zhang and Wu
(2017) and Lang and Murray (2008), respectively.

For the fly tree simulated datasets, we used five different duplication and loss rates
(assuming duplication and loss rates are equal): 0, 1 x 1071%, 2 x 1071°, 5 x 107!, and
10 x 1071% per generation. A GDL rate of 1.2 x 107! was used in Rasmussen and Kellis
(2012); Zhang and Wu (2017) and reported by Hahn et al. (2007); we again denote this
rate as “1x”. We used two effective population sizes: 106 and 5 x 109, similar to the values
used in Rasmussen and Kellis (2012) and the estimated value of 1.15 x 10° reported in
Sawyer and Hartl (1992); Pollard et al. (2006). We assumed 10 generations per year as in
Rasmussen and Kellis (2012); Zhang and Wu (2017) and used 3 x 1079 as the mutation
rate per site per generation, similar to the rate of 5 x 107 found in Schrider et al. (2013).

For each combination of GDL rate and population size, 10,000 gene families (each
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containing a locus tree and its corresponding gene tree) were simulated in this fashion as
one dataset. Ten such data sets, each with 10,000 gene families, were generated for each
condition. To study the effect of using datasets of varying sizes, for each of the 10 datasets
we randomly sampled 10, 50, 100, and 250 gene families from the 10,000 gene families
under the ALL, ONE, ONLY, and ONLY-NoDup scenarios. In case the number of
available gene families that fits ONLY or ONLY-NoDup is smaller than the desired size,
that number of gene families was used (e.g., when only 6 gene family trees are available
when data sets of size 10 are desired, the 6 trees are used as input).

To study the effect of GDL and ILS on species tree estimates, for each dataset of
trees (true gene trees or true locus trees; that is, trees without estimation error) of a given
size, we fed the dataset as input to InferNetwork MPL, ASTRAL, NJg, ASTRAL-Pro, and
FastMulRFS and computed the Robinson-Foulds distance (Robinson and Foulds, 1981),
normalized by the number of internal branches in the (unrooted) species tree to obtain a
value between 0 and 1. This is the normalized distance between the true and inferred
species trees. To study the further effect of error in the gene tree estimates on species tree
estimates, we simulated the evolution of sequences of length 500 nucleotides on all gene
trees under the HKY model, using Seq-gen (Rambaut and Grassly, 1997). We then inferred
gene trees from the simulated sequence data using IQ-TREE (Nguyen et al., 2014).
Furthermore, to study the effect of error in the locus tree estimates, we treated the true
locus tree as a gene tree and simulated the evolution of sequences of length 500 nucleotides
on all locus trees under the HKY model, again using Seq-gen, and inferred locus trees from
the simulated sequence data using IQ-TREE. It is important to note that in practice only
gene trees, but not locus trees, are inferrable, as the locus tree is an artifact of the
three-tree model and not a biological entity (Rasmussen and Kellis, 2012). However,
conducting analysis using inferred locus trees gives a picture of the performance when all
incongruence is due to GDL and gene tree error only. Finally, InferNetwork MPL assumes

that the input gene trees are rooted. In this study, we rooted the gene tree estimates by
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minimizing deep coalescences (Maddison, 1997; Than and Nakhleh, 2009); that is, we
rooted each gene tree in a way that minimizes the number of extra lineages when

reconciled with the true species tree.

Biological data

For the fungal dataset, we used 2932 gene trees reported in
http://compbio.mit.edu/dlcoal/ and estimated with PhyML (Guindon and Gascuel, 2003),
where 1867 gene trees fit the ONLY setting. For the fly dataset, we used 9233 gene trees
from Hahn et al. (2007) reconstructed using the neighbor-joining algorithm, where 6698
gene trees fit the ONLY setting. For the fly dataset, we removed any gene trees containing
polytomies prior to running NJst. In neither dataset did we attempt to identify single-copy
orthologs. We again rooted each gene tree in the empirical data with respect to the species
trees of Figure 1 so as to minimize deep coalescences (Maddison, 1997; Than and Nakhleh,
2009) using the method of Yu et al. (2011), as implemented by the function ProcessGT in
PhyloNet (Wen et al., 2018). We estimated species trees using ASTRAL, NJg;, maximum
pseudo-likelihood, ASTRAL-Pro, and FastMulRFS with these gene trees as input.

