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Abstract

Many recent phylogenetic methods have focused on accurately inferring species trees when1

there is gene tree discordance due to incomplete lineage sorting (ILS). For almost all of2

these methods, and for phylogenetic methods in general, the data for each locus is assumed3

to consist of orthologous, single-copy sequences. Loci that are present in more than a single4

copy in any of the studied genomes are excluded from the data. These steps greatly reduce5

the number of loci available for analysis. The question we seek to answer in this study is:6

What happens if one runs such species tree inference methods on data where paralogy is7

present, in addition to or without ILS being present? Through simulation studies and8

analyses of two large biological data sets, we show that running such methods on data with9

paralogs can still provide accurate results. We use multiple different methods, some of10

which are based directly on the multispecies coalescent (MSC) model, and some of which11

have been proven to be statistically consistent under it. We also treat the paralogous loci12

in multiple ways: from explicitly denoting them as paralogs, to randomly selecting one13

copy per species. In all cases the inferred species trees are as accurate as equivalent14

analyses using single-copy orthologs. Our results have significant implications for the use of15
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ILS-aware phylogenomic analyses, demonstrating that they do not have to be restricted to16

single-copy loci. This will greatly increase the amount of data that can be used for17

phylogenetic inference.18

Key words : Multispecies coalescent; incomplete lineage sorting; gene duplication and loss;19

orthology; paralogy.20

21

Species tree inference often requires us to account for the fact that the evolutionary22

histories of different loci can disagree with each other, as well as with the phylogeny of the23

species. The reasons for this incongruence include biological causes such as incomplete24

lineage sorting (ILS) and introgression (broadly interpreted to include all biological25

processes involving genetic exchange), as well as technical causes such as the26

misidentification of paralogs as orthologs (“hidden paralogy”; Doolittle and Brown, 1994).27

The inference of phylogenies can be carried out by concatenating all loci together or28

by treating each locus separately (reviewed in Bryant and Hahn, 2020). While29

concatenation ignores incongruence, gene tree-based methods allow each locus to take on30

its own topology. Some gene tree-based methods rely on a model for how these trees evolve31

within the species phylogeny (in addition to probabilistic models of sequence evolution on32

the gene trees). The multispecies coalescent (MSC) (Hudson, 1983; Takahata, 1989;33

Rannala and Yang, 2003; Degnan and Rosenberg, 2009) has emerged as the most34

commonly employed model of such gene genealogies. Indeed, in the last two decades a wide35

array of methods and computer programs have been developed for species tree inference36

under the MSC; see (Liu et al., 2009; Knowles and Kubatko, 2011; Nakhleh, 2013; Liu37

et al., 2015) for recent reviews and surveys of these methods. Other gene tree-based38

methods are inspired by the MSC, but do not rely explicitly on this model (e.g., Mirarab39

et al., 2014). In either case, the goal is for the methods to be robust to incongruence40

caused by ILS.41



3

Regardless of the method being employed, the inference of species trees usually42

assumes that the data consist of only orthologous sequences. Indeed, most phylogenetic43

methods require the identification of orthologs; see Smith and Hahn (2021b) for a review of44

methods that do not require orthologs. As a result of the common requirement of45

orthologous loci, before such inference methods are applied to a phylogenomic dataset46

paralogs must be identified and removed from the data. One common approach for47

removing paralogs is to use graph-based methods to identify homologous gene families, and48

then to use those gene families present in exactly a single copy in each sampled genome for49

phylogenetic inference (e.g., Li et al., 2003). Another approach is to use branch-cutting50

methods to extract orthologs from larger gene families (e.g., Yang and Smith, 2014).51

Neither of these two approaches guarantees that the resulting data set includes only52

orthologous sequences (Koonin, 2005). Furthermore, restricting the data to single-copy53

genes—which is by far the most common practice in the community—means that much of54

the data must be excluded from the analysis. In particular, as more species are sampled,55

the frequency of genes that are present in single-copy across all species will decrease56

(Emms and Kelly, 2018).57

Paralogous sequences are often modeled by a process of gene duplicaton and loss58

(GDL) (Boussau et al., 2013). This process can also produce incongruence, as every59

duplication event adds a single branch not found in the species tree (losses cannot generate60

incongruence). Although the MSC generates a distribution of gene trees due to ILS, it is61

likely that GDL models induce a distribution that differs from this. An obvious way to62

handle data sets where ILS and GDL could have simultaneously acted on gene families is63

to employ models of gene evolution that go beyond the MSC in order to incorporate GDL64

as well. Indeed, such models are beginning to emerge (Rasmussen and Kellis, 2012; Li65

et al., 2020). However, the more complex the models of gene family evolution, the more66

computationally prohibitive statistical inference under these models becomes (Du and67

Nakhleh, 2018), rendering their applicability infeasible except for very small data sets in68
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terms of the number of species and gene families.69

Given that much progress in terms of accuracy and computational efficiency has70

been made on gene tree-based, ILS-aware species tree inference methods, we ask in this71

paper the following question: are these inference methods robust to the presence of72

paralogs in the data? If they are, then the reach of gene tree-based inference methods is73

significantly extended and the exclusion of paralogous loci from phylogenomic data sets is74

deemed unnecessary, thus providing more signal for the inference task. To answer this75

question, we study the performance of five species tree inference methods, all of which use76

gene trees as the input data: The maximum pseudo-likelihood method of Yu and Nakhleh77

(2015) as implemented by the function InferNetwork MPL in PhyloNet (Wen et al., 2018),78

ASTRAL-III (Zhang et al., 2018), NJst (Liu and Yu, 2011), ASTRAL-Pro (Zhang et al.,79

2020), and FastMulRFS (Molloy and Warnow, 2020). The latter two methods were80

developed with paralogs in mind, and so should serve as a good baseline for comparison to81

the MSC-inspired methods. In particular, ASTRAL-Pro makes use of counts of quartets82

from speciation, but not duplication, events. Thus, there is a connection between the83

ASTRAL-Pro method and orthology detection.84

To test these methods, we use both simulated and real data. We simulate across a85

wide range of GDL rates and levels of ILS, and use two genome-scale empirical datasets86

with thousands of loci that contain branches with very different levels of discordance. We87

also sample the gene family data in multiple ways, in all cases finding that the inferences88

made by all methods are quite accurate, and are mostly identical to the accuracy of the89

inferences when using only single-copy orthologs. Particularly striking is the finding that90

these methods infer very accurate species trees when all gene tree incongruence is due to91

GDL, and ILS is not a factor. We find that gene tree estimation error affects the methods’92

performances at a similar, or even higher, level than ILS. We also find that methods93

designed specifically to take GDL into account, namely ASTRAL-Pro and FastMulRFS, do94

not generally have higher accuracy than the other methods. Overall, our results support95
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the use of approaches that account for gene tree incongruence, regardless of its causes.96

Methods97

Species tree inference methods98

For species tree inference, we use five different methods. The first three assume that99

the input data come from single-copy genes:100

• The maximum pseudo-likelihood inference function InferNetwork MPL in PhyloNet,101

which implements the method of Yu and Nakhleh (2015). This method amounts to102

running MP-EST (Liu et al., 2010) when restricted to trees with no reticulations.103

• ASTRAL-III (Zhang et al., 2018; Rabiee et al., 2019), Version 5.6.3.104

• NJst (Liu and Yu, 2011).105

While the maximum likelihood method of Yu et al. (2014) as implemented by the106

InferNetwork ML function in PhyloNet (Wen et al., 2018) is relevant here, it is much more107

computationally demanding than maximum pseudo-likelihood, so we chose not to run it.108

For comparison, we also use two methods that were designed specifically with109

paralogs in mind:110

• ASTRAL-Pro (Zhang et al., 2020).111

• FastMulRFS (Molloy and Warnow, 2020).112

For the sake of conclusions that we draw from this study, it may be helpful to113

highlight the differences between these methods. InferNetwork MPL optimizes a114

pseudo-likelihood function that is derived based on the assumptions of the MSC. This115

function is very different, for example, from a likelihood function based on a model of gene116

duplication and loss (Arvestad et al., 2009). Therefore, its accuracy in inferring species117

trees from data with paralogs reflects directly on the performance of MSC-based methods118

on such data. None of the other four methods make direct use of the MSC, though119
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ASTRAL, ASTRAL-Pro, and NJst have all been shown to be statistically consistent under120

the MSC, at least when both gene lengths and the number of genes go to infinity. Their121

accuracy on data with paralogs therefore reflects the suitability of these methods, rather122

than the MSC itself, for analyzing such data. Legried et al. (2020) proved that123

ASTRAL-ONE and ASTRAL-multi are statistically consistent under the GDL model of124

Arvestad et al. (2009), whereas Markin and Eulenstein (2020) and Hill et al. (2020) proved125

that ASTRAL-ONE and ASTRAL-multi are statistically consistent under the unified126

GDL/ILS model (the DLCoal model) of Rasmussen and Kellis (2012). ASTRAL-Pro is127

conjectured to be statistically consistent under the DLCoal model (Zhang et al., 2020).128

FastMulRFS has been proven to be statistically consistent under a model of either only129

duplication or only loss (Molloy and Warnow, 2020).130

Given a collection of trees corresponding to gene families (one tree per gene family),131

we generated four types of input to each of the methods:132

• ONLY: The input consists of trees of only gene families that are present in exactly133

one copy in each of the species.134

• ONLY-NoDup: The input consists of trees of ONLY gene families that have no135

history of gene duplication. These are canonical single-copy orthologs.136

• ONE: The input consists of trees of all gene families, but where a single copy per137

species per gene family is selected at random and the remaining copies are removed.138

If a gene family has no copies at all for some species, then the resulting tree of that139

gene family also has no copies for that species.140

• ALL: The input consists of trees of all gene families, but where all copies of a gene in141

a species are treated as multiple alleles from different individuals within the species.142

Similar to ONE, if a gene family has no copies at all for some species, then the143

resulting tree of that gene family also has no copies for that species.144

ONLY corresponds to the practice that is followed in many phylogenomic studies, though145
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it does not necessarily guarantee that the included genes are orthologs. Instead, “hidden146

paralogs” (Doolittle and Brown, 1994) or “pseudoorthologs” (Koonin, 2005) may occur:147

these are cases in which complementary losses result in single-copy paralogs present in148

different species. ONLY-NoDup corresponds to a scenario where researchers know which149

genes have a history of duplication and can exclude them from their analysis. ONE is likely150

to have some hidden paralogs in the input, unless GDL does not occur. By construction,151

ALL has all orthologs and paralogs as input, but these are effectively labeled as orthologs152

with multiple individuals sampled per species, since InferNetwork MPL, ASTRAL-III, and153

NJst were not originally developed with paralogs in mind.154

Simulation setup155

For model species trees, we used the trees of 16 fungal species and 12 fly species156

reported in Rasmussen and Kellis (2012) and shown in Figure 1. The 16 fungal species are:157

Candida albicans (Calb), Candida tropicalis (Ctro), Candida parapsilosis (Cpar),158

Lodderomyces elongisporus (Lelo), Candida guilliermondii (Cgui), Debaryomyces hansenii159

(Dhan), Candida lusitaniae (Clus), Saccharomyces cerevisiae (Scer), Saccharomyces160

paradoxus (Spar), Saccharomyces mikatae (Smik), Saccharomyces bayanus (Sbay), Candida161

glabrata (Cgla), Saccharomyces castellii (Scas), Kluyveromyces lactis (Klac), Ashbya162

gossypii (Agos), and Kluyveromyces waltii (Kwal). Note that Saccharomyces castellii has163

since been re-named Naumovozyma castellii (https://www.uniprot.org/taxonomy/27288),164

Kluyveromyces waltii has since been re-named Lachancea waltii165

(https://www.uniprot.org/taxonomy/1089441), and Ashbya gossypii has been re-named166

Eremothecium gossypii (https://www.uniprot.org/taxonomy/33169).167

The 12 fly species are: Drosophila melanogaster (Dmel), Drosophila simulans168

(Dsim), Drosophila sechellia (Dsec), Drosophila erecta (Dere), Drosophila yakuba (Dyak),169

Drosophila ananassae (Dana), Drosophila pseudoobscura (Dpse), Drosophila persimilis170

(Dper), Drosophila willistoni (Dwil), Drosophila mojavensis (Dmoj), Drosophila virilis171
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(Dvir), and Drosophila grimshawi (Dgri).172
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Fig. 1. The species trees reported in Rasmussen and Kellis (2012), which we use as the topologies in the simulations
and in the empirical data analysis. a) The species tree of 16 fungal species. b) The species tree of 12 fly species.
The species tree topologies and their branch lengths in units of million years are taken from
http://compbio.mit.edu/dlcoal/.