RESULTS
Characteristics of the simulated data

Before we describe the inference results, we discuss the characteristics of the
simulated data. First, we investigated the effects of gene duplication and loss on the
number of gene copies per species in each gene family. Figure 2a,b and Figure Sla,b show
data on the sizes (numbers of copies) of gene families in the 16-taxon and 12-taxon data
sets, respectively, under the various settings of effective population sizes and duplication
and loss rates.

Clearly, the higher the GDL rates, the larger the variance in size of gene families.

The figure also shows that the average size of a gene family is roughly equal to the number
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Fig. 2. Characteristics of the simulated data under different settings of the duplication/loss rates and tree
topologies. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the
rate found in nature for the clade represented by each species tree topology (see Methods). (a-b) Distribution of the
total number of gene copies in individual gene families in the 16-taxon and 12-taxon data sets, respectively. Note
that the two tree topologies also have different simulated effective population sizes in these figures (see
Supplementary Fig. Sla,b for more conditions). (¢c-d) Scatter plots of XL(Species tree, Locus tree), the number of
extra lineages when reconciling the true locus trees with the true species tree, for the 16-taxon and 12-taxon data
sets, respectively. These plots therefore represent the effects of GDL alone. (e-f) Scatter plots of XL(Locus tree,
Gene tree), the number of extra lineages when reconciling the true gene trees with the true locus tree, for the
16-taxon and 12-taxon data sets, respectively. These plots therefore represent the effects of ILS alone, though note
that higher rates of GDL allow there to be more gene tree branches on which ILS can act.

of species, with the largest gene families having 65 copies for the 16-taxon datasets, and 94
copies for the 12-taxon datasets (recall that these trees use different rates of GDL). We
then counted the average (over the 10 datasets per setting) number of gene families for
each setting that have ONLY one copy per species and the average number of gene families

with no history of duplication (i.e. ONLY-NoDup). The results are shown in Table 1. The



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

13

Table 1. The average number of gene families that fit the ONLY/ONLY-NoDup settings out of the 10,000 gene
families.

16-taxon data 12-taxon data
GDL rate Ne 107 5 x 107 108 5 x 109
1x10°10 7619/7616 | 7585/7583 | 4591/4554 | 4584/4550
2x 10710 5794/5782 | 5787/5775 | 2197/2131 | 2176/2111
5 x 10710 2554/2521 | 2538/2508 | 268/226 266/222
1x107° 689/659 688/657 12/6 13/7

table shows that as the GDL rates increase, the number of single-copy orthologs decreases.
However, as predicted by theory (Smith and Hahn, 2021a), there appear to be very few
pseudoorthologs in the ONLY dataset.

We then set out to assess the extent of incongruence in the gene trees due to GDL
and ILS. For every pair of true species tree and true locus tree, we computed the number
of extra lineages (Maddison, 1997) using the DeepCoalCount_tree command in PhyloNet
(Than and Nakhleh, 2009; Wen et al., 2018) as a proxy for the amount of incongruence in
the data. Here, we treated all gene copies from the same species as different individuals.
Zero extra lineages mean there is no incongruence between the two trees, and the higher
the value, the more incongruence there is. In particular, no incongruence means that all
gene copies from the same species are monophyletic in the locus tree, and when restricted
to a single arbitrary copy per species, the locus tree and species tree have identical
topologies.

Figure 2c,d and Figure Slc,d show data on the number of extra lineages in the
simulated 16-taxon and 12-taxon datasets, respectively, under the various settings of
effective population sizes and duplication and loss rates. It is important to note that all
incongruence in this case is exclusively due to GDL (ILS is not a factor in the results in
these two panels). The panels do not have results for the GDL rate of 0x, because in such
cases there is no incongruence at all between the locus tree and the species tree, and thus
there are zero extra lineages. The results show that, unsurprisingly, there is much more

incongruence for the ALL scenario than the ONE scenario. For the ONLY scenario, there



291

292

293

294

295

296

297

2908

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

14

is very little incongruence in either dataset.The incongruence in ONLY would indicate the
phenomenon of hidden paralogy: single-copy genes are paralogs, so that their gene trees do
not always agree with the species tree. Given the small number of hidden paralogs (Table
1), these results are unsurprising. The ONLY-NoDup datasets are not plotted, because the
number of extra lineages in those locus trees is always zero, as expected.