To generate gene trees while allowing for ILS and GDL, we used SimPhy (Mallo173

et al., 2015) with the parameters specified below (assuming all species are diploid).174

SimPhy uses the three-tree model developed in Rasmussen and Kellis (2012) to simulate175

data. In this model, a locus tree is simulated within the branches of the species tree. All176

incongruence between the locus tree and the species tree is due to GDL. Then, a gene tree177

is simulated within the branches of the locus tree, where all incongruence between the178

locus tree and the gene tree is due to ILS. The resulting gene tree differs from the species179

tree due to a combination of ILS and GDL. Using the locus trees as input to an inference180

method amounts to using data where all incongruence is solely due to GDL (but not ILS).181

Setting the rates of GDL to 0 amounts to generating gene trees where all incongruence is182

solely due to ILS. Note that SimPhy makes two further assumptions relevant to the results183

presented here: first, it assumes no hemiplasy of new duplication mutations. That is, all184

new duplicates immediately fix before they can be lost during a polymorphic phase.185
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Rasmussen and Kellis (2012) found that this assumption affected 5% of gene families186

simulated under similar conditions. Furthermore, hemiplasy results in an excess of187

apparent gene losses, which should not affect inferences of species trees. The second188

assumption is that all gene families are independent: no events duplicate or delete more189

than a single gene at a time. In real data, large-scale events (including whole-genome190

duplications) can affect many genes at a time.191

For the fungal tree simulated datasets, we used five different duplication and loss192

rates (assuming duplication and loss rates are equal): 0 (to investigate the performance193

when ILS, but not GDL, acted on the gene families), 1 × 10−10, 2 × 10−10, 5 × 10−10, and194

10 × 10−10 per generation. We take the case where the rate is 1 × 10−10 to be similar195

similar to the duplication rate of 7.32 × 10−11 and loss rate of 8.59 × 10−11 used by196

Rasmussen and Kellis (2011), and denote this rate as “1x”. We used two effective197

population sizes: 107 and 5 × 107, where the former was also used by Rasmussen and Kellis198

(2012) as the true population size. We assumed 0.9 years per generation as in Rasmussen199

and Kellis (2012) and used 4 × 10−10 as the nucleotide mutation rate per site per200

generation, similar to the rates of 3.3 × 10−10 and 3.8 × 10−10 used by Zhang and Wu201

(2017) and Lang and Murray (2008), respectively.202

For the fly tree simulated datasets, we used five different duplication and loss rates203

(assuming duplication and loss rates are equal): 0, 1 × 10−10, 2 × 10−10, 5 × 10−10, and204

10 × 10−10 per generation. A GDL rate of 1.2 × 10−10 was used in Rasmussen and Kellis205

(2012); Zhang and Wu (2017) and reported by Hahn et al. (2007); we again denote this206

rate as “1x”. We used two effective population sizes: 106 and 5 × 106, similar to the values207

used in Rasmussen and Kellis (2012) and the estimated value of 1.15 × 106 reported in208

Sawyer and Hartl (1992); Pollard et al. (2006). We assumed 10 generations per year as in209

Rasmussen and Kellis (2012); Zhang and Wu (2017) and used 3 × 10−9 as the mutation210

rate per site per generation, similar to the rate of 5 × 10−9 found in Schrider et al. (2013).211

For each combination of GDL rate and population size, 10,000 gene families (each212
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containing a locus tree and its corresponding gene tree) were simulated in this fashion as213

one dataset. Ten such data sets, each with 10,000 gene families, were generated for each214

condition. To study the effect of using datasets of varying sizes, for each of the 10 datasets215

we randomly sampled 10, 50, 100, and 250 gene families from the 10,000 gene families216

under the ALL, ONE, ONLY, and ONLY-NoDup scenarios. In case the number of217

available gene families that fits ONLY or ONLY-NoDup is smaller than the desired size,218

that number of gene families was used (e.g., when only 6 gene family trees are available219

when data sets of size 10 are desired, the 6 trees are used as input).220

To study the effect of GDL and ILS on species tree estimates, for each dataset of221

trees (true gene trees or true locus trees; that is, trees without estimation error) of a given222

size, we fed the dataset as input to InferNetwork MPL, ASTRAL, NJst, ASTRAL-Pro, and223

FastMulRFS and computed the Robinson-Foulds distance (Robinson and Foulds, 1981),224

normalized by the number of internal branches in the (unrooted) species tree to obtain a225

value between 0 and 1. This is the normalized distance between the true and inferred226

species trees. To study the further effect of error in the gene tree estimates on species tree227

estimates, we simulated the evolution of sequences of length 500 nucleotides on all gene228

trees under the HKY model, using Seq-gen (Rambaut and Grassly, 1997). We then inferred229

gene trees from the simulated sequence data using IQ-TREE (Nguyen et al., 2014).230

Furthermore, to study the effect of error in the locus tree estimates, we treated the true231

locus tree as a gene tree and simulated the evolution of sequences of length 500 nucleotides232

on all locus trees under the HKY model, again using Seq-gen, and inferred locus trees from233

the simulated sequence data using IQ-TREE. It is important to note that in practice only234

gene trees, but not locus trees, are inferrable, as the locus tree is an artifact of the235

three-tree model and not a biological entity (Rasmussen and Kellis, 2012). However,236

conducting analysis using inferred locus trees gives a picture of the performance when all237

incongruence is due to GDL and gene tree error only. Finally, InferNetwork MPL assumes238

that the input gene trees are rooted. In this study, we rooted the gene tree estimates by239
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minimizing deep coalescences (Maddison, 1997; Than and Nakhleh, 2009); that is, we240

rooted each gene tree in a way that minimizes the number of extra lineages when241

reconciled with the true species tree.242

Biological data243

For the fungal dataset, we used 2932 gene trees reported in244

http://compbio.mit.edu/dlcoal/ and estimated with PhyML (Guindon and Gascuel, 2003),245

where 1867 gene trees fit the ONLY setting. For the fly dataset, we used 9233 gene trees246

from Hahn et al. (2007) reconstructed using the neighbor-joining algorithm, where 6698247

gene trees fit the ONLY setting. For the fly dataset, we removed any gene trees containing248

polytomies prior to running NJst. In neither dataset did we attempt to identify single-copy249

orthologs. We again rooted each gene tree in the empirical data with respect to the species250

trees of Figure 1 so as to minimize deep coalescences (Maddison, 1997; Than and Nakhleh,251