We also computed the number of extra lineages when reconciling the true gene trees
with the true locus trees. Here, incongruence is exclusively due to ILS (GDL is not a
factor). Figure 2e,f and Figure Sle,f show data on the number of extra lineages in the
simulated 16-taxon and 12-taxon datasets, respectively, under the various settings of
effective population sizes and duplication and loss rates. When the gene tree topology is
identical to the locus tree topology, the number of extra lineages is zero, and the larger the
number of extra lineages, the more ILS has an effect on the data. The figure shows that, as
expected, the amount of ILS is larger for larger population sizes, and consequently there is
much more ILS in the 16-taxon dataset than in the 12-taxon dataset. One other trend to
observe is that, on average, the amount of incongruence due to ILS increases with the
increase in the GDL rate. This is a reflection of the fact that for higher GDL rates, the
locus trees are larger (more leaves and internal branches) and this naturally results in more
branches that can be affected by ILS. Finally, the amount of incongruence due to ILS is
generally far lower than the amount due to GDL in the 12-taxon dataset, while the levels
of incongruence due to GDL and ILS are similar in the 16-taxon dataset, especially when

the rates of duplication and loss are high.

Results on Simulated Data

We are now in position to describe the inference results. We show figures for the
16-taxon datasets in the main text, while figures for the 12-taxon datasets are all in the
Supplementary Materials (Figs. S8 to S11). The results for the 12-taxon datasets are

consistently better in terms of accuracy, so we chose to focus here on the less-optimal
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results.

We first ran the inference methods ASTRAL, InferNetwork MPL, NJ,
ASTRAL-Pro, and FastMulRFS on the true gene trees for all four input scenarios: ALL,
ONE, ONLY, and ONLY-NoDup. In this case, gene tree estimation error is not a cause of
gene tree incongruence. Instead, all incongruence is due to a combination of ILS and GDL.

Results on the full 16-taxon tree are shown in Figure 3 and Figure S4. Note that, in all
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Fig. 3. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of

5.0 x 107 and varying GDL rates; note that simulations include the effects of both ILS and GDL (but no gene tree
estimation error). Species tree estimation error was measured as the normalized RF distance between the true
species tree and the ones inferred from true gene trees. The five inference methods used are ASTRAL,
InferNetwork MPL, NJg;, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the
rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to
a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families
used and the Y-axis represents the normalized RF distance.

cases, using input data with GDL levels of 0 amounts to inferring a species tree from gene
trees whose incongruence is solely due to ILS.
There are several observations based on these results. First, the accuracy of the

inferred 16-taxon trees is much lower in general than that of the inferred 12-taxon trees. In
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particular, for the 12-taxon data sets, the species trees are perfectly estimated in almost all
cases (Supplementary Fig. S3), whereas the species tree estimation error is high, especially
for the larger population sizes, for the 16-taxon data sets. As shown in Figure 2 and
Supplementary Figure S1, both datasets have similar gene family sizes, but differ
significantly in terms of the amount of ILS in the data, with the 12-taxon datasets having
very little ILS. Therefore, the straightforward explanation for the observed differences
species tree inference accuracy between the 16- and 12-taxon data sets is the higher level of
ILS in the former. Given that the level of incongruence due to GDL is similar between the
16-taxon and 12-taxon data sets (Fig. 2c,d and Supplementary Fig. Slc,d), these results
point to the larger role that ILS plays in the methods’ performance than GDL does.

Second, in the case of the 16-taxon data, the performance of all methods improves
as the number of gene families used as input to the method increases. Note also that the
largest dataset used here consists of only 250 gene trees, which is much smaller than the
number available in most phylogenomic data sets. While there is very little difference
observed in the performance among the methods on the 16-taxon data, ASTRAL,
ASTRAL-Pro, and NJg are more similar to each other in terms of performance than either
of them is to inference under maximum pseudo-likelihood or FastMulRFS. This makes
sense as ASTRAL, ASTRAL-Pro, and NJg are summary methods that make inference
based on statistics derived from the input gene trees, whereas maximum pseudo-likelihood
uses calculations based on the multispecies coalescent directly. The performance of
FastMulRFS is similar to that of other methods, but its error rates remain higher than the
other methods when more gene families are used. Although ASTRAL-Pro and
FastMulRFS were developed with gene duplication and loss in mind, they do not appear to
outperform the other summary methods.