2009) using the method of Yu et al. (2011), as implemented by the function ProcessGT in252

PhyloNet (Wen et al., 2018). We estimated species trees using ASTRAL, NJst, maximum253

pseudo-likelihood, ASTRAL-Pro, and FastMulRFS with these gene trees as input.254

RESULTS255

Characteristics of the simulated data256

Before we describe the inference results, we discuss the characteristics of the257

simulated data. First, we investigated the effects of gene duplication and loss on the258

number of gene copies per species in each gene family. Figure 2a,b and Figure S1a,b show259

data on the sizes (numbers of copies) of gene families in the 16-taxon and 12-taxon data260

sets, respectively, under the various settings of effective population sizes and duplication261

and loss rates.262

Clearly, the higher the GDL rates, the larger the variance in size of gene families.263

The figure also shows that the average size of a gene family is roughly equal to the number264
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Fig. 2. Characteristics of the simulated data under different settings of the duplication/loss rates and tree
topologies. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the
rate found in nature for the clade represented by each species tree topology (see Methods). (a-b) Distribution of the
total number of gene copies in individual gene families in the 16-taxon and 12-taxon data sets, respectively. Note
that the two tree topologies also have different simulated effective population sizes in these figures (see
Supplementary Fig. S1a,b for more conditions). (c-d) Scatter plots of XL(Species tree, Locus tree), the number of
extra lineages when reconciling the true locus trees with the true species tree, for the 16-taxon and 12-taxon data
sets, respectively. These plots therefore represent the effects of GDL alone. (e-f) Scatter plots of XL(Locus tree,
Gene tree), the number of extra lineages when reconciling the true gene trees with the true locus tree, for the
16-taxon and 12-taxon data sets, respectively. These plots therefore represent the effects of ILS alone, though note
that higher rates of GDL allow there to be more gene tree branches on which ILS can act.

of species, with the largest gene families having 65 copies for the 16-taxon datasets, and 94265

copies for the 12-taxon datasets (recall that these trees use different rates of GDL). We266

then counted the average (over the 10 datasets per setting) number of gene families for267

each setting that have ONLY one copy per species and the average number of gene families268

with no history of duplication (i.e. ONLY-NoDup). The results are shown in Table 1. The269
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Table 1. The average number of gene families that fit the ONLY/ONLY-NoDup settings out of the 10,000 gene
families.

16-taxon data 12-taxon data

GDL rate
Ne 107 5 × 107 106 5 × 106

1 × 10−10 7619/7616 7585/7583 4591/4554 4584/4550
2 × 10−10 5794/5782 5787/5775 2197/2131 2176/2111
5 × 10−10 2554/2521 2538/2508 268/226 266/222
1 × 10−9 689/659 688/657 12/6 13/7

table shows that as the GDL rates increase, the number of single-copy orthologs decreases.270

However, as predicted by theory (Smith and Hahn, 2021a), there appear to be very few271

pseudoorthologs in the ONLY dataset.272

We then set out to assess the extent of incongruence in the gene trees due to GDL273

and ILS. For every pair of true species tree and true locus tree, we computed the number274

of extra lineages (Maddison, 1997) using the DeepCoalCount tree command in PhyloNet275

(Than and Nakhleh, 2009; Wen et al., 2018) as a proxy for the amount of incongruence in276

the data. Here, we treated all gene copies from the same species as different individuals.277

Zero extra lineages mean there is no incongruence between the two trees, and the higher278

the value, the more incongruence there is. In particular, no incongruence means that all279

gene copies from the same species are monophyletic in the locus tree, and when restricted280

to a single arbitrary copy per species, the locus tree and species tree have identical281

topologies.282

Figure 2c,d and Figure S1c,d show data on the number of extra lineages in the283

simulated 16-taxon and 12-taxon datasets, respectively, under the various settings of284

effective population sizes and duplication and loss rates. It is important to note that all285

incongruence in this case is exclusively due to GDL (ILS is not a factor in the results in286

these two panels). The panels do not have results for the GDL rate of 0x, because in such287

cases there is no incongruence at all between the locus tree and the species tree, and thus288

there are zero extra lineages. The results show that, unsurprisingly, there is much more289

incongruence for the ALL scenario than the ONE scenario. For the ONLY scenario, there290
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is very little incongruence in either dataset.The incongruence in ONLY would indicate the291

phenomenon of hidden paralogy: single-copy genes are paralogs, so that their gene trees do292

not always agree with the species tree. Given the small number of hidden paralogs (Table293

1), these results are unsurprising. The ONLY-NoDup datasets are not plotted, because the294

number of extra lineages in those locus trees is always zero, as expected.295

We also computed the number of extra lineages when reconciling the true gene trees296

with the true locus trees. Here, incongruence is exclusively due to ILS (GDL is not a297

factor). Figure 2e,f and Figure S1e,f show data on the number of extra lineages in the298

simulated 16-taxon and 12-taxon datasets, respectively, under the various settings of299

effective population sizes and duplication and loss rates. When the gene tree topology is300

identical to the locus tree topology, the number of extra lineages is zero, and the larger the301

number of extra lineages, the more ILS has an effect on the data. The figure shows that, as302

expected, the amount of ILS is larger for larger population sizes, and consequently there is303

much more ILS in the 16-taxon dataset than in the 12-taxon dataset. One other trend to304

observe is that, on average, the amount of incongruence due to ILS increases with the305

increase in the GDL rate. This is a reflection of the fact that for higher GDL rates, the306

locus trees are larger (more leaves and internal branches) and this naturally results in more307

branches that can be affected by ILS. Finally, the amount of incongruence due to ILS is308

generally far lower than the amount due to GDL in the 12-taxon dataset, while the levels309

of incongruence due to GDL and ILS are similar in the 16-taxon dataset, especially when310

the rates of duplication and loss are high.311

Results on Simulated Data312

We are now in position to describe the inference results. We show figures for the313

16-taxon datasets in the main text, while figures for the 12-taxon datasets are all in the314

Supplementary Materials (Figs. S8 to S11). The results for the 12-taxon datasets are315

consistently better in terms of accuracy, so we chose to focus here on the less-optimal316
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results.317

We first ran the inference methods ASTRAL, InferNetwork MPL, NJst,318

ASTRAL-Pro, and FastMulRFS on the true gene trees for all four input scenarios: ALL,319

ONE, ONLY, and ONLY-NoDup. In this case, gene tree estimation error is not a cause of320

gene tree incongruence. Instead, all incongruence is due to a combination of ILS and GDL.321

Results on the full 16-taxon tree are shown in Figure 3 and Figure S4. Note that, in all
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Fig. 3. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of
5.0 × 107 and varying GDL rates; note that simulations include the effects of both ILS and GDL (but no gene tree
estimation error). Species tree estimation error was measured as the normalized RF distance between the true
species tree and the ones inferred from true gene trees. The five inference methods used are ASTRAL,
InferNetwork MPL, NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the
rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to
a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families
used and the Y-axis represents the normalized RF distance.

322

cases, using input data with GDL levels of 0 amounts to inferring a species tree from gene323

trees whose incongruence is solely due to ILS.324

There are several observations based on these results. First, the accuracy of the325

inferred 16-taxon trees is much lower in general than that of the inferred 12-taxon trees. In326
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particular, for the 12-taxon data sets, the species trees are perfectly estimated in almost all327

cases (Supplementary Fig. S3), whereas the species tree estimation error is high, especially328

for the larger population sizes, for the 16-taxon data sets. As shown in Figure 2 and329

Supplementary Figure S1, both datasets have similar gene family sizes, but differ330

significantly in terms of the amount of ILS in the data, with the 12-taxon datasets having331

very little ILS. Therefore, the straightforward explanation for the observed differences332

species tree inference accuracy between the 16- and 12-taxon data sets is the higher level of333

ILS in the former. Given that the level of incongruence due to GDL is similar between the334

16-taxon and 12-taxon data sets (Fig. 2c,d and Supplementary Fig. S1c,d), these results335

point to the larger role that ILS plays in the methods’ performance than GDL does.336

Second, in the case of the 16-taxon data, the performance of all methods improves337

as the number of gene families used as input to the method increases. Note also that the338

largest dataset used here consists of only 250 gene trees, which is much smaller than the339

number available in most phylogenomic data sets. While there is very little difference340

observed in the performance among the methods on the 16-taxon data, ASTRAL,341

ASTRAL-Pro, and NJst are more similar to each other in terms of performance than either342

of them is to inference under maximum pseudo-likelihood or FastMulRFS. This makes343

sense as ASTRAL, ASTRAL-Pro, and NJst are summary methods that make inference344

based on statistics derived from the input gene trees, whereas maximum pseudo-likelihood345

uses calculations based on the multispecies coalescent directly. The performance of346

FastMulRFS is similar to that of other methods, but its error rates remain higher than the347

other methods when more gene families are used. Although ASTRAL-Pro and348

FastMulRFS were developed with gene duplication and loss in mind, they do not appear to349

outperform the other summary methods.350

Third, the level of ILS for a population size of 50M is higher than for a population351

size of 10M, and this results in lower accuracy of inferred species trees by all methods in352

the former case (Supplementary Fig. S4). This behavior is expected for any method,353
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regardless of whether GDL is acting. Notably, FastMulRFS was not developed to deal354

correctly with ILS, and seems to have an inflated error rate with larger population sizes,355

but not with smaller population sizes (Supplementary Fig. S4), suggesting that ILS may356

be the cause of higher error rates in this method.357

Lastly, we observe very little difference in the accuracy of inferred species trees358

across the four input scenarios: ALL, ONE, ONLY, and ONLY-NoDup. The only case in359

which there is a noticeable difference is in the 12-taxon datasets with the duplication rate360

10x that found in nature, when only ten genes are used for inference (Supplementary361

Figs. S8 and S9). These results imply that the presence of paralogs in the data, no matter362

how they are treated, does not have much of an effect on the performance of the five363

methods, unless very few genes are used.364

The results thus far raise the important question: Does GDL have any effect on the365

performance of these five methods? To answer this question, we ran all of them on the366

locus trees as input to infer species trees. By the three-tree model, this amounts to feeding367

these methods “gene trees” whose incongruence is solely due to GDL; that is, ILS plays no368

role in incongruence here. It is important to point out that locus trees are mathematical369

constructs of the three-tree model; in practice, inferring a locus tree is not possible, unless370

the data has no ILS at all. We conducted this experiment to study the performance of371

methods when GDL, but not ILS, causes all incongruence. Results on the full 16-taxon372

datasets are shown in Figure 4 and Supplementary Figure S5. As the results show, all373

methods infer the species tree perfectly accurately on almost all data sets, regardless of the374

parameter settings and the input scenario. In other words, when these methods—some of375

which have been developed based on the multispecies coalescent directly376

(InferNetwork MPL), some of which were inspired by the MSC (ASTRAL, ASTRAL-Pro,377

and NJst), and one that does not deal with ILS at all (FastMulRFS)—are applied to data378

that have no ILS but do have paralogs in them, they have almost perfect accuracy in terms379

of the species tree topology they infer, under the conditions of our simulations. Combined380
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Fig. 4. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of
5.0 × 107 and varying GDL rates; note that simulations include the effects of GDL only (no ILS or gene tree
estimation error). Species tree estimation error was measured as the normalized RF distance between the true
species tree and the ones inferred from true locus trees. The five inference methods used are ASTRAL,
InferNetwork MPL, NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the
rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to
a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families
used and the Y-axis represents the normalized RF distance.

with the results summarized in Figure 3 and Supplementary Figure S4, these results show,381

perhaps surprisingly, that methods developed to handle ILS but not GDL do much better382

in handling GDL than they do in handling ILS. Perhaps unsurprisingly, ASTRAL-Pro and383

FastMulRFS, methods designed to handle GDL, also perform well on the true locus trees.384

The inflated errors seen with FastMulRFS under some settings with gene trees are absent385

when true locus trees are used as input, suggesting that, indeed, these errors were due to386