Third, the level of ILS for a population size of 50M is higher than for a population
size of 10M, and this results in lower accuracy of inferred species trees by all methods in

the former case (Supplementary Fig. S4). This behavior is expected for any method,
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regardless of whether GDL is acting. Notably, FastMulRFS was not developed to deal
correctly with ILS, and seems to have an inflated error rate with larger population sizes,
but not with smaller population sizes (Supplementary Fig. S4), suggesting that ILS may
be the cause of higher error rates in this method.

Lastly, we observe very little difference in the accuracy of inferred species trees
across the four input scenarios: ALL, ONE, ONLY, and ONLY-NoDup. The only case in
which there is a noticeable difference is in the 12-taxon datasets with the duplication rate
10x that found in nature, when only ten genes are used for inference (Supplementary
Figs. S8 and S9). These results imply that the presence of paralogs in the data, no matter
how they are treated, does not have much of an effect on the performance of the five
methods, unless very few genes are used.

The results thus far raise the important question: Does GDL have any effect on the
performance of these five methods? To answer this question, we ran all of them on the
locus trees as input to infer species trees. By the three-tree model, this amounts to feeding
these methods “gene trees” whose incongruence is solely due to GDL; that is, ILS plays no
role in incongruence here. It is important to point out that locus trees are mathematical
constructs of the three-tree model; in practice, inferring a locus tree is not possible, unless
the data has no ILS at all. We conducted this experiment to study the performance of
methods when GDL, but not ILS, causes all incongruence. Results on the full 16-taxon
datasets are shown in Figure 4 and Supplementary Figure S5. As the results show, all
methods infer the species tree perfectly accurately on almost all data sets, regardless of the
parameter settings and the input scenario. In other words, when these methods—some of
which have been developed based on the multispecies coalescent directly
(InferNetwork MPL), some of which were inspired by the MSC (ASTRAL, ASTRAL-Pro,
and NJg ), and one that does not deal with ILS at all (FastMulRFS)—are applied to data
that have no ILS but do have paralogs in them, they have almost perfect accuracy in terms

of the species tree topology they infer, under the conditions of our simulations. Combined
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Fig. 4. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of

5.0 x 107 and varying GDL rates; note that simulations include the effects of GDL only (no ILS or gene tree
estimation error). Species tree estimation error was measured as the normalized RF distance between the true
species tree and the ones inferred from true locus trees. The five inference methods used are ASTRAL,
InferNetwork MPL, NJs;, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the
rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to
a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families
used and the Y-axis represents the normalized RF distance.

with the results summarized in Figure 3 and Supplementary Figure S4, these results show,
perhaps surprisingly, that methods developed to handle ILS but not GDL do much better
in handling GDL than they do in handling ILS. Perhaps unsurprisingly, ASTRAL-Pro and
FastMulRFS, methods designed to handle GDL, also perform well on the true locus trees.
The inflated errors seen with FastMulRFS under some settings with gene trees are absent
when true locus trees are used as input, suggesting that, indeed, these errors were due to
ILS. ASTRAL-Pro was designed to deal with both ILS and GDL and performs well on
both true gene trees and true locus trees.

In practice, gene trees are unknown and are inferred from sequence data. Therefore,

to simulate more realistic scenarios, we inferred gene trees and locus trees from simulated
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sequence data and fed these tree estimates as input to the five methods. In this case, gene
tree estimation error is a factor in the observed incongruences. We show the extent of error
in the estimated gene and locus trees for the 16-taxon data in Figure S2.

Gene tree estimation error is measured by the normalized RF distance between the
true gene tree and the reconstructed gene tree. For the 12-taxon data set, the average gene
tree estimation error ranges from 0.456 to 0.648, whereas the average locus tree estimation
error is slightly lower, ranging from 0.414 to 0.627 (Supplementary Fig. S3). For the
16-taxon data set, the average gene tree estimation error ranges between 0.073 to 0.130
while the average locus tree estimation error ranges from 0.065 to 0.099. In other words,
there is much less gene tree estimation error in the 16-taxon data sets than in the 12-taxon
data sets. Moreover, for the 12-taxon datasets under the ALL and ONLY settings, with
increased GDL rate, a decline in error was observed (the average error dropping from 0.614
to 0.477 and 0.615 to 0.489 under ALL and ONE, respectively). Such a pattern, however,
was not detected for the 16-taxon datasets.