ILS. ASTRAL-Pro was designed to deal with both ILS and GDL and performs well on387

both true gene trees and true locus trees.388

In practice, gene trees are unknown and are inferred from sequence data. Therefore,389

to simulate more realistic scenarios, we inferred gene trees and locus trees from simulated390
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sequence data and fed these tree estimates as input to the five methods. In this case, gene391

tree estimation error is a factor in the observed incongruences. We show the extent of error392

in the estimated gene and locus trees for the 16-taxon data in Figure S2.393

Gene tree estimation error is measured by the normalized RF distance between the394

true gene tree and the reconstructed gene tree. For the 12-taxon data set, the average gene395

tree estimation error ranges from 0.456 to 0.648, whereas the average locus tree estimation396

error is slightly lower, ranging from 0.414 to 0.627 (Supplementary Fig. S3). For the397

16-taxon data set, the average gene tree estimation error ranges between 0.073 to 0.130398

while the average locus tree estimation error ranges from 0.065 to 0.099. In other words,399

there is much less gene tree estimation error in the 16-taxon data sets than in the 12-taxon400

data sets. Moreover, for the 12-taxon datasets under the ALL and ONLY settings, with401

increased GDL rate, a decline in error was observed (the average error dropping from 0.614402

to 0.477 and 0.615 to 0.489 under ALL and ONE, respectively). Such a pattern, however,403

was not detected for the 16-taxon datasets.404

Results of species tree inference using the full 16-taxon dataset based on estimated405

gene trees are shown in Figure 5 and Supplementary Figure S6; those based on the locus406

tree estimates are shown in Figure 6 and Supplementary Figure S7. These results should407

be contrasted with Figure 3, Supplementary Figure S4, Figure 4 and Supplementary408

Figure S5, respectively, to understand the effect of gene tree estimation error on the409

accuracy of species tree inference.410

In the case of species tree inferences using data where ILS, GDL, and gene tree411

estimation error are involved, the error rates of all five species tree inference methods went412

up, as expected (Fig. 5 and Supplementary Fig. S6), but only slightly. The accuracy of the413

species trees improves as the number of gene families increases. As discussed above, the414

error in gene tree estimates in the 16-taxon datasets is very low. Since gene tree estimation415

error in the 12-taxon datasets is much higher (because the higher substitution rates result416

in noisier sequence data), we observe a larger impact of this error on the performance of417
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Fig. 5. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of
5.0 × 107 and varying GDL rates; note that simulations include the effects of ILS, GDL and gene tree estimation
error. Species tree estimation error was measured as the normalized RF distance between the true species tree and
the ones inferred from estimated gene trees. The five inference methods used are ASTRAL, InferNetwork MPL,
NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier (0x,
1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to a combination of
population size and GDL rates. The X-axis in each panel represents the number of gene families used and the
Y-axis represents the normalized RF distance.

methods on the 12-taxon datasets (Supplementary Fig. S10). While the methods had an418

almost perfect accuracy on true gene trees, species tree estimates now have as high as 50%419

error when 10 gene family trees are used, and close to 25% error when 250 gene family420

trees are used (Supplementary Fig. S10). These results illustrate the large impact gene tree421

estimation error has on these methods. In the case of the 12-taxon datasets, the impact of422

gene tree estimation error significantly outweighs that of ILS or GDL.423

Figure 6 and Supplementary Figure S7 demonstrate how GDL and gene tree424

estimation error (but no ILS) impact species tree inference. As with Figure 4 and425

Figure S5, which show almost perfect performance of species tree inference from true locus426

trees (i.e., GDL and no ILS), we observe little reduction in performance here due to error427
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Fig. 6. Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of
5.0 × 107 and varying GDL rates; note that simulations include the effects of GDL and gene tree estimation error
(no ILS). Species tree estimation error was measured as the normalized RF distance between the true species tree
and the ones inferred from estimated locus trees. The five inference methods used are ASTRAL, InferNetwork MPL,
NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier (0x,
1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to a combination of
population size and GDL rates. The X-axis in each panel represents the number of gene families used and the
Y-axis represents the normalized RF distance.

in the estimates of gene trees. The results demonstrate that in the absence of ILS, all428

methods are robust to gene tree estimation error, except when the number of gene families429

is very small. In the case of the 12-taxon datasets, where locus tree estimation error is430

much higher, the five species tree inference methods also have comparable, but lower,431

accuracies (Supplementary Fig. S11).432

All of these results combined point to a very small impact of GDL on the433

performance of the five studied species tree inference methods and given the simulation434

parameters used here, regardless of how the paralogs are handled. On the other hand,435

across all datasets it was evident that gene tree estimation error has a noticeable impact436

on the methods’ performance, and that ILS often had a substantial impact on accuracy.437
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Results on Biological Data438

We ran all five methods used above on two empirical datasets, each consisting of439

thousands of gene trees. As the two datasets were the basis for the simulated data440

presented above, they share many of the same properties as these data.441

For the 16 fungal genomes, the inferred species trees from all five methods differ442

from the tree shown in Figure 1a. ASTRAL, NJst, ASTRAL-Pro and FastMulRFS inferred443

the same topology depicted in Figure 7c under all three input scenarios (recall that444

ONLY-NoDup is not used here, since true orthologs are not known). The same phylogeny445

is also inferred by InferNetwork MPL(ONE). This inferred tree is topologically different446

from the tree shown in Figure 1a: in particular, the positions of Kluyveromyces waltii and447

Kluyveromyces lactis have been switched, as have the positions of Candida glabrata and448

Saccharomyces castellii (Fig. 7c). The trees inferred by InferNetwork MPL(ALL) and449

InferNetwork MPL(ONLY) differ from the reference tree of Figure 1a in terms of the450

placement of Candida glabrata and Saccharomyces castellii, as shown in Figure 7a and451

Figure 7b. InferNetwork MPL(ALL) additionally grouped Saccharomyces cerevisiae and452

Saccharomyces mikatae as sisters, and switched the position of Kluyveromyces waltii and453

Kluyveromyces lactis. Interestingly, the position of Candida glabrata is not a settled issue:454

Shen et al. (2016) label the relevant branch as “unresolved” in their analysis of 1,233455

single-copy orthologs. Similarly, their results support the same placement of Kluyveromyces456

lactis as in Figs 7a and 7c here. The placement of these species shown in Figure 1a457

originally comes from a concatenated analysis of 706 single-copy genes (Butler et al., 2009).458