Results of species tree inference using the full 16-taxon dataset based on estimated
gene trees are shown in Figure 5 and Supplementary Figure S6; those based on the locus
tree estimates are shown in Figure 6 and Supplementary Figure S7. These results should
be contrasted with Figure 3, Supplementary Figure S4, Figure 4 and Supplementary
Figure S5, respectively, to understand the effect of gene tree estimation error on the
accuracy of species tree inference.

In the case of species tree inferences using data where ILS, GDL, and gene tree
estimation error are involved, the error rates of all five species tree inference methods went
up, as expected (Fig. 5 and Supplementary Fig. S6), but only slightly. The accuracy of the
species trees improves as the number of gene families increases. As discussed above, the
error in gene tree estimates in the 16-taxon datasets is very low. Since gene tree estimation
error in the 12-taxon datasets is much higher (because the higher substitution rates result

in noisier sequence data), we observe a larger impact of this error on the performance of
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Fig. 5. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of

5.0 x 107 and varying GDL rates; note that simulations include the effects of ILS, GDL and gene tree estimation
error. Species tree estimation error was measured as the normalized RF distance between the true species tree and
the ones inferred from estimated gene trees. The five inference methods used are ASTRAL, InferNetwork MPL,
NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier (0x,
1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to a combination of
population size and GDL rates. The X-axis in each panel represents the number of gene families used and the
Y-axis represents the normalized RF distance.

methods on the 12-taxon datasets (Supplementary Fig. S10). While the methods had an
almost perfect accuracy on true gene trees, species tree estimates now have as high as 50%
error when 10 gene family trees are used, and close to 25% error when 250 gene family
trees are used (Supplementary Fig. S10). These results illustrate the large impact gene tree
estimation error has on these methods. In the case of the 12-taxon datasets, the impact of
gene tree estimation error significantly outweighs that of ILS or GDL.

Figure 6 and Supplementary Figure S7 demonstrate how GDL and gene tree
estimation error (but no ILS) impact species tree inference. As with Figure 4 and
Figure S5, which show almost perfect performance of species tree inference from true locus

trees (i.e., GDL and no ILS), we observe little reduction in performance here due to error
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Fig. 6. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of

5.0 x 107 and varying GDL rates; note that simulations include the effects of GDL and gene tree estimation error
(no ILS). Species tree estimation error was measured as the normalized RF distance between the true species tree
and the ones inferred from estimated locus trees. The five inference methods used are ASTRAL, InferNetwork MPL,
NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier (0x,
1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to a combination of
population size and GDL rates. The X-axis in each panel represents the number of gene families used and the
Y-axis represents the normalized RF distance.

in the estimates of gene trees. The results demonstrate that in the absence of ILS, all
methods are robust to gene tree estimation error, except when the number of gene families
is very small. In the case of the 12-taxon datasets, where locus tree estimation error is
much higher, the five species tree inference methods also have comparable, but lower,
accuracies (Supplementary Fig. S11).

All of these results combined point to a very small impact of GDL on the
performance of the five studied species tree inference methods and given the simulation
parameters used here, regardless of how the paralogs are handled. On the other hand,
across all datasets it was evident that gene tree estimation error has a noticeable impact

on the methods’ performance, and that ILS often had a substantial impact on accuracy.
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Results on Biological Data

We ran all five methods used above on two empirical datasets, each consisting of
thousands of gene trees. As the two datasets were the basis for the simulated data
presented above, they share many of the same properties as these data.

For the 16 fungal genomes, the inferred species trees from all five methods differ
from the tree shown in Figure la. ASTRAL, NJg, ASTRAL-Pro and FastMulRFS inferred
the same topology depicted in Figure 7c under all three input scenarios (recall that
ONLY-NoDup is not used here, since true orthologs are not known). The same phylogeny
is also inferred by InferNetwork MPL(ONE). This inferred tree is topologically different
from the tree shown in Figure la: in particular, the positions of Kluyveromyces waltii and
Kluyveromyces lactis have been switched, as have the positions of Candida glabrata and
Saccharomyces castellii (Fig. 7c). The trees inferred by InferNetwork MPL(ALL) and
InferNetwork MPL(ONLY) differ from the reference tree of Figure la in terms of the
placement of Candida glabrata and Saccharomyces castellii, as shown in Figure 7a and
Figure 7b. InferNetwork MPL(ALL) additionally grouped Saccharomyces cerevisiae and
Saccharomyces mikatae as sisters, and switched the position of Kluyveromyces waltii and
Kluyveromyces lactis. Interestingly, the position of Candida glabrata is not a settled issue:
Shen et al. (2016) label the relevant branch as “unresolved” in their analysis of 1,233
single-copy orthologs. Similarly, their results support the same placement of Kluyveromyces
lactis as in Figs 7a and 7c here. The placement of these species shown in Figure la
originally comes from a concatenated analysis of 706 single-copy genes (Butler et al., 2009).

For the 12 fly genomes, all three sampling schemes and all five methods inferred the

exact same tree as the species tree shown in Figure 1b.

DiscussioN

As phylogenomic datasets grow, our ability to use them within the bounds of

current analysis paradigms shrinks. One of the main problems is the decreasing number of
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a) _E Clus b) _E Clus C) _E Clus
Dhan Dhan Dhan

Cgui Cgui Cgui

Lelo Lelo Lelo

Cpar Cpar Cpar

Ctro Ctro Ctro

Calb Calb Calb

Klac Kwal Klac

4'_E Kwal 4E Klac 4'_E Kwal
Agos Agos Agos

Cgla Cgla Cgla

Scas Scas Scas

Sbay Sbay Sbay

Spar Smik Smik

Smik Spar Spar

Scer Scer Scer

Fig. 7. Inferred fungal species trees. a) The fungal species tree inferred by InferNetwork MPL(ALL). b) The fungal
species tree inferred by InferNetwork MPL(ONLY) ¢) The fungal species tree inferred by ASTRAL, NJg,
ASTRAL-Pro, FastMulRFS, and InferNetwork MPL(ONE). Differences between the inferred species trees and the
tree in Figure 1 are highlighted in red.

gene families that are single-copy as the number of sampled species increases (Emms and
Kelly, 2018). Because most current phylogenetic methods assume that only single-copy
orthologs are being used, this restriction means that such methods cannot be used for
datasets with even several dozen taxa without severe downsampling or other ad hoc
solutions (e.g., Thomas et al., 2020). Here, we set out to ask whether phylogenomic
methods intended to deal with incongruence due to ILS can be applied to data containing
both orthologs and paralogs, which contain incongruence due to GDL.

On simulated datasets where only ILS acted, and GDL was not a factor, all
methods had the expected performance: accurate species tree estimates that improved as
the number of gene trees used increases. In the case where the level of ILS was very low
(the 12-taxon data), the methods had perfect performance under almost all conditions,
regardless of the number of gene trees used. FastMulRFS (Molloy and Warnow, 2020)
sometimes had high error rates when rates of ILS were high, a result that has been found

in previous studies on the accuracy of this method (Zhang et al., 2020). FastMulRF'S is
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also the only method employed here that has not been proven to be statistically consistent
under the multispecies coalescent model, in which ILS is the driving forces behind
incongruence.

In the cases where both ILS and GDL acted, the performance of the five methods
was hardly affected by the type of dataset used (ALL, ONE, ONLY, ONLY-NoDup).
Within the range of simulation parameters and datasets analyzed here, our results imply
that running these methods on data with paralogs will produce species tree topologies at
least as accurate as those using single-copy orthologs alone. This is especially important
for datasets with a large number of species or high GDL rates.

When the methods were run on the locus tree data, where ILS does not play a role
and the data consist of many gene families with multiple copies, the methods produced
very accurate species trees. When as few as ten gene trees were used, error rates were
elevated in datasets including paralogs (Supplementary Fig. S9). However, with more than
ten genes, GDL alone did not appear to affect species tree inference under our simulation
conditions. This further demonstrates that GDL has very little effect on the performance
of these methods.

While at first it may be surprising that these methods performed very well in terms
of accuracy, the majority of signal in any input gene tree reflects species relationships. Gene
duplication—if random across the species tree—simply adds noise to the data, while at the
same time often doubling the amount of information on the relationships among species
carrying an extra gene copy. Similarly, gene loss does not positively mislead these methods,
leading to accurate reconstructions of the species tree. Nevertheless, upon close inspection,
some of these results are not intuitive, especially for the maximum pseudo-likelihood
inference. InferNetwork MPL makes direct use of the MSC, whose assumptions are clearly
violated in all data sets except when the GDL rates are set to 0, whereas all other methods
are summary methods that make no direct use of the MSC. Consequently, one would have

expected that InferNetwork MPL would be very sensitive to the presence of paralogs in the
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data, while the others were less so. However, we largely did not observe this behavior (but
see discussion of the fungal tree below). Using methods designed specifically to deal with
duplication and loss (ASTRAL-Pro and FastMulRFS) also did not lead to lower error
rates. In the case of ASTRAL-Pro, we find performance similar to ASTRAL, as expected
given the statistical consistency of these methods, as discussed above.