For the 12 fly genomes, all three sampling schemes and all five methods inferred the459

exact same tree as the species tree shown in Figure 1b.460

Discussion461

As phylogenomic datasets grow, our ability to use them within the bounds of462

current analysis paradigms shrinks. One of the main problems is the decreasing number of463
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Fig. 7. Inferred fungal species trees. a) The fungal species tree inferred by InferNetwork MPL(ALL). b) The fungal
species tree inferred by InferNetwork MPL(ONLY) c) The fungal species tree inferred by ASTRAL, NJst,
ASTRAL-Pro, FastMulRFS, and InferNetwork MPL(ONE). Differences between the inferred species trees and the
tree in Figure 1 are highlighted in red.

gene families that are single-copy as the number of sampled species increases (Emms and464

Kelly, 2018). Because most current phylogenetic methods assume that only single-copy465

orthologs are being used, this restriction means that such methods cannot be used for466

datasets with even several dozen taxa without severe downsampling or other ad hoc467

solutions (e.g., Thomas et al., 2020). Here, we set out to ask whether phylogenomic468

methods intended to deal with incongruence due to ILS can be applied to data containing469

both orthologs and paralogs, which contain incongruence due to GDL.470

On simulated datasets where only ILS acted, and GDL was not a factor, all471

methods had the expected performance: accurate species tree estimates that improved as472

the number of gene trees used increases. In the case where the level of ILS was very low473

(the 12-taxon data), the methods had perfect performance under almost all conditions,474

regardless of the number of gene trees used. FastMulRFS (Molloy and Warnow, 2020)475

sometimes had high error rates when rates of ILS were high, a result that has been found476

in previous studies on the accuracy of this method (Zhang et al., 2020). FastMulRFS is477



24

also the only method employed here that has not been proven to be statistically consistent478

under the multispecies coalescent model, in which ILS is the driving forces behind479

incongruence.480

In the cases where both ILS and GDL acted, the performance of the five methods481

was hardly affected by the type of dataset used (ALL, ONE, ONLY, ONLY-NoDup).482

Within the range of simulation parameters and datasets analyzed here, our results imply483

that running these methods on data with paralogs will produce species tree topologies at484

least as accurate as those using single-copy orthologs alone. This is especially important485

for datasets with a large number of species or high GDL rates.486

When the methods were run on the locus tree data, where ILS does not play a role487

and the data consist of many gene families with multiple copies, the methods produced488

very accurate species trees. When as few as ten gene trees were used, error rates were489

elevated in datasets including paralogs (Supplementary Fig. S9). However, with more than490

ten genes, GDL alone did not appear to affect species tree inference under our simulation491

conditions. This further demonstrates that GDL has very little effect on the performance492

of these methods.493

While at first it may be surprising that these methods performed very well in terms494

of accuracy, the majority of signal in any input gene tree reflects species relationships. Gene495

duplication—if random across the species tree—simply adds noise to the data, while at the496

same time often doubling the amount of information on the relationships among species497

carrying an extra gene copy. Similarly, gene loss does not positively mislead these methods,498

leading to accurate reconstructions of the species tree. Nevertheless, upon close inspection,499

some of these results are not intuitive, especially for the maximum pseudo-likelihood500

inference. InferNetwork MPL makes direct use of the MSC, whose assumptions are clearly501

violated in all data sets except when the GDL rates are set to 0, whereas all other methods502

are summary methods that make no direct use of the MSC. Consequently, one would have503

expected that InferNetwork MPL would be very sensitive to the presence of paralogs in the504
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data, while the others were less so. However, we largely did not observe this behavior (but505

see discussion of the fungal tree below). Using methods designed specifically to deal with506

duplication and loss (ASTRAL-Pro and FastMulRFS) also did not lead to lower error507

rates. In the case of ASTRAL-Pro, we find performance similar to ASTRAL, as expected508

given the statistical consistency of these methods, as discussed above.509

In practice, gene trees are estimated from sequence data and can be erroneous.510

Error in the gene tree estimates, rather than ILS, could explain much of the heterogeneity511

observed in phylogenomic analyses, especially at deeper nodes in a species tree512

(Scornavacca and Galtier, 2017). We showed the gene tree estimation error can indeed513

impact species tree inference significantly, and that the level of its impact is similar to that514

of ILS, if not larger. The results from simulations including gene tree error (and from the515

biological datasets) should be considered the most realistic. However, as more gene trees516

are used, regardless of levels of ILS or GDL, species tree accuracy increased.517

In analyses of two biological datasets where a species tree has been inferred using518

hundreds or thousands of loci, we found high accuracy of the methods using paralogs. All519

methods accurately inferred the published fly species tree. For the fungal species tree, no520

methods inferred the species tree we initially assumed to be true, which is originally based521

on a concatenated analysis of 706 single-copy genes (Butler et al., 2009). All methods,522

applied to all datasets, disagreed with this published tree with respect to the relative523

positions of C. glabrata and S. castellii (Fig. 7). Interestingly, the position of S. castellii in524

Butler et al. (2009) was constrained prior to tree search based on several rare genomic525

changes; an unconstrained search produced a topology consistent with the one found here.526

Shen et al. (2016), using a dataset of 1,233 single-copy orthologs, could not confidently527

determine the relationships among these species. Here, by more than doubling the number528

of gene trees, we find a species tree with a local posterior probability of 1.0 for the529

topology shown in Fig 7. Furthermore, the results of Shen et al. (2016) support the530

placement of K. lactis found here. The only sets of relationships that appears to differ with531
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up-to-date fungal phylogenies are the ones inferred by InferNetwork MPL(ALL) and532

InferNetwork MPL(ONLY). This may be because InferNetwork MPL explicitly models533

data according to the MSC.534

As we highlighted above, we used SimPhy to generate synthetic data, and this tool535

makes simplifying assumptions including no hemiplasy of new duplicates and that all gene536

families are independent. Under the conditions of our simulations and on the two biological537

datasets used here, our results point to a clear message: running species tree inference538

methods intended to deal with ILS on gene trees with paralogs yields highly accurate539

results. This conclusion is powerful for at least two reasons. First, it implies that orthology540

assignment and paralogy removal are not necessary for running gene tree-based species541

tree inference; simply treating all copies as different individuals or randomly selecting a542

single copy would yield very accurate species tree topologies. Nevertheless, accurate543

orthology inference prior to species tree inference could be helpful under evolutionary544

scenarios not captured by our simulations. Second, in many practical cases, too few545

single-copy genes are available to ensure good performance of species tree inference from546

those data alone. In these cases, our results suggest a ready source of more phylogenetic547

signal. Summary methods that do not explicitly use the MSC model (i.e., ASTRAL,548

ASTRAL-Pro, FastMulRFS, and NJst) are expected to be more robust in the presence of549

GDL than methods that explicitly use the model—some of these methods have even been550

found to be statistically consistent under a model of GDL and ILS, as discussed above.551

While our study focused on the accuracy of the inferred species tree topology, using552

paralogs for inference would clearly have an impact on the estimated branch lengths of the553

species tree for methods designed with orthologs in mind. In particular, under the ALL554

setting, there could be much more incongruence due to the large number of lineages, and,555

consequently, methods that use incongruence (and assume all incongruence is due to ILS)556

to estimate branch lengths would give values that are shorter than they truly are. For this557

reason, branch lengths inferred by such methods should not be used. Branch lengths558
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estimated in ASTRAL-Pro should be accurate assuming that the rooting-and-tagging559

algorithm used is accurate, but, to our knowledge, the accuracy of branch length estimates560

using this approach has not been evaluated. When users wish to estimate branch lengths561

using a method designed for use with paralogs, an alternative approach is needed. The562

results of our analyses point to the following potential approach for inferring accurate563

species trees (topologies and branch lengths) by utilizing as much of the phylogenomic564

data as possible:565

1. Use all available gene trees as input, whether or not they are single-copy in all566

species.567

2. Feed all gene trees to a gene tree-based method to obtain a species tree topology.568

3. Using a smaller subset of truly single-copy genes, and fixing the species tree topology569

obtained from Step (2), optimize the branch lengths of the species tree.570

For Steps (1) and (2), one option is to repeat the random sampling of single copies from571

each species used to generate multiple “ONE” datasets. Then, these inferred species trees572

could be scored under some criterion that combines the MSC with a model of gene573

duplication/loss. This would overcome the issue of fixing a single species tree as input to574

Step (3), and avoids searching species tree space while evaluating a likelihood function that575

is very complex and computationally very demanding to compute. As an alternative to576

using only single-copy orthologs in Step (3), one could also use a statistical model that577

combines the MSC and GDL models (e.g., Rasmussen and Kellis, 2012). Such methods578

allow for paralogy detection and orthology assignment, conditional on the fixed species tree579

(or species trees), by using a more detailed evolutionary model and the full signal in the580

sequence data. For example, the orthology assignment could be “integrated out” or581

sampled, depending on the desired outcomes of the analysis. Unfortunately, while full582

Bayesian methods exist that model GDL alone (Boussau et al., 2013) or that model ILS583

alone (Ogilvie et al., 2017), none that we know of can model both.584
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CONCLUSIONS585

In this paper we set out to study how gene tree-based species tree inference would586

perform on data with paralogs. The motivation for exploring this question was two-fold.587

First, as methods for dealing with incongruence due to ILS have become commonplace,588

and as practitioners are almost never certain that their data contain no paralogs, it is589

important to understand the effect of hidden paralogy on the quality of the inference.590

Second, as larger phylogenomic datasets become available, insistence on single-copy genes591

would mean throwing away most of the data and potentially keeping a number of loci that592

may be inadequate for suitably complex species tree inference methods to perform well.593

We investigated this question through a combination of simulations and biological data594

analyses. Our results show that gene tree-based inference is robust to the presence of595

paralogs in the data, at least under the simulation conditions and on the empirical596

datasets we investigated.597

Our results highlight the issue that gene tree-based inference could result in very598

accurate species trees even when ILS is not a factor or not the only factor. This finding599

implies that orthology detection and restricting data to single-copy genes as a requirement600

for employing gene tree-based inference can be mostly eliminated, thus making use of as601

much of the data as possible (cf. Smith and Hahn, 2021b). In particular, for very large602

datasets (in terms of the number of species), eliminating all but single-copy genes might603

leave too few loci for the species tree to be inferred accurately. Our findings show that this604

data exclusion could be an unnecessary practice. It is important to note however, that our605

results do not apply to concatenated analyses, and in such cases the presence of paralogs606

may indeed have a large, negative effect (Brown and Thomson, 2016). Species tree607

inference from a concatenation of the sequences with gene families is challenging in the608

presence of paralogs for at least two reasons. First, when gene families have different609

numbers of copies across species, the concatenated alignment will have very large gaps.610

Second, correct orthology detection is still required, so that orthologous gene copies are611
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placed in correct correspondence across the multiple genomes in the concatenated612

alignment. This issue is very important to examine so as to avoid aligning non-orthologous613

sequences in the concatenated data set.614

In our simulations, we generated gene families under a neutral model and with GDL615

rates that were the same across all families. It is well known that the functional616

implications of gene duplication and the ways in which they are fixed and maintained in617

the genome result in much more complex scenarios than those captured in our simulations618

(Hahn, 2009; Innan and Kondrashov, 2010). However, analyses of the two biological619

datasets yield results with very similar trends to those observed in our simulations.620

Finally, while we did not discuss or incorporate gene flow in our study, it is possible621

that all three processes—ILS, GDL, and gene flow—are simultaneously involved in the622

evolution of some clades. Studies of the robustness of gene tree-based species tree inference623

under some models of gene flow exist (Roch and Snir, 2012; Steel et al., 2013; Davidson624

et al., 2015; Soĺıs-Lemus et al., 2016; Zhu et al., 2016; Long and Kubatko, 2018), but, to625

the best of our knowledge, such studies under scenarios that incorporate all the626

aforementioned processes do not exist yet. It is important to highlight, as well, that great627

strides have been made in developing methods for phylogenetic network inference in the628

presence of ILS (Elworth et al., 2019), but no probabilistic methods currently incorporate629

gene duplication and loss (see Li et al. (2020) for a very interesting alternative approach).630

We believe methods along the lines described in the previous section could be promising631

for accurate and scalable phylogenomic inferences without sacrificing much of the data.632

SUPPLEMENTARY MATERIAL633

Supplementary material, including data files and online-only appendices, can be634

found in the Dryad data repository at635
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