In practice, gene trees are estimated from sequence data and can be erroneous.
Error in the gene tree estimates, rather than ILS, could explain much of the heterogeneity
observed in phylogenomic analyses, especially at deeper nodes in a species tree
(Scornavacca and Galtier, 2017). We showed the gene tree estimation error can indeed
impact species tree inference significantly, and that the level of its impact is similar to that
of ILS, if not larger. The results from simulations including gene tree error (and from the
biological datasets) should be considered the most realistic. However, as more gene trees
are used, regardless of levels of ILS or GDL, species tree accuracy increased.

In analyses of two biological datasets where a species tree has been inferred using
hundreds or thousands of loci, we found high accuracy of the methods using paralogs. All
methods accurately inferred the published fly species tree. For the fungal species tree, no
methods inferred the species tree we initially assumed to be true, which is originally based
on a concatenated analysis of 706 single-copy genes (Butler et al., 2009). All methods,
applied to all datasets, disagreed with this published tree with respect to the relative
positions of C. glabrata and S. castellii (Fig. 7). Interestingly, the position of S. castellii in
Butler et al. (2009) was constrained prior to tree search based on several rare genomic
changes; an unconstrained search produced a topology consistent with the one found here.
Shen et al. (2016), using a dataset of 1,233 single-copy orthologs, could not confidently
determine the relationships among these species. Here, by more than doubling the number
of gene trees, we find a species tree with a local posterior probability of 1.0 for the
topology shown in Fig 7. Furthermore, the results of Shen et al. (2016) support the

placement of K. lactis found here. The only sets of relationships that appears to differ with
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up-to-date fungal phylogenies are the ones inferred by InferNetwork MPL(ALL) and
InferNetwork MPL(ONLY). This may be because InferNetwork MPL explicitly models
data according to the MSC.

As we highlighted above, we used SimPhy to generate synthetic data, and this tool
makes simplifying assumptions including no hemiplasy of new duplicates and that all gene
families are independent. Under the conditions of our simulations and on the two biological
datasets used here, our results point to a clear message: running species tree inference
methods intended to deal with ILS on gene trees with paralogs yields highly accurate
results. This conclusion is powerful for at least two reasons. First, it implies that orthology
assignment and paralogy removal are not necessary for running gene tree-based species
tree inference; simply treating all copies as different individuals or randomly selecting a
single copy would yield very accurate species tree topologies. Nevertheless, accurate
orthology inference prior to species tree inference could be helpful under evolutionary
scenarios not captured by our simulations. Second, in many practical cases, too few
single-copy genes are available to ensure good performance of species tree inference from
those data alone. In these cases, our results suggest a ready source of more phylogenetic
signal. Summary methods that do not explicitly use the MSC model (i.e., ASTRAL,
ASTRAL-Pro, FastMulRFS, and NJ) are expected to be more robust in the presence of
GDL than methods that explicitly use the model—some of these methods have even been
found to be statistically consistent under a model of GDL and ILS, as discussed above.

While our study focused on the accuracy of the inferred species tree topology, using
paralogs for inference would clearly have an impact on the estimated branch lengths of the
species tree for methods designed with orthologs in mind. In particular, under the ALL
setting, there could be much more incongruence due to the large number of lineages, and,
consequently, methods that use incongruence (and assume all incongruence is due to ILS)
to estimate branch lengths would give values that are shorter than they truly are. For this

reason, branch lengths inferred by such methods should not be used. Branch lengths
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estimated in ASTRAL-Pro should be accurate assuming that the rooting-and-tagging
algorithm used is accurate, but, to our knowledge, the accuracy of branch length estimates
using this approach has not been evaluated. When users wish to estimate branch lengths
using a method designed for use with paralogs, an alternative approach is needed. The
results of our analyses point to the following potential approach for inferring accurate
species trees (topologies and branch lengths) by utilizing as much of the phylogenomic

data as possible:

1. Use all available gene trees as input, whether or not they are single-copy in all

species.
2. Feed all gene trees to a gene tree-based method to obtain a species tree topology.

3. Using a smaller subset of truly single-copy genes, and fixing the species tree topology

obtained from Step (2), optimize the branch lengths of the species tree.

For Steps (1) and (2), one option is to repeat the random sampling of single copies from
each species used to generate multiple “ONE” datasets. Then, these inferred species trees
could be scored under some criterion that combines the MSC with a model of gene
duplication/loss. This would overcome the issue of fixing a single species tree as input to
Step (3), and avoids searching species tree space while evaluating a likelihood function that
is very complex and computationally very demanding to compute. As an alternative to
using only single-copy orthologs in Step (3), one could also use a statistical model that
combines the MSC and GDL models (e.g., Rasmussen and Kellis, 2012). Such methods
allow for paralogy detection and orthology assignment, conditional on the fixed species tree
(or species trees), by using a more detailed evolutionary model and the full signal in the
sequence data. For example, the orthology assignment could be “integrated out” or
sampled, depending on the desired outcomes of the analysis. Unfortunately, while full
Bayesian methods exist that model GDL alone (Boussau et al., 2013) or that model ILS

alone (Ogilvie et al., 2017), none that we know of can model both.
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CONCLUSIONS

In this paper we set out to study how gene tree-based species tree inference would
perform on data with paralogs. The motivation for exploring this question was two-fold.
First, as methods for dealing with incongruence due to ILS have become commonplace,
and as practitioners are almost never certain that their data contain no paralogs, it is
important to understand the effect of hidden paralogy on the quality of the inference.
Second, as larger phylogenomic datasets become available, insistence on single-copy genes
would mean throwing away most of the data and potentially keeping a number of loci that
may be inadequate for suitably complex species tree inference methods to perform well.
We investigated this question through a combination of simulations and biological data
analyses. Our results show that gene tree-based inference is robust to the presence of
paralogs in the data, at least under the simulation conditions and on the empirical
datasets we investigated.

Our results highlight the issue that gene tree-based inference could result in very
accurate species trees even when ILS is not a factor or not the only factor. This finding
implies that orthology detection and restricting data to single-copy genes as a requirement
for employing gene tree-based inference can be mostly eliminated, thus making use of as
much of the data as possible (cf. Smith and Hahn, 2021b). In particular, for very large
datasets (in terms of the number of species), eliminating all but single-copy genes might
leave too few loci for the species tree to be inferred accurately. Our findings show that this
data exclusion could be an unnecessary practice. It is important to note however, that our
results do not apply to concatenated analyses, and in such cases the presence of paralogs
may indeed have a large, negative effect (Brown and Thomson, 2016). Species tree
inference from a concatenation of the sequences with gene families is challenging in the
presence of paralogs for at least two reasons. First, when gene families have different
numbers of copies across species, the concatenated alignment will have very large gaps.

Second, correct orthology detection is still required, so that orthologous gene copies are



612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

29

placed in correct correspondence across the multiple genomes in the concatenated
alignment. This issue is very important to examine so as to avoid aligning non-orthologous
sequences in the concatenated data set.

In our simulations, we generated gene families under a neutral model and with GDL
rates that were the same across all families. It is well known that the functional
implications of gene duplication and the ways in which they are fixed and maintained in
the genome result in much more complex scenarios than those captured in our simulations
(Hahn, 2009; Innan and Kondrashov, 2010). However, analyses of the two biological
datasets yield results with very similar trends to those observed in our simulations.

Finally, while we did not discuss or incorporate gene flow in our study, it is possible
that all three processes—ILS, GDL, and gene flow—are simultaneously involved in the
evolution of some clades. Studies of the robustness of gene tree-based species tree inference
under some models of gene flow exist (Roch and Snir, 2012; Steel et al., 2013; Davidson
et al., 2015; Solis-Lemus et al., 2016; Zhu et al., 2016; Long and Kubatko, 2018), but, to
the best of our knowledge, such studies under scenarios that incorporate all the
aforementioned processes do not exist yet. It is important to highlight, as well, that great
strides have been made in developing methods for phylogenetic network inference in the
presence of ILS (Elworth et al., 2019), but no probabilistic methods currently incorporate
gene duplication and loss (see Li et al. (2020) for a very interesting alternative approach).
We believe methods along the lines described in the previous section could be promising

for accurate and scalable phylogenomic inferences without sacrificing much of the data.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files and online-only appendices, can be

found in the Dryad data repository at
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